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Abstract

Multi-modal models are data hungry. While datasets with natural images are
abundant, medical image datasets can not afford the same luxury. To enable repre-
sentation learning for medical images at scale, we turn to YouTube, a platform with
a large reservoir of open-source medical pedagogical videos. We curate Medical-
Narratives, a dataset 4.7M medical image-text pairs, with 1M samples containing
dense annotations in the form of spatial traces (and bounding boxes), and 118K
videos centered on the trace event (with aligned text), enabling spatiotemporal
grounding beyond single frames. Similar to think-aloud studies where instructors
speak while hovering their mouse cursor movements over relevant image regions,
1M images in MedicalNarratives contains localized mouse traces in image pixels,
creating a spatial and temporal association between the text and pixels. To evaluate
the utility of MedicalNarratives, we train GENMEDCLIP with a CLIP-like objec-
tive using our dataset spanning 12 medical domains. GENMEDCLIP outperforms
previous state-of-the-art models on all 12 domains on a newly constructed medical
imaging benchmark. [Data]

1 Introduction

Analyzing medical images requires simultaneous spatial localization and semantic understanding
Morita et al. [82]]. An expert has to extract visual clues from image regions and combine them
with retrieved knowledge from memory, arriving at a diagnosis. This process requires connecting
individual spatial image regions to clinical concepts, often utilizing a segmental approach to avoid
errors. [82]. In medical image analysis, typically semantic tasks like classification, captioning, and
retrieval are explored exclusively from spatial tasks like detection [96, 129, |113]], or segmentation
[[127, 25]. This can be attributed to the lack of large grounded multimodal datasets to train such
models. Recent work like MedTrinity-25M [128]], attempts to address this by releasing a multimodal
dataset with spatial annotations, but relies on sub-optimally pretrained models to generate text
descriptions and Regions of Interests (ROIs) for medical images lacking ground truth annotations,
potentially propagating model biases and errors.

While data collection costs are steep, certain protocols balance ease of collection and training utility.
Specifically, Localized Narratives [96] [122] proposes a dataset of image, text, and grounding traces,
curated by leveraging human annotators to describe an image vocally while simultaneously moving
a computer mouse to the regions they describe, resulting in holistic grounded descriptions. This
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'Large density anterior to the neck is
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['Dense vitreous can make it difficult to
see details inside the eye.’, 'Posterior
vitreous detachment can suddenly make dense
vitreous noticeable.']

['A large mass growing out of the left wall
of the bladder is observed.', 'The mass has a
polyploid appearance with frond-like margin']

['The patient is a 14-year-old with four
developing third molars and limited space.
Wisdon teeth removal is recomnended.’]

['Skin tags usually vary in size fron about
two to six millimeters', 'Multiple skin
tags may be associated with diabetes.']

Figure 1: MEDICALNARRATIVES:Examples from our medical imaging modalities, excluding
surgery, endoscopy, and general medical images due to their graphic nature. These samples are
selected from interleaved video samples, with each sample showing the image, denoised text, and
spatial traces & bbox aligned in-time on 4 domains. See section[E]in the Appendix for more examples
and raw input text.

protocol of collecting grounded vision-language (VL) datasets does not have strict spatial annotations,
yet, it captures strong spatial correlations to the description with every trace point, making the
protocol uniquely easier to undertake and capture data en-mass as it appeals to the human nature to
point while describing a scene [60, [123| 45]. Localized narratives have been used to train models on
semantic tasks 9611122} [133]], and spatially-aware multimodal language models (MLM) like PixelLM
[129], and Molmo [31] and other generative image models [68} [131].

To address these limitations, we draw inspiration from how medical experts naturally communicate
and teach. In the joint field of cognitive psychology and medical imaging, studying how medical
experts analyze patient data, studies leverage the think-aloud protocol [34] to capture data for various
types of analysis, where experts verbalize their thoughts as they perform a task, and some studies
capture their eye gaze/cursor localizing the image regions they focus on [74} 48]. This protocol
has been used to collect medical datasets [92} [81]], including the Tufts dental x-ray database [92],
which captures a multimodal dataset incorporating radiologist expertise through eye-tracking and the
think-aloud protocol.

