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Abstract
The impressive performances of large language001
models (LLMs) and their immense potential002
for commercialization have given rise to seri-003
ous concerns over the intellectual property (IP)004
of their training data. In particular, the syn-005
thetic texts generated by LLMs may infringe006
the IP of the data being used to train the LLMs.007
To this end, it is imperative to be able to per-008
form source attribution by identifying the data009
provider who contributed to the generation of010
a synthetic text by an LLM. In this paper, we011
show that this problem can be tackled by water-012
marking, i.e., by enabling an LLM to generate013
synthetic texts with embedded watermarks that014
contain information about their source(s). We015
identify the key properties of such watermark-016
ing frameworks (e.g., source attribution accu-017
racy, robustness against adversaries), and pro-018
pose a source attribution framework that satis-019
fies these key properties due to our algorithmic020
designs. Our framework enables an LLM to021
learn an accurate mapping from the generated022
texts to data providers, which sets the founda-023
tion for effective source attribution. Extensive024
empirical evaluations show that our framework025
achieves effective source attribution.026

1 Introduction027

Large language models (LLMs) (Ouyang et al.,028

2022; Touvron et al., 2023a) have recently demon-029

strated remarkable performances and hence re-030

ceived a surging interest. These LLMs, trained031

using massive text data, have displayed impressive032

text generation abilities. This has given rise to033

the immense potential of adopting LLM-generated034

texts for commercial use. However, this potential035

commercialization has led to major concerns re-036

garding the intellectual property (IP) of training037

data for LLMs because the texts generated by an038

LLM may infringe the IP of the data being used to039

train the LLM. These concerns have been reflected040

by the increasing regulations on data protection re-041

lated to AI models. For example, the Coalition for042

Content Provenance and Authenticity has stressed 043

the necessity of certifying the source of online con- 044

tent produced by generative models (Rosenthol, 045

2022). Therefore, it is of crucial importance for 046

LLMs to be equipped with source attribution for 047

their generated synthetic texts. 048

In source attribution, given some texts gener- 049

ated by an LLM, its aim is to find the source re- 050

sponsible for the generation of these texts. That 051

is, if the data from a data provider has been used 052

to train the LLM and contributed to the generation 053

of a sentence by the LLM, then source attribution 054

identifies this data provider. Moreover, source attri- 055

bution also improves the interpretability of LLM- 056

generated texts: for example, if the generated con- 057

tent from an LLM is attributed to a trustworthy 058

source (e.g., a peer-reviewed academic paper), then 059

the user is likely to consider the content more reli- 060

able. The ability to perform source attribution can 061

endow the LLM with the capability of data prove- 062

nance, which presents a different problem where a 063

data provider can verify whether its data has been 064

used to train the LLM. This problem can be solved 065

with source attribution. Specifically, a data provider 066

can check the source of the generated texts from an 067

LLM via source attribution, and hence verify data 068

provenance, as detailed in App. E.1.6. 069

While some recent works have addressed the 070

problem of data provenance in LLMs (Kirchen- 071

bauer et al., 2023; Liu et al., 2023a), to the best 072

of our knowledge, effective source attribution 073

for LLMs remains an open problem. In con- 074

trast to data provenance which presents a binary 075

determination, source attribution aims to identify 076

the specific data source(s) influencing a particu- 077

lar output, which presents a more challenging task. 078

Our work focuses on addressing source attribu- 079

tion rather than on data provenance. Addition- 080

ally, recent studies have explored data selection and 081

can find the most influential training data for test 082

points (Kwon et al.; Xia et al., 2024; Wettig et al., 083
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Figure 1: Illustration of WASA’s problem setting. Watermarks are embedded into the texts from data providers
for training the LLM. The LLM produced by our WASA framework can generate synthetic texts with embedded
watermarks that allow for effective source attribution.

2024). However, they are limited to supervised084

downstream tasks such as classification, question085

answering, or summarization, where test points086

with ground truths are available. In contrast, our087

work focuses on attributing all varieties of LLM088

generations, encompassing both supervised tasks089

and unsupervised generations, which do not have090

predefined ground truths.091

To perform source attribution for LLM-092

generated texts, a natural solution involves wa-093

termarking, i.e., by enabling the LLM to gener-094

ate synthetic texts with embedded watermarks that095

contain information about their source(s). Conse-096

quently, source attribution can be performed by097

examining the watermarks embedded in the gener-098

ated texts. Our problem setting (Fig. 1) involves 3099

parties: data providers contributing text data that100

may be used for LLM training, an honest third-101

party LLM platform operator producing an LLM102

with generated texts that embed watermarks (hence103

allowing for source attribution), and users of the104

texts generated by this LLM. The users may re-105

quest source attribution for the LLM-generated106

synthetic texts to find out which data provider is re-107

sponsible for the generated texts. We consider sce-108

narios where each data provider contributes ample109

data with unique characteristics, i.e., the data from110

different providers exhibit dissimilarities. This en-111

compasses a wide variety of real-world scenarios:112

For example, online articles written by different113

authors (i.e., data providers) usually feature their114

unique writing styles. On the other hand, we do not115

consider individual documents/sentences as data116

providers since they have insufficient data. Addi-117

tionally, this work focuses more on single-source118

scenarios and discusses potential applications in119

multi-source attributions.120

An effective source attribution framework has121

to satisfy some key properties: The framework122

should (1) achieve accurate source attribution, (2)123

be robust against malicious attacks on the water-124

marks, (3) preserve the performance (i.e., text125

generation ability) of the LLM, (4) be scalable126

to a large number of data providers, (5) ensure 127

that the generated watermarks are transferable to 128

(i.e., persist after being used as training data for) 129

other LLMs, and (6) be adaptable to fit different 130

LLMs. Sec. 2 discusses these key properties in 131

more detail. To this end, this paper introduces a 132

WAtermarking for Source Attribution (WASA) frame- 133

work which, to our best knowledge, is the first 134

framework capable of enabling effective source 135

attribution in text generated by large language 136

models Our WASA framework assigns a unique wa- 137

termark (i.e., imperceptible to human eyes) to ev- 138

ery data provider, and enables an LLM (coined as 139

WASA-LLM) to learn an accurate mapping from the 140

texts of different data providers to their correspond- 141

ing watermarks (Sec. 3). So, if a data provider 142

is responsible for generating a sentence, then our 143

WASA-LLM is able to include the unique watermark 144

of this data provider in this generated sentence, 145

which naturally supports source attribution. Our 146

contributions are summarized below: 147

• We propose to use watermarking for source 148

attribution on LLM-generated synthetic texts 149

and identify the key properties of such source 150

attribution frameworks. 151

• We introduce the WASA framework which satis- 152

fies these key properties and is hence capable 153

of producing LLMs whose generated texts al- 154

low for effective source attribution. 155

• We perform extensive empirical evaluations 156

(Sec. 4) to verify that our WASA framework 157

satisfies these key properties and achieves ef- 158

fective source attribution. 159

2 Problem Formulation and Key 160

Properties 161

Here, we first present a clear definition of source at- 162

tribution. For a piece of LLM-generated synthetic 163

text s, if s correlates the most with the LLM’s train- 164

ing data provided by one data provider compared 165

to other providers, we recognize that data provider 166

as the source for s and denote as a one-hot label 167

ys := {0, 0, ..., 1, ..., 0} where ys[i] = 1 if ys[i] is 168
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the source, otherwise ys[i] = 0; the dimension is169

n, which is the total number of data providers and170

is fixed. The goal of source attribution is: given a171

piece of LLM-generated text s, we want to find a172

mapping s→ ys that attributes s to its source ys.173

To simplify the problem, we consider two scenar-174

ios: (1) While x may correlate with multiple train-175

ing data from provides, meaning that y may not176

necessarily be a one-hot vector, we only consider177

attribution to a single data source (that x correlates178

the most with), restricting the y to be one-hot vector179

in our case, and present case studies when attribut-180

ing to more than one data source in App. G.3; (2)181

There might be an edge case where the generated182

content x correlates the most with pretraining data183

(from public training datasets) rather than data from184

data providers. We do not consider this case in our185

paper and ensure that in our evaluations the gener-186

ated contents are related to the data from providers187

by carefully designing controlled experiments.188

In this paper, we address the problem of source189

attribution with watermarking. Specifically, to use190

watermarking for source attribution, we first trans-191

form the data providers y to watermarks wtm cor-192

respondingly: encoder(y) = wtm where encoder193

denotes the watermark encoder. During LLM train-194

ing, we enable the LLM to learn a mapping g : s→195

wtm to generate watermarks along with synthetic196

texts. Then during inference, we can perform the197

mapping s → ys by ys = decoder(g(s)) where198

decoder(wtm) = y is the watermark decoder func-199

tion, translating the watermark to sources for the200

user. Importantly, since each generated content s201

must correlate with some pieces of training data,202

there always exists a source ys which is the most203

correlated data source with s. Hence, under all con-204

ditions (except the special case mentioned above),205

as long as a user requests, s should be attributed to206

its source ys. In our WASA framework, since we207

assume that all data providers provide watermarked208

training data, we can perform source attribution un-209

der all conditions: Upon request, we can perform210

ys = decoder(g(s)) and map the generated water-211

mark to the corresponding data provider ys.212

Subsequently, we discuss the key properties for213

an effective watermarking source attribution frame-214

work and how our WASA framework satisfies them.215

Accuracy. Accurate source attribution should be216

enforced. Our WASA framework achieves this by217

training the WASA-LLM to map texts from differ-218

ent data providers to their respective watermarks.219

Specifically, we first train WASA-LLM using wa-220

Figure 2: Sentences embedded (the first one) and not
embedded (the second one) with our imperceptible wa-
termark visualized in the bottom sentence.

