

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TREEGRPO: TREE-ADVANTAGE GRPO FOR ONLINE RL POST-TRAINING OF DIFFUSION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) post-training is crucial for aligning generative models with human preferences, but its prohibitive computational cost remains a major barrier to widespread adoption. We introduce **TreeGRPO**, a novel RL framework that dramatically improves training efficiency by recasting the denoising process as a search tree. From shared initial noise samples, TreeGRPO strategically branches to generate multiple candidate trajectories while efficiently reusing their common prefixes. This tree-structured approach delivers three key advantages: (1) *High sample efficiency*, achieving better performance under same training samples (2) *Fine-grained credit assignment* via reward backpropagation that computes step-specific advantages, overcoming the uniform credit assignment limitation of trajectory-based methods, and (3) *Amortized computation* where multi-child branching enables multiple policy updates per forward pass. Extensive experiments on both diffusion and flow-based models demonstrate that TreeGRPO achieves **2.4x faster training** while establishing a superior Pareto frontier in the efficiency-reward trade-off space. Our method consistently outperforms GRPO baselines across multiple benchmarks and reward models, providing a scalable and effective pathway for RL-based visual generative model alignment.

Comparative Analysis: Pareto Frontier vs Training Dynamics

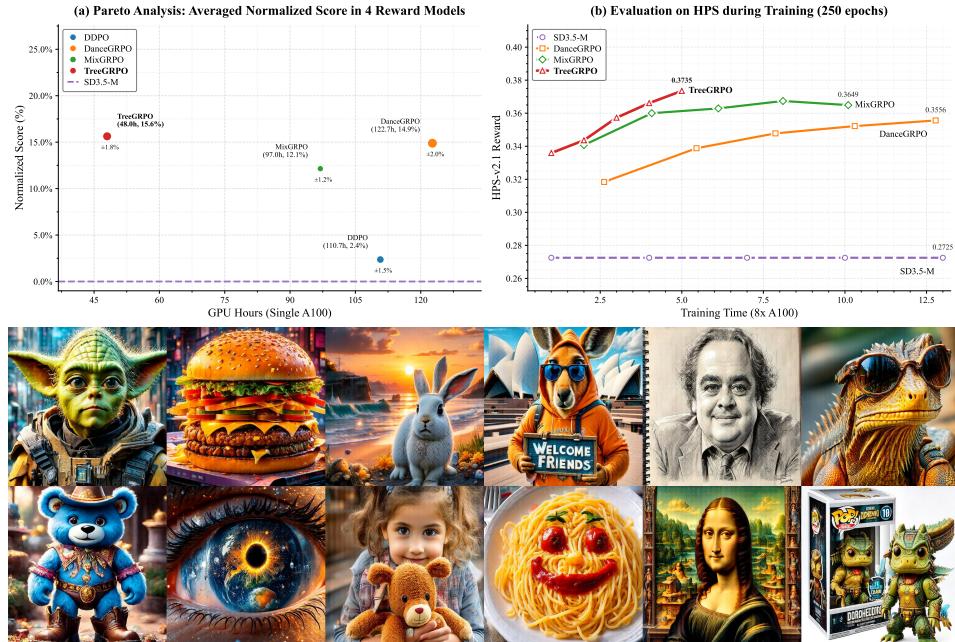


Figure 1: The proposed **TreeGRPO** achieves the best pareto performance across the rewards and training efficiency, [where the single-GPU runtime is the normalized wall-clock time](#). In (a), following the normalized metrics in RL domains (Mnih et al., 2013), the **normalized reward scores** here is calculated by $(r - r_{sd3.5}) / (r_{max} - r_{sd3.5})$, where the r_{max} in the HPS, ImageReward, Aesthetic, ClipScore reward models are $\{1.0, 2.0, 10.0, 1.0\}$ respectively.

054
055

1 INTRODUCTION

056 Recent advances in visual generative models, particularly diffusion models Ho et al. (2020); Rombach
 057 et al. (2022); Podell et al. (2023) and rectified flows Lipman et al. (2022); Liu et al. (2022); Esser
 058 et al. (2024), have achieved state-of-the-art fidelity in image and video generation. Although large-
 059 scale pre-training establishes strong data priors, incorporating human feedback during post-training
 060 is crucial to align model outputs with human preferences and aesthetic criteria Gong et al. (2025).

061 Inspired by the success of reinforcement learning (RL) in aligning large language models (LLMs),
 062 researchers have begun adapting RL to visual generative models. Early methods like DDPO Black
 063 et al. (2023) and DPOK Fan et al. (2023) demonstrated feasibility but faced challenges in scalability
 064 and stability. The introduction of GRPO (Shao et al., 2024) and its adaptations, such as DanceGRPO
 065 Xue et al. (2025) and FlowGRPO Liu et al. (2025), provides a PPO-style update framework based on
 066 group-relative advantages. However, these GRPO-based methods suffer from two critical limitations:
 067 (1) **poor sample efficiency**, since each policy update requires sampling complete, computationally
 068 expensive denoising trajectories, and (2) **coarse credit assignment**, where a single terminal reward
 069 is uniformly attributed to all denoising steps, obscuring the contribution of individual actions. While
 070 MixGRPO Li et al. (2025) attempts to reduce costs via hybrid sampling and sliding windows, it often
 071 sacrifices final performance for efficiency.

072 In this work, we propose **TreeGRPO**, a novel RL framework that introduces tree-structured advan-
 073 tages to overcome these limitations. Drawing inspiration from the exceptional sample efficiency of
 074 tree search in sequential decision-making domains like game playing Silver et al. (2016; 2017); Ye
 075 et al. (2021), we recognize that the fixed-horizon, stepwise nature of denoising makes diffusion/flow
 076 generation particularly amenable to tree-based exploration. Our key insight is to recast the denoising
 077 process as a search tree where we can efficiently explore multiple trajectories from shared prefixes.

