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ABSTRACT

Model-Agnostic Meta-Learning (MAML) aims to find initial weights that allow
fast adaptation to new tasks. The adaptation (inner loop) learning rate in MAML
plays a central role in enabling such fast adaptation. However, how to choose
this value in practice and how this choice affects the adaptation error remains
less explored. In this paper, we study the effect of the adaptation learning rate in
meta-learning with mixed linear regression. First, we present a principled way
to estimate optimal adaptation learning rates that minimize the population risk
of MAML. Second, we interpret the underlying dependence between the optimal
adaptation learning rate and the input data. Finally, we prove that compared with
empirical risk minimization (ERM), MAML produces an initialization with a
smaller average distance to the task optima, consistent with previous practical
findings. These results are corroborated with numerical experiments.

1 INTRODUCTION

Meta-learning or learning to learn provides a paradigm where a machine learning model aims to
find a general solution that can be quickly adapted to new tasks. Due to its fast adaptability, meta-
learning has been widely applied to challenging tasks such as few-shot learning (Vinyals et al., 2016;
Snell et al., 2017; Rusu et al., 2018), continual learning (Finn et al., 2019; Javed & White, 2019),
and neural architecture search (Zhang et al., 2019; Lian et al., 2019). One promising approach in
meta-learning is Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017), which consists of two
loops of optimization. In the outer loop, MAML aims to learn a good meta-initialization that can
be quickly adapted to new task in the inner loop with limited adaptation (parameter optimization)
steps. The double loops optimization serve as “learning-to-adapt” process, thus enabling the trained
model to adapt to new tasks faster than direct Empirical Risk Minimization (ERM) algorithms (Finn
et al., 2017; Raghu et al., 2020). Recent works (Nichol et al., 2018; Fallah et al., 2020; Collins
et al., 2020; Raghu et al., 2020) attribute the fast adaptability to the phenomenon that the learned
meta-initialization lies in the vicinity of all task solutions. However, the theoretical justification of this
empirical statement, and more generally how fast adaptability of MAML depends on the inner loop
optimization remains unclear. As a key component of MAML, the adaptation (inner loop) learning
rate (hereafter called α) is shown empirically to plays a crucial role in determining the performance
of the learned meta-initialization (Rajeswaran et al., 2019). In particular, the value of α bridges
ERM and MAML, in the sense that the latter reduces to the former when α = 0. However, from a
theoretical viewpoint, the dependence of MAML performance on the choice of α remains unclear,
and furthermore, there lacks a precise practical guideline on how to pick a near-optimal value.

In this paper, we address these issues by answering the following two questions: (1) How to choose
the optimal α that minimizes population risk of MAML? (2)What is the effect of α on fast adaptability
of MAML? To this end, we consider the mixed linear regression problem with random feature models.
For the first question, we derive the optimal α which minimizes the population risk of MAML in the
limit of an infinite number of tasks. This can then be used to estimate an effective α prior to training.
Moreover, we analyze the underlying statistical dependency between the optimal α and the input
data, e.g. relation to the moments of data distribution. This in turn allows the heuristic application of
our results beyond linear models, and we demonstrate this with experiments. To answer the second
question, we compare MAML with an ERM algorithm (without inner loop optimization) in order
to reflect the effect of α in optimization. As stated in many works, like Nichol et al. (2018), that
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meta-initialization learned by MAML in parameter space is close to all training tasks thus contributes
to fast adaptability. We conduct an experiment and observe that MAML with a not too large α yields
a shorter mean distance to task optima than ERM. To justify this empirical finding, we define a
metric measuring the expected geometric distance between the learned meta-initialization and task
optima. We prove that in our setting, the MAML solution indeed possess a smaller value of this
metric compared with that of ERM for small α, providing theoretical evidence for the observed
phenomena. Our contributions can be summarized as follows:

• We provide a principled way to select the optimal adaptation learning rate α∗ for MAML
which minimizes population risk (Theorem 1 & Proposition 1). We also interpret the
underlying statistical dependence of α∗ to input data (Corollary 1) with two examples.

• We validate the observation that MAML learns a good meta-initialization in the vicinity of
the task optima, which reveals the connection between the adaptation learning rate α and
the fast adaptability in optimization. (Theorem 2)

• We also extend our result about the choice of α∗ to more practical regime, including deep
learning. All of our theoretical results are well corroborated with experimental results.

2 PROBLEM FORMULATION

We study the MAML algorithm under the mixed linear regression setting. Suppose we have a task T
that is sampled from the distribution D(T ). Each task T corresponds to a linear relationship

yT = Φ(XT )aT , XT =

(
xT,1
· · ·
xT,K

)
, XT ∈ RK×dx ,Φ(XT ) ∈ RK×d,aT ∈ Rd.

(2.1)
whereXT ∈ RK×dx is the input data of task T which hasK vector samples {xT,1, ...,xT,K},xT,j ∈
Rdx i.i.d sampled from D(x) 1. For each input data, we have a mapping ϕ : Rdx → Rd transform
each point of XT from input data space Rdx to a d-dimensional feature space Rd where we denote
the transformation of all data in task T by Φ(XT ) = [ϕ(XT,1), ..., ϕ(XT,K)]⊤ as the feature of
that task. Then, we assume optimal solution aT ∈ Rd for task T is i.i.d sampled from D(a). The
corresponding label yT ∈ RK can be obtained from (2.1).

Our target is to learn a model to minimize the risk of different tasks across D(T ). Note that each task
T is determined by a feature-solution pair (Φ(XT ),aT ). Therefore, we can formulate this multi-task
problem with parameter space Rd and loss function ℓ as

min
w∈Rd

ET∼D(T ) [ℓ (w;T )] = min
w∈Rd

Ea∼D(a)EX∼D(x) [ℓ (w; Φ(X),a)] (2.2)

To solve this problem, ERM and MAML algorithms yield different iterations. Specifically, ERM uses
all data from all tasks to directly minimize the square error loss ℓ, such that population risk of ERM is

Lr(w,K) := E
a∼D(a)

E
X∼D(x)

1

K

∥∥∥∥Φ(X)w − Φ(X)a

∥∥∥∥2
2

(2.3)

As a counterpart, MAML first adapts with an adaptation learning rate α on each task using its training
set – a subset of task data in the inner loop. Then, in the outer loop, MAML minimizes the evaluation
loss for each adapted task-specific solution using a validation set. For simplicity, since data is i.i.d
sampled from the same distribution, we first consider the setting where all data in each task is used as
training set and validation set in our main results. We present later the extension of these results to
the case with a different train-validation split. (Please refer to Appendix H.1)

Thus, the general population risk of one-step MAML is defined by

Lm(w, α,K) := E
a∼D(a)

E
X∼D(x)

1

K

[
ℓ

(
w − α∇wℓ (w; Φ(X),a)︸ ︷︷ ︸

Inner Loop

; Φ(X),a

)]
(2.4)

1For simplicity, we denote this sampling and stacking multiple examples to a matrix process as X ∼ D(x)
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In practice, we use the empirical objective function as a surrogate objective function. We first sample
N tasks with task optima {a1, ...,aN} from D(a) and then sample K data for each task. Then, the
empirical risk of MAML can be specified as L̂m

L̂m(w, α,N,K) :=
1

NK

N∑
i=1

∥∥∥∥Φ(Xi)w
′
i − Φ(Xi)ai

∥∥∥∥2
2

(2.5)

where w′
i =

[
w − 2αΦ(Xi)

⊤ (Φ(Xi)w − Φ(Xi)ai) /K
]

is adapted parameters of task i after inner
loop. Correspondingly, we apply ERM algorithm to the same problem by removing inner loop
(setting α = 0), thus the empirical risk of ERM is denoted as L̂r(w, N,K). In addition, we follow
the original MAML (Finn et al., 2017) to use the same α for training and testing.

Notation We denote an optimal adaptation learning rate as α∗. Global minima of empirical risk of
MAML and ERM (when they are unique) are denoted by wm, wr. We write {1, ..., N} as [N ] and
use ∥ · ∥ to denote the Euclidean norm. We use subscripts to index the matrices/vectors corresponding
to task instances, and bracketed subscripts to index the entries of matrices. Other notations are
summarized in Appendix Table 1.
Assumption 1 (Normalization). For simplicity, we consider a centered parameter space such that
Ea∼D(a)[a] = 0 and Var[a] = σ2

a.

Assumption 2 (Bounded features). With probability 1, the covariance matrix of input features
Φ(X)⊤Φ(X) is positive definite and has uniformly bounded eigenvalues from above by λS > 0 and
below by λI > 0.

3 MAIN RESULTS

In this section, we analyze MAML through the adaptation learning rate α. Our derived insights are
summarized into three theoretical results: (1) The estimation of an optimal adaptation learning rate
α∗ which minimizes MAML population risk; (2) The statistical meaning of α∗ in terms of the data
distribution, and (3) The geometric interpretation of the effect of α on fast adaptability of MAML
compared to ERM.

3.1 ON THE OPTIMAL ADAPTATION LEARNING RATE α∗

We focus on the underparameterized case (K ≥ d). Given the empirical objective functions L̂r, L̂m
defined in (2.5), we can derive the global minima by the first-order optimality condition. We obtain
the global minimum of ERM wr and minimum of MAML wm in the following closed-forms,

wr = wr

(
{Φ(Xi),ai}i∈[N ]

)
=

( ∑
i∈[N ]

Φ(Xi)
⊤Φ(Xi)

)−1( ∑
j∈[N ]

Φ(Xj)
⊤Φ(Xj)aj

)

wm(α) = wm

(
{Ci(α),ai}i∈[N ]

)
=

( ∑
i∈[N ]

Ci(α)
⊤Ci(α)

)−1( ∑
j∈[N ]

Cj(α)
⊤Cj(α)ai

) (3.1)

where Ci(α) = Φ(Xi)
[
I − (2α/K)Φ(Xi)

⊤Φ(Xi)
]
, Ci(α) ∈ RK×d can be viewed as the adapted

feature of task i. Observe that wm(α) (and thus the MAML algorithm) depends on α. If α = 0,
MAML reduces to ERM. For large α, instabilities may occur, thus there may exist an optimum, α∗

that minimizes the MAML population risk. The later intuition is worthwhile to be proved, from
which we do not have a principled way to guide the choice of optimal hyperparameter α∗ for MAML
so far. To this end, we focus on the generalization error by taking the population risk on the global
minimum of empirical risk. In particular, we consider the population risk of the MAML optimizer in
the average sense, where the average population risk is

L̄m(α,N,K) = EwmLm(wm, α,K) (3.2)

whose minimizer we denote as α∗(N,K). In this way, we eliminate randomness of the global
minimum wm learned from sampled tasks. The following theorem gives a precise value of α∗(N,K)
in the limit N →∞.
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Theorem 1. Under assumptions 1 & 2, we have as N →∞, α∗(N,K)→ α∗
lim(K), where

α∗
lim(K) =

K tr[EX [(Φ(X)⊤Φ(X))2]]

2 tr[EX [(Φ(X)⊤Φ(X))3]]
, (3.3)

Φ(X) ∈ RK×d, K is the sample size per task and N is the number of tasks.

The proof is found in Appendix B. In this theorem, we give the nearly optimum α∗
lim which is an

alternative form for true optimal α, namely α∗, to minimize the MAML generalization error. As
dictated in (3.3), the desired α∗ is determined by the feature covariance matrix in expectation.
Remark. The precise derivation of the case where N is finite is complicated, thus we derive the
limiting case here as an estimator of true α∗. Our estimation α∗

lim is the unique minimum. We will
show later that this allows us to compute near optimal values efficiently in practice, each of which is
close to the optimal α∗(N,K) in corresponding problem.
Remark. The estimator (3.3) can be generalized to different scenarios. For overparameterized
models, we obtain a similar result for the minimum norm solution if the number of tasks N is limited
(NK ≪ d). Further, we show a computationally efficient estimator (H.15) in Appendix H.2. For deep
learning, we can compute a range of effective α values based on α∗

lim. We also give the numerical
form when the training data is different from the test data in each task. These are presented in
Appendix H.4 and H.1 respectively.

In the above we considered the average population risk (3.2). This simplifies the calculations of
finding the α∗. Below, we justify this simplification by showing that in the limit of large number of
tasks, the average population risk is a good estimate of the true population risk.
Proposition 1 (Informal). Assume u = C(α)⊤C(α)a is sub-gaussian random variable with sub-
gaussian norm ∥u(i)∥Ψ2

≤ L, assumption 1 & 2 hold, then with probability at least 1− δ that∣∣∣∣Lm(wm, α,K)− L̄m(α,N,K)

∣∣∣∣ ≤ L2

K
max

{√
dε(α,K)

N2
log

2

δ
,
ε(α,K)

N
log

2

δ

}
(3.4)

where ε(α,K) = O(1/(c0 + α)2). Here c0 > 0 is a constant and d is the feature size.