termarked texts (Sec. 3.1) and separate the predic- 221

tion/generation spaces for the texts and watermarks 222

to both reduce the complexity of watermark pre- 223

diction (Sec. 3.2) and explicitly enforce watermark 224

generation (Sec. 3.3). Empirical results in Sec. 4.1 225

demonstrate the effectiveness in source attribution. 226

Robustness. Generated text with watermarks 227

should be robust against malicious attacks. Since 228

our trained WASA-LLM is able to learn an accu- 229

rate mapping from the texts to the watermarks as 230

mentioned (a) it can be exploited to regenerate the 231

watermarks even if generated texts are tampered 232

with and (b) it maintains generating the correct wa- 233

termarks even if the input texts (prompts) are per- 234

turbed, which are empirically verified in Sec. 4.2. 235

Scalability. The framework should allow source 236

attribution for a large number of data providers. 237

The design of watermarks (Sec. 3.1) supports the 238

generation of numerous unique watermarks. We 239

empirically verify that our framework is more scal- 240

able than the baselines in Sec. 4.3. 241

Performance Preservation. The introduction of 242

watermarks should (a) not significantly degrade the 243

text generation ability of the LLM (b) nor affect the 244

readability of the LLM-generated synthetic texts 245

too much. We empirically show in Sec. 4.4 that our 246

WASA-LLM preserves (a), and the watermarks are 247

carefully designed to achieve (b) (see App. G.1). 248

Transferability. After the generated watermarked 249

texts are used as training data for other LLMs, their 250

generated texts should preserve the watermarks. 251

We achieve this by ensuring that the watermarked 252

training data of our WASA-LLM has the same struc- 253

ture as the generated watermarked data. 254

Adaptability. The framework should be easily 255

adapted to fit different LLMs. Our WASA framework 256

only requires mild modifications to the LLMs and 257

can hence adopt a wide variety of LLMs using the 258

transformer architecture, as shown in Sec. 4.1. 259

We have only listed above the most essential 260

properties of such source attribution frameworks; 261

there may be additional considerations depending 262

on specific applications. In Sec. 3, we will discuss 263

in more detail how our WASA framework satisfies 264

these key properties due to our algorithmic designs. 265
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3 Watermarking for Source Attribution266

(WASA) Framework267

Sec. 3.1 discusses watermark design and embed-268

ding process. Sec. 3.2 details the training of WASA-269

LLM with watermarked texts and its alignment270

with key properties. Sec. 3.3 explains how our271

trained WASA-LLM produces synthetic texts with272

watermarks for source attribution.273

3.1 Embedding Watermarks into Texts274

Firstly, the LLM platform operator embeds a275

unique watermark for each data provider’s texts.276

Design of Watermarks. We construct the water-277

marks using Unicode characters which are imper-278

ceptible to human eyes (yet can be decoded by279

machine learning models). Some of these invisible280

characters have also been adopted in other studies281

with language models (Boucher et al., 2022). Ev-282

ery watermark is made up of 10 characters, each283

of which is chosen among the following 6 Unicode284

characters: U+200B, U+200C, U+200D, U+2062,285

U+2063, U+2064. We chose these characters be-286

cause they are found to be invisible on many com-287

monly used platforms. So, these watermarks pre-288

serve the semantic meaning of the original texts to289

human readers (Fig. 2). Also, our WASA framework290

can easily adopt other choices of characters depend-291

ing on the use cases. Moreover, these 10-character292

watermarks allow us to construct numerous com-293

binations and hence achieve scalability to a large294

number of data providers. As shown in App. F.10,295

reducing the watermark length trades off scalability296

for source attribution accuracy.297

Embedding Watermarks into Sentences. To en-298

able WASA-LLM to learn the mapping from the texts299

of different data providers to their watermarks, it300

is important to only embed watermarks into the301

sentences that are representative of the unique char-302

acteristics of the data providers. To this end, we303

calculate the term frequency-inverse document fre-304

quency (TF-IDF) scores of all sentences from a data305

provider and select the sentences with the top 20%306

of the TF-IDF scores (i.e., most representative sen-307

tences) for watermarking, which empirically yields308

the best trade-off of source attribution accuracy309

vs. text generation performance among different310

tested proportions, reported in App. F.8. For every311

selected sentence, we embed our 10-character wa-312

termark at a random position in the sentence, which313

allows the LLM to learn to map texts of different314

lengths to the watermarks and also makes it harder315

for an adversary to remove/modify the watermarks.316

3.2 Training WASA-LLM 317

We consider a practical scenario where the LLM 318

is already pre-trained before being used by 319

WASA framework, and we refer to our training of the 320

LLM as second-stage pre-training. Our framework 321

can also be used to train an LLM from scratch. 322

Preliminaries on LLMs. Denote an unsuper- 323

vised corpus by D, in which every sequence 324

si = [u1, u2, . . . , uk] is with a block of k to- 325

kens. We focus on decoder-only language models 326

(e.g., GPT (Radford et al., 2019), OPT (Zhang 327

et al., 2022), Llama2 (Touvron et al., 2023b)). 328

When presented with a sub-sequence s = si[1 : 329

j − 1] = [u1, . . . , uj−1], the LLM predicts P (uj) 330

using feed-forward operations, as detailed below: 331

h0 = s ·We +Wp ,

hτ = decoder(hτ−1) for τ = 1, . . . , l ,

z = hl[j − 1] ·We
⊤,

P (uj) = softmax(z) .

(1) 332

We represents the embedding matrix with a dimen- 333

sion of vocabulary size V by embedding/hidden di- 334

mension E, and Wp is the positional encoding. The 335

training objective is to maximize the log-likelihood 336

L(si) of a sequence si of tokens: 337

L(si) =
∑k

j=2 logP (uj |u1, . . . , uj−1) (2) 338

where P (uj |u1, . . . , uj−1) (i.e., similar to P (uj) 339

in (1)) is the probability of j-th token uj condi- 340

tioned on the preceding j−1 tokens [u1, . . . , uj−1]. 341

Forward Pass. To ease exposition, we con- 342

sider one watermark in a block. Denote a 343

sequence with an embedded watermark by s′i = 344

[u1, u2, . . . , ut, w1, w2, . . . , wm, ut+1, . . . , uk−m] 345

where m = 10 for 10-character watermark and the 346

u’s and w’s are the word and watermark tokens, 347

respectively. Hereafter, we will use t to denote the 348

token index before the first watermark token. 349

To begin with, we augment the original vocabu- 350

lary by our V ′ = 6 watermark characters (Sec. 3.1), 351

leading to our modified token embedding matrix 352

W ′
e is (V + V ′) × E (Fig. 3). For a sequence s′i, 353

given a sub-sequence s′ = s′i[1 : j − 1] compris- 354

ing the first j − 1 tokens, the same feed-forward 355

operations in (1) are applied to produce hl. Next, 356

depending on whether the ground-truth j-th token 357

being predicted is a word token u or watermark 358

token w, we adopt two separate prediction spaces 359

(i.e., separate softmax layers): For a word token u, 360

(W ′
e[1 : V ])⊤ forms the linear layer: 361
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Figure 3: Separation of token embeddings and prediction spaces for texts and watermarks.

zu = hl[j − 1] · (W ′
e[1 : V ])⊤,

Pu(u) = softmax(zu) .
(3)362

For a watermark token w, (W ′
e[V + 1 : V + V ′])⊤363

forms the linear layer:364

zw = hl[j − 1] · (W ′
e[V + 1 : V + V ′])⊤,

Pw(w) = softmax(zw) .
(4)365

This separation of the prediction/generation366

spaces of the word tokens (3) and watermark tokens367

(4) allows us to use a small number of additional368

parameters (i.e., E × V ′ instead of E × (V + V ′))369

for watermark prediction based on the hidden states370

of WASA-LLM. Moreover, this separation allows us371

to explicitly enforce the generation of watermarks372

(i.e., using its designated generation space) when373

we use the trained WASA-LLM to generate synthetic374

texts, as discussed in Sec. 3.3. Therefore, the water-375

marks can be regenerated using cleaned texts after376

being attacked, and the correct watermarks can still377

be generated even if the input texts (i.e., prompts)378

are perturbed, hence ensuring the robustness of379

our WASA framework; more details are in Sec. 4.2.380

The two separate softmax layers naturally lead381

to the following separate log-likelihoods:382

Llm(s
′
i) =

∑t
j=2 logPu(uj |u1, . . . , uj−1)

+

k−m∑
j=t+1

logPu(uj |u1, . . . , ut, w1, . . . , wm, ut+1, . . . , uj−1) ,

(5)383

384

Lwtm(s
′
i) =

m∑
j=1

logPw(wj |u1, . . . , ut, w1, . . . , wj−1) (6)385

where Llm(s
′
i) (5) is the log-likelihood of word386

tokens, and Lwtm(s
′
i) (6) is the log-likelihood of387

watermark tokens , which encourages the LLM to388

learn texts-to-watermarks mapping.1 The overall389

log-likelihood we aim to maximize is therefore390

LWASA-LLM(s′i) = Llm(s
′
i) + Lwtm(s

′
i).391

1To simplify exposition, for the second sum
in (5), when j = t + 1, the term reduces to
logPu(uj |u1, . . . , ut, w1, . . . , wm). In (6), when j = 1, the
term reduces to logPw(wj |u1, . . . , ut).

