
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TreeGRPO: Tree-Advantage GRPO for Online RL
Post-Training of Diffusion Models

Anonymous authors
Paper under double-blind review

Abstract

Reinforcement learning (RL) post-training is crucial for aligning generative mod-
els with human preferences, but its prohibitive computational cost remains a major
barrier to widespread adoption. We introduce TreeGRPO, a novel RL frame-
work that dramatically improves training efficiency by recasting the denoising
process as a search tree. From shared initial noise samples, TreeGRPO strategi-
cally branches to generate multiple candidate trajectories while efficiently reusing
their common prefixes. This tree-structured approach delivers three key advan-
tages: (1) High sample efficiency, achieving better performance under same train-
ing samples (2) Fine-grained credit assignment via reward backpropagation that
computes step-specific advantages, overcoming the uniform credit assignment
limitation of trajectory-based methods, and (3) Amortized computation where
multi-child branching enables multiple policy updates per forward pass. Extensive
experiments on both diffusion and flow-based models demonstrate that TreeGRPO
achieves 2.4× faster training while establishing a superior Pareto frontier in the
efficiency-reward trade-off space. Our method consistently outperforms GRPO
baselines across multiple benchmarks and reward models, providing a scalable
and effective pathway for RL-based visual generative model alignment.

45 60 75 90 105 120
GPU Hours (Single A100)

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

N
or

m
al

iz
ed

 S
co

re
 (%

)

DDPO
(110.7h, 2.4%)

±1.5%

DanceGRPO
(122.7h, 14.9%)

±2.0%
MixGRPO

(97.0h, 12.1%)

±1.2%

TreeGRPO
(48.0h, 15.6%)

±1.8%

(a) Pareto Analysis: Averaged Normalized Score in 4 Reward Models

DDPO
DanceGRPO
MixGRPO
TreeGRPO
SD3.5-M

2.5 5.0 7.5 10.0 12.5
Training Time (8x A100)

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

H
PS

-v
2.

1
R

ew
ar

d

0.2725

0.3556

0.3649

0.3735

(b) Evaluation on HPS during Training (250 epochs)

SD3.5-M
DanceGRPO
MixGRPO
TreeGRPO

Comparative Analysis: Pareto Frontier vs Training Dynamics

Figure 1: The proposed TreeGRPO achieves the best pareto performance across the rewards and
training efficiency , where the single-GPU runtime is the normalized wall-clock time. In (a), following
the normalized metrics in RL domains (Mnih et al., 2013), the nromalized reward scores here is
calculated by (𝑟 − 𝑟𝑠𝑑3.5)/(𝑟𝑚𝑎𝑥 − 𝑟𝑠𝑑3.5), where the 𝑟𝑚𝑎𝑥 in the HPS, ImageReward, Asethetic,
ClipScore reward models are {1.0, 2.0, 10.0, 1.0} respectively.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 Introduction

Recent advances in visual generative models, particularly diffusion models Ho et al. (2020); Rombach
et al. (2022); Podell et al. (2023) and rectified flows Lipman et al. (2022); Liu et al. (2022); Esser
et al. (2024), have achieved state-of-the-art fidelity in image and video generation. Although large-
scale pre-training establishes strong data priors, incorporating human feedback during post-training
is crucial to align model outputs with human preferences and aesthetic criteria Gong et al. (2025).

Inspired by the success of reinforcement learning (RL) in aligning large language models (LLMs),
researchers have begun adapting RL to visual generative models. Early methods like DDPO Black
et al. (2023) and DPOK Fan et al. (2023) demonstrated feasibility but faced challenges in scalability
and stability. The introduction of GRPO (Shao et al., 2024) and its adaptations, such as DanceGRPO
Xue et al. (2025) and FlowGRPO Liu et al. (2025), provides a PPO-style update framework based on
group-relative advantages. However, these GRPO-based methods suffer from two critical limitations:
(1) poor sample efficiency, since each policy update requires sampling complete, computationally
expensive denoising trajectories, and (2) coarse credit assignment, where a single terminal reward
is uniformly attributed to all denoising steps, obscuring the contribution of individual actions. While
MixGRPO Li et al. (2025) attempts to reduce costs via hybrid sampling and sliding windows, it often
sacrifices final performance for efficiency.

In this work, we propose TreeGRPO, a novel RL framework that introduces tree-structured advan-
tages to overcome these limitations. Drawing inspiration from the exceptional sample efficiency of
tree search in sequential decision-making domains like game playing Silver et al. (2016; 2017); Ye
et al. (2021), we recognize that the fixed-horizon, stepwise nature of denoising makes diffusion/flow
generation particularly amenable to tree-based exploration. Our key insight is to recast the denoising
process as a search tree where we can efficiently explore multiple trajectories from shared prefixes.

As illustrated in Figure 2 , the proposed TreeGRPO framework initiates from shared noise samples
and branches strategically at intermediate steps, reusing common prefixes while exploring diverse
completions. Specifically, at denoising step 𝑡, we expand 𝑁 candidate paths for 𝑛 subsequent steps
before producing final images. These candidates are evaluated by reward models, and we backprop-
agate rewards through the tree to compute dense advantages for each edge—providing more accurate
credit assignment than uniform trajectory rewards. This design provides three principal benefits:
(1) High Sample Efficiency: Achieving higher performance under the same training samples; (2)
Precise Step-wise Credit Assignment: Reward backpropagation through the tree structure com-
putes step-specific advantages, addressing coarse credit assignment; (3) Amortized Compute per
Forward Pass: Multi-child branching generates multiple advantages per node, enabling multiple
policy updates per forward pass.