The proof is found in Appendix C. Proposition 1 complements Theorem 1 by guaranteeing that the
gap between the average population risk and population risk with same argument α will disappear
along with N goes to infinity. Large α makes the bound tighter while small α makes ε(α,K)
converge to a positive constant; thus (3.4) provides a non-vacuous bound with regard to α. Hence, it
is justified to make an estimation of α∗ using the average case. By Theorem 1 and Proposition 1, we
give an explicit form to estimate α∗ for MAML where this estimation α∗

lim is not too far from the
true α∗ of a specific case. Later experiments show our estimation α∗

lim is close to true α∗ in both
underparameterized and overparameterized models (see Section 5.1). This is meaningful for selecting
an α∗ minimizing MAML risk, instead of randomly choosing it. Previous work (Bernacchia, 2021)
explores on this by giving a range of α∗ may exist for the linear model. Instead, we show a fine result
that we provide a certain value estimator of α∗. (Details refer to Appendix H.5)

Relation to data distribution. After estimating the value of α∗ through Theorem 1, we are now
interested in the statistical interpretation of α∗. In particular, we aim to summarize the dependence
of an estimation of a∗ on the distribution of the inputs and tasks. This in turn allows us to devise
strategies for choosing near optimal α for MAML beyond the simple settings considered here.
Corollary 1. With a feature mapping ϕ : Rdx → Rd for each data x ∈ Rdx , the α∗

lim in Theorem 1
will satisfy the following inequality

1

2dσ2(ϕ(x1), . . . , ϕ(xK))
≤ α∗

lim ≤
d

2σ2(ϕ(x1), . . . , ϕ(xK))
(3.5)

where σ2(ϕ(x1), . . . , ϕ(xK)) is variance of the feature.

See proof in Appendix D. According to Corollary 1, we can see that α∗
lim is bounded by the statistics

of the input data. These bounds are governed by the standard derivation terms. More specifically, our
estimator (3.3) holds an inverse relationship to higher order moment of data distribution while its
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(a) Visualization of solutions and trajectory (b) Mean solution distances

Figure 1: (a) Visualization of trajectory of MAML solution wm(α). Orange dots are task optima
{ai}[N ] of sampled tasks, where location of ai is decided by its entries. Red dots highlighted in red
circle are newly coming tasks. Green cross is wr, (α = 0) while the purple trajectory is generated as
α increasing. Red star is wm(α∗

lim). (b) Average euclidean distances of wm(α) and {ai}[N ] display
corresponding points in left figure. Black arrow is the tangent line. Best viewed in colors.

bounds (3.5) have an inverse relationship to data variance. As a consequence, the α∗
lim for different

problems mainly depend on the standard derivations. For example, α∗
lim and thus α∗ will shrink to

zero as the variance of data increases and vice versa. In other words, small α is tailored to those
tasks with large data variance when the model size is fixed. To illustrate the insight more clearly,
we present two examples – regression with polynomial basis functions (Example 1) and the case
where Φ(X) is a random matrix with a prescribed distribution (see Appendix E). In this following
example, we narrow the range and get the exact relationship where the expression of α∗

lim rather
than its bounds depend on data variance and model size d. In later experiments, we also validate this
relationship on various models with different basis functions.
Example 1 (Polynomial basis function). Assume we have K i.i.d samples x1, ..., xK ∼ N (0, σ2)
for each task. Consider polynomial basis function ϕ : R→ Rd, where ϕ(x) = (1, ..., xd−1). Then
value of α∗

lim has an inverse relationship to σ2 and dimension d (Proof is in Appendix E).

3.2 GEOMETRIC INTERPRETATION OF MAML ADAPTATION

In another direction, we aim to investigate geometric properties of the meta-initialization learned by
MAML as α varies. In previous experimental investigations, it is suggested that MAML learns the
near meta-initialization to all tasks Nichol et al. (2018) or trade-offs on easy and hard tasks Fallah
et al. (2020). We can also observe the new phenomena in toy experiments. As shown in the Figure
1 (a), we sampled 500 tasks in R2 parameter space. Specifically, we i.i.d sample and stack data as
Xi ∈ RK×2,∼ D(x) and task optima ai ∼ D(a),ai ∈ R2 (scattered orange dots) for each task i.
Green cross shows the location of MAML solution wm(α) with α = 0, namely ERM solution wr.
Since D(x),D(a) are some symmetric zero-mean distributions, the optimal solution is expected at
the origin. When several new training tasks (with higher penalties) have been added as shown in the
red circle area, then new wr will be closer to new tasks. Along α increasing, wm(α) generates a
trajectory shown as the purple curve. The dynamics of global minimum wm(α) will start from green
cross and move away from the red circle until reach an optimum location of point (red star wm(α∗

lim))
which minimizes the total distances to red and orange dots (Other cases shown in Appendix H.4).

It indicates that the effect of α (inner loop optimization) is to help MAML minimize total distances
to all training task optima. Unlike ERM learning a biased solution to dense tasks area, MAML
converges to a distance-aware solution that tries to minimize the distances within one-step adaptation
at stepsize α. The α∗

lim is the optimum adaptation stepsize to learn the optimum location of point, or
nearest point, to all tasks. Figure 1 (b) displays the mean distance for each point in purple trajectory to
all tasks. As we can see, the distance decreases at beginning as α increases until reach the minimum.

To theoretically prove the insight in Figure 1, we characterize it by measuring the average post-
adaptation distance between the meta-initialization (global minimum) learned by a specific algorithm
and task optima in a task distribution.
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Definition 1 (Average Distance under Fast Adaptation). Given task distribution D(T ), meta-
initialization w0

A learned by algorithm A, optimum aT of task T , the average distance under
t-step (t ≥ 0) fast adaptation is defined by

Ft(w0
A) := E

T∼D(T )
∥wt

A,T − aT ∥2, wt
A,T = w0

A − η
t∑

j=1

∇wℓ(w
j
A,T , T ) (3.6)

where wt
A,T is the adapted parameter of task T with t steps, η is the step size, ℓ is the loss function.

Ft evaluates the distance between adapted parameters and true task optimum for a given meta-
initialization at any adaptation step t. If t is small, Ft describes the fast adaptation error in solution
distance of the meta-initialization learned by an algorithm. Hence, we can measure the fast adaptability
of MAML with Ft(wm). Observe that for small α, wm can be linearized as

wm(α) = wr + α∇αwm(0) +O(α2) (3.7)
In this regime, the effect of MAML is dictated by the α gradient∇αwm(0), which can be visualized
as the tangent of the purple curve at the green cross in Figure 1(b). By comparing Ft of the meta-
initializations wr,wm learned by ERM and MAML, we are able to find the connection between
α and the fast adaptability in meta-learning, at least in the small alpha regime. For simplicity, we
assume that the input data features are uncorrelated, thus the covariance matrix is diagonal.
Theorem 2. Let wm(α),wr be the meta-initializations learned from T1, ..., TN by MAML and ERM.

WithFt(·), under Assumption 1 & 2, for any α ∈
[
0,

−2λ4
SK+K

√
4λ8

S+1.5c̃λ4
I(4λ

6
S−λ6

I)/λ
3
S

λ2
I(4λ

6
S−λ6

I)

]
at number

of step t, we have

ET1,...,TN∼D(T ) [Ft(wr)−Ft(wm(α))] ≥
(
1− 2η

K
λS

)2t
4αd2c̃

NKλ3S
(3.8)

where η is the step size in Definition 1, c̃ > 0 is a constant.

See proof in Appendix G. This theorem prove our insight at small α that MAML has smaller average
solution distance than ERM. As it illustrated in Theorem 2, at any step t ≥ 0, Ft(wm(α)) ≤ Ft(wr)
holds if α is smaller than some constant. This means adapting to different tasks with MAML meta-
initialization leads to shorter average solution distance than ERM’s at any number of adaptation steps.
But the gap will disappear along number of steps t increasing to infinity, which is sensible. Note
that even t = 0, this inequality still holds true. Therefore the meta-initialization of MAML wm

has shorter expected distance to new task than ERM wr before adaptation. Theorem 2 has revealed
the connection between α and fast adaptability. Even with small α, MAML learns a more adaptive
solution than ERM which is closer to the new tasks in expectation enabling quick approximation.
It benefits from learning a closer meta-initialization for all tasks on average. Thus α plays a role in
learning a distance-aware solution. This result is consistent with our observation in the Figure 1.

Compared to ERM algorithms, the fast adaptability of MAML stems from the learned meta-
initialization determined by the adaptation learning rate α. When facing a multi-task problem,
traditional ERM algorithms bias its learned initialization to minimize the averaged risk. However, this
strategy fails to take the further adaptation into account, and thus learns a solution far from unknown
task optima. On the contrary, MAML learns a distant-aware meta-initialization and converges to the
vicinity of all task optima with a limited adaptation budget (Nichol et al., 2018; Rajeswaran et al.,
2019), or tends to favor “hard tasks” (Fallah et al., 2020; Collins et al., 2020). Hence, before adap-
tation, ERM may have lower population risk than MAML. However, after adaptation, the situation
will reverse since MAML can adapt to most unknown task optima closer (see Figure 5(a)). This
benefit is also illustrated by (Zhou et al., 2020) that the shorter solution distance leads to a better
meta-initialization for fast adaptation. We note that “task hardness” may not always be easy to define,
especially for non-linear cases (Collins et al., 2020). Here, we instead focus on directly analyzing the
geometric distance (Theorem 2), which has substantiated the aforementioned findings in optimization
behavior from different angles.

4 RELATED WORK

Meta learning learns a general solution based on previous experience which can be quickly adapted
to unknown tasks (Finn et al., 2017; Li et al., 2017; Snell et al., 2017; Vinyals et al., 2016; Nichol
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(a) NTK (Uniform initialization)
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(b) NTK (Normal initialization)

Figure 2: Loss of overparameterized quadratic regression with regard to α. Triangles in the dash-dot
line is the mean loss across whole tasks. The error bar denotes 95% confidence interval on different
tasks. Red stars are estimations α∗

lim.

et al., 2018; Grant et al., 2018; Harrison et al., 2018; Rusu et al., 2018; Rajeswaran et al., 2019;
Finn & Levine, 2018; Rajeswaran et al., 2019; Finn et al., 2018; Yin et al., 2020). One promising
approach to meta-learning is Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017) which
learns a meta-initialization such that the model can adapt to a new task via only few steps gradient
descent. Understanding the fast adaptability of meta-learning algorithm, especially on MAML, is
now an important question. As a variant of MAML, (Nichol et al., 2018) attribute fast adaptation
to the shorter solution distance, and devises a first-order approximation algorithm based on this
intuition. Other first-order methods (Denevi et al., 2019; Zhou et al., 2019) try to achieve adaptation
by adding a regularized term to get a distance-aware solution. (Raghu et al., 2020) shows that
even performing inner loop optimization on part of the parameters still leads to fast adaptation. A
shared empirical finding of these results is that MAML produces initial weights that are closer to the
population optimum of individual tasks on average, and it is argued that this partly contributes to its
fast adaptibility. Here, we present a rigorous result that confirms the distance reduction property of
MAML, at least in the considered setting, lending theoretical backing to these empirical observations.

On the theoretical front, analyses of meta-learning mainly focus on generalization error bounds and
convergence rates (Amit & Meir, 2018; Denevi et al., 2019; Finn et al., 2019; Balcan et al., 2019;
Khodak et al., 2019; Zhou et al., 2019; Fallah et al., 2020; Ji et al., 2020b; Zhou et al., 2020; Ji et al.,
2020a). For example, Fallah et al. (2020) studies MAML by recasting it as SGD on a modified loss
function and bound the convergence rate using the batch size and smoothness of the loss function.
Ji et al. (2020b) extend this result to the multi-step version of MAML. Other works (Charles &
Konečnỳ, 2020; Wang et al., 2021; Gao & Sener, 2020; Collins et al., 2020) investigate the MAML
optimization landscape and the trade-off phenomena in terms of task difficulty: e.g. MAML tend to
find meta-initializations that are closer to difficult tasks. However, the effect of inner loop learning
rate α on the MAML dynamics and learned solution are not explored in these works.

Of particular relevance is the work of Bernacchia (2021), which derives, under an ideal setting of
Gaussian inputs and regression coefficients, a range of α values that can help guide its choice. In
this paper, we adopt a more general setting, where we do not assume specific input distributions. We
derive a precise optimal value of α (instead of a range), which can be estimated from input data.
Furthermore, we show using experiments that the optimal values may not be negative (c.f. Bernacchia
(2021)) in the standard meta-learning setting, where the same α is used for training and testing.

5 EXPERIMENTS

5.1 ESTIMATION OF α∗

We verify our theorem through Neural Tangent Kernel (NTK) (Jacot et al., 2018) and deep learning
on the Omniglot dataset (Lake et al., 2011). In the former setting, we followed the problem setup in
(Bernacchia, 2021) to perform quadratic regression. Different from their model size of 60, we used
a two-layer Neural Tangent Kernel (NTK) (Jacot et al., 2018) with sufficiently wide hidden layers
(size 10, 000). Then, we can estimate α∗ by the neural tangent feature to obtain α∗

est = 1/(2NKσ̃2)
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(a) Omniglot 20w1s Test Loss (b) Omniglot 20w1s Test Accuracy

Figure 3: Test loss and accuracy on Omniglot 20-way 1-shot classification. The blue and orange
line represent the test loss (left) and test accuracy (right) of original configuration in ANIL (Raghu
et al., 2020) paper and our online estimation. The shadows are the standard deviation of multiple
experiments with different seeds.
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(b) NTK with Uniform Initialization

Figure 4: Value of α∗
lim along the data variance, σ2. Different curves are different data distributions.