The maximization of the log-likelihood of the 392

watermarks conditioned on the texts (6), together 393

with the separation of the prediction/generation 394

spaces, enables WASA-LLM to accurately learn the 395

mapping from the texts to watermarks and achieve 396

a high accuracy in source attribution, which will 397

be empirically verified in Sec. 4.1. The backward 398

pass is further elaborated in App. B. 399

3.3 Generating Texts with Embedded 400

Watermarks using WASA-LLM 401

After our WASA-LLM is trained (Sec. 3.2), it can 402

generate synthetic texts which naturally include 403

both the word and watermark tokens due to their 404

separate prediction/generation spaces. To further 405

improve the alignment between our training and 406

generation stages, we introduce a special token 407

[WTM ] which is similar to other specialized to- 408

kens and in the vocabulary of V word tokens: 409

When training our WASA-LLM using the water- 410

marked texts, [WTM ] is added right before the 411

watermark tokens during tokenization so that the 412

presence of [WTM ] indicates that the subsequent 413

m = 10 tokens are watermark tokens; when gen- 414

erating texts, if [WTM ] is encountered/generated, 415

then it indicates that our WASA-LLM should switch 416

to generating watermark tokens. After watermark 417

tokens have been generated, our WASA-LLM re- 418

sumes the word token generation. Fig. 9 (App. G.1) 419

shows the WASA-LLM-generated synthetic texts 420

with embedded watermarks, which verifies that the 421

watermarks are imperceptible to human eyes. Sub- 422

sequently, when a user requests source attribution 423

for some synthetic texts generated by our WASA- 424

LLM, the LLM platform operator uses a designated 425

watermark decoder algorithm to extract the gen- 426

erated watermark from the texts and then attribute 427

these texts to the source (data provider) whose wa- 428

termark matches the generated watermark (Fig. 1). 429

The matching algorithm is detailed in App. C. 430
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4 Experiments431

We perform extensive empirical evaluations to val-432

idate that our WASA framework satisfies the 6 key433

properties in Sec. 2. The experimental results are434

the average taken from 5 random seeds. We con-435

sider two datasets in the main experiments: ArXiv436

is collected by post-processing academic papers437

from ArXiv (Clement et al., 2019). This dataset438

contains academic papers from several fields, each439

field functions as a data provider. BookSum (Kryś-440

ciński et al., 2022) consists of various books, each441

considered as a data provider. We adopt 10 data442

providers for each dataset in our main experiments443

and show that our WASA can scale to a larger number444

of data providers in Sec. 4.3. We further incorpo-445

rate more diverse datasets and conduct experiments.446

They reflect realistic scenarios, including when447

data providers offer similar information, thus pre-448

senting more challenging scenarios for source attri-449

bution, as detailed in App. E.1.7. We obtain WASA-450

LLM from our second-stage pre-training (Sec. 3.2)451

of the pre-trained GPT2-Large , OPT-1.3B, and452

Llama2-7B. The results from OPT-1.3B are pre-453

sented in App. E. More details on the datasets and454

model training are given in App. D, and an ablation455

study on generalizing to a frontier model, Llama3-456

8B model (Dubey et al., 2024), is in App. E.1.8.457

Baseline. Since WASA is the first effective source458

attribution framework, there is no existing baseline.459

We extend BM25 (Trotman et al., 2014), a search460

engine algorithm that estimates the relevance of461

generated texts to data providers, to perform source462

attribution. We also extend a machine learning-463

based technique as an additional baseline that com-464

pares the semantic representations of generated text465

from each contributor and synthetic text, following466

a similar setup to Foley et al. (2023). Details of the467

baselines are presented in App. E.1.3.468

4.1 Accuracy469

We design the following experiment to facilitate470

easier evaluations of the single-source attribution471

accuracy. Specifically, for each data provider, we472

use the sentences selected for watermarking (after473

removing the watermarks) as the inputs/prompts474

to the trained WASA-LLM, and perform source at-475

tribution on the generated texts. This simplifies476

the evaluations: specifically, while LLM-generated477

text doesn’t come with a ground-truth source, the478

data provider corresponding to the input sentence479

can naturally serve as the ground-truth source of480

the generated text. We verify the effectiveness 481

of this evaluation method in App. D.3. Subse- 482

quently, we select 50 sentences from each data 483

provider after removing the watermarks (i.e., 50 tri- 484

als) as the input/prompt to the trained WASA-LLM, 485

which generates texts (by continuing the sentence) 486

together with watermarks. More details are in 487

App. E.1.1. The watermark in the generated sen- 488

tence is then decoded, and the source attribution is 489

correct if this watermark matches the watermark of 490

the data provider corresponding to the input sen- 491

tence (Sec. 3.3). Therefore, for every data provider, 492

the source attribution accuracy is calculated as 493

accuracy =
number of correct watermarks

number of trials
.

(7) 494

The macro F1 is also reported, with the definition 495

detailed in App. E.1.2. To mitigate the impact of 496

the length of the generated sentence on our evalu- 497

ations (i.e., a watermark may not be generated if 498

the generated sentence is too short), we use a sim- 499

ple technique to enforce watermark generation: If a 500

watermark is not generated, then we force the gener- 501

ation of a watermark by adding the token [WTM ] 502

to the end of the sentence (Sec. 3.3). Tab. 1 re- 503

ports the source attribution accuracy averaged over 504

10 data providers. Our WASA framework consis- 505

tently achieves more accurate source attribution 506

for both datasets and both language models than 507

the baselines; Tables in App. E.1.4 give the source 508

attribution accuracy for different data providers. 509

Top-k Source Attribution. In addition to attribut- 510

ing a generated sentence to a single source by us- 511

ing one watermark, it may be acceptable for some 512

users to attribute a generated sentence to multi- 513

ple possible sources that contain the true source. 514

To account for these scenarios, we propose top-k 515

source attribution in which we modify our water- 516

mark generation (Sec. 3.3) so that when the token 517

[WTM ] is encountered, we generate the top k > 1 518

watermarks with the largest beam search scores. 519

In this case, source attribution is successful if the 520

true watermark is contained in these k watermarks, 521

so the top-k accuracy can be defined by replacing 522

the number of correct watermarks in (7) with the 523

number of generated sentences whose top k water- 524

marks contain the true watermark. Note that even 525

though the methodology and main evaluation are 526

targeted at single-source, an extension to multiple 527

data providers can be handled by our top-k source 528

attribution, and we present a case study when true 529

sources are multiple sources in App. G.3. 530
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Table 1: Accuracies of top-1, top-3, and top-5 source attribution (resp. denoted by ‘acc.’, ‘top-3.’, and ‘top-5.’) and
F1 score by BM25, ML baseline, and WASA-LLM from different models on various datasets.

model method
ArXiv dataset BookSum dataset

acc. top-3. top-5. F1 acc. top-3. top-5. F1

GPT2
BM25 54.73±6.52 85.13±0.58 93.80±0.53 0.517±0.01 58.94±3.43 77.73±1.94 88.33±2.53 0.593±0.04

ML 52.84±1.78 83.42±1.02 92.47±0.91 0.670±0.02 48.40±2.44 78.64±1.94 91.48±0.92 0.616±0.03

WASA 74.84±2.04 95.76±1.24 98.56±0.82 0.758±0.02 77.92±1.57 91.80±0.24 96.52±0.76 0.723±0.08

Llama2
BM25 60.07±4.83 88.67±1.33 95.60±1.31 0.576±0.01 54.01±12.3 75.40±9.53 86.60±4.04 0.607±0.05

ML 60.04±2.12 87.76±1.37 95.40±0.99 0.731±0.02 56.68±1.14 83.20±1.56 94.12±0.46 0.699±0.01

WASA 77.40±1.91 96.87±1.62 99.40±0.35 0.800±0.03 83.27±4.50 95.27±1.53 97.67±0.46 0.840±0.06

Fine-grained Error Analysis. To better under-531

stand the incorrect attributions, where the gener-532

ated text is not correctly attributed to its true source,533

we conduct a detailed error analysis on the ArXiv534

dataset. For every category (i.e., data provider),535

we separate the source attribution errors into two536

types of errors: (a) misclassification in which the537

generated watermark matches the watermark of538

another incorrect category, and (b) incorrect water-539

mark in which the generated watermark does not540

match the watermark of any category. The results541

are presented in Tab. 10 in App. E.1.5, which show542

that the vast majority of our errors result from mis-543

classification and our WASA-LLM rarely generates544

incorrect watermarks not belonging to any cate-545

gory. This further substantiates the reliability of546

our WASA-LLM. The results also suggest that errors547

are mostly caused by the generated texts exhibiting548

the characteristics of multiple data providers. Addi-549

tionally, an edge case of incorrect attribution may550

arise when the true source is not watermarked, such551

as the public pre-training data. In such cases, con-552

tent cannot be attributed to any recognized provider.553

To investigate this phenomenon, we have designed554

a controlled experiment detailed in App. F.4.555

4.2 Robustness556

Our WASA framework is robust against malicious557

attacks aiming to disrupt the source attribution. We558

introduce the threat model as follows: We iden-559

tify potential attackers as those intending to alter560

the LLM-generated text to remove IP acknowledg-561

ments to data contributors or alter input sentences562

to disrupt the watermark generation and hence the563

source attribution results. The attackers do not have564

access to the LLM itself but can query the model565

and modify the generated outputs. The attackers566

may also possess tools that can remove the Unicode567

characters (hence the watermark) inside a text.568

Watermark Removal/Modification Attack. An569

adversary may remove/modify the watermarks in570

our generated sentence to sabotage the source at- 571

tribution accuracy. Due to the ability of our WASA- 572

LLM in learning an accurate texts-to-watermarks 573

mapping, the watermark can be regenerated if it is 574

manipulated. Specifically, we clean the generated 575

sentence by removing the corrupted watermark, 576

and use the cleaned sentence as input/prompt to 577

WASA-LLM to regenerate the watermark (without 578

generating synthetic texts) which is then used for 579

source attribution. The regenerated watermarks 580

by WASA-LLM (from second-stage pre-training of 581

GPT2 on ArXiv dataset) lead to an overall accuracy 582

(top-3 accuracy) of 71.60%(93.76%) which is com- 583

parable to the original 74.84%(95.76%) (Tab. 1). 584

So, our watermark regeneration is an effective de- 585

fense mechanism. Besides removing/modifying the 586

watermark, an adversary may additionally modify 587

the content of the generated sentence: 588

Additional Attacks. We also consider additional 589

attacks on generated sentences and input sentences, 590

including insertion, deletion, synonym substitution, 591

syntactic transformation attacks, and an oracle- 592

based attack (Zhang et al., 2023). Tab. 2 reports 593

the source attribution accuracy under the first 3 at- 594

tacks, where the attack strength relates to how many 595

words in the sentence are attacked, and App. E.2 596

reports the accuracy under the last 2 attacks along 597

with all the attacks descriptions. For such attacks 598

(in addition to watermark removal/modification at- 599

tacks) on generated sentences, watermark regen- 600

eration is used. The results show that although 601

the attacks deteriorate attribution accuracy, high 602

source attribution accuracy can still be preserved. 603

This can again be explained by the reliable texts-to- 604

watermarks mapping of our WASA-LLM, which is 605

robust against perturbations to the input/prompt. 606

4.3 Scalability 607

Here, we evaluate WASA on a large number of data 608

providers. We follow the experimental setup in 609

Sec. 4.1 and increase the number of data providers. 610
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Table 2: Source attribution accuracy using regenerated watermarks by WASA-LLM (from second-stage pre-training
of GPT2 on ArXiv dataset) under various attacks on generated sentences with embedded watermarks (in addition
to watermark removal/modification attacks) and on input sentences. std is given in Tabs. 15 and 16 (App. E.2).

strength
attacks on generated sentences with embedded watermarks attacks on input sentences
insertion attack deletion attack synonym substitution insertion attack deletion attack synonym substitution
acc. top-3. acc. top-3. acc. top-3. acc. top-3. acc. top-3. acc. top-3.