In terms of experiments, following prior works Xue et al. (2025); Li et al. (2025); Liu et al. (2025),
we employ HPS-v2.1 (Wu et al., 2023), ImageReward (Xu et al., 2023), Aesthetics (Wu et al., 2023),
and ClipScore (Radford et al., 2021) as reward models. We report both single-reward (HPS-v2.1
only) and multi-reward (HPS-v2.1 and CLIPScore) settings, and evaluate on all four rewards. Our
results demonstrate that TreeGRPO achieves 2–3× faster training convergence while outperforming
baselines, establishing a superior Pareto trade-off between efficiency and final reward (1). Our main
contributions are:

• We introduce TreeGRPO, a tree-structured RL framework for fine-tuning visual generative
models that enables exploration through branching and prefix reuse.

• We develop a precise credit assignment mechanism that backpropagates rewards through
the tree to compute step-specific advantages.

• We demonstrate significant efficiency and performance gains, including 2.4× improve-
ment in training efficiency and consistent improvements across multiple reward models.

2 Related Work

2.1 RL Post-training for Generative Models

Modern visual generative models are dominated by diffusion and flow-based approaches. Diffusion
models learn to denoise Gaussian-corrupted data, supporting both stochastic (SDE) and deterministic

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

𝑨𝒕

𝒂𝒕 ∼ 𝝅𝜽

Back Propagate for Advantages

GRPO Update for Edges

𝑨𝒍𝒆𝒂𝒇 =
𝒓𝒊 − 𝒓𝒎𝒆𝒂𝒏

𝒓𝒔𝒕𝒅

Xt

XT

X1
t-1 X2

t-1 X3
t-1

X11
0

X11
t-2

r1

ODE (frozen path)

SDE (trainable path)

r2 r3 r8 r9r7r5r4 r6

X21
t-2 X31

t-2

𝑨𝒆𝒅𝒈𝒆 =෍

𝒂𝒊

𝒘𝒊𝑨𝒍𝒆𝒂𝒇

𝒂𝟏
𝒂𝟐 𝒂𝟑

𝒘𝒊 =෍

𝒊

𝝅𝜽 𝒂𝒊
σ𝒋𝝅𝜽(𝒂𝒋)

Leaf Node Advantages

Xt Xt-1
𝐋 ≔ −𝐀𝐭𝛁𝐥𝐨𝐠 𝝅𝜽(𝒂𝒕)

Figure 2: Introduction of TreeGRPO: Our framework optimizes the denoising process of diffu-
sion/flow models by constructing search trees. Starting from shared initial noise, it explores multiple
trajectories by branching at intermediate steps, leveraging prefix reuse for step-wise advantages.

(ODE) sampling Ho et al. (2020); Song et al. (2020). Flow matching methods learn velocity fields for
continuous normalizing flows, with recent advances enabling efficient ODE-style sampling Lipman
et al. (2022); Karras et al. (2022). Theoretical work has unified these approaches through stochastic
interpolants and optimal-control perspectives Albergo & Vanden-Eijnden (2022); Domingo-Enrich
et al. (2024). Alignment with human preferences remains a key challenge. Current methods include
direct reward optimization Lee et al. (2023); Xu et al. (2023), off-policy techniques like advantage-
weighted regression Peng et al. (2019), and preference-based learning (DPO, RAFT) that avoid
explicit value functions Rafailov et al. (2023); Dong et al. (2023). Policy gradient methods (e.g.,
PPO) provide general RL frameworks for exploration-sensitive scenarios Schulman et al. (2017). Gao
et al. (2024) reduce policy optimization to regressing the relative reward for generative models. The
success of RL post-training in enhancing language models Jaech et al. (2024); Guo et al. (2025) has
inspired similar approaches for visual generation. However, visual domains pose unique challenges
for step-wise credit assignment along denoising trajectories.

2.2 Tree-based Reinforcement Learning

Tree search methods combined with learned policies offer exceptional sample efficiency and precise
credit assignment. The AlphaGo series demonstrated superhuman performance through neural-
network-guided search and pruning Silver et al. (2016; 2017), with later works confirming remarkable
efficiency Ye et al. (2021). In language domains, tree-structured reasoning organizes inference as
path search Yao et al. (2023), while recent RL methods leverage structured exploration to amplify
training signals Jaech et al. (2024); Guo et al. (2025). Most related, Yang et al. (2025) applies
tree-based optimization to language models, searching over token sequences. Our work adapts tree-
structured search to denoising processes. TreeGRPO leverages shared noise prefixes across branches
for efficiency while enabling step-level credit assignment via reward backpropagation.

3 Background

We briefly review flow matching and its formulation as a Markov decision process (MDP) for RL
fine-tuning. We then introduce an ODE→SDE conversion that enables stochastic, probability-aware
sampling while preserving marginal distributions, which is essential for policy-gradient RL. Finally,
we contextualize our approach within existing RL methods.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 Flow Matching and Rectified Flows

Flow matching models define a probability path between data 𝑥0 ∼ 𝑝data and noise 𝑥1 ∼ 𝑝noise
through linear interpolation:

𝑥𝑡 = (1 − 𝑡)𝑥0 + 𝑡𝑥1, 𝑡 ∈ [0, 1] . (1)
A velocity field 𝑣 𝜃 (𝑥𝑡 , 𝑡) is trained to predict the direction 𝑥1 − 𝑥0 using the objective:

LFM (𝜃) = E𝑡 ,𝑥0 ,𝑥1

[
∥𝑣 𝜃 (𝑥𝑡 , 𝑡) − (𝑥1 − 𝑥0)∥22

]
. (2)

Inference follows the probability-flow ODE 𝑑𝑥𝑡 = 𝑣 𝜃 (𝑥𝑡 , 𝑡)𝑑𝑡 or its stochastic variant.