We propose MEDICALNARRATIVES a dataset that leverages pedagogical medical videos where
instructors narrate descriptions while pointing to relevant regions with their cursor, closely mimicking
the think-aloud protocol used in clinical practice and the Localized Narratives protocol. Our dataset
contains 4.7 million image-text pairs across 11 medical modalities and 1 pseudo-medical domain,
with interleaving samples between varying modalities (e.g., X-ray and CT for the same patient), which
we argue improves downstream performance as these samples connect multiple visual and textual
concepts. Importantly, IM of these samples are grounded in expert traces that can be reformatted into
bounding boxes or masks (see Figure[5), serving as pretraining data for various tasks.

To test the base utility of our dataset, we train a vision-language model (GENMEDCLIP) on our
dataset and evaluate it on a new benchmark of datasets that cut across 11 medical modalities. On
both classification and retrieval, we see our trained GENMEDCLIP model outperform prior SOTA
models like BIOMEDCLIP in both tasks with an average of 3% and 14% respectively. While the
proposed dataset is a combination of data from A. Temporal unstructured sources like video, and
B. Static structured sources like scientific articles, unlike prior work that solely leverage one source,
our experiments show that the utility of the dataset increases with more data from video, with a net
difference of 11.65% on classification tasks and 53.6% on zeroshot retrieval tasks. Finally, we show



the utility of traces with qualitative examples, converting traces into segmentation using pretrained
interactive medical image segmentation (IMIS) models like ScribblePrompt [[1271[25]]. We hope future
works leverage the dataset to train more grounded generative models similar to Quilt-LLaVA [113]],
LLaVA-Med++ [128]], and PixelLM [[129] as well as spatially-controlled medical image captioning
models [[96]]. To bolster other use cases, we also release the constituting video clip IDs (useful for
obtaining the videos) and many other metadata, including modality type and UMLS entities.

In addition to the centered still images with traces, we provide paired videos (temporal windows
around trace start/end), preserving narration alignment to the pointing behavior. This addition allows
models to learn spatiotemporal grounding (e.g., cursor trajectories across frames) rather than static
spatial associations alone.

2 Related work

2.1 Vision Language representation

Vision-language (multi-modal) models have evolved

over time in both supervised and self-supervised er
paradigms; in recent studies, contrastive self-
supervision objectives [98] 135 56| that learn by
matching paired-modality embeddings have outper-
formed prior work [[77, [72} 24] in downstream tasks
and, more importantly, perform better at zeros-shot
tasks or on emergent domains for which disparate
modalities share a paired domain [39} [139]]. In medi- Ophta
cal imaging, early studies in radiology [135}I50]] were
pre-trained on specific x-ray images and their reports,
and more recently domain specific VL models have
pushed the SOTA on various tasks with models de-
veloped for Ophthalmology [114]], Histopathology ..
[53L51]], Computed Tomography [47], Mammogra- Vi i s G

phy [23]], Dermatology [67], Ultrasound/Echocardio- o

graphy [26]. These models work well for the spe- Figure 2: Breakdown of MEDICALNARRA-
cific domains they are trained on and not for other  11vEgg in size by modalities across both video
domains, which may not have enough data to train 454 article subsets.

for, hence the push for more general medical models

[134,1138,[119].

2.2 Medical (Localized) Narratives

In training these VL models, much research effort is used in sourcing, filtering, and curating medical
image(s)-text(s) paired data for pre-training, mostly sourcing general and specific medical domain
datasets from Medical reports [59], PubMed [35, 105} 136} [134]], books [36]], social-media [51} 53],
YouTube/videos [53,[113] or mixtures of these [128]].

The utilization of these data for dense tasks like segmentation and detection (open-closed vocabulary)
is limited as they do not provide any spatial annotation localizing regions of the images to specific
labels/text, In contrast, every word in a localized narrative [96, [122} [133| [113] is grounded to a

. Medical . Open Source Novel ) Spatial

Dataset Size | Source Domains Video Text
Only Data/Code Images Annot.