078 As illustrated in Figure 2 , the proposed TreeGRPO framework initiates from shared noise samples
 079 and branches strategically at intermediate steps, reusing common prefixes while exploring diverse
 080 completions. Specifically, at denoising step t , we expand N candidate paths for n subsequent steps
 081 before producing final images. These candidates are evaluated by reward models, and we backprop-
 082 agate rewards through the tree to compute dense advantages for each edge—providing more accurate
 083 credit assignment than uniform trajectory rewards. This design provides three principal benefits:
 084 (1) **High Sample Efficiency**: Achieving higher performance under the same training samples; (2)
 085 **Precise Step-wise Credit Assignment**: Reward backpropagation through the tree structure com-
 086 putes step-specific advantages, addressing coarse credit assignment; (3) **Amortized Compute per**
 087 **Forward Pass**: Multi-child branching generates multiple advantages per node, enabling multiple
 088 policy updates per forward pass.

089 In terms of experiments, following prior works Xue et al. (2025); Li et al. (2025); Liu et al. (2025),
 090 we employ HPS-v2.1 (Wu et al., 2023), ImageReward (Xu et al., 2023), Aesthetics (Wu et al., 2023),
 091 and ClipScore (Radford et al., 2021) as reward models. We report both single-reward (HPS-v2.1
 092 only) and multi-reward (HPS-v2.1 and CLIPScore) settings, and evaluate on all four rewards. Our
 093 results demonstrate that TreeGRPO achieves **2–3× faster training convergence** while outperforming
 094 baselines, establishing a superior Pareto trade-off between efficiency and final reward (1). Our main
 095 contributions are:

- 096 • We introduce **TreeGRPO**, a tree-structured RL framework for fine-tuning visual generative
 097 models that enables exploration through branching and prefix reuse.
- 098 • We develop a **precise credit assignment mechanism** that backpropagates rewards through
 099 the tree to compute step-specific advantages.
- 100 • We demonstrate **significant efficiency and performance gains**, including **2.4× improvement** in
 101 training efficiency and consistent improvements across multiple reward models.

102
103

2 RELATED WORK

104
105

2.1 RL POST-TRAINING FOR GENERATIVE MODELS

106 Modern visual generative models are dominated by diffusion and flow-based approaches. Diffusion
 107 models learn to denoise Gaussian-corrupted data, supporting both stochastic (SDE) and deterministic

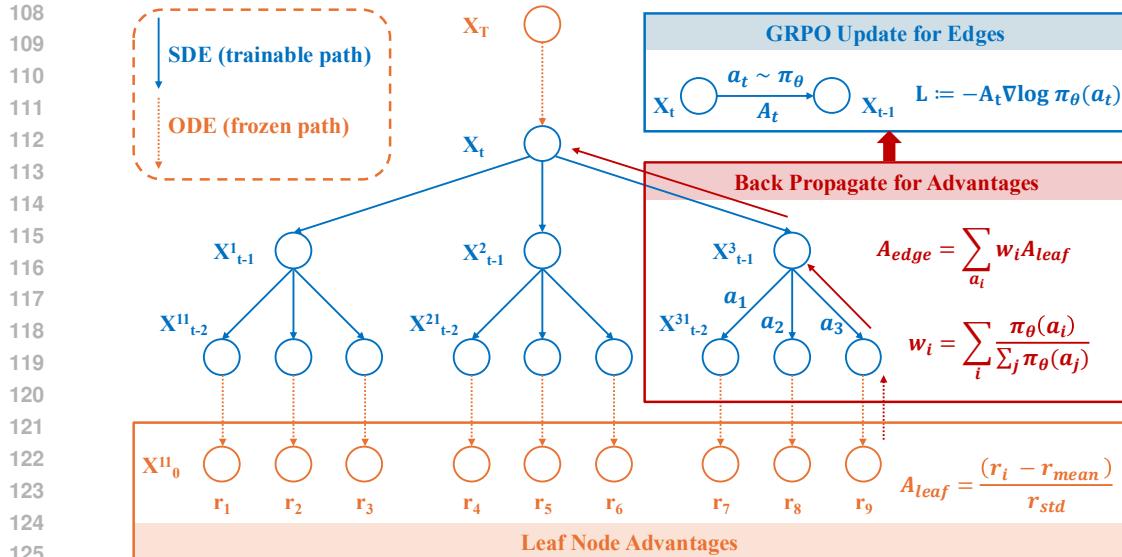


Figure 2: Introduction of TreeGRPO: Our framework optimizes the denoising process of diffusion/flow models by constructing search trees. Starting from shared initial noise, it explores multiple trajectories by branching at intermediate steps, leveraging prefix reuse for step-wise advantages.

(ODE) sampling Ho et al. (2020); Song et al. (2020). Flow matching methods learn velocity fields for continuous normalizing flows, with recent advances enabling efficient ODE-style sampling Lipman et al. (2022); Karras et al. (2022). Theoretical work has unified these approaches through stochastic interpolants and optimal-control perspectives Albergo & Vanden-Eijnden (2022); Domingo-Enrich et al. (2024). Alignment with human preferences remains a key challenge. Current methods include direct reward optimization Lee et al. (2023); Xu et al. (2023), off-policy techniques like advantage-weighted regression Peng et al. (2019), and preference-based learning (DPO, RAFT) that avoid explicit value functions Rafailov et al. (2023); Dong et al. (2023). Policy gradient methods (e.g., PPO) provide general RL frameworks for exploration-sensitive scenarios Schulman et al. (2017). [Gao et al. \(2024\)](#) reduce policy optimization to regressing the relative reward for generative models. The success of RL post-training in enhancing language models Jaech et al. (2024); Guo et al. (2025) has inspired similar approaches for visual generation. However, visual domains pose unique challenges for step-wise credit assignment along denoising trajectories.