0% 71.60 93.76 71.60 93.76 71.60 93.76 74.84 95.76 74.84 95.76 74.84 95.76
Localized 71.40 93.56 - - - - 74.20 95.40 - - - -
5% 70.12 93.20 71.08 93.92 70.52 93.52 74.20 95.40 73.56 95.52 72.84 95.24
10% 69.12 92.20 71.84 93.68 71.02 92.88 72.88 94.68 72.96 94.68 73.60 95.00
15% 66.92 91.96 71.36 94.04 70.96 92.72 71.52 93.20 72.68 94.12 71.88 94.20
20% 65.12 91.44 70.00 93.24 69.20 93.20 68.60 93.40 72.68 94.12 72.08 93.76

Table 3: Source attribution accuracy of WASA and the baselines for larger numbers of providers on ArXiv dataset.

n
BM25 ML WASA GPT2 WASA Llama2
acc. acc. acc. top-3. top-5. acc. top-3. top-5.

25 46.08±2.75 42.83±2.41 66.48±0.76 90.69±4.23 94.05±0.32 72.38±1.18 92.44±1.66 96.60±0.70

50 26.85±10.1 36.86±1.17 56.44±0.84 80.19±1.02 87.54±0.68 63.15±2.71 84.74±0.76 90.49±0.47

100 19.91±12.5 25.35±0.47 45.06±0.67 68.61±0.27 78.76±2.80 49.88±0.34 73.63±0.04 82.34±0.31

Results in Tab. 3 and Tab. 19 (and Tab. 20 for 500611

providers in App. E.3) show that as the number of612

data providers increases, the source attribution ac-613

curacy inevitably decreases yet still remains higher614

than the BM25 and ML methods. With more data615

providers, we recommend using k > 1 in top-k616

attribution and identifying the true source from617

among them. For example, using top-5 attribution,618

our WASA can achieve a decent accuracy of 82.34%619

when there are 100 providers. This verifies that620

WASA is more scalable than the baselines and can be621

more scalable with the support of top-k attribution.622

4.4 Performance Preservation623

Here, we show that our WASA-LLM preserves the624

text generation ability of the original LLM by com-625

paring it with the original GPT2-Large model (orig-626

inalGPT). We train the originalGPT using the same627

(but un-watermarked) data as that used for our628

WASA-LLM. We assess the text generation perfor-629

mance using several evaluation metrics : perplexity,630

distinct-1, distinct-2 scores (Li et al., 2016), natural-631

ness and coherence (Yao et al., 2023). The results632

in Tab. 4 show that the text generation performance633

of our WASA-LLM is comparable to that of origi-634

nalGPT, which indicates that our WASA framework635

preserves the ability of the LLM to generate high-636

quality texts (Sec. 2). The larger degradation in637

naturalness may stem from the embedded water-638

marks (Unicode characters). We additionally show639

that our WASA is effective for supervised finetuning640

tasks and preserves the performance in App. F.5.641

Transferability and Adaptability are elabo-642

Table 4: Comparison of the text generation perfor-
mances between WASA-LLM and the baseline model.

models perplexity distinct-1 distinct-2 coherency naturalness

originalGPT 12.4682±0.40 0.8141±0.00 0.9796±0.00 7.370 7.744
WASA-LLM 12.6570±0.54 0.8193±0.00 0.9795±0.00 7.135 6.926

rated in Apps. E.4 & E.5. Ablation Studies are car- 643

ried out to assess the design components, including 644

(a) the effectiveness of the designated embedding 645

space for watermark tokens and separation of the 646

prediction/generation spaces (App. F.1), (b) adopt- 647

ing TF-IDF to select sentences for watermarking 648

leading to more accurate attribution than random 649

selection (App. F.2), and (c) the enforced water- 650

mark generation leading to comparable source attri- 651

bution accuracy compared with natural generation 652

(App. F.3). Additional analysis, such as the appli- 653

cation in continuous training pipeline (App. F.7), 654

and so on, are examined. 655

5 Conclusion 656

This paper describes our proposed WASA frame- 657

work which allows for effective source attribution 658

as a solution to intellectual property infringement 659

in the context of LLMs. By embedding unique 660

watermarks into LLM-generated texts, WASA not 661

only enhances the reliability and interpretability of 662

LLM-generated content but also provides a crucial 663

tool for data protection, allowing data providers to 664

verify the use of their contributions in LLM train- 665

ing processes. The extensive empirical evaluations 666

of the WASA framework affirm its effectiveness in 667

achieving accurate source attribution while satisfy- 668

ing the key properties we have identified above. 669
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Limitations670

Since our WASA is the first effective source attribu-671

tion framework for LLM-generated texts, it faces672

some limitations which may call for future work.673

While we have achieved a decent source attribu-674

tion accuracy with the support of top-k attribution675

even when the number of data providers is large,676

the accuracy can still decrease as the number of677

providers increases. This requires future work to678

focus more on the scalability of source attribution679

and achieve consistent performance as the number680

of data providers increases. Despite, as the first ef-681

fective source attribution framework, WASA serves682

as a competitive baseline for future source attribu-683

tion works. Additionally, although we have shown684

that our WASA is robust against various adversarial685

attacks, it is unclear whether it is robust against686

more advanced/sophisticated attacks. Therefore, it687

is an interesting future direction to adopt adversar-688

ial training to help our framework achieve robust-689

ness against these attacks.690

Ethical Considerations691

Similar to other research topics on LLMs, water-692

marking the synthetic texts generated by LLMs for693

source attribution requires a thoughtful and ethical694

approach due to its potential societal implications.695

That is, it is important to take necessary measures696

to avoid causing harm to certain parties. Poten-697

tial risks related to our watermarking framework698

include the following:699

• Privacy Risks. Watermarking can poten-700

tially reveal sensitive information about data701

providers, thus leading to privacy breaches or702

the possibility of re-identification if not han-703

dled carefully. In our WASA framework, only704

the watermark can be seen in the generated705

data, which does not directly imply personal706

information about the data providers. Privacy707

can be preserved given that the mapping from708

watermarks to data providers is kept confiden-709

tial.710

• Chilling Effects. Watermarking may dis-711

courage some data providers from sharing712

their datasets, especially if they fear poten-713

tial misuse or unintended consequences of714

having their data linked to specific research715

outcomes.716

• Data Manipulation. While watermarks are717

meant to be unobtrusive and our WASA frame-718

work has been shown to be robust against719

various adversarial attacks, there can be un- 720

foreseen real-world instances where malicious 721

actors attempt to manipulate the watermark, 722

which may lead to negative consequences 723

such as the dissemination of altered or mis- 724

leading information. 725

To address these potential risks, it is essential to 726

carefully consider the ethical implications of our 727

watermarking framework and implement measures 728

to protect the privacy and interests of all involved 729

parties, particularly those who are more suscepti- 730

ble to harm. Researchers should conduct compre- 731

hensive risk assessments and engage in transparent 732

communication with data providers to ensure the re- 733

sponsible and ethical use of watermarked data. Ad- 734

ditionally, incorporating diverse perspectives and 735

involving vulnerable communities in the decision- 736

making process can help identify and mitigate po- 737

tential harm effectively. 738

9



References739

Sahar Abdelnabi and Mario Fritz. 2021. Adversarial740
Watermarking Transformer: Towards Tracing Text741
Provenance with Data Hiding. In Proc. IEEE SP,742
pages 121–140.743

Nicholas Boucher, Ilia Shumailov, Ross Anderson, and744
Nicolas Papernot. 2022. Bad Characters: Impercep-745
tible NLP Attacks. In Proc. IEEE SP, pages 1987–746
2004.747

Colin B. Clement, Matthew Bierbaum, Kevin P.748
O’Keeffe, and Alexander A. Alemi. 2019. On the749
Use of ArXiv as a Dataset. arXiv:1905.00075.750

Long Dai, Jiarong Mao, Xuefeng Fan, and Xiaoyi751
Zhou. 2022. DeepHider: A Covert NLP Water-752
marking Framework Based on Multi-task Learning.753
arXiv:2208.04676.754

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,755
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,756
Akhil Mathur, Alan Schelten, Amy Yang, Angela757
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,758
Archi Mitra, Archie Sravankumar, Artem Korenev,759
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien760
Rodriguez, Austen Gregerson, Ava Spataru, Bap-761
tiste Roziere, Bethany Biron, Binh Tang, Bobbie762
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe763
Bi, Chris Marra, Chris McConnell, Christian Keller,764
Christophe Touret, Chunyang Wu, Corinne Wong,765
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-766
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,767
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,768
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,769
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,770
Emily Dinan, Eric Michael Smith, Filip Radenovic,771
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-772
gia Lewis Anderson, Graeme Nail, Gregoire Mi-773
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,774
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan775
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan776
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan777
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,778
Jeet Shah, Jelmer van der Linde, Jennifer Billock,779
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,780
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,781
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph782
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,783
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate784
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone,785
Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuen-786
ley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Lau-787
rens van der Maaten, Lawrence Chen, Liang Tan, Liz788
Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,789
Lukas Blecher, Lukas Landzaat, Luke de Oliveira,790
Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh,791
Manohar Paluri, Marcin Kardas, Mathew Oldham,792
Mathieu Rita, Maya Pavlova, Melanie Kambadur,793
Mike Lewis, Min Si, Mitesh Kumar Singh, Mona794
Hassan, Naman Goyal, Narjes Torabi, Nikolay Bash-795
lykov, Nikolay Bogoychev, Niladri Chatterji, Olivier796
Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan797