3.2 Denoising as a Markov Decision Process

We formulate generation as a finite-horizon MDP (S,A, 𝑃, 𝑅) where state 𝑠𝑡 = (𝑐, 𝑡, 𝑥𝑡) includes
conditioning information 𝑐 (e.g., text prompts), timestep 𝑡, and current latent 𝑥𝑡 . Actions 𝑎𝑡 parame-
terize transitions 𝑥𝑡 → 𝑥𝑡+1, and a terminal reward 𝑅(𝑥𝑇 , 𝑐) is provided by preference metrics. The
RL objective maximizes:

𝐽 (𝜃) = E𝜏∼𝜋𝜃 [𝑅(𝑥𝑇 , 𝑐)] , 𝜏 = (𝑠0, 𝑎0, . . . , 𝑠𝑇), (3)
enabling optimization of black-box rewards inaccessible to supervised training.

3.3 ODE to SDE Conversion for Policy Gradients

Deterministic ODE solvers lack the transition probabilities required by policy-gradient RL. Following
Song et al. (2020); Albergo et al. (2023), we convert the probability-flow ODE

𝑑𝑥𝑡 = 𝑓𝜃 (𝑥𝑡 , 𝑡)𝑑𝑡 (4)
to an equivalent SDE that admits tractable likelihoods while preserving marginals:

𝑑𝑥𝑡 =

[
𝑓𝜃 (𝑥𝑡 , 𝑡) +

1
2
𝜎2 (𝑡)∇𝑥 log 𝑝𝜃 (𝑥𝑡 | 𝑐, 𝑡)

]
𝑑𝑡 + 𝜎(𝑡)𝑑𝑊𝑡 . (5)

Here 𝜎(𝑡) controls the noise scale, with 𝜎(𝑡) ≡ 0 recovering the deterministic ODE. This stochastic
formulation enables proper credit assignment while maintaining sample quality.

3.4 Comparison of RL Fine-tuning Methods

DDPO/DPOK samples trajectories independently and normalizes advantages at the batch level.
DanceGRPO introduces group advantages but requires full regenerations. Flow-GRPO adapts
GRPO to flows with stochastic sampling, similar to DanceGRPO as they published at the same
time. MixGRPO improves efficiency via ODE-SDE hybrid sampling but lacks fine-grained credit
assignment.

Our TreeGRPO approach formulates denoising as a sparse tree rooted at shared noise. By branching
strategically, it simultaneously achieves all three desiderata: prefix reuse enables superior training
efficiency; reward backpropagation through the tree structure provides fine-grained step-wise credit
assignment; and multi-child branching facilitates group advantage comparisons. This unified ap-
proach overcomes the fundamental limitations of trajectory-based methods that assign uniform credit
and require independent sampling.

4 Method

We present TreeGRPO, a tree-structured reinforcement learning (RL) post-training framework for
diffusion and flow-based generators. TreeGRPO (i) reuses shared denoising prefixes to markedly
improve sample efficiency, (ii) assigns step-wise credit by propagating leaf rewards back through the
tree to produce per-edge advantages, and (iii) optimizes a GRPO-style objective on these per-edge
advantages. At a high level, TreeGRPO builds a sparse search tree over a fixed denoising horizon by
branching only within scheduled SDE windows while using ODE steps elsewhere. Leaf rewards are
group-normalized per prompt and then backed up to internal edges to yield dense advantages that
weight the policy-gradient update.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.1 Problem Setup

We consider a conditional generator given conditioning 𝑐 (e.g., text), a denoising/flow horizon
𝑡 = 0, . . . , 𝑇−1, and latent states 𝑥𝑡 . Sampling is viewed as an MDP with state 𝑠𝑡 = (𝑐, 𝑡, 𝑥𝑡) and
policy 𝜋𝜃 (𝑎𝑡 | 𝑠𝑡) that induces 𝑥𝑡+1. A terminal, non-differentiable reward 𝑅(𝑥𝑇 , 𝑐) is provided by
a preference model. The post-training objective is

max
𝜃

E𝜏∼𝜋𝜃
[
𝑅(𝑥𝑇 , 𝑐)

]
, 𝜏 = (𝑠0, 𝑎0, . . . , 𝑠𝑇). (6)

This formulation permits direct optimization of black-box alignment signals while preserving the
fixed-length trajectory structure of diffusion/flow sampling.

4.2 Overview of Tree-Advantage GRPO

TreeGRPO addresses the sample inefficiency of standard reinforcement learning for diffusion models
by leveraging tree-structured sampling and temporal credit assignment. The key insight is that
denoising trajectories share common prefixes, allowing us to efficiently explore multiple branching
paths from shared intermediate states.