(a)The feature of Gaussian basis function. These curves can be perfectly fitted by an inverse
proportional function. (b) The feature of uniformly initialized NTK model.

(σ̃ is the variance of NTK feature, whose derivation is found in Appendix H.2). Shown as a vertical
dotted line ending with the red star in Figure 2, we can see our estimation is nearly optimal. To
reduce fortuity, we choose arbitrary values of N,K to compute the estimation α∗

lim. Furthermore, we
also test our estimation on uniform initialization with other groups of hyper-parameters and obtained
similar results. Then, for deep learning classification, we use online estimation to compute α∗ for
ANIL Raghu et al. (2020) on the Omniglot dataset Lake et al. (2011). To keep training stable, we
normalize the features before the last layer and compute the corresponding α∗

est. Then, we compare
our estimation scheme with the default selection method where the model and training learning rates
are the same. Test loss and accuracy are reported with mean and variance in Figure 3. Both training
schemes achieve similar results after 4 × 104 iterations. We only plot the first 1.5 × 104 iters (20
iters per scale) to see the differences clearly. As shown, our estimation of α∗ converges faster than
that in the default configuration. Other experimental parameters and additional results, including
non-central distributions and deep regression experiments, are found in Appendix H.4. Overall, these
experiments suggest that our estimation derived in the idealized linear setting can guide practical
hyper-parameter selection.

5.2 RELATION OF DATA VARIANCE AND OPTIMAL α

In this section, we verified our theoretical results of α∗
lim and its relation to data variance. As

drawn the Figure 4, value of α∗
lim and data variance have an inverse relationship. We first verified
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(a) Adaptation Loss Gap (b) Fast Adaptation Distance Gap

Figure 5: With different data distributions, xi ∼ U(−5, 5),N (0, 2), Exp(1) (curves in different
colors) (a) the loss difference between MAML and ERM with t steps adaptation on each task∑
i[ℓ
i
t(wm) − ℓit(wr)] ( ℓit(wm) is the t-step adaptation loss on task i from the MAML learned

initialization wm) and (b) Average solution distance gap of MAML and ERM after t-step adaptation,
Ft(wm)−Ft(wr).

this with a Gaussian basis function Φ(X)(ij) = exp(−
(
X(ij) − µj

)2
/2σ2

i ). Then, we conducted
experiments on three different data distributions: normal distribution N(0, σ), uniform distribution
U(−
√
12σ/2,

√
12σ/2) and exponential distribution Exp(1/σ). From in (a), we can see the smooth

curves perfectly fitted with some inverse proportional function e.g. y = 0.35/σ2. Next, we used
NTK as the basis function to verify our result in overparameterized regime. We used two layers MLP
with width= 10, 240 and uniform initialization to compute the neural tangent feature. As we can see
from Figure 4(b), the diagram also shows the tendency that α∗

lim decreases as σ increasing. As a
consequence, variance, as a part of the statistical property of data, will influence α∗.

5.3 FAST ADAPTATION

To understand the effect of α on Ft, we set α = 10−4 to train MAML such that its global minimum
wm is inched from ERM wr. Then, we tracked their adaptation losses and adaptation errors
with growing adaptation steps, shown in the Figure 5. Adaptation loss for task i is defined by
ℓit(w) = ∥Φ(Xi)Adapt(w, i, t, η)−yi∥2 where Adapt(w, i, t, η) is t-step adaptation parameter with
learning rate η = 1e − 5. The adaptation loss difference between MAML and ERM is described
as
∑5000
i=1 ℓit(wm)− ℓit(wr). From Figure 5 (a) we can see, the loss of MAML is marginally higher

than ERM before adapting. But the difference dramatically decreases to negative values, which
illustrates that MAML has better performance than ERM with only few steps adaptation. Similar
results appear on various data distributions: uniform distribution U(−5, 5), normal distribution
N (0, 2) and exponential distribution Exp(1). It makes sense because wr,wm are the minimizers
of non-adaptation loss and one-step adaptation loss, respectively. Then we plot the difference of
adaptation errors in distance Ft(wm)−Ft(wr) along adaptation step t. In Figure 5(b) we can see,
Ft of MAML is always smaller than ERM’s, including t = 0. Since Ft measures distances of adapted
solution and task optimum solution, this result has substantiated our Theorem 2. Furthermore, it
also demonstrate that the effect of α, even it is small, is acting as the guide to find a distance-aware
meta-initialization for target tasks which possesses faster adaptability compared to ERM.

6 CONCLUSION

In this paper, we investigated MAML through the lens of adaptation learning rate α. We gave a
principled way to estimate an optimal adaptation learning rate α∗ minimizing MAML population
risk. We also try to interpret the role of α statistically and geometrically. Further investigation has
revealed the underlying data statistics that α∗ depends on. This statistical dependency also motivates
us to explore other effect of α, such as the optimization behavior in a geometric context. By studying
the role of α on optimization, we confirmed theoretically that MAML obtains solutions with shorter
average distance to individual task optima than ERM - an empirical observation that was suggested
to contributes to MAML’s fast adaptability. We believe these results are instructive in contributing to
the theoretical understanding of meta-learning and its algorithm design.
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A DEFINITIONS, NOTATIONS AND LEMMAS

Notation We denote an optimal adaptation learning rate as α∗. Global minima of empirical risk of
MAML and ERM (when they are unique) are denoted by wm, wr. We write {1, ..., N} as [N ] and
use ∥ · ∥ to denote the Euclidean norm. We use subscripts to index the matrices/vectors corresponding
to task instances, and bracketed subscripts to index the entries of matrices. For function f depends on
a, b, x, we omit other variables by f(..., x) when we discuss with x.

Table 1: High-frequency notation table.

Symbols Definition Symbols Definition

α Adaptation learning rate K, k1, k2 All/train/val/ sample size per task
α∗ Optimal adaptation learning rate Lm,Lr Population risk of MAML/ERM
α∗
lim, α

∗
est Estimation (limit) of α∗ L̂m, L̂r Empirical risk of MAML/ERM

λI , λS Min/max of eigenvalues L̄m Average population risk
ai Task optimum of task i N Number of training tasks
d Feature dimension wm,wr Global minimum of MAML/ERM

Definition 2 (Gamma Convergence). Let Fn : X → R for each n ∈ N. We say that (Fn)n∈N Γ

-converges to F : X → R, and write Γ− limn→∞ Fn = F or Fn
Γ→ F, if

• For every x ∈ X and every (xn)n∈N such that xn → x in X

F (x) ≤ lim inf
n→∞

Fn (xn)

• for every x ∈ X , there exists some (xn)n∈N such that xn → x in X and

F (x) ≥ lim sup
n→∞

Fn (xn)

Definition 3 (Lower Semicontinuous Envelope). Given F : X → R, the lower semicontinuous
envelope (or relaxation) of F is the ”greatest lsc function bounded above by F”:

F lsc(x) := sup{G(x) | G : X → R is lsc and G ≤ F on X}

= inf
{
lim inf
n→∞

F (xn) | (xn)n∈N ⊆ X and xn → x
}

Lemma 1 (Remark 2.2, (Braides, 2006)). If Fn uniform converge to F , then Fn
Γ→ F lsc where F lsc

is Lower Semicontinuous Envelope of F .

Lemma 2 (Γ-Convergence, (Braides, 2006)). Let X be a topological space. Let {Fn} be a equi-
coercive family of functions and let Fn Γ -converges to F in X , then

• limn→∞ dn = d where dn = infx∈X and d = infx∈X F (x). That is, the minima converges
Fn(x)

• The minimizers of Fn converge to a minimizer of F .

Proposition 2. If both A and B are positive semidefinite, the inequality is true:

tr(AB) ≤ tr(A) tr(B). (A.1)

and if A is n-by-n symmetric PSD, we have

tr(A2) ≥ tr(A)2

n
. (A.2)
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Proof. Let a = tr(A). For PSD matrix A, we have A ⪯ aI . Then

tr(AB) = tr(B1/2AB1/2) ≤ tr(B1/2(aI)B1/2) = tr(A) tr(B). (A.3)
For second inequality, we can apply spectral decomposition on A as A = QDQ−1. So we have

tr(A) = tr(QDQ−1) = tr(DQQ−1) = tr(D) =
∑
i

λi.

where {λi}, i ∈ [1, n] is the eigenvalues of matrix A. Then by Cauchy-Schwarz inequality we can get

tr(A)2 =

(
n∑
i=1

λi

)2

≤ n

(
n∑
i=1

λ2i

)
= n tr(A2)

Lemma 3 (Hanson-Wright inequality, (Rudelson & Vershynin, 2013)). LetX = (X1, . . . , Xn) ∈ Rn
be a random vector with independent components Xi which satisfy EXi = 0 and ∥Xi∥ψ2

≤ L. Let
A be an n× n matrix. Then, for every t ≥ 0,

P
{∣∣X⊤AX − EX⊤AX

∣∣ > t
}
≤ 2 exp

[
−cmin

(
t2

L4∥A∥2HS

,
t

L2∥A∥

)]
where ∥ξ∥ψ2

= supp≥1 p
−1/2 (E|X|p)1/p is sub-gaussian norm, ∥A∥ = maxx̸=0 ∥Ax∥2/∥x∥2 is

operator norm and ∥A∥HS = (
∑
i,j |ai,j |2)1/2 is Hilbert-Schmidt (or Frobenius) norm.

Definition 4 (Fast Adaptation Error). Given the task distribution D(T ), meta-initialization w0, the
optimal solution of task T is w∗

T , then t-step fast adaptation error is defined by
Ft(w0,D(T )) := E

T∼D(T )
∥wt

T −w∗
T ∥22 (A.4)

where wt
T = w0 − η

∑t
j ∇wj

i
ℓi(w

j
T ) is the adapted parameter of task T with t steps.

Lemma 4 (Ruhe’s trace inequality, (Marshall et al., 1979)). If A,B are n× n positive semidefinite
Hermitian matrices with eigenvalues,

a1 ≥ · · · ≥ an ≥ 0, b1 ≥ · · · ≥ bn ≥ 0

respectively, then
n∑
i=1

aibn−i+1 ≤ tr(AB) ≤
n∑
i=1

aibi

Proposition 3. For any positive random variable x ∼ D(x), we have following inequality holds true(
Ex∼D(x)(x

2)
)2 − Ex∼D(x)(x)Ex∼D(x)(x

3) ≤ 0 (A.5)

Proof. With the fact that(
Ex∼D(x)(x

2)
)2−Ex∼D(x)(x)Ex∼D(x)(x

3)

=

(∫
R

x2p(x) dx

)2

−
(∫

R

xp(x) dx

)(∫
R

x3p(x) dx

) (A.6)

where x > 0 and p(x) > 0.

Let f = (xp(x))
1
2 > 0 and g =

(
x3p(x)

) 1
2 > 0, with Cauchy-Schwarz Inequality,(∫

R

fg dx

)2

≤
(∫

R

f2 dx

)(∫
R

g2 dx

)
(A.7)

we have that (
Ex∼D(x)(x

2)
)2

=

(∫
R

√
xp(x)

√
x3p(x) dx

)2

=

(∫
R

fg dx

)2

≤
∫
R

(√
xp(x)

)2
dx

∫
R

(√
x3p(x)

)2
dx

=Ex∼D(x)(x)Ex∼D(x)(x
3)

(A.8)
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B PROOF OF THEOREM 1

Proof Sketch We list our proof steps as follows

1. Get global minima of ERM and MAML by first order optimality condition.
2. Let average MAML population risk L̄m as the target in order to eliminate the randomness

(Proposition 1 guarantees the upper bound between L̄m and population risk Lm).
3. Approximate this target function L̄m by another function Lapxm which is the limit of L̄m as

number of tasks N →∞.
4. According to positive definiteness, we can get the range of α.
5. With notion of gamma convergence, the minimizer of L̄m will also converge to the minimizer

of Lapxm .
6. Our estimation of α∗ is in the range of α in Step 4.

Notation for this proof: For simplicity, we omit the arguments of the function if its symbol has a
index e.g. Φi = Φ(Xi), Ci = Ci(α). Then we give the full proof on estimation of α∗.

Proof. Recall that the global minimum closed form for ERM and MAML are

wr(N,K) = wr

(
{Φ(Xi),ai}i∈[N ]

)
=

(
N∑
i=1

Φ⊤
i Φi

)−1( N∑
i=1

Φ⊤
j Φjaj

)

wm(α,N,K) = wm

(
{Ci(α),ai}i∈[N ]

)
=

(
N∑
i=1

C⊤
i Ci

)−1
 N∑
j=1

C⊤
j Cjaj

 (B.1)

where Ci = Φi − 2α
K ΦiΦ

⊤
i Φi, Ci ∈ RK×d.