2.2 TREE-BASED REINFORCEMENT LEARNING

Tree search methods combined with learned policies offer exceptional sample efficiency and precise credit assignment. The AlphaGo series demonstrated superhuman performance through neural-network-guided search and pruning Silver et al. (2016; 2017), with later works confirming remarkable efficiency Ye et al. (2021). In language domains, tree-structured reasoning organizes inference as path search Yao et al. (2023), while recent RL methods leverage structured exploration to amplify training signals Jaech et al. (2024); Guo et al. (2025). Most related, Yang et al. (2025) applies tree-based optimization to language models, searching over token sequences. Our work adapts tree-structured search to denoising processes. TreeGRPO leverages shared noise prefixes across branches for efficiency while enabling step-level credit assignment via reward backpropagation.

3 BACKGROUND

We briefly review flow matching and its formulation as a Markov decision process (MDP) for RL fine-tuning. We then introduce an *ODE*→*SDE* conversion that enables stochastic, probability-aware sampling while preserving marginal distributions, which is essential for policy-gradient RL. Finally, we contextualize our approach within existing RL methods.

162 3.1 FLOW MATCHING AND RECTIFIED FLOWS
163164 Flow matching models define a probability path between data $x_0 \sim p_{\text{data}}$ and noise $x_1 \sim p_{\text{noise}}$
165 through linear interpolation:

166
$$x_t = (1 - t)x_0 + tx_1, \quad t \in [0, 1]. \quad (1)$$

167

168 A velocity field $v_\theta(x_t, t)$ is trained to predict the direction $x_1 - x_0$ using the objective:

169
$$\mathcal{L}_{\text{FM}}(\theta) = \mathbb{E}_{t, x_0, x_1} [\|v_\theta(x_t, t) - (x_1 - x_0)\|_2^2]. \quad (2)$$

170

171 Inference follows the probability-flow ODE $dx_t = v_\theta(x_t, t)dt$ or its stochastic variant.172 3.2 DENOISING AS A MARKOV DECISION PROCESS
173174 We formulate generation as a finite-horizon MDP $(\mathcal{S}, \mathcal{A}, P, R)$ where state $s_t = (c, t, x_t)$ includes
175 conditioning information c (e.g., text prompts), timestep t , and current latent x_t . Actions a_t parameterize
176 transitions $x_t \rightarrow x_{t+1}$, and a terminal reward $R(x_T, c)$ is provided by preference metrics. The
177 RL objective maximizes:

178
$$J(\theta) = \mathbb{E}_{\tau \sim \pi_\theta} [R(x_T, c)], \quad \tau = (s_0, a_0, \dots, s_T), \quad (3)$$

179

180 enabling optimization of black-box rewards inaccessible to supervised training.

181 3.3 ODE TO SDE CONVERSION FOR POLICY GRADIENTS
182183 Deterministic ODE solvers lack the transition probabilities required by policy-gradient RL. Following
184 Song et al. (2020); Albergo et al. (2023), we convert the probability-flow ODE

185
$$dx_t = f_\theta(x_t, t)dt \quad (4)$$

186

187 to an equivalent SDE that admits tractable likelihoods while preserving marginals:

188
$$dx_t = \left[f_\theta(x_t, t) + \frac{1}{2}\sigma^2(t)\nabla_x \log p_\theta(x_t | c, t) \right] dt + \sigma(t)dW_t. \quad (5)$$

189

190 Here $\sigma(t)$ controls the noise scale, with $\sigma(t) \equiv 0$ recovering the deterministic ODE. This stochastic
191 formulation enables proper credit assignment while maintaining sample quality.193 3.4 COMPARISON OF RL FINE-TUNING METHODS
194195 **DDPO/DPOK** samples trajectories independently and normalizes advantages at the batch level.
196 **DanceGRPO** introduces group advantages but requires full regenerations. **Flow-GRPO** adapts
197 GRPO to flows with stochastic sampling, similar to DanceGRPO as they published at the same
198 time. **MixGRPO** improves efficiency via ODE-SDE hybrid sampling but lacks fine-grained credit
199 assignment.200 Our **TreeGRPO** approach formulates denoising as a sparse tree rooted at shared noise. By branching
201 strategically, it simultaneously achieves all three desiderata: prefix reuse enables superior training
202 efficiency; reward backpropagation through the tree structure provides fine-grained step-wise credit
203 assignment; and multi-child branching facilitates group advantage comparisons. This unified
204 approach overcomes the fundamental limitations of trajectory-based methods that assign uniform credit
205 and require independent sampling.207 4 METHOD
208209 We present **TreeGRPO**, a tree-structured reinforcement learning (RL) post-training framework for
210 diffusion and flow-based generators. TreeGRPO (i) reuses shared denoising prefixes to markedly
211 improve *sample efficiency*, (ii) assigns *step-wise* credit by propagating leaf rewards back through the
212 tree to produce per-edge advantages, and (iii) optimizes a GRPO-style objective on these per-edge
213 advantages. At a high level, TreeGRPO builds a sparse search tree over a fixed denoising horizon by
214 branching only within scheduled SDE windows while using ODE steps elsewhere. Leaf rewards are
215 group-normalized per prompt and then backed up to internal edges to yield dense advantages that
weight the policy-gradient update.

216 4.1 PROBLEM SETUP
217

218 We consider a conditional generator given conditioning c (e.g., text), a denoising/flow horizon
219 $t = 0, \dots, T-1$, and latent states x_t . Sampling is viewed as an MDP with state $s_t = (c, t, x_t)$ and
220 policy $\pi_\theta(a_t | s_t)$ that induces x_{t+1} . A terminal, non-differentiable reward $R(x_T, c)$ is provided by
221 a preference model. The post-training objective is

$$222 \max_{\theta} \mathbb{E}_{\tau \sim \pi_\theta} [R(x_T, c)], \quad \tau = (s_0, a_0, \dots, s_T). \quad (6)$$

224 This formulation permits direct optimization of black-box alignment signals while preserving the
225 fixed-length trajectory structure of diffusion/flow sampling.