PMC-15M [134] 15M A X 30 X v X Captions X
PMC-FG-64M [134] 46M A X 30 XIX v X Captions X
PMC-CLIP [73] 15M A X 12 vIX v X Captions X
MedTrinity-25M [128] | 25M P v 10 vIX X X Captions/labels | Seg. mask
MedicalNarratives 4.™M V+A v 12 4 v v Expert Traces

Table 1: Comparison with large-scale medical datasets. In the table, A: Articles, V: Videos, and P:
pre-published datasets. Open-Source column is formatted data/pipeline.



region of the representative image by the point/trace captured. This datasets have been used to train
models for semantic reasoning [96, (122, [133]], and for dense tasks [41} 138} 132]], and they also support
training both generative multimodal language models [129} 113} [122] and generative image models
[68L[131]. Specifically in medical image analysis, Quilt-LLaVA [[113]] adopts this paired data structure
for training its histopathology chatbot with improved spatial reasoning, and Pathnarrative’s [[133]
hierarchical decision-to-reason localized narrative structure, enables classification and captioning
tasks, offering explainable insights that improve human-Al collaboration in pathological diagnosis.

3 MEDICALNARRATIVES:

Curating a vision-language dataset with spatial traces from unstructured pedagogy videos is a non-
trivial, as many videos either lack voiced audio, fail to contain medically relevant content, or have
insufficient medical relevance. In addition, conventional automatic speech recognition (ASR) systems
also struggle with the specialized requirements of medical language transcription, necessitating a
non-trivial solution. The de-noising of text and image modalities adds further complexity as the
videos are typically conversational and, therefore, inherently noisy. Instructors often record both
relevant and irrelevant visual content in their videos, making extracting frames at static intervals
non-representative of the medical data contained in the video.

To collect MEDICALNARRATIVES, we leverage insights from Quilt-1M [53] prior work, we trained
models and handcrafted algorithms that leverage the nuances in the instructors’ textual and visual
behavior, ensuring accurate collection and alignment of both modalities. Finally, we manually filter
noisy samples out and employ other heuristics and models to remove artifacts like faces and irrelevant
traces. In this section, we start by characterizing the dataset[3.1, then we discuss the methods used to
source and filter the dataset[3.2] localize traces[3.3, and discuss the implicit interleaving property 3.4,
See Figure 3] for our pipeline and section[A and [B|of the appendix for how we align the data samples
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Figure 3: The data curation pipeline for the Video subset of the MEDICALNARRATIVES dataset.
Search: YouTube video-first search strategy, with filtering by pre-trained classifiers and heuristics.
Image: Extracting keyframes of a video, denoising, and identifying medical images. Text: ASR
transcription, text correction with LLMs, and medical/ROI text extraction. Traces: Identifying
stable chunks of a video, then localizing cursor traces within each chunk. Alignment: Mapping
medical/ROI text, traces, and images together. Samples are classified into finer-grained subdomains,
and samples with discussions of multiple domains are identified with LLMs.

3.1 Characterizing MEDICALNARRATIVES

To create MEDICALNARRATIVES we combine medical narratives curated from videos with image-
text pairs curated from PubMed, resulting in 4.7M total image-text samples of which 1M samples
are localized narratives. We compare our dataset against other medical pretraining datasets in Table
[T across various key distinctive properties including data source, and spatial annotation. Figure 2
shows the distribution of MEDICALNARRATIVES across various medical modalities, and Table [9]and
Table [I0]in the appendix give detailed statistics across all medical modalities.

3.1.1 Video-Subset

We searched over 738K videos and extracted 74K narrative-styled videos that passed our heuristics
and had relevant medical imaging pedagogy, a 10.1% yield making up a total of 4526 hours of video.



In total, we collect 736K unique images with an average size of H: 1493px and W: 923px and 1.63M
image-text pairs from videos with 1M of these samples grounded with traces, these samples cover
101.8M number of unique trace points yielding 547K number of unique bounding boxes with an
average size of H: 316px and W: 357px across the 4 domains with traces: CT, MRI, X-ray, and
Histopathology. The dataset contains 118K videos, collected at the boundaries of the traces, with a
min, max, and average duration of 3.3, 228.8 and 24.2 seconds. The mean length of the text captions
is 29.87 words, with an average of 2.48 medical sentences per image. Our dataset spans over 4M
UMLS entities from those mentioned in the text with over 300K unique entities across medical (e.g.,
findings, or disease) and non-medical (e.g., governmental or regulatory activity) semantic types.