Since wm depends on random variables a1, ...,aN . The average population risk of MAML, defined
in (3.2), where

L̄m(α,N,K) = EwmLm(wm, α,K) = Ea1,...,aN∼D(a)Lm(wm, α,K) (B.2)
of global minimum wm in (B.1) can be written as
L̄m(α,N,K) = Ea1,...,aN∼D(a)Lm(wm, α,K)

=
1

K
E

{ai}N
i=1∼D(a)

E
a∼D(a)

E
X∼D(x)

∥C(α)(wm − a)∥2

=
1

K
E

a,{ai}N
i=1∼D(a)

E
X∼D(x)

∥∥∥∥∥∥C(α)
( N∑

i=1

C⊤
i Ci

)−1
 N∑
j=1

C⊤
j Cjaj

− a

∥∥∥∥∥∥
2

(B.3)

Let Λj =
(
N∑
i=1

C⊤
i Ci

)−1

C⊤
j Cj , j ∈ [1, N ],Λj ∈ Rd×d. The (B.3) can be rewritten as,

L̄m(α,N,K) =
1

K
E

a,{ai}N
i=1∼D(a)

E
X∼D(x)

∥∥∥∥∥∥C(α)
 N∑
j=1

Λjaj − a

∥∥∥∥∥∥
2

=
1

K
E

a,{ai}N
i=1∼D(a)

E
X∼D(x)

[(
N∑
i=1

Λiai

)⊤

C(α)⊤C(α)

 N∑
j=1

Λjaj


− a⊤C(α)⊤C(α)

 N∑
j=1

Λjaj

−( N∑
i=1

Λiai

)⊤

C(α)⊤C(α)a

+ a⊤C(α)⊤C(α)a

]
(B.4)
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Under Assumption 1 and a is independent to X , then we have

L̄m(α,N,K) =
1

K
E

X∼D(x)

[
E

{ai}N
i=1∼D(a)

(
N∑
i=1

Λiai

)⊤

C(α)⊤C(α)

 N∑
j=1

Λjaj


+ σ2

a tr
(
C(α)⊤C(α)

) ]

=
σ2
a

K
E

X∼D(x)

 N∑
j=1

tr
(
Λ⊤
j C(α)

⊤C(α)Λj
)+ tr

(
C(α)⊤C(α)

)
(B.5)

Let Lapxm (α) be an approximation function of L̄m(α,N,K).

Lapxm (α) ≜
σ2
a

K
E

X∼D(x)
tr[C(α)⊤C(α)]

=
σ2
a

K
E

X∼D(x)
tr

[(
I − 2α

K
Φ(X)⊤Φ(X)

)⊤

Φ(X)⊤Φ(X)

(
I − 2α

K
Φ(X)⊤Φ(X)

)]
(B.6)

Then the approximation error will be

K

σ2
a

|L̄m(α,N,K)− Lapxm (α)|

=

∣∣∣∣∣∣ E
X∼D(x)

 N∑
j=1

tr
(
Λ⊤
j C(α)

⊤C(α)Λj
)∣∣∣∣∣∣

=

∣∣∣∣∣∣ E
X∼D(x)

N∑
j=1

tr

C⊤
j Cj

(
N∑
i=1

C⊤
i Ci

)−1

C(α)⊤C(α)

(
N∑
i=1

C⊤
i Ci

)−1

C⊤
j Cj

∣∣∣∣∣∣
(B.7)

where

C⊤
i Ci = Φ⊤

i Φi −
4α

K
(Φ⊤

i Φi)
2 +

4α2

K2
+ (Φ⊤

i Φi)
3 (B.8)

With Assumption 2, there exists constants 0 < c1 < c2 where

c1 ≤ ∥Φ(Xi)∥2F ≤ c2,∀i ∈ [N ] (B.9)

With Proposition 2 hold, ∀i ∈ [N ] we have

tr(C⊤
i Ci) = tr

(
Φ⊤
i Φi −

4α

K
(Φ⊤

i Φi)
2 +

4α2

K2
(Φ⊤

i Φi)
3

)
=tr

(
Φ⊤
i Φi

)
− tr

(
4α

K
(Φ⊤

i Φi)
2

)
+ tr

(
4α2

K2
(Φ⊤

i Φi)
3

)
≤ sup
i∈[N ]

∥Φi∥2F −
4α

K
inf
i∈[N ]

tr[(Φ⊤
i Φi)

2] +
4α2

K2
sup
i∈[N ]

∥Φi∥6F

=c2 −
4α

K
inf
i∈[N ]

tr[(Φ⊤
i Φi)

2] +
4α2

K2
c32

≤c2 −
4α

Kd
c21 +

4α2

K2
c32

(B.10)
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Then by applying multiple times of Proposition 2 we have

E
X∼D(x)

N∑
j=1

tr

C⊤
j Cj

(
N∑
i=1

C⊤
i Ci

)−1

C(α)⊤C(α)

(
N∑
i′=1

C⊤
i′ Ci′

)−1

C⊤
j Cj


= E
X∼D(x)

N∑
j=1

tr

C⊤
j CjC

⊤
j Cj

(
N∑
i=1

C⊤
i Ci

)−1( N∑
i′=1

C⊤
i′ Ci′

)−1

C(α)⊤C(α)


≤ E
X∼D(x)

N∑
j=1

tr
[
(C⊤

j Cj)
2
]
tr

( N∑
i=1

C⊤
i Ci

)−2
 tr

(
C(α)⊤C(α)

)

≤ E
X∼D(x)

N∑
j=1

tr
(
C⊤
j Cj

)2
tr

( N∑
i=1

C⊤
i Ci

)−1
2

tr
(
C(α)⊤C(α)

)

≤N
(
c2 −

4α

Kd
c21 +

4α2

K2
c32

)3

E
X∼D(x)

tr

( N∑
i=1

C⊤
i Ci

)−1
2

(B.11)

Next, we need upper bound the last inverse term. With Assumption 2 we know that all eigenvalues
of Φ(X)⊤Φ(X), X ∼ D(x) are bounded by [λI , λS ]. Let Call(α) =

∑N
i=1 C

⊤
i Ci, then with

probability 1 the max/min eigenvalues of Call(α) will have following constraints,{
λmin(Call(α)) ≥ N(λI − 4αλ2S/K + 4α2λ3I/K

2)
λmax(Call(α)) ≤ N(λS − 4αλ2I/K + 4α2λ3S/K

2)
(B.12)

Since the Call(α) is a positive matrix, we need have the constrain on λmin(Call(α)) > 0, which
means

α ∈

[
0,
K(λ2S −

√
λ4S − λ4I)

2λ3I

)
∪

(
K(λ2S +

√
λ4S − λ4I)

2λ3I
,∞

)
(B.13)

There exists a positive definite matrix λs(α,N)I where

Call(α) ⪰ λmin(Call)I (B.14)

and the following inequality is easy to get

tr(Call(α)) ≥ tr(λmin(Call)I)

tr(C−1
all (α)) ≤ tr(λ−1

min(Call)I)
(B.15)

So the last inverse term will be

E
X∼D(x)

tr

( N∑
i=1

C⊤
i Ci

)−1
2

≤
(

1

N(λI − 4αλ2S/K + 4α2λ3I/K
2)d

)2

= O

(
1

N2

)
(B.16)

Apply these inequalities to (B.7), we can get the upper bound

∣∣L̄m(α,N,K)− Lapxm (α)
∣∣ ≤ σ2

a

K
·

N
(
c1 − 4α

Kdc
2
2 +

4α2

K2 c
3
1

)3
N2(λI − 4αλ2S/K + 4α2λ3I/K

2)2d2
= O

(
1

N

)
(B.17)

When α ∈
[
0,

K(λ2
S−
√
λ4
S−λ4

I)

2λ3
I

)
∪
(
K(λ2

S+
√
λ4
S−λ4

I)

2λ3
I

,∞
)

, the limit will go to zero,

lim
N→∞

sup

α∈
[
0,

K(λ2
S

−
√

λ4
S

−λ4
I
)

2λ3
I

)
∪
(

K(λ2
S

+
√

λ4
S

−λ4
I
)

2λ3
I

,∞
) ∣∣L̄m(α,N,K)− Lapxm (α)

∣∣ = 0 (B.18)
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which means L̄m(α,N,K) will uniformly converge to Lapxm (α) for α belongs to the interval above.
Note that L̄m(α,N,K) is a continuous function of α. So with Lemma 1, we have

Γ− lim
N→∞

L̄m(α,N,K) = Lapxm (α) (B.19)

So we have estimation of true α∗, denoted as α∗
lim

α∗
lim =argmin

α
Lapxm (α)

= argmin
α

E
X∼D(X)

tr

[
Φ(X)⊤Φ(X)− 4α

K
(Φ(X)⊤Φ(X))2 +

4α2

K2
(Φ(X)⊤Φ(X))3

]
=
K tr[EX [(Φ(X)⊤Φ(X))2]]

2 tr[EX [(Φ(X)⊤Φ(X))3]]
(B.20)

According to Lemma 2 where α∗(N,K) is the minimizer of L̄m(α,N,K)

α∗(N,K) = argmin
α
L̄m(α,N,K), lim

N→∞
α∗(N,K) = α∗

lim. (B.21)

C PROOF OF PROPOSITION 1

Proposition 4 (Formal state of Proposition 1). Assume u = C(α)⊤C(α)a is sub-gaussian ran-
dom variable with sub-gaussian norm ∥u(i)∥Ψ2

= supp≥1 p
−1/2

(
E|u(i)|p

)1/p ≤ L. Then with
probability at least 1− δ that∣∣∣∣Lm(wm, α,K)− L̄m(α,N,K)

∣∣∣∣ ≤ L2

K
max

{√
dε(α,K)

N2
log

2

δ
,
ε(α,K)

N
log

2

δ

}
(C.1)

if α ∈
[
0,

K(λ2
S−
√
λ4
S−λ4

I)

2λ3
I

)
∪
(
K(λ2

S+
√
λ4
S−λ4

I)

2λ3
I

,∞
)

and

ε(α,K) = (λS − 4αλ2I/K + 4α2λ3S/K
2)/(λI − 4αλ2S/K + 4α2λ3I/K

2)2

when assumption 1 & 2 holds. d is the feature size, N is the number of tasks and K is the sample
size per task.

Here, we follow the same proof notation as Theorem 1.

Proof. By definition, we have

L̄m(α,N,K) = Ea1,...,aN∼D(a)Lm(wm(α,N,K), α,K) (C.2)

Similar to (B.3), let Λj =
(∑N

i=1 C
⊤
i Ci

)−1

C⊤
j Cj , we have,

Lm(wm, α,K) =
1

K
E

a∼D(a)
E

X∼D(x)
∥C(α)(wm(α,N,K)− a)∥2

=
1

K
E

a∼D(a)
E

X∼D(x)

∥∥∥∥∥∥C(α)
 N∑
j=1

Λjaj − a

∥∥∥∥∥∥
2

=
1

K
E

a∼D(a)
E

X∼D(x)

( N∑
i=1

Λiai

)⊤

C(α)⊤C(α)

 N∑
j=1

Λjaj


−a⊤C(α)⊤C(α)

 N∑
j=1

Λjaj

−( N∑
i=1

Λiai

)⊤

C(α)⊤C(α)a

+a⊤C(α)⊤C(α)a
]

(C.3)
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With Assumption 1, second term and third term of (C.3) will be cancelled. So the Lm is

Lm =
1

K
E

X∼D(x)

( N∑
i=1

Λiai

)⊤

C(α)⊤C(α)

 N∑
j=1

Λjaj

+
σ2
a

K
E

X∼D(x)
tr[C(α)⊤C(α)]

(C.4)
As the comparison, L̄m(α,N,K) is the averaged function of Lm, which is given by

L̄m =
1

K
E

X∼D(x)

[
E

{ai}N
i=1∼D(a)

(
N∑
i=1

Λiai

)⊤

C(α)⊤C(α)

 N∑
j=1

Λjaj


+ σ2

a tr
(
C(α)⊤C(α)

) ] (C.5)

Let A be the common matrix of cross-term of ai and aj , then for each term in (C.5),

Λ⊤
i C(α)

⊤C(α)Λj =C⊤
i Ci︸ ︷︷ ︸
C̃i

(
N∑
k=1

C⊤
k Ck

)−1

C(α)⊤C(α)

(
N∑
k′=1

C⊤
k′Ck′

)−1

︸ ︷︷ ︸
A

C⊤
j Cj

=C̃iAC̃j

(C.6)

So cancel their second terms, the difference of Lm(wm, α) and L̄m(α,N,K) will be

Lm(wm, α,K)− L̄m(α,N,K)

=
1

K
E

X∼D(x)

 N∑
i=1

N∑
j=1

a⊤
i C̃iAC̃jaj

+
σ2
a

K

hhhhhhhhhhh
E

X∼D(x)
tr
(
C(α)⊤C(α)

)

− 1

K
E

{ai}N
i=1∼D(a)

E
X∼D(x)

 N∑
i=1

N∑
j=1

a⊤
i C̃iAC̃jaj + σ2

a

hhhhhhhhtr
(
C(α)⊤C(α)

)
=

1

K
E

X∼D(x)

 N∑
i=1

N∑
j=1

a⊤
i C̃iAC̃jaj − E

{ai}N
i=1∼D(a)

N∑
i=1

N∑
j=1

a⊤
i C̃iAC̃jaj


=

1

K
E

X∼D(x)

 N∑
i=1

N∑
j=1

u⊤
i Auj − E

{ai}N
i=1∼D(a)

N∑
i=1

N∑
j=1

u⊤
i Auj



(C.7)

where ui = C̃iai = C⊤
i Ciai is sub-gaussian random variable and with Assumption 1,

Eui = Eai = 0 (C.8)

Let U[N ] = (u1; ...;uN ),∈ RNd, we write the quadratic form into a bilinear form for each product
term u⊤

i Auj

U⊤
[N ]ÃU[N ] = (u⊤

1 , ...,u
⊤
N )

A . . . A
...