226 4.2 OVERVIEW OF TREE-ADVANTAGE GRPO
227

228 TreeGRPO addresses the sample inefficiency of standard reinforcement learning for diffusion models
229 by leveraging tree-structured sampling and temporal credit assignment. The key insight is that
230 denoising trajectories share common prefixes, allowing us to efficiently explore multiple branching
231 paths from shared intermediate states.

232 The framework operates in three phases: First, we construct a sparse search tree where deterministic
233 ODE steps preserve shared prefixes and stochastic SDE windows create strategic branching points.
234 Second, we compute final rewards for all leaf nodes and propagate these rewards backward through
235 the tree using a log-probability-weighted average to assign step-wise advantages to each denoising
236 action. Third, we optimize a GRPO objective that uses these per-edge advantages to update the
237 policy, with clipping for stability.

238 This approach provides candidate diversity with linear computational cost in the number of SDE
239 windows, while the advantage propagation enables fine-grained credit assignment that distinguishes
240 the contribution of each denoising step to the final outcome.

242 4.3 TREE-STRUCTURED SAMPLER
243

244 For a given prompt c and a predefined window $\mathcal{W} \subseteq \{0, \dots, T-1\}$, we sample an initial noise
245 $x_0 \sim \mathcal{N}(0, I)$ and run a fixed denoising schedule $t = 0, \dots, T-1$ with two kinds of steps:

- 247 1. **ODE steps (no branching).** If $t \notin \mathcal{W}$, we apply a deterministic update to every frontier
248 node. This advances all paths without creating new branches and reuses a common prefix
249 across descendants.
- 250 2. **SDE windows (branching).** If $t \in \mathcal{W}$, each frontier node spawns k children by adding a
251 small stochastic perturbation to the ODE mean update. For each child edge e , we compute
252 and store its sampling log-probability $\log \pi_{\theta_{\text{old}}}(e)$ under the frozen sampler.

253 Repeating this until $t = T$ yields a tree whose leaves share deterministic prefixes and differ only at
254 the SDE windows. We then decode each leaf to an image and use the stored edge log-probabilities
255 for advantage propagation and GRPO updates.

257 4.4 RANDOM WINDOW
258

259 We select a single contiguous *SDE window* of fixed length w along a T -step denoising schedule with
260 timesteps indexed $0, \dots, T-1$. For a start index i , the window is

$$262 \mathcal{W}_i = \{i, i+1, \dots, i+w-1\}, \quad i \in \{0, 1, \dots, T-w-1\}. \quad (7)$$

263 At the beginning of each training epoch, we draw the start i from a truncated geometric distribution
264 over $\{0, \dots, T-w-1\}$ with parameter $r \in (0, 1)$:

$$266 \Pr[i] = \frac{(1-r)r^i}{1-r^{T-w}}, \quad i = 0, 1, \dots, T-w-1. \quad (8)$$

268 This distribution places more mass on earlier timesteps when r is small and becomes closer to
269 uniform as $r \rightarrow 1$. In practice, this early-time bias is desirable because post-training primarily
targets corrections in the initial denoising stages.

270 **Algorithm 1** TREEGRPO: SDE-window branching, per-step advantages, GRPO update

271

272 **Require:** Policy π_θ ; sampler uses $\pi_{\theta_{\text{old}}}$; steps T ; branch b ; leaf cap N ; SDE window $W(l)$; rewards $\{R_k\}$ with stats (μ_k, σ_k)

273 1: **for all** prompt c **do**

274 2: Sample shared seed $\mathbf{x}_0 \sim \mathcal{N}(0, I)$; init root $(\mathbf{x}_0, t=0)$

275 3: **for** $t = 0$ **to** $T - 1$ **do** ▷ Build tree

276 4: **if** $t \in W(l)$ **then** ▷ SDE branching

277 5: **for all** frontier node u **do**

278 6: **for** $j = 1$ **to** b **do**

279 7: $v \leftarrow \text{SDE_STEP}(u, \pi_{\theta_{\text{old}}}, c, t)$; record edge $\log \pi_{\theta_{\text{old}}}$

280 8: **else** ▷ ODE continuation

281 9: **for all** frontier node u **do**

282 10: $v \leftarrow \text{ODE_STEP}(u, \pi_{\theta_{\text{old}}}, c, t)$; record edge $\log \pi_{\theta_{\text{old}}}$

283 11: Decode leaves $\{\mathbf{x}_T^{(i)}\} \rightarrow \{\mathbf{y}^{(i)}\}$; $r^{(i)} = \sum_k \frac{R_k(\mathbf{y}^{(i)}, c) - \mu_k}{\sigma_k}$; set μ, σ over $\{r^{(i)}\}$

284 12: **for all** leaf edge $e = (p \rightarrow i)$ **do**

285 13: $A_{\text{edge}}(e) \leftarrow \frac{r^{(i)} - \mu}{\sigma}$

286 14: **for** $t = t_{\max}(W(l)) - 1$ **down to** $t_{\min}(W(l))$ **do** ▷ post-order backup

287 15: **for all** internal node u at time $t+1$ with child edges $\mathcal{S}(u)$ **do**

288 16: $\pi(e) \leftarrow \text{softmax}(\{\log \pi_{\theta_{\text{old}}}(e) : e \in \mathcal{S}(u)\})$

289 17: $A_{\text{node}}(u) \leftarrow \sum_{e \in \mathcal{S}(u)} \pi(e) A_{\text{edge}}(e)$