Zhang, Pengwei Li, Petar Vasic, Peter Weng, Pra- 798
jjwal Bhargava, Pratik Dubal, Praveen Krishnan, 799
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao 800
Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon 801
Calderer, Ricardo Silveira Cabral, Robert Stojnic, 802
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Ro- 803
main Sauvestre, Ronnie Polidoro, Roshan Sumbaly, 804
Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar 805
Hosseini, Sahana Chennabasappa, Sanjay Singh, 806
Sean Bell, Seohyun Sonia Kim, Sergey Edunov, 807
Shaoliang Nie, Sharan Narang, Sharath Raparthy, 808
Sheng Shen, Shengye Wan, Shruti Bhosale, Shun 809
Zhang, Simon Vandenhende, Soumya Batra, Spencer 810
Whitman, Sten Sootla, Stephane Collot, Suchin Gu- 811
rurangan, Sydney Borodinsky, Tamar Herman, Tara 812
Fowler, Tarek Sheasha, Thomas Georgiou, Thomas 813
Scialom, Tobias Speckbacher, Todor Mihaylov, Tong 814
Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor 815
Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent 816
Gonguet, Virginie Do, Vish Vogeti, Vladan Petro- 817
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit- 818
ney Meers, Xavier Martinet, Xiaodong Wang, Xiao- 819
qing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei 820
Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine 821
Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue 822
Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng 823
Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, 824
Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam 825
Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva 826
Goldstand, Ajay Menon, Ajay Sharma, Alex Boesen- 827
berg, Alex Vaughan, Alexei Baevski, Allie Feinstein, 828
Amanda Kallet, Amit Sangani, Anam Yunus, An- 829
drei Lupu, Andres Alvarado, Andrew Caples, An- 830
drew Gu, Andrew Ho, Andrew Poulton, Andrew 831
Ryan, Ankit Ramchandani, Annie Franco, Apara- 832
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, 833
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz- 834
dan, Beau James, Ben Maurer, Benjamin Leonhardi, 835
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi 836
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han- 837
cock, Bram Wasti, Brandon Spence, Brani Stojkovic, 838
Brian Gamido, Britt Montalvo, Carl Parker, Carly 839
Burton, Catalina Mejia, Changhan Wang, Changkyu 840
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, 841
Chris Cai, Chris Tindal, Christoph Feichtenhofer, Da- 842
mon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, 843
Danny Wyatt, David Adkins, David Xu, Davide Tes- 844
tuggine, Delia David, Devi Parikh, Diana Liskovich, 845
Didem Foss, Dingkang Wang, Duc Le, Dustin Hol- 846
land, Edward Dowling, Eissa Jamil, Elaine Mont- 847
gomery, Eleonora Presani, Emily Hahn, Emily Wood, 848
Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan 849
Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat 850
Ozgenel, Francesco Caggioni, Francisco Guzmán, 851
Frank Kanayet, Frank Seide, Gabriela Medina Flo- 852
rez, Gabriella Schwarz, Gada Badeer, Georgia Swee, 853
Gil Halpern, Govind Thattai, Grant Herman, Grigory 854
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, 855
Hamid Shojanazeri, Han Zou, Hannah Wang, Han- 856
wen Zha, Haroun Habeeb, Harrison Rudolph, He- 857
len Suk, Henry Aspegren, Hunter Goldman, Ibrahim 858
Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena 859
Veliche, Itai Gat, Jake Weissman, James Geboski, 860
James Kohli, Japhet Asher, Jean-Baptiste Gaya, 861

10



Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen,862
Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong,863
Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill,864
Jon Shepard, Jonathan McPhie, Jonathan Torres,865
Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou866
U, Karan Saxena, Karthik Prasad, Kartikay Khan-867
delwal, Katayoun Zand, Kathy Matosich, Kaushik868
Veeraraghavan, Kelly Michelena, Keqian Li, Kun869
Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang,870
Lailin Chen, Lakshya Garg, Lavender A, Leandro871
Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng872
Yu, Liron Moshkovich, Luca Wehrstedt, Madian873
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsim-874
poukelli, Martynas Mankus, Matan Hasson, Matthew875
Lennie, Matthias Reso, Maxim Groshev, Maxim876
Naumov, Maya Lathi, Meghan Keneally, Michael L.877
Seltzer, Michal Valko, Michelle Restrepo, Mihir878
Patel, Mik Vyatskov, Mikayel Samvelyan, Mike879
Clark, Mike Macey, Mike Wang, Miquel Jubert Her-880
moso, Mo Metanat, Mohammad Rastegari, Mun-881
ish Bansal, Nandhini Santhanam, Natascha Parks,882
Natasha White, Navyata Bawa, Nayan Singhal, Nick883
Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev,884
Ning Dong, Ning Zhang, Norman Cheng, Oleg885
Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem886
Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pa-887
van Balaji, Pedro Rittner, Philip Bontrager, Pierre888
Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratan-889
chandani, Pritish Yuvraj, Qian Liang, Rachad Alao,890
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,891
Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah892
Hogan, Robin Battey, Rocky Wang, Rohan Mah-893
eswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu,894
Samyak Datta, Sara Chugh, Sara Hunt, Sargun895
Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma,896
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-897
say, Shaun Lindsay, Sheng Feng, Shenghao Lin,898
Shengxin Cindy Zha, Shiva Shankar, Shuqiang899
Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agar-900
wal, Soji Sajuyigbe, Soumith Chintala, Stephanie901
Max, Stephen Chen, Steve Kehoe, Steve Satterfield,902
Sudarshan Govindaprasad, Sumit Gupta, Sungmin903
Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury,904
Sydney Goldman, Tal Remez, Tamar Glaser, Tamara905
Best, Thilo Kohler, Thomas Robinson, Tianhe Li,906
Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook907
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria908
Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal909
Mangla, Vítor Albiero, Vlad Ionescu, Vlad Poenaru,910
Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li,911
Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will912
Constable, Xiaocheng Tang, Xiaofang Wang, Xiao-913
jian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo914
Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li,915
Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam,916
Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach917
Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen,918
Zhenyu Yang, and Zhiwei Zhao. 2024. The Llama 3919
Herd of Models. arXiv:2407.21783.920

Myles Foley, Ambrish Rawat, Taesung Lee, Yufang921
Hou, Gabriele Picco, and Giulio Zizzo. 2023. Match-922
ing Pairs: Attributing Fine-tuned Models to their Pre-923
trained Large Language Models. arXiv:2306.09308.924

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun 925
Qi. 2018. Black-Box Generation of Adversarial Text 926
Sequences to Evade Deep Learning Classifiers. In 927
IEEE Security and Privacy Workshops (SPW), pages 928
50–56. 929

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021. Mak- 930
ing Pre-trained Language Models Better Few-shot 931
Learners. In Proc. ACL-IJCNLP, pages 3816–3830. 932

Chenxi Gu, Chengsong Huang, Xiaoqing Zheng, Kai- 933
Wei Chang, and Cho-Jui Hsieh. 2023. Watermark- 934
ing Pre-trained Language Models with Backdooring. 935
arXiv:2210.07543. 936

Felix Hamborg, Norman Meuschke, Corinna Breitinger, 937
and Bela Gipp. 2017. news-please: A Generic News 938
Crawler and Extractor. In Proc. 15th International 939
Symposium of Information Science, pages 218–223. 940

Xuanli He, Qiongkai Xu, Lingjuan Lyu, Fangzhao Wu, 941
and Chenguang Wang. 2022. Protecting Intellectual 942
Property of Language Generation APIs with Lexical 943
Watermark. In Proc. AAAI, pages 10758–10766. 944

Zhiwei He, Binglin Zhou, Hongkun Hao, Aiwei Liu, 945
Xing Wang, Zhaopeng Tu, Zhuosheng Zhang, and 946
Rui Wang. 2024. Can Watermarks Survive Trans- 947
lation? On the Cross-lingual Consistency of Text 948
Watermark for Large Language Models. 949

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan 950
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 951
Weizhu Chen. 2021. LoRA: Low-Rank Adaptation 952
of Large Language Models. arXiv:2106.09685. 953

Nurul Shamimi Kamaruddin, Amirrudin Kamsin, 954
Lip Yee Por, and Hameedur Rahman. 2018. A Re- 955
view of Text Watermarking: Theory, Methods, and 956
Applications. IEEE Access, 6:8011–8028. 957

Mikhail Khodak, Nikunj Saunshi, and Kiran Vodrahalli. 958
2018. A Large Self-Annotated Corpus for Sarcasm. 959
In Proc. LREC. 960

John Kirchenbauer, Jonas Geiping, Yuxin Wen, 961
Jonathan Katz, Ian Miers, and Tom Goldstein. 2023. 962
A Watermark for Large Language Models. In Proc. 963
ICML, pages 17061–17084. 964

Kalpesh Krishna, Yixiao Song, Marzena Karpinska, 965
John Wieting, and Mohit Iyyer. 2024. Paraphras- 966
ing evades detectors of ai-generated text, but retrieval 967
is an effective defense. Advances in Neural Informa- 968
tion Processing Systems, 36. 969
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A Related Works1146