. . .
...

A . . . A


u1

...
uN

 =
∑
i

∑
j

u⊤
i Auj (C.9)

where
Ã = 1N1⊤N ⊗A, ∥Ã∥ ∈ RNd×Nd (C.10)

is a N ×N block matrix and ⊗ is Kronecker product. And the relations of A and Ã are

∥Ã∥ = N∥A∥, ∥Ã∥HS = N2
∑
i,j

A2
(i,j) (C.11)
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By applying Hanson-Wright inequality we have

Pr
(∣∣Lm(wm, α,K)− L̄m(α,N,K)

∣∣ > t
)
=Pr

(
1

K

∣∣∣∣U⊤
[N ]ÃU[N ] − EU⊤

[N ]ÃU[N ]

∣∣∣∣ > t

)
≤2 exp

[
−cmin

(
t2

L4∥Ã∥2HS

,
t

L2∥Ã∥

)] (C.12)

Further with Cauchy Inequality, we can get the following equation

∥A∥ =

∥∥∥∥∥∥
(

N∑
k=1

C⊤
k Ck

)−1

C(α)⊤C(α)

(
N∑
k=1

C⊤
k Ck

)−1
∥∥∥∥∥∥

≤

∥∥∥∥∥∥
(

N∑
k=1

C⊤
k Ck

)−1
∥∥∥∥∥∥
2 ∥∥C(α)⊤C(α)∥∥

(C.13)

According to Theorem 1, all eigenvalues of second term falls in [λI − 4αλ2S/K + 4α2λ3I/K
2, λS −

4αλ2I/K + 4α2λ3S/K
2] and of order 1/N for first term.

∥A∥ ≤ (λS − 4αλ2I/K + 4α2λ3S/K
2)

N2(λI − 4αλ2S/K + 4α2λ3I/K
2)2

(C.14)

Let ε(α,K) = (λS − 4αλ2I/K + 4α2λ3S/K
2)/(λI − 4αλ2S/K + 4α2λ3I/K

2)2

∥Ã∥ = N∥A∥ ≤ ε(α,K)

N
(C.15)

Next, we can bound ∥A∥HS by ∥A∥. It’s obvious that ∥A∥HS ≤
√

rank(A)∥A∥. So ∥A∥2HS can be
upper bounded by

∥A∥2HS ≤ rank(A)∥A∥2 ≤ rank(A)

∥∥∥∥∥∥
(

N∑
k=1

Ck(α)
⊤Ck(α)

)−1
∥∥∥∥∥∥
4 ∥∥C(α)⊤C(α)∥∥2

≤ rank(A)ε2(α,K)

N4
≤ dε2(α,K)

N4

(C.16)

Thus, the ∥Ã∥2HS will no more than

∥Ã∥2HS ≤ ε2(α,K)
d

N2
(C.17)

In summary, we can get the bound

Pr
(∣∣Lm(wm, α,K)− L̄m(α,N,K)

∣∣ > t
)
≤ 2 exp

[
−cmin

(
t2N2

L4dε2(α,K)
,

tN

L2ε(α,K)

)]
(C.18)

Finally, we rewrite the inequality by eliminating t, we have at least 1− δ,∣∣Lm(wm, α,K)− L̄m(α,N,K)
∣∣ ≤ L2

K
max

{√
dε(α,K)

N2
log

2

δ
,
ε(α,K)

N
log

2

δ

}
(C.19)

D PROOF OF COROLLARY 1

Proof. Recall our estimation of α∗ is given by,

α∗
lim = argmin

α
Lapxm (α) =

K tr[EX [(Φ(X)⊤Φ(X))2]]

2 tr[EX [(Φ(X)⊤Φ(X))3]]
(D.1)
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For each task, we have K samples with d dimensional features Φ(X) ∈ RK×d. Since Φ(X)⊤Φ(X)
is positive definite matrix, by applying spectral decomposition, we have

trEX [(Φ(X)⊤Φ(X))2] =EX tr[(Φ(X)⊤Φ(X))2]

=EX tr[(UΣXU
⊤)(UΣXU

⊤)]

= trEX [Σ2
X ]

(D.2)

where U is an orthogonal matrix and ΣX is the a diagonal matrix filled by eigenvalues λ1, ..., λd of
the covariance matrix of the feature. It’s easy to prove in Principle Component Analysis (PCA) that
trE(ΣX) is the variance of features where

σ2(ϕ(x1), . . . , ϕ(xK)) =
1

K
trEX [(Φ(X)− µ)⊤(Φ(X)− µ)]

=
1

K

K∑
i=1

(ϕ(xi)− µ)2 =
1

K

d∑
i=1

λi

=
1

K
trE(ΣX)

(D.3)

where ϕ(xi) ∈ Rd is each row of Φ(X) and µ is zero.

With Jensen’s inequality, we have
1

d
[trE(ΣX)]p ≤ trE(ΣpX) ≤ [trE(ΣX)]p, (p ≥ 1) (D.4)

Thus, we can write the inequalities
K[trEX(ΣX)]2

2d[trEX(ΣX)]3
≤K[trEX [(Φ(X)⊤Φ(X))2]]

2 tr[EX [(Φ(X)⊤Φ(X))3]]
≤ Kd[trEX(ΣX)]2

2[trEX(ΣX)]3]

K

2d trEX(ΣX)
≤K[trEX [(Φ(X)⊤Φ(X))2]]

2 tr[EX [(Φ(X)⊤Φ(X))3]]
≤ Kd

2 trEX(ΣX)

(D.5)

thereby
1

2dσ2(ϕ(x1), . . . , ϕ(xK))
≤ α∗

lim ≤
d

σ2(ϕ(x1), . . . , ϕ(xK))
(D.6)

E EXAMPLES

Example 1 (Normal, Polynomial feature) Assume we haveK i.i.d samples x1, ..., xK ∼ N (0, σ2)
and a is a random vector from zero-mean distribution. Consider polynomial basis function ϕ : R→
Rd, where ϕ(y) = (1, ..., yd−1).

Φ(X) =

 ϕ(x1)
...

...
...

ϕ(xk)

 =

 1 x1 . . . xd−1
1

...
...

...
...

1 xK . . . xd−1
K

 (E.1)

Since we have

α∗
lim =

Ktr[EX [(Φ(X)⊤Φ(X))2]]

2tr[EX [(Φ(X)⊤Φ(X))3]]
(E.2)

So that

tr[EX [(Φ(X)⊤Φ(X))2]] =Ex
d∑
j=1

(
K∑
i=1

x
(j−1)+0
i

)2

+ . . .+

(
K∑
i=1

x
(j−1)+d
i

)2

=Ex
d∑
j=1

d∑
m=1

(
K∑
i=1

xj+m−2
i

)2

=K

d∑
j=1

d∑
m=1

E[x2(j+m−2)] + (K − 1)K

d∑
j=1

d∑
m=1

E2[x(j+m−2)]

(E.3)
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Similarly, the denominator is

tr[EX [(Φ(X)⊤Φ(X))3]]

=Ex
d∑
j=1

d∑
l=1

[
d∑

m=1

(
K∑
i=1

xj+m−2
i

)(
K∑
i′=1

xj+l−2
i′

)][(
K∑
t=1

xj+l−2
t

)]

=Ex
d∑
j=1

d∑
l=1

x2j+l−3
0 + . . .+ xj+d−2

i xj+l−2
i′︸ ︷︷ ︸

dK2

[( K∑
t=1

xj+l−2
t

)]

=Ex
d∑
j=1

d∑
l=1

x2j+m+l−4
i + . . .+︸ ︷︷ ︸

dK

xj+d−2
i xj+l−2

i′ + . . .︸ ︷︷ ︸
dK(K−1)

[( K∑
t=1

xj+l−2
t

)]

=

d∑
j=1

d∑
l=1

d∑
m=1

(
KE[x3j+m+2l−6] + 3K(K − 1)E2[x2j+2l−4]E[xj+m−2]

+(K3 − 3K2 + 2K)E3[x(j+m+l−3)]
)

(E.4)

If K = 1, σ → 0 the optimal α∗
lim will be

α∗
lim =

∑d
j=1

∑d
m=1 E[x2(j+m−2)]

2
∑d
j=1

∑d
l=1

∑d
m=1 E[x3j+m+2l−6]

=

∑2d−2
i=0 [C(i+ 1, 1)− 2C(i− d+ 1, 1)]E[x2i]

2
∑3d
j=1 g2(d, j)E[xj ]

=

∑2d−2
i=0 g1(d, i)σ

2i(2i− 1)!!

2
∑3d−3
j=0 g2(d, j)σ2j(2j − 1)!!

= O
(

1

σ2

)
(E.5)

where C(n, k) =
(
n
k

)
is the binomial coefficient and g1(d, i) = C(i+ 1, 1)− 2C(i− d+ 1, 1).

If K →∞, σ → 0

α∗
lim =

(K − 1)K2
∑d
j=1

∑d
m=1 E2[x(j+m−2)]

2
∑d
j=1

∑d
l=1

∑d
m=1(K

3 − 3K2 + 2K)E3[x(j+m+l−3)]

=

∑d
j=1

∑d
m=1 E2[x(j+m−2)]∑d

j=1

∑d
l=1

∑d
m=1 E3[x(j+m+l−3)]

O(1)

=

∑2d−2
i=0 g1(d, i)E2[xi]∑3d−3
j=0 g3(d, j)E3[xj ]

O(1)

=

∑d−1
i=1 g1(d, i)[σ

2i(2i− 1)!!]2∑⌈3d/2⌉−1
j=1 g3(d, j)[σ2j(2j − 1)!!]3

O(1) = O
(

1

σ2

)
(E.6)

We show the coefficients of each moment in the Figure 6. As we can see, denominator becomes
dominant since the coefficient of every moment, number of terms and order of moment are all larger
(higher) than numerator.

So in this case, the α∗
lim has an inverse relationship with σ2.

Example 2 (Random Matrices) Assume all elements Yij in feature matrix are independent. Then
let Y be a random matrix we have
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0 50 100 150 200 250 300
index i, (d=50)

0

200

400

600

800 g1
g2

0 20 40 60 80 100 120 140
index i, (d=50)

0

250

500

750

1000

1250

1500

1750 g1
g3

Figure 6: Example of d = 50 with coefficients of each moment given by g1(d, i), g2(d, i), g3(d, i).

Φ(X)⊤Φ(X) =


∑K
i=1 Y

2
i1 . . .

∑K
i=1 Yi1Yid

...
...

...∑K
i=1 YidYi1 . . .

∑K
i=1 Y

2
id

 (E.7)

For the numerator in (D.1),

tr[Ex[(Φ(X)⊤Φ(X))2]] =EYij ,i∈[K],j∈[d]

d∑
t=1

d∑
s=1

(
K∑
i=1

YitYis

)(
K∑
i′=1

Yi′tYi′s

)
=dKE[Y 4] + (dK(K − 1) + d(d− 1)K)E2[Y 2]

+ d(d− 1)K(K − 1)E4[Y ]

(E.8)

Here, the row m column n entry of (Φ(X)⊤Φ(X))2 is

(Φ(X)⊤Φ(X))2(mn) =

d∑
s=1

(
K∑
i=1

YimYis

)(
K∑
i′=1

Yi′nYi′s

)
(E.9)

The diagonal entry of (Φ(X)⊤Φ(X))3 at row m will given by

(Φ(X)⊤Φ(X))3(mm) =

d∑
n=1

 d∑
s=1

(
K∑
i=1

YimYis

)(
K∑
i′=1

Yi′nYi′s

) K∑
j=1

YjmYjs

 (E.10)

Similarly, the denominator is
tr[Ex[(Φ(X)⊤Φ(X))3]]

=EYij ,i∈[K],j∈[d]

d∑
m=1

d∑
n=1

 d∑
s=1

(
K∑
i=1

YimYis

)(
K∑
i′=1

Yi′nYi′s

) K∑
j=1

YjmYjs


=KdE[Y 6] +Kd(d− 1)(E[Y 5]E[Y ] + E[Y 4]E[Y 2] + E2[Y 3])︸ ︷︷ ︸

i=i′=j

+ b1 +K(K − 1)d(d− 1)(E[Y 3]E3[Y ] + E[Y 3]E[Y 2]E[Y ] + E2[Y 2]E2[Y ])︸ ︷︷ ︸
i=i′ ̸=j

+ b1 +K(K − 1)d(d− 1)(E[Y 3]E3[Y ] + E[Y 3]E[Y 2]E[Y ] + E2[Y 2]E2[Y ])︸ ︷︷ ︸
i ̸=i′=j

+ b1 +K(K − 1)d(d− 1)(E[Y 4]E2[Y ] + E3[Y 2] + E2[Y 2]E2[Y ])︸ ︷︷ ︸
i=j ̸=i′

+ b2 + (K3 − 3K2 + 2K)d(d− 1)(E6[Y ] + E2[Y 2]E2[Y ] + E[Y 2]E4[Y ])︸ ︷︷ ︸
i̸=i′ ̸=j

(E.11)
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where b1 = K(K − 1)dE[Y 4]E[Y 2], b2 = (K3 − 3K2 + 2K)dE3[Y 2].