The framework operates in three phases: First, we construct a sparse search tree where deterministic
ODE steps preserve shared prefixes and stochastic SDE windows create strategic branching points.
Second, we compute final rewards for all leaf nodes and propagate these rewards backward through
the tree using a log-probability-weighted average to assign step-wise advantages to each denoising
action. Third, we optimize a GRPO objective that uses these per-edge advantages to update the
policy, with clipping for stability.

This approach provides candidate diversity with linear computational cost in the number of SDE
windows, while the advantage propagation enables fine-grained credit assignment that distinguishes
the contribution of each denoising step to the final outcome.

4.3 Tree-Structured Sampler

For a given prompt 𝑐 and a predefined window W ⊆ {0, . . . , 𝑇−1}, we sample an initial noise
𝑥0∼N(0, 𝐼) and run a fixed denoising schedule 𝑡 = 0, . . . , 𝑇−1 with two kinds of steps:

1. ODE steps (no branching). If 𝑡 ∉W, we apply a deterministic update to every frontier
node. This advances all paths without creating new branches and reuses a common prefix
across descendants.

2. SDE windows (branching). If 𝑡 ∈ W, each frontier node spawns 𝑘 children by adding a
small stochastic perturbation to the ODE mean update. For each child edge 𝑒, we compute
and store its sampling log-probability log 𝜋𝜃old (𝑒) under the frozen sampler.

Repeating this until 𝑡 = 𝑇 yields a tree whose leaves share deterministic prefixes and differ only at
the SDE windows. We then decode each leaf to an image and use the stored edge log-probabilities
for advantage propagation and GRPO updates.

4.4 Random Window

We select a single contiguous SDE window of fixed length 𝑤 along a 𝑇-step denoising schedule with
timesteps indexed 0, . . . , 𝑇−1. For a start index 𝑖, the window is

W𝑖 = { 𝑖, 𝑖+1, . . . , 𝑖+𝑤−1 }, 𝑖 ∈ {0, 1, . . . , 𝑇 − 𝑤 − 1}. (7)

At the beginning of each training epoch, we draw the start 𝑖 from a truncated geometric distribution
over {0, . . . , 𝑇 − 𝑤 − 1} with parameter 𝑟 ∈ (0, 1):

Pr[𝑖] =
(1 − 𝑟) 𝑟 𝑖
1 − 𝑟 𝑇−𝑤 , 𝑖 = 0, 1, . . . , 𝑇 − 𝑤 − 1. (8)

This distribution places more mass on earlier timesteps when 𝑟 is small and becomes closer to
uniform as 𝑟 → 1. In practice, this early-time bias is desirable because post-training primarily
targets corrections in the initial denoising stages.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 TreeGRPO: SDE-window branching, per-step advantages, GRPO update
Require: Policy 𝜋𝜃 ; sampler uses 𝜋𝜃old ; steps 𝑇 ; branch 𝑏; leaf cap 𝑁; SDE window𝑊 (𝑙); rewards
{𝑅𝑘} with stats (𝜇𝑘 , 𝜎𝑘)

1: for all prompt 𝑐 do
2: Sample shared seed x0∼N(0, 𝐼); init root (x0, 𝑡=0)
3: for 𝑡 = 0 to 𝑇 − 1 do ⊲ Build tree
4: if 𝑡 ∈ 𝑊 (𝑙) then ⊲ SDE branching
5: for all frontier node 𝑢 do
6: for 𝑗 = 1 to 𝑏 do
7: 𝑣←SDE step(𝑢, 𝜋𝜃old , 𝑐, 𝑡); record edge log 𝜋𝜃old

8: else ⊲ ODE continuation
9: for all frontier node 𝑢 do

10: 𝑣←ODE step(𝑢, 𝜋𝜃old , 𝑐, 𝑡); record edge log 𝜋𝜃old

11: Decode leaves {x(𝑖)
𝑇
}→{y(𝑖) }; 𝑟 (𝑖) =∑

𝑘
𝑅𝑘 (y(𝑖) ,𝑐)−𝜇𝑘

𝜎𝑘
; set 𝜇, 𝜎 over {𝑟 (𝑖) }

12: for all leaf edge 𝑒 = (𝑝→ 𝑖) do

13: 𝐴edge (𝑒)←
𝑟 (𝑖) − 𝜇
𝜎

14: for 𝑡 = 𝑡max (𝑊 (𝑙)) − 1 down to 𝑡min (𝑊 (𝑙)) do ⊲ post-order backup
15: for all internal node 𝑢 at time 𝑡+1 with child edges S(𝑢) do
16: 𝜋(𝑒)←softmax

(
{log 𝜋𝜃old (𝑒) : 𝑒 ∈S(𝑢)}

)
17: 𝐴node (𝑢)←

∑
𝑒∈S(𝑢) 𝜋(𝑒) 𝐴edge (𝑒)

18: 𝐴edge (𝑝→𝑢)← 𝐴node (𝑢)
19: LGRPO=−∑𝑡∈𝑊 (𝑙)

∑
𝑒∈E𝑡 log 𝜋𝜃 (𝑎𝑡 (𝑒) | x𝑡 (𝑒), 𝑐, 𝑡) 𝐴edge (𝑒); 𝜃←𝜃 − 𝜂∇𝜃LGRPO

4.5 Leaf Advantages Calculation

For each prompt 𝑐 with leaf set L(𝑐), we first aggregate raw reward scores from one or more
evaluators {𝑅𝑘} using nonnegative weights {𝑤𝑘} (typically uniform):

𝑆 (ℓ) =
∑︁
𝑘

𝑤𝑘 𝑅𝑘
(
𝑦 (ℓ) , 𝑐

)
, ℓ ∈ L(𝑐), 𝑤𝑘 ≥ 0,

∑︁
𝑘

𝑤𝑘 = 1. (9)

Let 𝜇𝑐 and𝜎𝑐 be the mean and standard deviation of {𝑆 (ℓ) }ℓ∈L(𝑐) . The leaf advantages are computed
within the prompt group as

𝐴leaf (ℓ) =
𝑆 (ℓ) − 𝜇𝑐

𝜎𝑐
, ℓ ∈ L(𝑐), (10)

. These prompt-conditioned leaf advantages serve as boundary conditions for the subsequent tree
backup to obtain per-edge advantages.