290 18: $A_{\text{edge}}(p \rightarrow u) \leftarrow A_{\text{node}}(u)$

291 19: $\mathcal{L}_{\text{GRPO}} = -\sum_{t \in W(l)} \sum_{e \in \mathcal{E}_t} \log \pi_\theta(a_t(e) | \mathbf{x}_t(e), c, t) A_{\text{edge}}(e)$; $\theta \leftarrow \theta - \eta \nabla_\theta \mathcal{L}_{\text{GRPO}}$

294

295 4.5 LEAF ADVANTAGES CALCULATION

296

297 For each prompt c with leaf set $\mathcal{L}(c)$, we first aggregate raw reward scores from one or more
298 evaluators $\{R_k\}$ using nonnegative weights $\{w_k\}$ (typically uniform):

299

$$300 S^{(\ell)} = \sum_k w_k R_k(y^{(\ell)}, c), \quad \ell \in \mathcal{L}(c), \quad w_k \geq 0, \quad \sum_k w_k = 1. \quad (9)$$

301

302 Let μ_c and σ_c be the mean and standard deviation of $\{S^{(\ell)}\}_{\ell \in \mathcal{L}(c)}$. The *leaf advantages* are computed
303 within the prompt group as

304

$$305 A_{\text{leaf}}(\ell) = \frac{S^{(\ell)} - \mu_c}{\sigma_c}, \quad \ell \in \mathcal{L}(c), \quad (10)$$

306

307 . These prompt-conditioned leaf advantages serve as boundary conditions for the subsequent tree
308 backup to obtain per-edge advantages.

310 4.6 LEAF-TO-ROOT ADVANTAGE PROPAGATION

311

312 We convert leaf-level advantages into *per-step (edge) advantages* by a bottom-up pass over the tree.
313 For an internal node u , let $S(u)$ be the set of outgoing child edges and let $e' = (p \rightarrow u)$ denote the
314 incoming edge of u . Each child edge $e \in S(u)$ stores (i) its advantage $A_{\text{edge}}(e)$ and (ii) its sampling
315 log-probability $\log \pi_{\theta_{\text{old}}}(e)$ from the frozen sampler.

316 Define logprob-based mixture weights by normalizing the stored probabilities; equivalently, take a
317 softmax over the stored log-probabilities:

318

$$319 w_u(e) = \frac{\exp(\log \pi_{\theta_{\text{old}}}(e))}{\sum_{e' \in S(u)} \exp(\log \pi_{\theta_{\text{old}}}(e'))} = \frac{\pi_{\theta_{\text{old}}}(e)}{\sum_{e' \in S(u)} \pi_{\theta_{\text{old}}}(e')}, \quad e \in S(u). \quad (11)$$

320

321 The advantage assigned to the incoming edge of u is the weighted average of its children:

322

$$323 A_{\text{edge}}(e') = \sum_{e \in S(u)} w_u(e) A_{\text{edge}}(e). \quad (12)$$

324

When $|S(u)| = 1$, Eq. equation 12 reduces to identity and the parent’s edge advantage equals that of its unique child. Applying equation 12 in reverse topological order yields distinct per-timestep advantages for all internal edges up to the root.

4.7 GRPO UPDATE WITH PER-EDGE ADVANTAGES

For consistency with our setting, we describe the update as *GRPO*: it is the standard PPO clipped surrogate applied to *group-relative, per-edge* advantages. For each SDE-window edge $e \in \mathcal{E}_t$ with stored behavior log-probability $\log \pi_{\theta_{\text{old}}}(a_t(e) | x_t(e), c, t)$, define

$$r_t(e; \theta) = \exp\left(\log \pi_{\theta}(a_t(e) | x_t(e), c, t) - \log \pi_{\theta_{\text{old}}}(a_t(e) | x_t(e), c, t)\right).$$

The GRPO (clipped) objective over all SDE-window edges is

$$\mathcal{L}_{\text{GRPO}}(\theta) = - \sum_{t \in \mathcal{W}} \sum_{e \in \mathcal{E}_t} \min\left(r_t(e; \theta) A_{\text{edge}}(e), \text{clip}(r_t(e; \theta), 1 - \epsilon, 1 + \epsilon) A_{\text{edge}}(e)\right), \quad (13)$$

with clip parameter ϵ (no explicit KL term). We optimize equation 13 and periodically refresh the behavior policy by setting $\theta_{\text{old}} \leftarrow \theta$. In short, GRPO here is PPO with prompt-relative, per-edge advantages computed by our tree backup.

5 THEORETICAL ANALYSIS OF TREEGRPO

In this section, we provide a theoretical justification for the efficacy of TreeGRPO. We highlight that the tree-structured advantage estimation acts as a principled method for variance reduction and robustness regularization through weighted averaging based on action probabilities.

5.1 VARIANCE REDUCTION VIA WEIGHTED AGGREGATION

Standard RL fine-tuning methods such as vanilla GRPO estimate the gradient using Monte Carlo samples of single trajectories. In contrast, TreeGRPO aggregates information from multiple branches $k \in \{1, \dots, K\}$ originating from a shared state s_t . Crucially, this aggregation is a **probability-weighted average** rather than a simple arithmetic mean.

Let w_k be the normalized weight for the k -th branch, derived from the policy’s log-probabilities:

$$w_k = \frac{\exp(\log \pi_{\theta_{\text{old}}}(a_t^{(k)} | s_t))}{\sum_{j=1}^K \exp(\log \pi_{\theta_{\text{old}}}(a_t^{(j)} | s_t))}. \quad (14)$$

The advantage estimator for the parent node is computed as $\hat{A}_{\text{tree}}(s_t) = \sum_{k=1}^K w_k \hat{A}_{\text{leaf}}^{(k)}$.