If K = 1, the optimal α∗
lim will be

α∗
lim =

dE[Y 4]

2dE[Y 6]
=

E[Y 4]

2E[Y 6]
(E.12)

If K →∞ and d→∞,

α∗
lim =

K(dK(K − 1) + d(d− 1)K)E2[Y 2] + d(d− 1)K2(K − 1)E4[Y ]

(K3 − 3K2 + 2K)[dE3[Y 2] + d(d− 1)(E6[Y ] + E2[Y 2]E2[Y ] + E[Y 2]E4[Y ])]

=
dE2[Y 2] + d(d− 1)E4[Y ]

dE3[Y 2] + d(d− 1)(E6[Y ] + E2[Y 2]E2[Y ] + E[Y 2]E4[Y ])
O(1)

=
E4[Y ]

E6[Y ] + E2[Y 2]E2[Y ] + E[Y 2]E4[Y ]
O(1) ≈ E[Y 4]

E[Y 6]
O(1)

(E.13)

Both two examples are related to the high order moments of data distributions. In polynomial feature
example, we focus on the gaussian distributed data and its inverse relationship to data variance. As
for any random matrix, it depends on the fourth moment over sixth moment.

F PROPOSITION FOR THEOREM 2

Proposition 5. ∃ε, α ∈ [−ε, ε] global minimum of MAML wm(α) is given by following equation

wm(α) =wr + α

(
N∑
i

Φ(Xi)
⊤Φ(Xi)

)−1
 N∑

j

4

K
(Φ(Xj)

⊤Φ(Xj))
2 (ws − aj)


+

∫ α

0

∇2
αw

0
m(ξ)

2!
(α− ξ)2dξ

(F.1)

where wr is ERM global minimum.

Proof. As for the MAML, the global minimum is,

wm(α) =

(
N∑
i=1

C⊤
i Ci

)−1
 N∑
j=1

C⊤
j Cjaj

 (F.2)

with Ci(α) = Φi − 2α
K ΦiΦ

⊤
i Φi, Ci(α) ∈ RK×d.

Let Wα =
∑N
i=1 C

⊤
i (α)Ci and να denote

∑N
j=1 C

⊤
j Cjaj , then

∇αWα =∇α

[
N∑
i=1

(
Φi −

2α

K
ΦiΦ

⊤
i Φi

)⊤(
Φi −

2α

K
ΦiΦ

⊤
i Φi

)]

=

[
N∑
i=1

− 4

K
(Φ⊤

i Φi)
2 +

8α

K2
(Φ⊤

i Φi)
3

] (F.3)

Similarly, we have

∇ανα =

[
N∑
i=1

− 4

K
(Φ⊤

i Φi)
2ai +

8α

K2
(Φ⊤

i Φi)
3ai

]
(F.4)
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For first-order derivative, we have the following form,

∇αwm(0) =W−1
α |α=0 [∇ανα|α=0 −∇αWα|α=0wm(0)]

=

(
N∑
i=1

Φ⊤
i Φi

)−1
 N∑
j=1

− 4

K
(Φ⊤

j Φj)
2aj +

N∑
l=1

4

K
(Φ⊤

l Φl)
2wm(0)


=

(
N∑
i=1

Φ⊤
i Φi

)−1
 N∑
j=1

4

K
(Φ⊤

j Φj)
2(wm(0)− aj)


(F.5)

Recall that

wm(0) = ws =

(
N∑
i=1

Φ⊤
i Φi

)−1
 N∑
j=1

Φ⊤
j Φjaj

 (F.6)

So for small α, we have the Taylor expansion at zero that

wm(α) =wm(0) +∇αwm(0) +

∫ α

0

∇2
αw

0
m(ξ)

2!
(α− ξ)2dξ

=wr + α

(
N∑
i

Φ(Xi)
⊤Φ(Xi)

)−1
 N∑

j

4

K
(Φ(Xj)

⊤Φ(Xj))
2 (ws − aj)


+

∫ α

0

∇2
αw

0
m(ξ)

2!
(α− ξ)2dξ

(F.7)

G PROOF OF THEOREM 2

Proof Sketch We list our proof steps as follows

1. Based on Definition 1, our target is to illustrate that fast adaptation distance gap between
wm and wr is always negative which means MAML has smaller distance to all the tasks at
any adaptation steps in expectation.

2. We first get the linearized expression of wm by Proposition 5.

3. Compute fast adaptation distance gap ∆ = ET1,...,TN∼D(T )Ft(wm)−Ft(wr) across same
task distribution D(T ) and take expectations with respect to all random variables.

4. With lemma of trace inequalities and assumptions, we can get the upper bound for the
dominant term of ∆, refer to (G.30).

5. Bound the reminder terms, we can get the range of α.

Notation for this proof Follow the Theorem 1, we omit the arguments of the function if its symbol
has a index e.g. ΦT = Φ(XT ). Covariance matrix Φ⊤

TΦT = GT and inverse of sum covariance
matrix V = (

∑
i∈[N ] Φ

⊤
i Φi)

−1 for short.

Proof. For each task T sampled from distribution D(T ), gradient descent iteration yields

wt+1
T = wt

T − η∇ℓT (wt
T )

= wt
T −

2η

K
Φ⊤
T (ΦTwT − ΦTaT )

=

(
I − 2η

K
Φ⊤
TΦT

)
wt
T +

2η

K
Φ⊤
TΦTaT

=

(
I − 2η

K
Φ⊤
TΦT

)t+1

w0 +

t+1∑
j=1

2η

K

(
I − 2η

K
Φ⊤
TΦT

)j−1

Φ⊤
TΦTaT

(G.1)
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where w0 is the initialization. Let GT = Φ⊤
TΦT , the adapted error will be

∥wt
T − aT ∥ =

∥∥∥∥∥∥
(
I − 2η

K
GT

)t
w0
m +

t∑
j=1

2η

K

(
I − 2η

K
GT

)j−1

GTaT − aT

∥∥∥∥∥∥
2

(G.2)

For simplicity, let

QT =

(
I − 2η

K
GT

)
, ST =

t∑
j=1

2η

K

(
I − 2η

K
GT

)j−1

GTaT − aT

then with Definition 1, we can get t-step fast adaptation error for MAML,

Ft(w0
m) = E

T∼D(T )

∥∥QtTw0
m + ST

∥∥2 (G.3)

and the ERM fast adaptation error is

Ft(w0
r) = E

T∼D(T )

∥∥QtTw0
r + ST

∥∥2 (G.4)

Note that the sum of geometric series in ST is

ST =

t∑
j=1

2η

K

(
I − 2η

K
GT

)j−1

GTaT −aT =

[
I −

(
I − 2η

K
GT

)t
− I

]
aT = −QtTaT (G.5)

Now, let’s focus on the error gap of MAML and ERM, denoted as ∆ , then we have

∆ = E
T1,...,TN∼D(T )

Ft(w0
m)−Ft(w0

r)

= E
T1,...,TN ,T∼D(T )

〈
QtT

(
w0
m +w0

r

)
+ 2ST , Q

t
T

(
w0
m −w0

r

)〉 (G.6)

For small α, we get its linear expansion in Proposition 5

w0
m(α) = w0

r + α∇αw0
m(0) +

∫ α

0

∇2
αw

0
m(ξ)

2!
(α− ξ)2dξ

= w0
r + α

 N∑
j

Gj

−1  N∑
j

4

K
G2
j

(
w0
r − aj

)+R1

(G.7)

where R1 =
∫ α
0

∇2
αw0

m(ξ)
2! (α− ξ)2dξ is the reminder term. So it would be

∆ = E
w0

m,w
0
r

E
T∼D(T )

〈
QtT

(
2w0

r + α∇αw0
m(0) +R1

)
+ 2ST , αQ

t
T∇αw0

m(0)

〉
(G.8)

Let V =
(∑N

j Gj

)−1

and the first derivative∇αw0
m(0) is split into

α∇αw0
m(0) = V

 N∑
j

4

K
G2
jw

0
r

− V
 N∑

j

4

K
G2
jaj

 (G.9)

thus inner product will be four product terms and a reminder term which is

∆ =
8α

K
E

{ai}[N]

E
T∼D(T )


〈
QtTw

0
r , Q

t
TV

 N∑
j

G2
jw

0
r

〉−〈QtTw0
r , Q

t
TV

 N∑
j

G2
jaj

〉

+

〈
ST , Q

t
TV

 N∑
j

G2
jw

0
r

〉−〈ST , QtTV
 N∑

j

G2
jaj

〉+R2 +R′
1

(G.10)
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where the remainder terms are

R2 = α2

〈
∇αw0

m(0),∇αw0
m(0)

〉
, R′

1 = α2

〈
R1,∇αw0

m(0)

〉
(G.11)

Now, let’s look at the expectation. Recall that task T is defined by random variables (Φ(XT ),aT ).
With simultaneously diagonalizable assumption, all feature covariance matrix in tasks can be factor-
ized to

Φ(XT )
⊤Φ(XT ) = GT = UΣTU

∗ (G.12)

where U is the basis of features, ΣT is the only random variable of GT . So the data of each task
depends on eigenvalue diagonal matrix ΣT . So taking expectation over T means the two independent
expectation EΣT∼D(Σ),EaT∼D(a). Similarly, w0

r in previous section is expressed by

w0
r =

(
N∑
i=1

Gi

)−1
 N∑
j=1

Gjaj


⇒ ET1,...,TN

(w0
r) =E{ai}[N]

E{Gi}[N]
(w0

r) = E{ai}[N]
E{Σi}[N]

(w0
r)

(G.13)

For each product term in (G.10), we list four main terms as following. First term is

E
T1,...,TN ,T∼D(T )

〈
QtTw

0
r , Q

t
TV

N∑
j

G2
jw

0
r

〉

= E
{ai}[N]∼D(a)

E
{Gi}[N]

〈
QtTV

(
N∑
i

Giai

)
,
4α

K
QtTV

N∑
j

G2
jV

(
N∑
k

Gkak

)〉

= E
{Gi}[N]

tr

 N∑
i=1

GiV Q
t
TQ

t
TV

 N∑
j

G2
j

V Gi


(G.14)

Similarly, we can get the second term

E
{Ti}[N],T∼D(T )

〈
QtTw

0
r , Q

t
TV

N∑
j

G2
jaj

〉
= E

{ai}[N]

E
{Gi}[N]

〈
QtTw

0
r , Q

t
TV

N∑
j

G2
jaj

〉

= E
{Gi}[N]

tr

[
N∑
i=1

GiV Q
t
TQ

t
TV G

2
i

] (G.15)

For third and fourth terms, EaT∼D(a) is a marginal expectation of ET∼D(T ), thus

E
{Ti}[N],T∼D(T )

〈
ST , Q

t
TV

N∑
j

G2
jw

0
r

〉
= E

aT∼D(a)
E

w0
r ,{Gi}[N]

〈
−QtTaT , QtTV

N∑
j

G2
jw

0
r

〉
=0

(G.16)
Similarly, the fourth term is

E
a[N]∼D(a)

E
T∼D(T )

〈
ST , Q

t
TV

N∑
j

G2
jaj

〉
= 0 (G.17)
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So overall, the we care about above four terms as a function of α,N, t, ... denoted as δt(α,N)

δt(α,N) =∆−R2 −R′
1

=
8α

K
E

{Gi}[N]

tr

 N∑
i=1

GiV Q
t
TQ

t
TV

 N∑
j

G2
j

V Gi


− 8α

K
E

{Gi}[N]

tr

[
N∑
i=1

GiV Q
t
TQ

t
TV G

2
i

]

=
8α

K
E

{Gi}[N]

tr

 N∑
i=1

GiV Q
t
TQ

t
TV

 N∑
j

G2
j

V Gi −
N∑
i=1

GiV Q
t
TQ

t
TV G

2
i


=
8α

K
E

{Gi}[N]

tr

 N∑
i=1

GiV Q
t
TQ

t
TV

 N∑
j

G2
j

V Gi −G2
i


=
8α

K
E

{Gi}[N]

tr

 N∑
i=1

V QtTQ
t
TV

 N∑
j

G2
j

V G2
i −G3

i



(G.18)