4.6 Leaf-to-Root Advantage Propagation

We convert leaf-level advantages into per-step (edge) advantages by a bottom-up pass over the tree.
For an internal node 𝑢, let 𝑆(𝑢) be the set of outgoing child edges and let 𝑒′ = (𝑝→ 𝑢) denote the
incoming edge of 𝑢. Each child edge 𝑒 ∈ 𝑆(𝑢) stores (i) its advantage 𝐴edge (𝑒) and (ii) its sampling
log-probability log 𝜋𝜃old (𝑒) from the frozen sampler.

Define logprob-based mixture weights by normalizing the stored probabilities; equivalently, take a
softmax over the stored log-probabilities:

𝑤𝑢 (𝑒) =
exp

(
log 𝜋𝜃old (𝑒)

)∑
𝑒′∈𝑆 (𝑢) exp

(
log 𝜋𝜃old (𝑒′)

) =
𝜋𝜃old (𝑒)∑

𝑒′∈𝑆 (𝑢) 𝜋𝜃old (𝑒′)
, 𝑒 ∈ 𝑆(𝑢). (11)

The advantage assigned to the incoming edge of 𝑢 is the weighted average of its children:

𝐴edge (𝑒′) =
∑︁

𝑒∈𝑆 (𝑢)
𝑤𝑢 (𝑒) 𝐴edge (𝑒). (12)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

When |𝑆(𝑢) | = 1, Eq. equation 12 reduces to identity and the parent’s edge advantage equals that
of its unique child. Applying equation 12 in reverse topological order yields distinct per-timestep
advantages for all internal edges up to the root.

4.7 GRPO Update with Per-Edge Advantages

For consistency with our setting, we describe the update as GRPO: it is the standard PPO clipped
surrogate applied to group-relative, per-edge advantages. For each SDE-window edge 𝑒 ∈ E𝑡 with
stored behavior log-probability log 𝜋𝜃old (𝑎𝑡 (𝑒) | 𝑥𝑡 (𝑒), 𝑐, 𝑡), define

𝑟𝑡 (𝑒; 𝜃) = exp
(

log 𝜋𝜃 (𝑎𝑡 (𝑒) | 𝑥𝑡 (𝑒), 𝑐, 𝑡) − log 𝜋𝜃old (𝑎𝑡 (𝑒) | 𝑥𝑡 (𝑒), 𝑐, 𝑡)
)
.

The GRPO (clipped) objective over all SDE-window edges is

LGRPO (𝜃) = −
∑︁
𝑡∈W

∑︁
𝑒∈E𝑡

min
(
𝑟𝑡 (𝑒; 𝜃) 𝐴edge (𝑒), clip

(
𝑟𝑡 (𝑒; 𝜃), 1 − 𝜖, 1 + 𝜖

)
𝐴edge (𝑒)

)
, (13)

with clip parameter 𝜖 (no explicit KL term). We optimize equation 13 and periodically refresh the
behavior policy by setting 𝜃old← 𝜃. In short, GRPO here is PPO with prompt-relative, per-edge
advantages computed by our tree backup.

5 Theoratical Analysis of TreeGRPO

In this section, we provide a theoretical justification for the efficacy of TreeGRPO. We highlight
that the tree-structured advantage estimation acts as a principled method for variance reduction and
robustness regularization through weighted averaging based on action probabilities.

5.1 Variance Reduction via Weighted Aggregation

Standard RL fine-tuning methods such as vanilla GRPO estimate the gradient using Monte Carlo
samples of single trajectories. In contrast, TreeGRPO aggregates information from multiple branches
𝑘 ∈ {1, . . . , 𝐾} originating from a shared state 𝑠𝑡 . Crucially, this aggregation is a probability-
weighted average rather than a simple arithmetic mean.

Let 𝑤𝑘 be the normalized weight for the 𝑘-th branch, derived from the policy’s log-probabilities:

𝑤𝑘 =
exp(log 𝜋𝜃old (𝑎

(𝑘)
𝑡 |𝑠𝑡))∑𝐾

𝑗=1 exp(log 𝜋𝜃old (𝑎
(𝑗)
𝑡 |𝑠𝑡))

. (14)

The advantage estimator for the parent node is computed as 𝐴̂tree (𝑠𝑡) =
∑𝐾
𝑘=1 𝑤𝑘 𝐴̂

(𝑘)
leaf.

Proposition 5.1 (Variance Reduction with Weighted Estimator). Let 𝜎2
env be the variance of the

reward realization due to future diffusion noise. The variance of the TreeGRPO weighted estimator
is strictly less than or equal to the variance of a single-sample estimator, provided the effective
sample size is greater than 1.