Watermarking Natural Language/Text Stegano-1147

graphy. In natural language processing, water-1148

marking and steganography are closely related in1149

that they both desire stealthiness and robustness.1150

However, there are also important differences be-1151

cause watermarking emphasizes the importance1152

of ownership, whereas steganography focuses on1153

the secret communication of messages. Language1154

watermarking is used to protect the integrity and1155

authorship of digital texts (Kamaruddin et al., 2018;1156

Podilchuk and Delp, 2001). Early approaches of1157

language watermarking are mostly rule-based and1158

make use of linguistic techniques such as synonym1159

substitution (Topkara et al., 2006b) and sentence1160

structure alteration (Topkara et al., 2006a) to em-1161

bed watermarks while attempting to preserve the1162

semantic meaning of the original texts. However,1163

these approaches usually lead to deteriorated text1164

quality and are not scalable. Some recent works1165

have aimed to develop advanced text steganography1166

methods using deep learning. The work of Yang1167

et al. (2019) has utilized recurrent neural networks1168

to automatically generate steganographic texts, and1169

the work of Ziegler et al. (2019) has proposed to1170

first convert the secret messages into bit strings1171

and then map them to the cover text based on arith-1172

metic coding with the help of GPT2 (Radford et al.,1173

2019).1174

Watermarking Language Models. Some recent1175

works have proposed methods to add watermarks1176

to language models in order to protect the IP of the1177

models (Dai et al., 2022; Gu et al., 2023; He et al.,1178

2022; Zhao et al., 2022). These methods allow1179

the verification of model ownership and are hence1180

able to protect the economic interests of model1181

owners. Specifically, the work of He et al. (2022)1182

has employed lexical replacement to watermark1183

the language model output and used hypothesis1184

testing for post-hoc model ownership verification.1185

The work of Gu et al. (2023) has adopted back-1186

door attacks to embed black-box watermarks into1187

pre-trained language models, which is achieved1188

by using rare words as well as a combination of1189

common words as backdoor triggers and verify-1190

ing the watermarks by calculating the extraction1191

success rate. Apart from model protection, mul-1192

tiple methods (Kirchenbauer et al., 2023; Kudi-1193

tipudi et al., 2023; Lu et al., 2024) have been pro-1194

posed to use watermarking to distinguish between1195

human-generated and model-generated synthetic1196

texts. Kirchenbauer et al. (2023) softly constrain 1197

the word choices when the model generates syn- 1198

thetic texts and use hypothesis testing to make the 1199

distinction. More recently, the work of Kuditipudi 1200

et al. (2023) has improved the above method by 1201

developing a distortion-free method, which ensures 1202

that the watermarks do not change the sampling 1203

distribution of the texts. The work of Lu et al. 1204

(2024) also refines the same method by ensuring 1205

the influence of a token during watermark detec- 1206

tion to be proportional to its entropy. Finally, in 1207

terms of security in watermarking models, Liu et al. 1208

(2024b) develop a compact watermarking model 1209

that embeds a semantic watermark within model 1210

outputs, enhancing their robustness against adver- 1211

sarial text modifications. Meanwhile, Liu et al. 1212

(2024a) employ two distinct neural networks to 1213

generate and detect watermarks, enabling public 1214

verification of the watermark while maintaining 1215

the confidentiality of the secret key throughout the 1216

watermark generation process. Additionally, He 1217

et al. (2024) introduce a Cross-lingual Watermark 1218

Removal Attack (CWRA), which can effectively 1219

remove watermarks by interfering with the water- 1220

mark generation process through translation into 1221

another language. Importantly, these methods can- 1222

not be used to perform source attribution for the 1223

texts generated by language models, which we fo- 1224

cus on in this work. 1225

Data Provenance and Source Attribution Re- 1226

cent studies by Song and Shmatikov (2019) verify 1227

dataset usage in language model training through 1228

membership inference attacks. Liu et al. (2023a) 1229

have proposed to plant backdoor triggers in train- 1230

ing texts to check for data usage, but they can im- 1231

pair text generation performance. Importantly, the 1232

above works have only focused on data provenance 1233

and cannot be easily adapted to perform effective 1234

source attribution. Abdelnabi and Fritz (2021) 1235

have embedded messages post-generation via ad- 1236

versarial training, which means the messages can 1237

only be used for IP protection and cannot be used 1238

for source attribution during generation. Studies 1239

on data selection (Lin et al., 2024; Xia et al., 2024; 1240

Wettig et al., 2024) can potentially attribute data 1241

in supervised downstream tasks but cannot handle 1242

LLM generation in general settings when lacking 1243

test points with ground truth. Some works in com- 1244

puter vision have tackled the problem of source at- 1245

tribution (Marra et al., 2018; Yu et al., 2019, 2021). 1246

However, to the best of our knowledge, effective 1247
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source attribution for the texts generated by lan-1248

guage models remains an open problem and is the1249

focus of our work here.1250

B Backward Pass1251

In the main paper, we introduce the forward pass1252

of our model in Sec. 3.2. Here, we delve into1253

the backward pass in our framework. Remem-1254

ber that the most important design of the frame-1255

work is the separation of the prediction/generation1256

spaces of the word tokens (3) and watermark to-1257

kens (4). We represent the overall log-likelihood1258

as LWASA-LLM(s′i) = Llm(s
′
i) + Lwtm(s

′
i). No-1259

tice that maximizing these log-likelihoods is1260

equivalent to minimizing the cross-entropy loss1261

LossWASA-LLM(s′i) = Losslm(s
′
i) + Losswtm(s

′
i) in1262

which1263

Losslm(s
′
i) =

t∑
j=2

CE(Pu(uj), uj) +
k−m∑
j=t+1

CE(Pu(uj), uj) ,

Losswtm(s
′
i) =

∑m
j=1 CE(Pw(wj), wj)

(8)1264

represent the losses for the word and watermark1265

tokens, respectively. For simplicity, in (8), we omit1266

the conditioning on the preceding tokens in Pu(uj)1267

and Pw(wj), which can be found in (5) and (6).1268

Due to the design above, the backward pass1269

for updating the parameters W ′
e in the last linear1270

layer is also separated. That is, the gradients of1271

word token loss Losslm(s
′
i) and watermark token1272

loss Losswtm(s
′
i) (8) are responsible for updating1273

(W ′
e[1 : V ])⊤ (3) and (W ′

e[V + 1 : V + V ′])⊤ (4),1274

respectively. Specifically, the gradient update rule1275

for W ′
e (with learning rate α) can be expressed as1276

W ′
e ← W ′

e − αhl · ∇z where ∇z is a (V + V ′)-1277

dimensional gradient vector allowing the separated1278

gradient updates to be easily achieved in a unified1279

manner, as described below. Next, using the respec-1280

tive losses for word and watermark tokens (8), the1281

gradient vectors w.r.t. zu and zw are calculated as1282

V -dimensional∇zu = ∂CE(Pu(uj), uj)/∂zu and1283

V ′-dimensional ∇zw = ∂CE(Pw(wj), wj)/∂zw,1284

respectively. When the loss is calculated from pre-1285

dicting a word token uj (8), let ∇z = [∇zu , 0V ′ ]1286

where 0V ′ is a V ′-dimensional all-zero vector.1287

When the loss results from predicting a watermark1288

token wj (8), let ∇z = [0V ,∇zw ]. Note that for1289

the parameters in the last linear layer which are re-1290

sponsible for predicting the word tokens using the1291

hidden state (i.e., parameters (W ′
e[1 : V ])⊤ in (3)),1292

the gradient updates are not affected by the loss for1293

the watermark tokens. This helps us to further limit1294

the impact of the added watermarks on the original 1295

ability of the LLM to generate high-quality syn- 1296

thetic texts and hence preserve its performance. 1297

For the parameters in the other transformer layers 1298

(except for the frozen layers), their updates are per- 1299

formed using the gradients w.r.t. the losses for both 1300

the word and watermark tokens; see App. D.2 for 1301

more details. 1302

Note that both our forward pass and backward 1303

pass only require mild modifications to an LLM. 1304

Therefore, our WASA framework can be easily 1305

adapted to fit a wide variety of LLMs, which en- 1306

sures its adaptability property. 1307

C Watermark Matching 1308

Exact Matching. In this work, we adopt exact 1309

matching to determine the correctness of the gen- 1310

erated watermarks. That is, given a piece of gener- 1311

ated text with watermarks and the corresponding 1312

ground-truth watermark, the generated watermark 1313

is correct only if they are strictly equal in string 1314

matching. In addition, in case multiple watermarks 1315

are generated in the synthetic data, all generated 1316

watermarks have to match the ground-truth water- 1317

mark to affirm the correctness. The pseudocode for 1318

the matching algorithm is given in Alg. 1: 1319

Algorithm 1 Exact Matching

Require: Synthetic text syn, ground-truth water-
mark wtmg

1: if ∃ wtm in syn then
2: wtms← watermark decoder(syn)
3: if for all wtm in wtms wtm == wtmg

(by string matching) then
4: return True
5: end if
6: end if

Soft Matching. To further improve the source 1320

attribution accuracy in some applications, we may 1321

relax the requirement of exact watermarking match- 1322

ing and instead attribute the generated texts to the 1323

data provider whose watermark has the smallest 1324

Levenshtein distance to the generated watermark. 1325

However, in all our experiments, our WASA is able 1326

to achieve accurate source attribution without soft 1327

matching. 1328
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D Detailed Experimental Setup1329