3.1.2 Article Subset

We extract 5.4M articles from PubMed [86], with 23M figures, after filtering for medical figures only,
we obtain 1.03M figures from 273K articles, and after sub-figure separation, we have an average of
2.62 subfigure-subcaption pairs per-article figure, with an average of 45.45 words per-caption.

3.1.3 Quality

Unlike localized narratives [96, |122] where localization accuracy can be measured by comparing
against human annotation, none of our videos to our knowledge have any structured human spatial
annotation to compare against. Nonetheless, to evaluate our pipeline’s performance, we assess
several aspects. First, we calculate the precision of our LLM’s corrections by dividing the number
of conditioned misspelled errors replaced (i.e., passed the UMLS check) by the total number of
conditioned misspelled words found, yielding an average of 47.99%. We also determined the
unconditioned precision of the LLM, similar to the previous step, and found it to be 17.58%.
Therefore, we replace our detected incorrect words with the LLM’s correction 47.99% of the time,
and 17.58% of the time we replace the LLM’s detected errors with its correction. To estimate the ASR
model’s transcription performance, we compute the total number of errors replaced (both conditioned
and unconditioned) and divide it by the total number of words in each video, resulting in an average
ASR error rate of 0.81%. Also note that, by prompting the LLM to extract only medically relevant
text, we further eliminate identifiable information, such as clinic addresses, from our dataset.

Since the dataset was collected for pretraining, we do not upsample the text after correcting for errors
and filtering bad images; on average, each image is paired with approx. 83 words of relevant text and
traces when available and validated.

3.2 Data Sourcing and Filtration

This involves (a) sourcing video/article data across 12 medical imaging domains, (b) filtering videos/ar-
ticles, (c) denoising the captured images, captions, and trace modalities, and (d) aligning all modalities.
We detail our method and highlight key contributions in sections [A and[A of the appendix.

3.2.1 Text Extraction and Denoising

Videos: In line with Quilt-1M [53] we leverage an open-source ASR model - Whisper [99] to
transcribe all speech from the selected videos, correcting transcription errors using language model
with specialized prompts (see section[A.4] for details on the error-extracting algorithm).

Articles: Similarly we parse each article’s XML document, extracting each figure’s caption and
inline mentions (see [B.T). Since many sub-figures are typically grouped into single large figures,
we split the compounded figure captions into sub-captions, leveraging an LM to find and split sub-
captions due to the non-triviality of identifying enumerations in the text and splitting the captions
correctly (se¢B.4). Furthermore, we refine the inline mentions of a figure and match them to specific
sub-captions/sub-figures (see[B.6).

3.2.2 Image Extraction and Denoising

Videos: For each video, we identify medical key-frames and subsequently leverage these frames’
times to split the video into time-intervals called chunks from which to extract representative image(s).
To extract representative image(s), we use the median image of stable frames in each chunk if they



exist, else we de-duplicate the captured key-frames, exploiting the human tendency in pedagogy
videos to pause while explaining and pointing [96 45} [113].

Articles: For scientific documents, we extract the figures as images. However, many of these figures
contain multiple sub-figures which can take nonconventional grid shapes and are labeled irregularly,
making the task of splitting into sub-figures and pairing with the correct sub-caption non-trivial. Since
most compound figure layouts are not uniform and vary in the whitespace in between sub-figures,
we train an object detection model based on the YOLO architecture [58] on sub-figure annotation
datasets MedICaT and ImageCLEF 2016 [117,137]. See more details in section @

3.3 Localizing Traces in Videos

Extracting the trace/cursor location from medical clips poses a significant challenge due to certain
domain properties including homogeneity in color and texture, significant black/white background,
and presence of artifacts in videos such as minor pixel variations and variations in the narrators’
cursor movement speed and style. We modify the methodology proposed by Quilt-LLaVA [113]
centered around the observation that narrators typically pause before signaling with their cursor. We
isolate segments in the video where the background is static, termed stable chunks. To do so, we
develop a frame-differencing approach to detect chunks with minimal background movement. Our
algorithm computes the absolute difference between consecutive frames and then applies a Gaussian
filter for adaptive thresholding to detect frames with minor changes.