By simultaneously diagonalizable assumption, we have

δt(α,N) =
8α

K
E

{Σi}[N]

tr

 N∑
i=1

V QtTQ
t
TV

 N∑
j

(UΣ2
jU

⊤)(U Σ̂NU
⊤)(UΣ2

iU
⊤)− (UΣ3

iU
⊤)


=
8α

K
E

{Σi}[N]

tr

V QtTQtTV
 N∑

i

N∑
j

UΣ2
i Σ̂NΣ2

jU
⊤ −

N∑
i

UΣ3
iU

⊤


(G.19)

where Σ̂N =
(∑

k∈[N ] Σk

)−1

is a PD matrix and QtT = (I − (2η/K)GT )
t is a exponential decay

term w.r.t η. With probability 1, λsI ⪯ Σi ⪯ λxI

(Nλx)
−1I ⪯ Σ̂N ⪯ (Nλs)

−1I (G.20)

Note that V QtTQ
t
TV = (QtTV )⊤QtTV is a symmetric positive definite matrix where

V QtTQ
t
TV =U Σ̂NU

⊤Q2t
T U Σ̂NU

⊤

=U Σ̂NU
⊤
(
UU⊤ − 2η

K
UΣTU

⊤
)2t

U Σ̂NU
⊤

=U Σ̂NU
⊤U

(
I − 2η

K
ΣT

)2t

U⊤U Σ̂NU
⊤

=U Σ̂N

(
I − 2η

K
ΣT

)2t

Σ̂NU
⊤

(G.21)

Note that m-th diagonal entry of E{Σi}[N]

(∑N
i

∑N
j UΣ2

i Σ̂NΣ2
jU

⊤ −
∑N
i UΣ3

iU
⊤
)

is

e⃗⊤(m)

(
(Eλ2)2

NEλ
− EλEλ3

NEλ

)
e⃗(m) =

(Eλ2)2 − EλEλ3

NEλ
∥e⃗(m)∥2

(C-S)
≤ 0 (G.22)

where (C-S) is according to Cauchy-Schwarz inequality for integrals in Proposition 3.

So the above matrix is a negative definite matrix. Now, let us can derive following trace inequality
for NSD and PSD.

Proposition 6. If A is a n-by-n negative definite matrix and B is a n-by-n PSD matrix, we have

tr(AB) ≤ λmin(B)tr(A) (G.23)

27



Published as a conference paper at ICLR 2022

Proof. By Ruhe’s trace inequality (Lemma 4), we have tr(AB) ≥
∑
i λi(A)λn−i+1(B). Eigen-

values of A are negative where λi(A) < 0,∀i ∈ [n]. So we have tr(AB) ≤ λmin(B)
∑
i λi(A) =

λmin(B)tr(A)

So with Proposition 6, we have

δt(α,N) ≤ 8α

K
E

{Σi}[N]

λmin

(
V QtTQ

t
TV
)
tr

 N∑
i

N∑
j

UΣ2
i Σ̂NΣ2

jU
⊤ −

N∑
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UΣ3
iU

⊤

 (G.24)

with (G.20) and (G.21)

λmin

(
V QtTQ

t
TV
)
= λmin

(
Σ̂N

(
I − 2η

K
ΣT

)2t

Σ̂N

)
=

1

N2λ2x

(
I − 2ηλx

K

)2t

(G.25)

For the second part, we have

tr
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UΣ2
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 tr

 N∑
i

N∑
j

Σ2
jΣ

2
i −

N∑
i

N∑
k

Σ3
iΣk


(G.26)

Overall, with probability 1, we have

δt(α,N) ≤ 8αd

N3Kλ3x

(
1− 2ηλx

K

)2t

E
{Σi}[N]

tr

 N∑
i

N∑
j

Σ2
jΣ
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i −

N∑
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Σ3
iΣk

 (G.27)

Specifically,

E
{Σi}[N]

tr

 N∑
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i −
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− (N2 −N)E(Σ3)E(Σ)︸ ︷︷ ︸
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
= (N2 −N)

d∑
i=1
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With Proposition 3 we know that any eigenvalue λ = Σ(i) > 0 obeys the statistical condition
E2[λ2]− E[λ3]E[λ]. Thus there exists a constant c̃ > 0 such that

E
{Σi}[N]

tr

 N∑
i

N∑
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Σ2
jΣ

2
i −

N∑
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N∑
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 < −c̃d(N2 −N) (G.29)

Finally, we have

δt(α,N) ≤ −
(
1− 2η

K
λx

)2t
8αd2c̃

Kλ3x

(
1

N
− 1
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)
(G.30)
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Now, let’s bound the remainder terms R′
1, R2 where

R′
1 = E

a[N]∼D(a)
E

T∼D(T )

〈
QtTR1, αQ

t
TV

 N∑
j

4
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w0
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)〉 (G.31)

R1 is the remainder term in Taylor expansion (G.7). With Integral Mean Value Theorem

R1 =

∫ α

0

∇2
αw

0
m(ξ)

2!
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2
∇2
αw

0
m(ξ′) (G.32)

We have the locally Lipschitz property for C∞ function wm(α), in a small region with small α such
that

R1 ≈
α2

2
∇2
αw

0
m(0) (G.33)

Then we have
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Recall (F.6) the w0
r = (

∑N
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And the eigenvalues of Σi are bounded in [λs, λx] where

E
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(G.36)
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In summary,

R′
1 ≤
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(G.37)

Similar to R′
1 let’s bound the R2 in (G.10),

R2 =α2 E
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Thus the final constraint of α will be(
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where ratio factor r̂ = [(1− 2η/Kλx) / (1− 2η/Kλs)]
2t. We have the extreme points of α
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For K ∈ Z+ ≥ 1, small α, t = 0 and large t we have

r̂ = [(1− 2η/Kλx) / (1− 2η/Kλs)]
2t = O(1) (G.41)

So finally, the α needs to satisfy
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(G.42)

H EXPERIMENTS

H.1 PRACTICAL FORM OF THEOREM 1

For practical use, we show a numerical form to estimate α∗ for the case where number of tasks is
finite and training data u ∈ Rk1 is different from validation data t ∈ Rk2 . The corresponding feature
matrices are Φ(u) and Φ(t). Let’s derive corollary of Theorem 1 for realistic meta-learning setting.
Corollary 2. If training feature Φ(u) ∈ Rk1×d is different from validation feature Φ(t) ∈ Rk2×d
for every task, then

α∗
lim(k1) =

k1Extr[Φ(u)
⊤Φ(u)(Φ(t)⊤Φ(t)]

2Extr[Φ(u)⊤Φ(u)(Φ(t)⊤Φ(t)Φ(u)⊤Φ(u)]
. (H.1)

Proof. Similar to proof of Theorem 1, we have

wm

(
{xi,ai}i∈[N ], N, k1, k2, α

)
=

(
N∑
i=1

Ĉi(α)
⊤Ĉi(α)

)−1( N∑
i=1

Ĉi(α)
⊤Ĉi(α)ai

)
(H.2)
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where Ĉi(α) = Φ(ti)(I − 2α
k1
Φ(ui)

⊤Φ(ui)) ∈ Rk2×d.

The corresponding average population risk will be

L̄m(N,k1, k2, α) = Ea1,...,aN∼D(a)Lm(wm, α, k1, k2)

= E
a,{ai}N

i=1∼D(a)
E

x∼D(x)

∥∥∥Ĉ(α) (wm({xi,ai}i∈[N ], N, k1, k2, α)− a
)∥∥∥2 (H.3)

Then we can define similar approximation function Lapxm (α) as (B.6) where

Lapxm (α) ≜ Ex∼D(x) tr
[
Ĉ(α)⊤Ĉ(α)

]
(H.4)

And with same bound for ∥Φ(ui)∥, ∥Φ(ti)∥ ∈ [c1, c2], we have

Γ− lim
N→∞

L̄m(k1, k2, N, α) = L̂apxm (α) (H.5)

With Gamma convergence lemma, we can get the final estimation α∗
lim in (H.1).

In experiments, we use the following numerical form

α∗
lim =

k1
∑N
i=1 tr[Φ(ui)

⊤Φ(ui)(Φ(ti)
⊤Φ(ti)]

2
∑N
j=1 tr[Φ(uj)

⊤Φ(uj)(Φ(tj)⊤Φ(tj)Φ(uj)⊤Φ(uj)]
. (H.6)

to evaluate our estimation.

H.2 OVERPARAMETERIZED SETTING

Let’s consider overparameterized setting. Thus, we have feature for each task (K < d), Ψ =
[ψ(x1), ..., ψ(xK)]⊤ ∈ RK×d. Correspondingly, empirical objective of ERM is given by

L̂r(w) =
1

NK

N∑
i=1

∥Ψiw − yi∥.

Assume meta-initialization is the mean of all task optima that ā = mean(a1, ...,aN ). Then concate-
nate all task features we have

Ψall =

 Ψ1(1)

. . .
ΨN(K)

 ,Ψall ∈ RNK×d (H.7)

So MAML objective is given by

L̂m(w, α,N,K) =
1

NK
∥Ψallw′ − yall∥

2

=
1

NK
∥Call(α)w − ā∥2

(H.8)

where w′ =
[
w − 2α/(NK)Ψall

(
Ψ⊤
allw −Ψ⊤

allā
)]

is adapted parameters andCall(α) = Ψall(I−
(2α/NK)Ψ⊤

allΨall). The minimum norm solution is

wm (..., N,K, α) = Call(α)
⊤ (Call(α)Call(α)⊤)−1

Call(α)ā (H.9)

Note that, in overparameterized setting, Theorem 1 will not perfectly give the precise form for α∗.
But the technique can be easily extend to large d setting where

L̄m(α,N,K) =Ea,ā,x∥C(α)(wm − a)∥2

=Ea,ā,x

[
w⊤
mC(α)

⊤C(α)wm + a⊤C(α)⊤C(α)a
]

=Ex tr[Call(α)
⊤Cgramall Call(α)C(α)

⊤C(α)Call(α)
⊤Cgramall Call(α)]

+ Ex tr[C(α)⊤C(α)]

(H.10)
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where Cgramall = (Call(α)Call(α)
⊤)−1.

By Proposition 2, the L̄m(α,N,K) will be upper bounded where

L̄m(α,N,K) =Ex tr[Cgramall Call(α)C(α)
⊤C(α)Call(α)

⊤] + Ex tr[C(α)⊤C(α)]

=Ex tr[Call(α)
⊤Cgramall Call(α)C(α)

⊤C(α)] + Ex tr[C(α)⊤C(α)]

≤Ex tr[Call(α)
⊤Cgramall Call(α)]Ex tr[C(α)⊤C(α)] + Ex tr[C(α)⊤C(α)]

=2Ex tr(C(α)⊤C(α))

(H.11)

Hence, minimizing the upper bound also tells us how to select α∗. In another word, we are seeking
an estimation α∗

est nearly minimize the upper bound.

α∗
est = argmin

α
Ex tr(C(α)⊤C(α)) (H.12)

and the C(α)⊤C(α) is a covariance matrix where

C(α)⊤C(α) = Ψ⊤Ψ− 4α

NK
(Ψ⊤Ψ)2 +

4α2

N2K2
(Ψ⊤Ψ)3 (H.13)

We can derive that

α∗
est =

NKEx tr(Ψ⊤Ψ)2

2Ex tr(Ψ⊤Ψ)3
(H.14)

Since d is large, its computational cost is high. Here we assume second moment of all elements of
Ψ⊤Ψ are σ̃2, which means σ̃ is the variance of all elements of features. Finally we have

α∗
est =

1

2NKσ̃2
(H.15)

Let’s take the Neural Tangent Kernel (NTK) (Jacot et al., 2018) for example,

f(w,x) = f(winit,x) +∇f(winit,x)⊤(w −winit). (H.16)

Then we have neural tangent feature

Ψ⊤
i w = ∇f(winit, Xi)

⊤(w −winit)

⇒ Ψi ≈ f(winit, Xi)
(H.17)

Next, we stack all the features to Ψall to compute the variance e.g. recall σ = Ψall.std(). After that,
we can compute the estimation α∗

est using (H.15).

H.3 EXPERIMENTAL SETUP

Estimation of α∗, underparameterized model We set hyperparameters dimension d = 20, number
of training/validation samples per task K = 50, number of tasks N = 5000. Each x is i.i.d sampled
from a distribution U(−5, 5) while each a is i.i.d sampled from high dimension Gaussian distribution
N (0, 3I). Then computing the Ordinary Least Square (OLS) solution with different α, we can show
the training loss landscape in terms of α. The true α∗(N) = argminαminw L(α, 5000, 50,w) is
the minimizer of the training loss. Our estimation α∗

lim described in Theorem 1 is evaluated by
comparing the error to true α∗.