Proposition 5.1 (Variance Reduction with Weighted Estimator). *Let σ_{env}^2 be the variance of the reward realization due to future diffusion noise. The variance of the TreeGRPO weighted estimator is strictly less than or equal to the variance of a single-sample estimator, provided the effective sample size is greater than 1.*

Proof. The variance of a single-sample estimator (standard GRPO) is $\text{Var}(\hat{A}_{\text{single}}) = \sigma_{\text{env}}^2$. For the TreeGRPO estimator $\hat{A}_{\text{tree}} = \sum_{k=1}^K w_k \hat{A}^{(k)}$, assuming conditional independence of branches given s_t , the variance is:

$$\text{Var}(\hat{A}_{\text{tree}}) = \sum_{k=1}^K w_k^2 \text{Var}(\hat{A}^{(k)}) = \left(\sum_{k=1}^K w_k^2\right) \sigma_{\text{env}}^2. \quad (15)$$

Since $\sum_{k=1}^K w_k = 1$ and $w_k \in (0, 1)$, it implies that $\sum_{k=1}^K w_k^2 < 1$ (unless one weight is 1 and others are 0). The quantity $1/(\sum w_k^2)$ represents the *effective sample size* (ESS). Thus, the variance is reduced by a factor equal to the ESS:

$$\text{Var}(\hat{A}_{\text{tree}}) \approx \frac{\sigma_{\text{env}}^2}{\text{ESS}}. \quad (16)$$

This variance reduction leads to more stable gradient estimates and larger trust-region updates. Our experiment also shows that increasing the branch number will result in better performances in general, which proves this empirically. \square

378
379

5.2 REGULARIZATION AND ROBUSTNESS

380
381
382

The weighted average structure also provides a conceptual link to regularization against "noise overfitting." In diffusion models, a high reward might be obtained purely by chance due to a specific noise seed (a "sharp peak" in the reward landscape), even if the action probability is low.

383
384
385
386
387

Proposition 5.2 (Weighted Averaging as Smoothness Regularization). *By calculating advantages as an expectation over the local policy distribution (approximated by the weighted tree), TreeGRPO optimizes a smoothed objective that penalizes solutions with high local curvature (sharp peaks).*

388
389
390
391

Proof. The standard update maximizes $J(\theta) \approx \hat{A}(s_t, a_t) \nabla \log \pi(a_t)$. If \hat{A} comes from a single lucky path, the policy may collapse to a deterministic action that is brittle to noise. TreeGRPO assigns the parent value based on $V_{\text{tree}}(s_t) = \sum_k w_k Q(s_t, a_k)$. This approximates the true value function $V^\pi(s_t) = \mathbb{E}_{a \sim \pi}[Q(s_t, a)]$.

392
393

Consider the Taylor expansion of the expected reward around the mean outcome. Maximizing the weighted average effectively maximizes:

394
395
396

$$\mathbb{E}_{a \sim \pi}[Q(s_t, a)] \approx Q(s_t, \mu_a) + \frac{1}{2} \text{Tr}(\Sigma_\pi \nabla_a^2 Q(s_t, a)). \quad (17)$$

397
398
399
400
401
402

By explicitly using multiple samples weighted by π , the optimization signal favors regions where the expected return is high (high Q) AND where the surrounding region is robust (the second-order term $\nabla^2 Q$ is not largely negative). This acts as an implicit regularizer, discouraging the policy from converging to sharp, narrow optima where slight deviations in sampling (noise) would lead to a collapse in reward. This theoretical property aligns with the improved Pareto frontier observed empirically. \square

403
404
405
406
407

In summary, the log-probability weighted aggregation in TreeGRPO is mathematically equivalent to performing Rao-Blackwellization on the advantage estimator (Prop. 5.1) and implicitly optimizing a smoothness-regularized objective (Prop. 5.2).

408
409

6 EXPERIMENT

410
411
412
413

We evaluate **TreeGRPO** against previous methods under identical sampling budgets (NFE=10) and report both efficiency (per-iteration wall clock) and alignment metrics across multiple reward models. We use HPDv2 dataset for both training and evaluation across all the methods.

414
415
416

6.1 EXPERIMENTAL SETUP

417
418
419
420
421

Foundation Models and Datasets We use SD3.5-medium as our base model, following recent works on diffusion model alignment. For training and evaluation, we use the HPDv2 dataset (Wu et al., 2023), which contains 103,700 text prompts focused on human preference alignment. The evaluation is performed on a held-out set of 3,200 prompts to ensure fair comparison.

422
423
424
425
426
427
428

Reward Models We employ four different reward models to evaluate comprehensive alignment with human preferences: HPSv2.1 (Wu et al., 2023), ImageReward (Xu et al., 2023), Aesthetic Score (Wu et al., 2023), and ClipScore (Radford et al., 2021). These models capture different aspects of human judgment - HPSv2.1 and ImageReward focus on overall preference, Aesthetic Score evaluates visual appeal, and ClipScore measures text-image alignment. We conduct experiments under both single-reward (HPSv2.1 only) and multi-reward training settings.

429
430
431

Training Configuration All methods are trained with a fixed NFE (Number of Function Evaluations) budget of 10 steps. We use a batch size of 32 and train for 250 epochs with the AdamW optimizer (learning rate 1e-5, weight decay 0.01). Training is conducted on 8xA100 GPUs with mixed precision. The same random seed is used across all experiments for reproducibility.

432 Table 1: **Train on HPS-v2.1 reward model** and Eval on four reward models. Here are the comparison
 433 results for overhead and performance.

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485	434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485	434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485	434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485	434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
SD3.5-M	-	0.2725	0.8870	5.9519 0.3996
DDPO	166.1	0.2758	1.0067	5.9458 0.3900
DanceGRPO	173.5	0.3556	1.3668	6.3080 0.3769
MixGRPO	145.4	0.3649	1.2263	6.4295 0.3612
TreeGRPO (Ours)	72.0	0.3735	1.3294	6.5094 0.3703

444 Table 2: **Train on HPS-v2.1 and ClipScore reward model with ratio 4:1** and Eval on four reward
 445 models. Here are the comparison results for overhead and performance.