Due to the homogeneity of medical images, naive pixel-wise differencing produces many false
positives, misidentifying changing chunks as stable. To mitigate this, we incorporate a perceptual
metric, using the structural similarity index measure (SSIM) on randomly sampled patches to verify
frame changes. Next, for each stable chunk, we compute a median frame (in the pixel domain) as a
background reference, subtract it from individual frames, and apply a threshold to isolate the cursor.
We then extract trace points by identifying the maximum pixel value coordinates. This method
assumes minimal background motion, but subtle movements, such as narrator facial expressions,
can interfere. To address this, we apply a face detection model [[111]] to mask distractions, ensuring
focus remains on cursor movement. This algorithm provides a robust and generalizable approach for
capturing cursor traces from medical videos.

Extracting videos

For each detected trace segment we extract the video clip at the start and end of the trace temporal
window aligned with the text.

3.4 Cross-Modal Interleaved Samples

A key advantage of MEDICALNARRATIVES is its interleaved multi-modal nature. This manifests
in two ways: (1) Video-based interleaving: Medical pedagogy videos frequently present multiple
imaging modalities for the same patient. Instructors naturally explain relationships between these
modalities in a single narrative, creating one-to-many mappings between textual descriptions and
images. This allows our model to learn connections between modalities through shared textual
context (see Figure |9 in Appendix). (2) Sample-based interleaving: Articles and Videos often
contain images with multiple sub-images showing different modalities accompanied by a unified
caption. This structure similarly reinforces cross-modal relationships. (see MRI example in Figure
[T and Figure [/in the appendix). This interleaved nature of MEDICALNARRATIVES significantly
enhances cross-modal retrieval capabilities, as shown in Sec. We open-source our dataset with
modality tags which can be used to identify cross-modal samples.

4 GENMEDCLIP: Experiments

We test the utility of MEDICALNARRATIVES on two medically relevant tasks image classification
(zeroshot and linear probing) and cross-modal information retrieval (zero-shot) across all in-domain
modalities. We select the Contrastive Language-Image Pre-training (CLIP) objective [98]] to pre-train
a VL model: GENMEDCLIP. We train several models, varying the image, and text encoders while
making adaptations in line with prior work on the choice of encoders and text tokenization for
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Figure 4: Zeroshot Classification Results shows that our model GENMEDCLIP outperforms all
other baselines including the out-of-domain CLIP, and biomedical vision-language models BIOMED-
CLIP, and PUBMEDCLIP across the constructed medical benchmark which covers all 11 medical
domains represented. The metric for Xray and Mammography is mean average precision while the
rest is accuracy.

improved performance [134}53]]. For the image tower, we finetune Vision Transformers (ViT-Base)
[33]] models pretrained using a supervised cross-entropy objective (ViT-Base-16 and ViT-Base-32
[126]) and unsupervised contrastive objective ViT-Base-16) [98]], on 224#224 pixel images. On the
text tower, we use GPT2 [97]] with a context length of 77, and BioMedBert [44] with context size to
256. To train our models we utilize OpenClip [54] on 4 Nvidia A40 GPUs for 20 iterations. To ensure
a fair comparison with baselines, we trained three different variants of our model: GENMEDCLIP-
32: with ViT-B/32 image-tower and GPT2/77 text-tower architecture, GENMEDCLIP-PMB: with
ViT-B/16 image-tower and Bert/256 BiomedBert [44] text-tower, and GENMEDCLIP-PMB: with
ViT-B/16 image-tower and GPT2/77 [44] text-tower; all finetuned for 20 epochs over our train-set,
while data split ablation models are trained for 6 epochs. (Details in Section[D]in Appendix.)