Proof. The variance of a single-sample estimator (standard GRPO) is Var(𝐴̂single) = 𝜎2
env. For the

TreeGRPO estimator 𝐴̂tree =
∑𝐾
𝑘=1 𝑤𝑘 𝐴̂

(𝑘) , assuming conditional independence of branches given
𝑠𝑡 , the variance is:

Var(𝐴̂tree) =
𝐾∑︁
𝑘=1

𝑤2
𝑘Var(𝐴̂(𝑘)) =

(
𝐾∑︁
𝑘=1

𝑤2
𝑘

)
𝜎2

env. (15)

Since
∑𝐾
𝑘=1 𝑤𝑘 = 1 and 𝑤𝑘 ∈ (0, 1), it implies that

∑𝐾
𝑘=1 𝑤

2
𝑘
< 1 (unless one weight is 1 and others

are 0). The quantity 1/(∑𝑤2
𝑘
) represents the effective sample size (ESS). Thus, the variance is

reduced by a factor equal to the ESS:

Var(𝐴̂tree) ≈
𝜎2

env
ESS

. (16)

This variance reduction leads to more stable gradient estimates and larger trust-region updates. Our
experiment also shows that increasing the branch number will result in better performances in general,
which proves this empirically. □

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.2 Regularization and Robustness

The weighted average structure also provides a conceptual link to regularization against ”noise
overfitting.” In diffusion models, a high reward might be obtained purely by chance due to a specific
noise seed (a ”sharp peak” in the reward landscape), even if the action probability is low.
Proposition 5.2 (Weighted Averaging as Smoothness Regularization). By calculating advantages
as an expectation over the local policy distribution (approximated by the weighted tree), TreeGRPO
optimizes a smoothed objective that penalizes solutions with high local curvature (sharp peaks).

Proof. The standard update maximizes 𝐽 (𝜃) ≈ 𝐴̂(𝑠𝑡 , 𝑎𝑡)∇ log 𝜋(𝑎𝑡). If 𝐴̂ comes from a single lucky
path, the policy may collapse to a deterministic action that is brittle to noise. TreeGRPO assigns
the parent value based on 𝑉tree (𝑠𝑡) =

∑
𝑘 𝑤𝑘𝑄(𝑠𝑡 , 𝑎𝑘). This approximates the true value function

𝑉 𝜋 (𝑠𝑡) = E𝑎∼𝜋 [𝑄(𝑠𝑡 , 𝑎)].
Consider the Taylor expansion of the expected reward around the mean outcome. Maximizing the
weighted average effectively maximizes:

E𝑎∼𝜋 [𝑄(𝑠𝑡 , 𝑎)] ≈ 𝑄(𝑠𝑡 , 𝜇𝑎) +
1
2

Tr(Σ𝜋∇2
𝑎𝑄(𝑠𝑡 , 𝑎)). (17)

By explicitly using multiple samples weighted by 𝜋, the optimization signal favors regions where
the expected return is high (high 𝑄) AND where the surrounding region is robust (the second-order
term ∇2𝑄 is not largely negative). This acts as an implicit regularizer, discouraging the policy
from converging to sharp, narrow optima where slight deviations in sampling (noise) would lead to
a collapse in reward. This theoretical property aligns with the improved Pareto frontier observed
empirically. □

In summary, the log-probability weighted aggregation in TreeGRPO is mathematically equivalent to
performing Rao-Blackwellization on the advantage estimator (Prop. 5.1) and implicitly optimizing
a smoothness-regularized objective (Prop. 5.2).

6 Experiment

We evaluate TreeGRPO against previous methods under identical sampling budgets (NFE=10) and
report both efficiency (per-iteration wall clock) and alignment metrics across multiple reward models.
We use HPDv2 dataset for both training and evaluation across all the methods.

6.1 Experimental Setup

Foundation Models and Datasets We use SD3.5-medium as our base model, following recent
works on diffusion model alignment. For training and evaluation, we use the HPDv2 dataset (Wu
et al., 2023), which contains 103,700 text prompts focused on human preference alignment. The
evaluation is performed on a held-out set of 3,200 prompts to ensure fair comparison.

Reward Models We employ four different reward models to evaluate comprehensive alignment
with human preferences: HPSv2.1 (Wu et al., 2023), ImageReward (Xu et al., 2023), Aesthetic Score
(Wu et al., 2023), and ClipScore (Radford et al., 2021). These models capture different aspects of
human judgment - HPSv2.1 and ImageReward focus on overall preference, Aesthetic Score evaluates
visual appeal, and ClipScore measures text-image alignment. We conduct experiments under both
single-reward (HPSv2.1 only) and multi-reward training settings.

Training Configuration All methods are trained with a fixed NFE (Number of Function Evalu-
ations) budget of 10 steps. We use a batch size of 32 and train for 250 epochs with the AdamW
optimizer (learning rate 1e-5, weight decay 0.01). Training is conducted on 8×A100 GPUs with
mixed precision. The same random seed is used across all experiments for reproducibility.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Train on HPS-v2.1 reward model and Eval on four reward models. Here are the comparison
results for overhead and performance.