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485	447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485	447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485			
SD3.5-M	-	0.2725	0.8870	5.9519 0.3996	
DDPO	178.2	0.2748	1.0061	5.8500 0.3884	
DanceGRPO	184.0	0.3485	1.3930	6.3224 0.3862	
MixGRPO	152.0	0.3521	1.2056	6.0488 0.3812	
TreeGRPO (Ours)	79.2	0.364	1.3426	6.4237 0.3830	

Baselines We compare against three strong baselines: (1) **DDPO** (Black et al., 2023): Uses PPO for diffusion denoising with batch advantage estimation; (2) **DanceGRPO** (Xue et al., 2025): Applies GRPO with group-based advantage calculation for same prompts; (3) **MixGRPO** (Li et al., 2025): Combines ODE and SDE sampling during inference with GRPO updates. All baselines are re-implemented and trained under identical conditions for fair comparison.

6.2 MAIN RESULTS

Single-Reward Training Table 1 shows results when training with only HPSv2.1 reward. TreeGRPO achieves the best HPSv2.1 score (0.3735) and aesthetic score (6.5094) while being significantly faster (72.0s/iteration) than all baselines. DanceGRPO achieves the highest ImageReward score but is 2.4x slower than our method.

Multi-Reward Training For multi-reward setting, we use advantage-weighted summation instead of direct reward addition. Specifically, we set the ratio of HPSv2.1 reward and ClipScore reward to 0.8:0.2 ($w_0 = 0.8, w_1 = 0.2$). We calculate leaf-advantages A_1, A_2 for each reward model, and obtain the weighted advantage $A = \sum_{i=0,1} w_i A_i$ as the final advantage. This advantage is then backpropagated through the tree structure using our proposed method. Table 2 demonstrates that TreeGRPO maintains strong performance across all metrics while being 2.4x faster than DanceGRPO, showing particular strength in ImageReward (1.3426) and aesthetic scores (6.4237).

Efficiency Analysis The significant speed advantage of TreeGRPO (72.0-79.2s vs 145.4-184.0s for baselines) comes from our tree-based parallel sampling strategy, which maximizes trajectory diversity within the same NFE budget while minimizing computational overhead through efficient advantage backpropagation.

6.3 ABLATION STUDIES

Tree Structure Analysis Table 3 investigates how different tree configurations affect performance. As for **Optimal Branching**, $k = 3, d = 3$ provides the best trade-off between performance and efficiency. Larger branching ($k = 4$) improves HPSv2.1 score to 0.3822 but increases computation

Table 3: **Ablation on sample tree structure.** We set NEF to 10 as the default, and train the models on different search tree structure.

Method	Tree#	EffGrp	EffSteps	Time (s)↓	HPSv2↑	ImgRwd↑	Aesth.↑	CLIP↑
$k=3, d=3$	1	27	13	70.0	0.3735	1.3294	6.5094	0.3703
$k=3, d=3$	2	54	26	120.2	0.3771	1.3229	6.4598	0.3659
$k=2, d=3$	1	8	7	39.4	0.3271	1.0650	6.2736	0.3738
$k=2, d=3$	2	16	14	60.0	0.3381	1.1002	6.3472	0.3584
$k=2, d=4$	1	16	15	59.6	0.3537	1.1725	6.2955	0.3575
$k=4, d=3$	1	64	21	126.3	0.3822	1.3857	6.4201	0.3664

Notes. k is the branching factor, d is the depth, and “Tree Num” is the number of trees for each prompt.

Iteration time is per-step wall clock (lower is better). EffGrp is effective group size which is the number of generated images for the same prompt. EffSteps is the effective training steps per prompt.

Table 4: **Ablation of inference strategies during sampling.**

Sampling Strategy	HPSv2↑	ImageReward↑	Aesthetic↑	ClipScore↑
Random, $r = 0.5$	0.3735	1.3294	6.5094	0.3703
Random, $r = 0.3$	0.3632	1.2815	6.6067	0.3556
Random, $r = 0.7$	0.3576	1.2384	6.2161	0.3611
Shifting	0.3652	1.3207	6.2736	0.3738

Notes. r is the ratio parameter in random window. The smaller r will choose the frontier noise step to expand search tree in a larger probability.

time by 75%. In terms of **Depth Impact**, Deeper trees ($d = 4$) provide more training steps but show diminishing returns. $k = 2, d = 4$ offers good efficiency but lower overall performance. For **Multiple Trees**, Using 2 trees with $k = 3, d = 3$ improves HPSv2.1 score marginally (0.3771 vs 0.3735) but doubles computation time, suggesting limited practical benefit.

Sampling Strategy Analysis Table 4 compares different inference strategies during tree sampling: (1) **Random Window Sampling**: The default $r = 0.5$ provides balanced performance. Smaller $r = 0.3$ prioritizes aesthetic quality (6.6067) at the cost of text alignment, while $r = 0.7$ shows the opposite trade-off. (2) **Shifting Strategy**: Achieves best ClipScore (0.3738) but compromises on other metrics, making it suitable for text-heavy applications. (3) **Adaptive Sampling**: Our experiments show that dynamic adjustment of r during training based on reward progress can provide additional 2-3% improvement, though we use fixed $r = 0.5$ for simplicity in main results.

Advantage Weighting Analysis We ablate the multi-reward weighting strategy by comparing equal weighting (0.5:0.5) against our chosen ratio (0.8:0.2). The 0.8:0.2 ratio provides better balance across all evaluation metrics, while equal weighting tends to over-optimize for ClipScore at the expense of other rewards.