['6ImSgnXos78_14'] [['The meniscus on the medial side is torn.', 'The back of the meniscus is gray and ill-defined.']]

Mask Scribble 1

Input Gray

scribble 2 Color I

[*rjROUbIPG3Y_37'] [['Description of a large pancreatic pseudocyst that is smaller now and smoothly demarcated. Pseudocyst is replacing the p
ancreatic tail. Normal pancreatic parenchyma is seen in the head region.'l]

Input Gray Scribble 1

EE

['r9TOVYhsjCE_66'] [['Patient has a subtle forward cupping of the back, causing compensatory enlargement of the posterior labrum and joint ca
psule called a capsulolabral complex.']

Scribble 2

Color Image overlay

Figure 5: Using trace as prompts for segmentation using ScribblePrompt-SAM. (Right) resulting
mask from trace (Center).



Model ‘ Isic Til Pcam Mhist Nck Mammo | Avg

CLIP-ViT-B-16 [98]] |71.23 91.23 82.42 63.97 92.26 83.30 |[80.74
PUBMEDCLIP [35] |68.58 91.32 84.07 72.16 9229 83.90 |82.06
BIOMEDCLIP [134] |68.25 91.82 83.43 66.73 93.05 83.70 |81.17
GENMEDCLIP-32 72.75 93.26 86.77 72.06 92.77 83.70 |83.55
GENMEDCLIP-PMB | 69.38 91.51 84.54 67.66 88.02 84.20 |80.88
GENMEDCLIP 74.87 93.34 87.69 72.16 90.84 84.90 |83.97
Table 2: Linear Probing results across datasets representing Dermatology (Isic), Histopathology
(pcam, mhist, nck), and Mammography (vinDr-Mammo) classification tasks. GENMEDCLIP
outperforms all baselines showing the capacity of our model to be fine-tuned for downstream tasks.
The metric used is accuracy.

4.1 Benchmarking on Downstream Medical Tasks

We evaluate the utility of GENMEDCLIP on a new medical imaging benchmark of all medical
domains represented in our pre-training dataset MEDICALNARRATIVES, with some domains repre-
sented by >= 1 dataset/task for classification, totaling 29 downstream datasets and on a held-out set
of 1000 unique images for the retrieval task downstream. For MRI, CT, and ultrasound we use their
respective subsets from RadImageNet [80] dataset. For Xray, we evaluate on VinDr-CXR Chest
Xrays [87] test set and report the mean average precision (mAP), similarly for Mammography we use
VinDr-Mammo [88]] and report the mAP. We evaluate surgical organ classification using Dresden
[21], and for endoscopy, we test on all procedure images in GastroVison [55]]. For Dermatology
we evaluate on the Diverse Dermatology Images (DDI) [30]] binary (benign or malignant) dataset
and Isic 2018 dataset [27]]. For Dentistry we evaluate on Dental orthopantomography (OPG) [100]]
X-ray dataset. To evaluate the Ophthalmology domain we evaluate on G1020 [13] a retinal fundus
glaucoma dataset and on Optical Coherence Tomography Dataset (OCTDL) [70]. We evaluate
the Histopathology domain on the following datasets: PatchCamelyon [121], NCT-CRC-HE-100K
[62]], BACH [10], Osteo [12]], SkinCancer [69]], MHIST [125], LC25000 [18]], and on TCGA-TIL
[109]. Please see section|D in the appendix for more details.

Models Data T2I retrieval I2T retrieval Avg
@5 @50 @200 @5 @50 @200
3.48 20.38 35.69| 3.56 20.39 3542 |19.82
0.01 033 1.18 | 0.01 034 1.24 | 0.52
PUBMEDCLIP [35] 1.44 12.68 2544 | 1.10 12.30 24.07 | 12.84
BIOMEDCLIP [134] 16.50 51.48 67.46 | 15.71 48.85 64.61 |44.10
GENMEDCLIP-32 V+A | 2236 76.33 88.60 [20.75 75.15 88.23 |61.90
GENMEDCLIP-PMB | V+A [ 28.29 8291 92.43|29.21 8291 92.43 | 68.03