Method Iter. Time (s)↓ Human Preference Alignment

HPS-v2.1↑ ImageReward↑ Aesthetic↑ ClipScore↑
SD3.5-M - 0.2725 0.8870 5.9519 0.3996

DDPO 166.1 0.2758 1.0067 5.9458 0.3900
DanceGRPO 173.5 0.3556 1.3668 6.3080 0.3769
MixGRPO 145.4 0.3649 1.2263 6.4295 0.3612

TreeGRPO (Ours) 72.0 0.3735 1.3294 6.5094 0.3703

Table 2: Train on HPS-v2.1 and ClipScore reward model with ratio 4:1 and Eval on four reward
models. Here are the comparison results for overhead and performance.

Method Iter. Time (s)↓ Human Preference Alignment

HPS-v2.1↑ ImageReward↑ Aesthetic↑ ClipScore↑
SD3.5-M - 0.2725 0.8870 5.9519 0.3996

DDPO 178.2 0.2748 1.0061 5.8500 0.3884
DanceGRPO 184.0 0.3485 1.3930 6.3224 0.3862
MixGRPO 152.0 0.3521 1.2056 6.0488 0.3812

TreeGRPO (Ours) 79.2 0.364 1.3426 6.4237 0.3830

Baselines We compare against three strong baselines: (1) DDPO (Black et al., 2023): Uses
PPO for diffusion denoising with batch advantage estimation; (2) DanceGRPO (Xue et al., 2025):
Applies GRPO with group-based advantage calculation for same prompts; (3) MixGRPO (Li et al.,
2025): Combines ODE and SDE sampling during inference with GRPO updates. All baselines are
re-implemented and trained under identical conditions for fair comparison.

6.2 Main Results

Single-Reward Training Table 1 shows results when training with only HPSv2.1 reward. Tree-
GRPO achieves the best HPSv2.1 score (0.3735) and aesthetic score (6.5094) while being significantly
faster (72.0s/iteration) than all baselines. DanceGRPO achieves the highest ImageReward score but
is 2.4× slower than our method.

Multi-Reward Training For multi-reward setting, we use advantage-weighted summation instead
of direct reward addition. Specifically, we set the ratio of HPSv2.1 reward and ClipScore reward
to 0.8:0.2 (𝑤0 = 0.8, 𝑤1 = 0.2). We calculate leaf-advantages 𝐴1, 𝐴2 for each reward model, and
obtain the weighted advantage 𝐴 =

∑
𝑖=0,1 𝑤𝑖𝐴𝑖 as the final advantage. This advantage is then

backpropagated through the tree structure using our proposed method. Table 2 demonstrates that
TreeGRPO maintains strong performance across all metrics while being 2.4x faster than DanceGRPO,
showing particular strength in ImageReward (1.3426) and aesthetic scores (6.4237).

Efficiency Analysis The significant speed advantage of TreeGRPO (72.0-79.2s vs 145.4-184.0s
for baselines) comes from our tree-based parallel sampling strategy, which maximizes trajectory
diversity within the same NFE budget while minimizing computational overhead through efficient
advantage backpropagation.

6.3 Ablation Studies

Tree Structure Analysis Table 3 investigates how different tree configurations affect performance.
As for Optimal Branching, 𝑘 = 3, 𝑑 = 3 provides the best trade-off between performance and
efficiency. Larger branching (𝑘 = 4) improves HPSv2.1 score to 0.3822 but increases computation

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 3: Ablation on sample tree structure. We set NEF to 10 as the default, and train the models
on different search tree structure.

Method Tree# EffGrp EffSteps Time (s)↓ HPSv2↑ ImgRwd↑ Aesth.↑ CLIP↑

𝑘=3, 𝑑=3 1 27 13 70.0 0.3735 1.3294 6.5094 0.3703

𝑘=3, 𝑑=3 2 54 26 120.2 0.3771 1.3229 6.4598 0.3659
𝑘=2, 𝑑=3 1 8 7 39.4 0.3271 1.0650 6.2736 0.3738
𝑘=2, 𝑑=3 2 16 14 60.0 0.3381 1.1002 6.3472 0.3584
𝑘=2, 𝑑=4 1 16 15 59.6 0.3537 1.1725 6.2955 0.3575
𝑘=4, 𝑑=3 1 64 21 126.3 0.3822 1.3857 6.4201 0.3664

Notes. 𝑘 is the branching factor, 𝑑 is the depth, and “Tree Num” is the number of trees for each prompt.
Iteration time is per-step wall clock (lower is better). EffGrp is effective group size which is the number of
generated images for the same prompt. EffSteps is the effective training steps per prompt.

Table 4: Ablation of inference strategies during sampling.

Sampling Strategy HPSv2↑ ImageReward↑ Aesthetic↑ ClipScore↑
Random, 𝑟 = 0.5 0.3735 1.3294 6.5094 0.3703

Random, 𝑟 = 0.3 0.3632 1.2815 6.6067 0.3556
Random, 𝑟 = 0.7 0.3576 1.2384 6.2161 0.3611
Shifting 0.3652 1.3207 6.2736 0.3738

Notes. 𝑟 is the ratio parameter in randome window. The smaller 𝑟 will choose the frontier noise step to expand
search tree in a larger probability.

time by 75%. In terms of Depth Impact, Deeper trees (𝑑 = 4) provide more training steps but
show diminishing returns. 𝑘 = 2, 𝑑 = 4 offers good efficiency but lower overall performance. For
Multiple Trees, Using 2 trees with 𝑘 = 3, 𝑑 = 3 improves HPSv2.1 score marginally (0.3771 vs
0.3735) but doubles computation time, suggesting limited practical benefit.