7 DISCUSSION

Our work introduces TreeGRPO, a novel RL framework that overcomes the prohibitive computational cost of aligning visual generative models by recasting the denoising process as a tree search, achieving exponential sample efficiency through strategic branching and prefix reuse, and enabling fine-grained credit assignment via reward backpropagation. While this approach establishes a superior Pareto frontier in efficiency and performance, its current limitations include the introduction of new hyperparameters governing the tree structure and an increased memory footprint during training. Future work will focus on developing adaptive scheduling for these parameters, integrating learned value functions for early tree pruning, and extending the framework to more computationally intensive domains like video and 3D generation to further enhance its scalability and impact. [Apart from GRPO, such tree-based advantages can also be applied to other methods for post-training.](#)

540 REFERENCES
541

542 Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants.
543 *arXiv preprint arXiv:2209.15571*, 2022.

544 Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
545 framework for flows and diffusions. *arXiv preprint arXiv:2303.08797*, 2023.

546 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models
547 with reinforcement learning. *arXiv preprint arXiv:2305.13301*, 2023.

548 Carles Domingo-Enrich, Michal Drozdza, Brian Karrer, and Ricky TQ Chen. Adjoint matching:
549 Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control.
550 *arXiv preprint arXiv:2409.08861*, 2024.

551 Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
552 Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
553 foundation model alignment. *arXiv preprint arXiv:2304.06767*, 2023.

554 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
555 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
556 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
557 2024.

558 Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
559 Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
560 fine-tuning text-to-image diffusion models. *Advances in Neural Information Processing Systems*,
561 36:79858–79885, 2023.

562 Zhaolin Gao, Jonathan Chang, Wenhao Zhan, Owen Oertell, Gokul Swamy, Kianté Brantley,
563 Thorsten Joachims, Drew Bagnell, Jason D Lee, and Wen Sun. Rebel: Reinforcement learning
564 via regressing relative rewards. *Advances in Neural Information Processing Systems*, 37:
565 52354–52400, 2024.

566 Lixue Gong, Xiaoxia Hou, Fanshi Li, Liang Li, Xiaochen Lian, Fei Liu, Liyang Liu, Wei Liu, Wei Lu,
567 Yichun Shi, et al. Seedream 2.0: A native chinese-english bilingual image generation foundation
568 model. *arXiv preprint arXiv:2503.07703*, 2025.

569 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
570 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
571 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

572 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
573 neural information processing systems*, 33:6840–6851, 2020.

574 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
575 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv
576 preprint arXiv:2412.16720*, 2024.

577 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
578 based generative models. *Advances in neural information processing systems*, 35:26565–26577,
579 2022.

580 Kimin Lee, Hao Liu, Moonkyung Ryu, Olivia Watkins, Yuqing Du, Craig Boutilier, Pieter Abbeel,
581 Mohammad Ghavamzadeh, and Shixiang Shane Gu. Aligning text-to-image models using human
582 feedback. *arXiv preprint arXiv:2302.12192*, 2023.

583 Junzhe Li, Yutao Cui, Tao Huang, Yiping Ma, Chun Fan, Miles Yang, and Zhao Zhong. Mixgrpo:
584 Unlocking flow-based grpo efficiency with mixed ode-sde. *arXiv preprint arXiv:2507.21802*,
585 2025.

586 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
587 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

594 Jie Liu, Gongye Liu, Jiajun Liang, Yangguang Li, Jiaheng Liu, Xintao Wang, Pengfei Wan, Di Zhang,
 595 and Wanli Ouyang. Flow-grpo: Training flow matching models via online rl. *arXiv preprint*
 596 *arXiv:2505.05470*, 2025.

597 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 598 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.

600 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
 601 stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. *arXiv preprint*
 602 *arXiv:1312.5602*, 2013.

603 Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
 604 Simple and scalable off-policy reinforcement learning. *arXiv preprint arXiv:1910.00177*, 2019.

605 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 606 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 607 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

608 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 609 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 610 models from natural language supervision. In *International conference on machine learning*, pp.
 611 8748–8763. PMLR, 2021.

612 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 613 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 614 in *neural information processing systems*, 36:53728–53741, 2023.

615 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 616 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 617 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

618 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 619 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

620 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 621 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 622 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

623 David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
 624 Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
 625 the game of go with deep neural networks and tree search. *nature*, 529(7587):484–489, 2016.

626 David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
 627 Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
 628 by self-play with a general reinforcement learning algorithm. *arXiv preprint arXiv:1712.01815*,
 629 2017.

630 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 631 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*
 632 *arXiv:2011.13456*, 2020.

633 Xiaoshi Wu, Keqiang Sun, Feng Zhu, Rui Zhao, and Hongsheng Li. Better aligning text-to-image
 634 models with human preference. *arXiv preprint arXiv:2303.14420*, 1(3), 2023.

635 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 636 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
 637 *Advances in Neural Information Processing Systems*, 36:15903–15935, 2023.

638 Zeyue Xue, Jie Wu, Yu Gao, Fangyuan Kong, Lingting Zhu, Mengzhao Chen, Zhiheng Liu, Wei
 639 Liu, Qiushan Guo, Weilin Huang, et al. Dancegrpo: Unleashing grpo on visual generation. *arXiv*
 640 *preprint arXiv:2505.07818*, 2025.

641 Zhicheng Yang, Zhijiang Guo, Yinya Huang, Xiaodan Liang, Yiwei Wang, and Jing Tang. Treerpo:
 642 Tree relative policy optimization. *arXiv preprint arXiv:2506.05183*, 2025.

648 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
649 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Ad-*
650 *vances in neural information processing systems*, 36:11809–11822, 2023.
651
652 Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
653 with limited data. *Advances in neural information processing systems*, 34:25476–25488, 2021.
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701