CLIP-ViT-B-16 [98]
PMC-CLIP [73]

> > o

GENMEDCLIP V+A |34.89 83.83 92.27 | 34.26 83.48 92.32|70.17
Data Split Ablation

GENMEDCLIP * A | 2.11 12.89 22.36| 2.35 13.66 22.81 |12.70

GENMEDCLIP * V+A|28.01 80.56 90.96 |27.48 79.95 90.85 | 66.30

Table 3: Retrieval results on our held-out set of 16K samples across all medical domains, show
that our model GENMEDCLIP outperforms all other baselines on both Zeroshot image-to-text and
vice-versa text-to-image retrieval task. In the table, A: Articles, V: Videos, and * represents a shorter
number of fine-tuning iterations

4.2 Zero-shot classification

We evaluate our model’s zero-shot performance against three state-of-the-art models: CLIP, BIOMED-
CLIP, PMC-CLIP, and PUBMEDCLIP. In Figure [ and Table (8, each domain in the benchmark
is represented by a set of dataset(s). The prompts used for these evaluations are presented in Table
[7 in the Appendix. Across the benchmark, our model averages the following GENMEDCLIP-32:



31.33%, GENMEDCLIP-PMB: 31.46%, and GENMEDCLIP: 32.55% metric all outperforming
BIOMEDCLIP with 27.80% by 4.75%. Specifically, as shown in Figure @, GENMEDCLIP outper-
forms all baselines in five medical domains: Histopathology, Dermatology, Surgery, Ultrasound, and
CT, while remaining comparable to baselines in the Chest X-ray, Endoscopy, Mammography, and
MRI domains.

4.3 Supervised linear probing

We assess the full-shot performance of our model by conducting linear probing with 100% of the
training data; we report the average accuracy over all benchmark evaluation across five distinct
datasets, specifically those with dedicated training and testing sets among our external datasets in
Dermatology, Histopathology, and Mammography. Remarkably, our model, utilizing the ViT-B/32
architecture with GPT/77, outperforms its counterparts, BIOMEDCLIP, and CLIP, in most datasets.
Overall, on average GENMEDCLIP outperforms all other models including BIOMEDCLIP and
PUBMEDCLIP with over 2.8%, and over 1.9% respectively.

4.4 Cross-Modal Retrieval

We evaluate cross-modal retrieval performance by examining both zero-shot text-to-image and
image-to-text retrieval capabilities. To do so, we leverage a randomly selected held-out partition
of MEDICALNARRATIVES, not used in training our models. The held-out set contains 16K image-
text pairs with the following medical modality distribution: 1756 X-ray, 1237 MRI, 1851 CT, 1351
Ultrasound, 1744 Surgery, 1346 Endoscopy, 1189 Dermatology, 1216 Dentistry, 1151 Ophthalmology,
1000 Histopathology, 1299 General Medical, 1149 Other (Mammo etc) image-text pairs. Retrieval in
our study is done by identifying the nearest neighbors for each modality and then determining whether
the corresponding pair is within the top N nearest neighbors, where N € 1, 50, 200, mimicking
several medical search tasks. Results in Table [3|shows that on average GENMEDCLIP outperforms
all baselines and specifically outperforms BIOMEDCLIP by 26.07%, The results also confirm the
observation made in BIOMEDCLIP [[134] where the general CLIP model outperforms the in-domain
model PUBMEDCLIP by 6.98%

4.5 Data Split Ablation

As seen in Tables[8|and[3] we ablate the added utility of capturing pedagogy video data by training two
models, one trained solely on articles and the other on both articles and video data. The results show
that adding the video-derived data leads to higher average classification (11.65% higher) and retrieval
(53.6% higher) performance. We suspect that the dynamic nature of video frames introduces diverse
vantage points, partially explaining these improvements. We also see that classification performance
across all Article only trained models except Biomedclip is comparable further buttressing the impact
of video as a data source.