Estimation of α∗, overparameterized model We perform the nonlinear regression on two different
models. The first is quadratic regression using neural tangent feature (see H.2). All hyperparameters
are set to be same as (Bernacchia, 2021) where

w ∼ N
(
w0,

ν2

p
Ip

)
b ∼ N (0, σ2) x ∼ N (0, Ip) y | x,w, b ∼ N

(
(xTw + b)2, σ2

)
But to guarantee the overparameterization, we set hidden size with 10, 000, which means the total
dimension will be 30, 001. Then we perform quadratic function regression with ranging α value
to see the test loss. After that, we can evaluate the how accurate our estimation using (H.15) is by
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comparing to optimum of test loss. Second experiment is sine function regression using 3-layer MLPs
activated with ReLU. The data and labels are generated from a stochastic function

y = a sin(x+ b), a, b ∼ U(0, π), x ∼ U(−5, 5).

To get a good representation, we pre-train the model with ERM loss and then freeze the first two
layers as the feature extractor. Then we use the output from second layer as the random feature to
train last layer on 1, 000 training tasks. At the same time, α∗

lim can be computed from the features of
1, 000 training tasks. Then last layer trained with differnet α will be evaluated on 10, 000 test tasks.

Fast adaptation distance We run experiments with random matrices. For each task, the data
are i.i.d drawn for the prescribed distributions which represent three common types, Uniform
U(−5, 5), Gaussian N (0, 2) and Exponential Exp(1). Specifically, each entry in random matrix
X ∈ RK×d, (K = 50, d = 20) is sampled variable from a distribution X(ij) ∼ D(x). The feature
map is an identity map Φ(X) = X . First we sample 5000 training tasks to compute the closed-form
meta-initializations for ERM and MAML with a small α (10−4). Then we perform t-step adaptation
on 5000 test tasks and compare the fitting losses and the Average Distance under Fast Adaptation
Ft(wm),Ft(wr). The learning rate η in fast adaptation evaluation is 10−5.

Estimation of α∗, deep learning In our experiments, we valid our estimation of α∗ on sine
regression and few-shot classification.

• For deep regression, we follow the (Finn et al., 2017) to perform sine regression with
3-layer MLP whose hidden size is 40. Then each task is an instance in stochastic function
y = a sin(x+ b), a, b ∼ U(0, π) while the training set is 10 i.i.d sampled data pair from the
corresponding sine function and test set is consists of another sampled 256 points. During
test, we sample 10, 000 tasks to evaluate the learned model.

• For deep classification, we follow the Omniglot experiments in (Raghu et al., 2020). Here,
we adopt the online estimation scheme to compute the α∗ for the adaptation learning rate of
last layer. To this end, we apply α∗ = 1/(2×Nway ×Nshot × σ̂2) where σ̂2 is mean of
covariance of the normalized feature F⊤F , F = (F1/∥F1∥, ..., FNway/∥FNway∥). Then
α∗
buffer in the buffer is online updated using α∗

buffer ← 0.9α∗
buffer + 0.1α∗.

H.4 ADDITIONAL RESULT

H.4.1 OPTIMIZATION BEHAVIOR

We add more illustrative experiments on visualizing the trajectory of global minima of MAML. We
consider normally distributed task optima with centralized data and uncentralized data. As shown in
7, the MAML minimum still try to balance the distances to different task optima. But the situation
is more complex in uncentralized data (second row). However, α always minimize the geometric
distance at beginning where the shape of mean distance function appears to be convex. This has
confirmed our Theorem 2 where small α always lead to a shorter mean distance to different task
optima than ERM algorithm.

H.4.2 ESTIMATION OF α∗ ON BASIS FUNCTION FEATURE

Firstly, we used the random matrix for task i as the feature matrix, Φi ∈ RK×d. All elements of Φi
are i.i.d sampled from U(−5, 5). Secondly, we created the random features using Gaussian basis
function. Gaussian basis function Φ(X)(ij) = exp(−

(
X(ij) − µj

)2
/2σ2

i ) is a function whose value
depends only on the distance between the input and some fixed point. Thirdly, we used polynomial
feature Φ(X)(i,:) = (c0, · · · , cnxd−1

(i) ) which is based on Taylor series. With N tasks, we compute
the one-step adaptation loss. Optimal learning rate minimizing the loss is denoted by α∗(N). The
error gap between true optimum and estimation |α∗(N)−α∗

lim| with three random features are shown
in Figure 8 (a), (b) & (c) respectively. To reduce random errors, there was an average of 10 sampling
trials, shown as the solid lines. The shadow area represents standard deviation. As the number of
tasks N increasing, the estimation error will shrink down to zero and its uncertainty reduces as well.
So our estimation is reliable and accurate when number of tasks becomes large.
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Figure 7: Additional results for optimization behavior with normally distributed task optima. Left
column: Visualization of trajectory of MAML solution. Orange dots are task optima {a}[N ] of
sampled tasks, where location of ai is decided by its entries. Red dot highlighted in circle is new
coming task. Green cross is wr, (α = 0) while the purple trajectory is generated as α increasing.
Red star is wm(α∗

lim, ...). Right column: Average euclidean distance of wm(α, ...) and {a}[N ] and
corresponding points in left figure. First row: centralized data x ∼ N (0, 2),a ∼ N (0, 3I). Second
row: uncentralized data x ∼ U(0, 5),a ∼ N (0, 3I). Best viewed in colors.
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Figure 8: Estimation error |α∗(N)− α∗
lim| along task number N increasing (K is fixed). The blue

line in the shadow is mean of the error. The shadow area is the standard deviation of the errors. (a)
Random matrices (b) Gaussian basis function (c) Polynomial basis function.

We use Gaussian basis function as the random feature and conduct the experiments on different
types of distribution to evaluate our estimation quality. Then, we use uniform/normal distribution
with zero mean U , N as the stereotype of central symmetric distribution. In experiments, we set
d = 10,K = 15, N = 3000 and the parameters in Gaussian function depends on the range of data.
As shown in the Figure 9, the estimation α∗

lim is close to true optimum, α∗ in four different cases:
(a) data is sampled from a central uniform distribution U(−5, 5), task optima are sampled from a
central normal distribution N (0, 32I); (b) data is sampled from a non-central normal distribution
N (0, 22), task optima are sampled from a central normal distribution N (0, 32I); (c) data is sampled
from a central uniform distribution U(−5, 5), task optima are sampled from a non-central normal
distribution N (5, I); (d) data is sampled from a non-central Chi-Sqaure distribution χ2(7), task
optima are sampled from a imbalanced Zipf distribution P (x = k) = 1

ζ(s)k
−s where ζ(s) is the
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α 0.001 0.005 0.01 0.05 0.08 0.1 0.15 0.2 0.3 0.4 0.5
Pre MSE 829 822 822 827 829 827 825 821 826 825 826
Post MSE 829 820 817 807 800 797 805 820 861 955 989

Table 2: Test loss of one-step sinusoid regression with neural network feature. First row is the discrete
test values of α, second row is the Mean Square Error(MSE) loss before adaptation and third row is
the loss after adaptation. All loss values are digits after the decimal point

Riemann Zeta function. Note that results in (c) and (d) are beyond our Assumption 1. So our theorem
can be extended to more general scenarios.

Figure 9: Evaluate estimation α∗
lim on different types of distributions. (a) Central data distribution and

central task optima distribution. (b) Non-central data distribution and central task optima distribution.
(c) Central data distribution and Non-central task optima distribution. (d) Non-symmetric non-central
distributions for data and task optima.

H.4.3 ESTIMATION OF α∗ ON NEURAL NETWORK FEATURE

We used neural network based feature to verify our theorem in underparameterized (original model
size in Finn et al. (2017)) and overparameterized setting (NK < d). In former setting, we used
3-layer Multilayer Perceptron (MLP) activated with ReLU for sine functions family regression where
each task is to regress an instance in stochastic function y = a sin(x+ b), a, b ∼ U(0, π). We used
ERM to train and freeze the first 2 layers (as feature extractor) and then only fine-tune last layer
with MAML. Compute α∗

lim through features of sampled training tasks we got α∗
lim = 0.10319. As

shown in Table. 2, the optimal α of lowest MSE after adapting is 0.1 which is nearest discrete value
in table to α∗

lim.

H.4.4 HEURISTIC ESTIMATION RANGE FOR DEEP LEARNING

To make it practical for deep learning, we give the heuristic estimation range where α∗ it might
be based on our theorem. Previously, we show (3.3) for underparameterized model (K > d) and
(H.15) for overparameterized model (NK ≪ d). Besides, the trace term for covariance matrix
in underparameterized setting can be simplied by Kdσ̃2 where σ̃2 is the covariance of the feature
(second moment). So here, the heuristic estimation by merging these two settings, where it derived as

α∗
lim =

1

2min(NK, d)σ̃2
(H.18)
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where N,K are number of training task and its training sample size, d is model size. Next, we show
a simple way to estimate the range of σ̃2. In general, each element of feature with probability 1
will fall into the [0, 1]. Then, given ñ observations, we have (Popoviciu’s inequality on covariance
(Sharma et al., 2010))

1

2ñ
≤ σ̃2 ≤ 1

4
(H.19)

Proof. Assume with probability 1, each element x of Φ(X) has x ∈ [m,M ].

Define a function f in terms of random variable x by

f(t) = E
[
(x− t)2

]
(H.20)

Computing the derivative f ′, and solving the minimum

f ′(t) = −2E[x] + 2t = 0⇒ f(E[x]) = min
t∈R

f(t) (H.21)

So we have the covariance has following upper bound

σ̃2 = f(E[x]) ≤ f
(
M +m

2

)
(H.22)

where

f

(
M +m

2

)
= E

[(
x− M +m

2

)2
]
=

1

4
E
[
((x−m) + (x−M))2

]
=

(M −m)2

4
(H.23)

Thus for m = 0,M = 1, we have

σ̃2 ≤ (1− 0)2

4
=

1

4
(H.24)

for an independent sample of ñ observations from a bounded probability distribution, the von
Szokefalvi Nagy inequality shows that

σ̃2 ≥ (M −m)2

2ñ
=

1

2ñ
(H.25)

Here, we conduct following deep regression experiments to evaluate our heuristic estimation. We plot
the estimated range of α∗ given by our bounds – the red area between the two star-lines in Figure
10. Then we perform quadratic regression with 2-layer neural network follow the hyperparameter
in (Bernacchia, 2021). From Figure 10(a), we can see, the optimal α for this task is positive and
our estimated range includes suboptimal points. Follow the setting of (Finn et al., 2017) (All
hyperparameters are same), we use 3-layer NN with hidden size 40 to test sine regression tasks. As
shown in the Figure 10(b), our estimated range includes the optimal α and other good α.

H.5 RELATION TO NEGATIVE LEARNING RATE

As we mentioned before, (Bernacchia, 2021) show negative learning rate minimizing the test loss of
MAML. In this section, we compare their results with ours. Specifically, we follow the setting of
underparameterized experiment (Bernacchia, 2021) where the defined hyperparameters are set to be
same, nt = 5, nv = 25, nr = 10,m = 40, p = 30, σ = 0.2, ν = 0.2. Parameters are sampled from
following distributions

w ∼ N
(
w0,

ν2

p
Ip

)
x ∼ N (0, Ip) y | x,w ∼ N

(
xTw, σ2

)
We conduct experiments on numerical fitting loss on meta-learning instead of the closed-forms L̄test
in theorems (Bernacchia, 2021)2. As we can see from the Figure 11, (Bernacchia, 2021) only give the
result on special case where αr = 0.2 is fixed. However, this strategy highly depends on the selection
of αr that may not achieve the minimum of meta-learning loss.

2Test losses are computed on standard meta-learning regression
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(a) Quadratic Regression 2-layer NN (b) Sine Regression 3-layer NN

Figure 10: Heuristic estimation of α∗ range of deep learning. (a) Quadratic regression on 2-layer
neural network. (b) Sine regression on 3-layer neural network.

Figure 11: Comparison of our estimation and (Bernacchia, 2021) on underparameterized mixed linear
regression. X-axis is the discrete values of αt and Y -axis is the test loss of MAML. First row, test
loss with respect to αt while the left one shows same α for meta-training and meta-testing and right
one is fixed αt = 0.2 strategy. Second row, comparison of test loss of different strategies and the
suggested range of minimizers given by their paper (pink and green diamonds) and our estimation
(red diamond). Best viewed in color.

In addition, we run deep learning experiments to demonstrate that optimal learning rate α is positive.
All hyperparameters and generating process are set to be same as the non-linear regression experiments
in (Bernacchia, 2021). Furthermore, we train the 2-layer neural network to regress quadratic functions
with 5 adaptation steps and evaluate models on same 10 folds with each fold consists of 1000 test
tasks. The results (with error bar) are shown in the Figure 12. As we can see, the optimal learning
rate for both strategies are positive.

37



Published as a conference paper at ICLR 2022

Figure 12: Test losses with reference to adaptation learning rate in meta-training of deep quadratic
regression in (Bernacchia, 2021). X-axis is the discrete values of αt and Y -axis is the test loss of
MAML. Left: test loss with fixed αt = 0.01 and varying αr. Right: test loss with same αt and αr
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