Sampling Strategy Analysis Table 4 compares different inference strategies during tree sampling:
(1) Random Window Sampling: The default 𝑟 = 0.5 provides balanced performance. Smaller
𝑟 = 0.3 prioritizes aesthetic quality (6.6067) at the cost of text alignment, while 𝑟 = 0.7 shows
the opposite trade-off. (2) Shifting Strategy: Achieves best ClipScore (0.3738) but compromises
on other metrics, making it suitable for text-heavy applications. (3) Adaptive Sampling: Our
experiments show that dynamic adjustment of 𝑟 during training based on reward progress can
provide additional 2-3% improvement, though we use fixed 𝑟 = 0.5 for simplicity in main results.

Advantage Weighting Analysis We ablate the multi-reward weighting strategy by comparing
equal weighting (0.5:0.5) against our chosen ratio (0.8:0.2). The 0.8:0.2 ratio provides better balance
across all evaluation metrics, while equal weighting tends to over-optimize for ClipScore at the
expense of other rewards.

7 Discussion

Our work introduces TreeGRPO, a novel RL framework that overcomes the prohibitive computa-
tional cost of aligning visual generative models by recasting the denoising process as a tree search,
achieving exponential sample efficiency through strategic branching and prefix reuse, and enabling
fine-grained credit assignment via reward backpropagation. While this approach establishes a su-
perior Pareto frontier in efficiency and performance, its current limitations include the introduction
of new hyperparameters governing the tree structure and an increased memory footprint during
training. Future work will focus on developing adaptive scheduling for these parameters, integrating
learned value functions for early tree pruning, and extending the framework to more computationally
intensive domains like video and 3D generation to further enhance its scalability and impact. Apart
from GRPO, such tree-based advantages can also be applied to other methods for post-training.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

References
Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants.

arXiv preprint arXiv:2209.15571, 2022.

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models
with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, and Ricky TQ Chen. Adjoint matching:
Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control.
arXiv preprint arXiv:2409.08861, 2024.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment. arXiv preprint arXiv:2304.06767, 2023.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In Forty-first international conference on machine learning,
2024.

Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
fine-tuning text-to-image diffusion models. Advances in Neural Information Processing Systems,
36:79858–79885, 2023.

Zhaolin Gao, Jonathan Chang, Wenhao Zhan, Owen Oertell, Gokul Swamy, Kianté Brantley,
Thorsten Joachims, Drew Bagnell, Jason D Lee, and Wen Sun. Rebel: Reinforcement learn-
ing via regressing relative rewards. Advances in Neural Information Processing Systems, 37:
52354–52400, 2024.

Lixue Gong, Xiaoxia Hou, Fanshi Li, Liang Li, Xiaochen Lian, Fei Liu, Liyang Liu, Wei Liu, Wei Lu,
Yichun Shi, et al. Seedream 2.0: A native chinese-english bilingual image generation foundation
model. arXiv preprint arXiv:2503.07703, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

Kimin Lee, Hao Liu, Moonkyung Ryu, Olivia Watkins, Yuqing Du, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, and Shixiang Shane Gu. Aligning text-to-image models using human
feedback. arXiv preprint arXiv:2302.12192, 2023.

Junzhe Li, Yutao Cui, Tao Huang, Yinping Ma, Chun Fan, Miles Yang, and Zhao Zhong. Mixgrpo:
Unlocking flow-based grpo efficiency with mixed ode-sde. arXiv preprint arXiv:2507.21802,
2025.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jie Liu, Gongye Liu, Jiajun Liang, Yangguang Li, Jiaheng Liu, Xintao Wang, Pengfei Wan, Di Zhang,
and Wanli Ouyang. Flow-grpo: Training flow matching models via online rl. arXiv preprint
arXiv:2505.05470, 2025.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815,
2017.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Xiaoshi Wu, Keqiang Sun, Feng Zhu, Rui Zhao, and Hongsheng Li. Better aligning text-to-image
models with human preference. arXiv preprint arXiv:2303.14420, 1(3), 2023.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
Advances in Neural Information Processing Systems, 36:15903–15935, 2023.

Zeyue Xue, Jie Wu, Yu Gao, Fangyuan Kong, Lingting Zhu, Mengzhao Chen, Zhiheng Liu, Wei
Liu, Qiushan Guo, Weilin Huang, et al. Dancegrpo: Unleashing grpo on visual generation. arXiv
preprint arXiv:2505.07818, 2025.

Zhicheng Yang, Zhijiang Guo, Yinya Huang, Xiaodan Liang, Yiwei Wang, and Jing Tang. Treerpo:
Tree relative policy optimization. arXiv preprint arXiv:2506.05183, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. Advances in neural information processing systems, 34:25476–25488, 2021.

13

	Introduction
	Related Work
	RL Post-training for Generative Models
	Tree-based Reinforcement Learning

	Background
	Flow Matching and Rectified Flows
	Denoising as a Markov Decision Process
	ODE to SDE Conversion for Policy Gradients
	Comparison of RL Fine-tuning Methods

	Method
	Problem Setup
	Overview of Tree-Advantage GRPO
	Tree-Structured Sampler
	Random Window
	Leaf Advantages Calculation
	Leaf-to-Root Advantage Propagation
	GRPO Update with Per-Edge Advantages

	Theoratical Analysis of TreeGRPO
	Variance Reduction via Weighted Aggregation
	Regularization and Robustness

	Experiment
	Experimental Setup
	Main Results
	Ablation Studies

	Discussion