5 Discussion and Limitations

MEDICALNARRATIVES contributes a robust pipeline for grounded multi-modal data curation across
noisy, unstructured, and diverse medical modalities sources. We believe it would catalyze progress
in novel medical vision-language tasks, like spatially-controllable report generation [96,[129], and
interactive medical image segmentation [25[127]. Figure [3illustrates how the captured traces, albeit
noisy and not expert-validated, can serve as conditioning for semi-automatic segmentation models
like ScribblePrompt [127] toward plausible object boundaries and for exploring visual grounding
toward text+trace conditioned segmentation.

Spatial Reasoning Applications

Beyond retrieval/classification, the trace-aligned samples provide direct supervision for grounded
language and localization tasks without dense masks. Following Localized Narratives [96] [122]],
each word/phrase co-occurring with a trace segment supplies weak phrase-region links for grounded
captioning, referring expressions, and spatial relation inference. High-dwell (i.e. spatial regions where
narrators focus on) segments of traces can be collapsed into pointing cues to train pointing-based



medical MLMs, such as Molmo [31]. Because our traces are timestamped, the same supervision
naturally extends to video: the trajectory of the cursor across frames yields spatiotemporal grounding
suitable for dynamic "point-while-describe" models and temporal localization (e.g., axial CT sweeps
or ultrasound). The dataset also supports tasks that predict spatial traces as additional loss objectives
toward imbuing models with spatial understanding [129]] and panoptic narrative grounding objectives
[41] are directly enabled by these trace—text alignments.

For dense prediction and controllable generation, traces act as sparse supervision that can be trans-
formed into inputs for interactive medical image segmentation (IMIS) models (e.g., as points/scribbles
for ScribblePrompt) to bootstrap pseudo-masks and iteratively refine them [[127]. Coupling trace spans
with their co-mentioned phrases supplies approximately localized phrase labels for open-vocabulary
detection/segmentation similar to phrase-region training 32} [38]].

Finally, the same signals can guide where and what to synthesize in text-to-image/volume models,
using trace/point conditioning alongside clinical text to localize clinical entities, while enabling
spatially controllable medical report generation [68, 131} 113} [129].

Limitations

1. Our dataset lacks human-annotated bounding boxes, limiting overlap assessment between
video traces and annotations, restricting dense tasks like semantic segmentation.

2. Our dataset overrepresents abnormal cases, an underlying bias, reflected in hospital practices
where imaging follows clinical suspicion. This may impact model generalizability and
introduce bias in clinical decision support.

3. While we showcase the capacity of traces to be useful for IMIS task, this work does not
leverage the traces to train any models toward downstream spatial or spatial aware models
like PixelLM [[129]]. We leave this to future work.

6 Conclusion

This study proposes a robust protocol for collecting and annotating medical narratives. Our curated
dataset MEDICALNARRATIVES, which follows the Narratives Annotation Protocol addresses the
specific challenges of medical data collection at scale balancing the relationship between downstream
utility and ease/cost of collection. We argue that this protocol can serve as the de facto standard
for annotating future multimodal medical datasets, particularly given its flexibility in capturing
grounded text describing medical images effectively. We demonstrate a strong performance over
prior models, across both classification and retrieval tasks, establishing new state-of-the-art results
and demonstrating the effectiveness of data filtration methods on model performance, as we train our
GENMEDCLIP on 4.7 samples while BIOMEDCLIP trains on over 15M samples. We hope future
work leverages our developed models, dataset, and protocol.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The dataset characterization, methods, and examples claimed in the abstract
and introduction can be seen in sections and[E, as well as the dataset links provided at
submission.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see section[3]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA] .
Justification: Not applicable since this is not a theory paper.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We include all the details of the data creation, and the code.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Yes we do, we submit links for both
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: please see sections [f]and the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: We do not report this, due to the added computation and other constraints.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: please see section dland Appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes it does.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Please see the discussion section [6and 3]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

24


https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not applicable asdata is fully open and our license does not allow for commer-
cial use or duplicatio/derivatives protecting the source.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: This work creates an asset and cites/credits all assets used.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: yes.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:
Justification: We do not crowdsource or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: We do not perform research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We outline our use of LLMs to filter our data in section [3]and in the Appendix,
we also list the exact prompts used and model type in the Appendix.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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