D.1 Datasets1330

ArXiv: To simulate different data providers with1331

unique characteristics, we create the Clean-ArXiv-1332

Corpus (or ArXiv for short) dataset which consists1333

of academic papers from ArXiv. The dataset con-1334

tains academic papers from various sub-disciplines,1335

including computer science, physics, mathemat-1336

ics, public health, and other related fields. We1337

make use of the provided metadata from the work1338

of Clement et al. (2019) to download the corre-1339

sponding PDF files and retrieve the categorization1340

information associated with each article. Subse-1341

quently, we employ GROBID (Lopez, 2008–2023)1342

to parse and extract the main body of the papers,1343

excluding the abstract and reference sections. Our1344

Clean-ArXiv-Corpus dataset covers a comprehen-1345

sive collection of 100 distinct categories, each com-1346

prising a number of papers ranging from 2827 to1347

2984. We treat every category as a data provider,1348

so one data provider/category is the source of each1349

piece of text. Our main experiments in Sec. 4 are1350

conducted using 10 categories (i.e., data providers)1351

and we use 33% of papers from each category due1352

to computational constraints. However, in our abla-1353

tion study (App. F.12), we have also tested utiliz-1354

ing more data from every data provider (including1355

100% of the data), which has led to further im-1356

proved performances and consistent conclusions.1357

For each of the 10 categories, we further randomly1358

split its data into training and evaluation datasets1359

with a ratio of 9 : 1 according to the seed number.1360

In our ablation study, we will use more categories1361

and also use all papers in each category. More1362

detailed information about the full Clean-ArXiv-1363

Corpus dataset, including all 100 categories and all1364

papers in each category, is shown in Tab. 5; Tab. 51365

shows an instance of the random split into train-1366

ing and evaluation datasets based on seed number1367

2023.1368

BookSum: In addition to the Clean-ArXiv-1369

Corpus dataset, we also adopt the BookSum1370

dataset (Kryściński et al., 2022). This dataset1371

contains documents from the literature domain in-1372

cluding novels, plays, and stories. The BookSum1373

dataset contains 181 books and we treat every book1374

as a data provider. For every data provider (i.e.,1375

book), we adopt all the text data from the book in1376

all our experiments. More information on the Book-1377

Sum dataset is shown in Tab. 6; Tab. 6 shows an1378

instance of the random split into training and eval-1379

uation datasets based on seed number 2023. Ad- 1380

ditionally, we have adopted more diverse datasets, 1381

details of which are found in App. E.1.7. 1382

Table 5: Information on the Clean-ArXiv-Corpus (or
ArXiv for short) dataset.

Training Evaluation

Papers 264K 29K
Unique tokens 17.1M 3M
Unique tokens per Cate-
gory

407K 87K

Total tokens 1.8B 203M
Total tokens per Category 18.2M 2M

Table 6: Information on the BookSum dataset.

Training Evaluation

Books 161 20
Unique tokens 413K 106K
Unique tokens per Book 91K 20K
Total tokens 33M 4.6M
Total tokens per Book 3.3M 467K

D.2 Experimental Setting 1383

In our experiments, we build our WASA-LLM based 1384

on the open-source pre-trained GPT2-Large model 1385

(Radford et al., 2019), OPT-1.3B model (Zhang 1386

et al., 2022) and Llama2-7B model (Touvron et al., 1387

2023b). Based on the pre-trained weights, we 1388

perform our second-stage pre-training (Sec. 3.2) 1389

of the pre-trained GPT2-Large model, OPT-1.3B 1390

model, or the Llama2-7B model on the water- 1391

marked (Sec. 3.1) text data for one epoch to obtain 1392

WASA-LLM. We find that training for one epoch al- 1393

ready allows our WASA framework to achieve com- 1394

pelling performances, as shown in our experiments 1395

in Sec. 4. We have also tested more training epochs 1396

in App. F.13 and the results suggest that our perfor- 1397

mances can potentially be further improved with 1398

more training epochs. We plot the convergence of 1399

the training of our WASA-LLM in terms of the losses 1400

for the word and watermark tokens in Fig. 4, which 1401

shows that our second-stage pre-training effectively 1402

reduces both losses. Importantly, the watermark 1403

token loss rapidly declines after a small number 1404

of steps, which suggests that our WASA-LLM can 1405

quickly learn an accurate texts-to-watermarks map- 1406

ping. 1407
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Figure 4: Training losses for word tokens (Loss_lm) and
watermark tokens (Loss_wtm) when obtaining WASA-
LLM from second-stage pre-training of the GPT2 model
on ArXiv dataset.

Here, we give more details on the hyperparam-1408

eters we adopted. We fix 5 seed numbers at 2021,1409

2022, 2023, 2024, and 2025 for obtaining repro-1410

ducible results on GPT2 and OPT models, and 31411

seed numbers at 2022, 2023, 2024 for the Llama21412

model. The results shown in this work are the1413

average taken across that from the seeds. We1414

adopt the Adam optimizer with a learning rate of1415

5 × 10−5 and no weight decay. We make use of1416

the fp16 technique and a gradient accumulation1417

of 8 to speed up training. We also adopt a gra-1418

dient checkpoint to reduce memory usage so that1419

batch size can be slightly increased. We use a block1420

size of 512 and a batch size of 3 for most of the1421

experiments and a batch size of 16 in the experi-1422

ments to evaluate scalability. To further preserve1423

the ability of the original pre-trained LLM models,1424

during the second-stage pre-training, we freeze the1425

first 12 layers of GPT2-Large (among a total of 361426

layers) and freeze the first 8 layers of OPT-1.3B1427

(among a total of 24 layers). For the second-stage1428

pre-training of Llama2-7B, we adopt LoRA (Hu1429

et al., 2021) and set the rank and alpha to 32,1430

‘q_proj’, ‘k_proj’, ‘v_proj’, ‘o_proj’, ‘gate_proj’,1431

‘gate_proj’, ‘gate_proj’, ‘up_proj’, ‘down_proj’ as1432

the target modules, and ‘lm_head’, ‘embed_tokens’1433

as the modules to save. When generating the syn-1434

thetic texts (see Sec. 3.3), we use the multino-1435

mial sampling of top-60 with temperature = 0.7.1436

We also make use of a 1.2 repetition penalty and1437

a 2.0 length penalty to generate better synthetic1438

data. The generation of watermarks for our WASA-1439

LLM adopts a pure beam search, as discussed in1440

Sec. 3.3, with a beam size of 5. For the baseline1441

model used in the ablation studies (i.e., GPT2-1442

Large), watermark generation is performed in the1443

same way as text generation, so we use the same1444

hyperparameters as that specified in the baseline 1445

model. All second-stage pre-training is performed 1446

using NVIDIA RTX A5000 and A100. In our im- 1447

plementation, we adopt the GROBID library to pro- 1448

cess the PDF files. For model training, we adopt the 1449

Hugging Face Trainer pipeline which embeds nec- 1450

essary tricks to speed up the training process. The 1451

open-source GPT2-Large, OPT-1.3B, and Llama2- 1452

7B are also adopted from Hugging Face.2 1453

D.3 Effectiveness of Evaluation 1454

In our experiment design, we assign the ground 1455

truth source of each generated text to be identical 1456

to that of the prompt sentence. Here, we would 1457

like to verify that our method of using the source 1458

of the prompt sentence as the ground truth source 1459

for the generated sentence is indeed a reliable ap- 1460

proach, in addition to its benefit of simplifying the 1461

experimental evaluation. 1462

A natural and reliable method to find the ground 1463

truth source of a generated text is to consult the 1464

opinion of human experts. Therefore, we would 1465

like to show that our method to determine the 1466

ground truth source is an accurate approximation to 1467

human evaluations. To avoid the substantial costs 1468

and resources associated with human evaluators, 1469

we have employed GPT4, noted for its human-level 1470

performance across various benchmarks (OpenAI, 1471

2023), as a surrogate ‘human-like labeler’. Then, 1472

we examine whether the ground truth source de- 1473

termined by our method (i.e., using the source of 1474

the prompt sentence) aligns well with those de- 1475

termined by GPT4. Specifically, we use GPT4 1476

to categorize generated texts into one of the ten 1477

ArXiv categories (i.e., data providers) using a care- 1478

fully constructed prompt, as shown in Tab. 7. After 1479

evaluating 500 generated texts, we have found that 1480

89.6% of GPT4’s decisions align with our source 1481

determination method (i.e., using the source of the 1482

prompt sentence). This validates that our method 1483

to determine the ground truth source of a generated 1484

text is a reasonable and reliable approach. 1485

We would like to add that employing GPT4 as 1486

a ‘human-like labeler’ is only feasible in our con- 1487

trolled setting here because it requires prior knowl- 1488

edge about all sources and detailed descriptions 1489

of the sources; see the detailed prompt in Tab. 7. 1490

Moreover, it also incurs excessive costs in terms 1491

of monetary expenses and computations when the 1492

2https://huggingface.co/facebook/OPT-1.3B,
https://huggingface.co/meta-llama/Llama-2-7b-hf,
and https://huggingface.co/GPT2-Large.
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Table 7: Definition of task in prompts for GPT4 labeling.

Definition of Task in Prompts for GPT4 Labeling

Given below are 10 categories for texts from ArXiv papers with their descriptions. Please read
the descriptions and classify the provided texts to one of the paper categories.
The 10 categories are: hep-th, hep-ph, quant-ph, astro-ph, cs.CV, cs.LG, cond-mat.mes-hall,
gr-qc, cond-mat.mtrl-sci, cond-mat.str-el.
hep-th stands for High Energy Physics - Theory. This category includes research papers which
are centered on theoretical concepts and mathematical models in high energy physics.
hep-ph stands for High Energy Physics - Phenomenology. This category includes research
papers centered on the application of theoretical physics to high energy physics experiments.
quant-ph stands for Quantum Physics. This category includes research papers centered on the
theoretical and experimental aspects of the fundamental theory of quantum mechanics.
astro-ph stands for Astrophysics. This category includes research papers centered on the study
of the physics of the universe, including the properties and behavior of celestial bodies.
cs.CV stands for Computer Science - Computer Vision and Pattern Recognition. This category
includes research papers focused on how computers can be made to gain high-level understand-
ing from digital images or videos.
cs.LG stands for Computer Science - Machine Learning. This category includes research papers
focused on the development and implementation of algorithms that allow computers to learn
from and make decisions or predictions based on data.
cond-mat.mes-hall stands for Condensed Matter - Mesoscale and Nanoscale Physics. This
category includes research papers that focus on the properties and phenomena of physical
systems at mesoscopic (intermediate) and nanoscopic scales.
gr-qc stands for General Relativity and Quantum Cosmology. This category includes research
papers centered on theoretical and observational aspects of the theory of general relativity and
its implications for understanding cosmology at the quantum scale.
cond-mat.mtrl-sci stands for Condensed Matter - Materials Science. This category includes
research papers centered on the understanding, description, and development of novel materials
from a physics perspective.
cond-mat.str-el stands for Condensed Matter - Strongly Correlated Electrons. This category
includes research papers focused on the study of solids and liquids in which interactions among
electrons play a dominant role in determining the properties of the material.
Note that you should only include the class in your reply and provide no explanations. Please
classify the following sentence into one of the 10 categories, however, if you think that the
sentence could be classified into multiple categories, you may give up to 3 most likely categories:

number of data providers is large. Therefore, we1493

would like to clarify that this GPT4-based method1494

is not a realistic alternative method for source attri-1495

bution and is instead only employed here to verify1496

the reliability of our method of source determina-1497

tion.1498

Additionally, note that the reason why we have1499

used watermarked training data as the prompt sen-1500

tences in our evaluation is because it leads to simple1501

and reliable evaluations. Here, we justify this using1502

the GPT4-based experiment as well. We use GPT41503

to examine the reliability of the ground truth source1504

determination when sentences from two held-out1505

sets are used as the prompt sentences: when the1506

prompt sentences are selected from unwatermarked 1507

training data and when the prompt sentences are 1508

from the validation data. The results show that 1509

when the prompt sentences are selected from un- 1510

watermarked training data, 81.6% of GPT4’s deci- 1511

sions align with the source of the prompt sentences; 1512

when the prompt sentences are from the validation 1513

data, the alignment becomes 75.0%. The results 1514

suggest that when the sentences from both held-out 1515

sets are used as the prompt sentences, our method 1516

to determine the ground truth source is still reason- 1517

ably reliable. However, our ground truth source 1518

determination is the most reliable when sentences 1519

from watermarked training data are used as the 1520
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prompt, as we have done in our main experiments.1521

Therefore, the results justify the rationale behind1522

our choice of using watermarked training data as1523

prompts because it enhances the reliability of our1524

source determination and hence the fidelity of our1525

evaluation results.1526

E More Experimental Results1527

E.1 Accuracy1528

E.1.1 More Details on Experimental Setup.1529

In our experiments on the source attribution accu-1530

racy, for the ArXiv dataset, we select 50 papers1531

from each of the 10 categories (App. D.1) and for1532

every selected paper, we choose the first sentence1533

that has been selected for watermarking (to obtain1534

our WASA-LLM from second-stage pre-training of1535

various pre-trained LLMs, see Sec. 3.1 for more1536

details on how we select the sentences for water-1537

marking) as well as contains at least 200 characters.1538

Next, we use the first 200 characters of every se-1539

lected sentence (after removing the watermarks) as1540

the input/prompt to the trained WASA-LLM , which1541

generates texts with a token length of 100. Sim-1542

ilarly, for every book (i.e., data provider) in the1543

BookSum dataset, we select the first 50 sentences1544

that have been selected for watermarking as well as1545

have at least 200 characters. As a result, for both1546

datasets, we have selected 50 sentences to be used1547

as the inputs/prompts to our WASA-LLM, which cor-1548

responds to 50 trials of source attribution for each1549

of the 10 data providers. In addition, the source1550

attribution accuracy and F1 score for OPT-1.3B1551

model are presented in App. E.3, together with the1552

scalability results.1553

E.1.2 F1 score.1554

In our main experiments, we have reported the1555

macro F1 score for a more comprehensive evalu-1556

ation. To compute the F1 score, here we first de-1557

fine precision as the number of correct watermarks1558

(watermarks that correctly correspond to its true1559

source) for the data provider i divided by the num-1560

ber of all generated watermarks that correspond to1561

the data provider i and define recall as the number1562

of correct watermarks divided by the number of1563

trails of the data provider i. We calculate the pre-1564

cision and recall for each data provider and obtain1565

precisioni and recalli. Subsequently, We obtain1566

precisionma and recallma by averaging the preci-1567

sions and recalls from all data providers. Therefore,1568

the macro F1 score can be computed as:1569

F1 = 2× precisionma × recallma

precisionma + recallma
. (9) 1570

E.1.3 Source attribution baseline. 1571

BM25 is a well-known search engine algorithm 1572

that can potentially be utilized to perform source 1573

attribution given the generated sentences. In our 1574

experiments, we have implemented the BM25 from 1575

GitHub 3 as a source attribution baseline for com- 1576

parison. Specifically, we apply BM25 and take 1577

the unwatermarked training data as the corpus, and 1578

take the same generated sentences from our WASA- 1579

LLM (the watermarks are cleaned) as input. Subse- 1580

quently, we can use BM25 to find the top-k closest 1581

data providers in the training data. BM25 oper- 1582

ates as a post-hoc process, which may slow down 1583

source identification, especially for a larger number 1584

of potential sources. 1585

ML baseline. In addition, we consider a ma- 1586

chine learning baseline, following a similar setup 1587

to Foley et al. (2023). Specifically, we first select 1588

10, 000 prompts for each contributor. While Fo- 1589

ley et al. (2023) uses manually curated prompts, 1590

due to the large number of data points and limited 1591

domain knowledge, we opted for an automated ap- 1592

proach to identify 10, 000 examples per provider. 1593

We filter out the 10, 000 sentences with the highest 1594

TF-IDF scores for each provider and use that as 1595

the prompts. Next, we obtain the semantic repre- 1596

sentation of the prompts and generate sentences 1597

using a BERT model 4. For each data provider, 1598

we used representations from that provider as pos- 1599

itive examples and representations from all other 1600

providers as negative examples to train a binary 1601

classifier. The evaluation setup is the same as in 1602

Sec. 4.1. For each prompt and generated text, we 1603

first obtain the semantic representation and feed it 1604

to each data provider’s classifier to get attribution 1605

results. Similar to BM25, this ML baseline also op- 1606

erates as a post-hoc process and requires additional 1607

time for prompt generation, semantic representa- 1608

tion extraction, and classifier training, especially 1609

for a larger number of potential sources. 1610

E.1.4 Source Attribution Accuracy for Each 1611

Data Provider. 1612

Tabs. 8 and 9 show the detailed results on source 1613

attribution accuracy and F1 score for the 10 differ- 1614

ent data providers, in addition to Tab. 1 in Sec. 4.1. 1615

3https://github.com/dorianbrown/rank_bm25
4https://huggingface.co/google-bert/

bert-base-multilingual-cased
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The results show that the accuracy remains bal-1616

anced across the data providers.1617

E.1.5 Fine-grained Error Analysis of Source1618

Attribution.1619

Tab. 10 shows the errors of misclassification and1620

incorrect watermark, as mentioned in Sec. 4.1. The1621

results show that most source attribution errors are1622

caused by generated texts exhibiting the character-1623

istics of multiple data providers.1624

E.1.6 Data Provenance.1625

We show here that WASA’s ability to perform reliable1626

source attribution also allows us to achieve accurate1627

data provenance. Since the data providers are given1628

both their own unique watermarks (Sec. 3.1) and1629

the watermark decoder, they can request their data1630

provenance. Specifically, when a data provider1631

requests data provenance, it uses its own text data1632

(without watermark) as the input/prompt to our1633

trained WASA-LLM to verify whether the generated1634

watermark matches its own (Fig. 1). We consider1635

20 categories/data providers in the ArXiv dataset,1636

including 10 categories whose data was used for1637

second-stage pre-training of GPT2 to obtain WASA-1638

LLM and 10 other categories whose data was not1639

used. We select 50 papers from each category and1640

choose a sentence from every selected paper to use1641

as the input/prompt to WASA-LLM for generating1642

a watermark. The results in Tab. 14 show that for1643

the first 10 categories whose data was not used1644

to obtain WASA-LLM, we are consistently able to1645

recognize that their data was not misused; for the1646

other 10 categories whose data was used to obtain1647

WASA-LLM, we can also identify this with high1648

accuracy of 74.84% and top-3 accuracy of 95.76%.1649

The results show that, due to its ability to perform1650

accurate source attribution, our WASA framework1651

can also achieve reliable data provenance.1652

E.1.7 More Diverse Datasets1653

To verify the generalizability of our WASA frame-1654

work on more diverse datasets from various do-1655

mains, including those that are potentially less cu-1656

rated and less formal, we have adopted several ad-1657

ditional datasets from other domains and selected1658

10 data providers for our experiment, including1659

Wikipedia, news, and movie reviews. To elaborate,1660

the additional datasets we consider are:1661

DBpedia14 (Zhang et al., 2015) is an ontology1662

classification dataset taken from DBpedia 2014,1663

containing 14 classes and 560k training samples.1664

The content is extracted from information created 1665

in Wikipedia. In our experiments, we refer to the 1666

‘title’ column, which denotes the ontology class of 1667

the content, to categorize the data providers. 1668

CC-News (Hamborg et al., 2017) is a representa- 1669

tive less-curated and less-formal dataset. It contains 1670

approximately 700K English language news arti- 1671

cles sourced from various global news sites. The 1672

dataset is collected by crawling the news websites 1673

for main text content. Importantly, no additional 1674

preprocessing is conducted on the text content, re- 1675

sulting in a dataset that is less curated, quite noisy, 1676

and may include diverse elements such as different 1677

languages, emojis, URLs, Unicode, etc. In our ex- 1678

periments, we categorize data providers based on 1679

the ‘domain’ column, which denotes the distinct 1680

news media. 1681

IMDB62 (Seroussi et al., 2014) comprises movie 1682

reviews written by 62 distinct authors, with each au- 1683

thor serving as an individual data provider. Each au- 1684

thor contributes 1, 000 reviews, which are sampled 1685

from their complete collection of reviews. This 1686

dataset facilitates the evaluation of our approach 1687

in a context where the texts share similar thematic 1688

content. The dataset is relatively noisy, as it may 1689

include spelling and grammatical errors. In our 1690

experiments, we categorize data providers based 1691

on the ‘userId’ column. Note that specifically for 1692

this dataset, since each data provider contributes 1693

too few data samples, we perform 10 epochs of 1694

second-stage pretraining to obtain our WASA-LLM . 1695

Fake News Opensources5 comprises 8, 529, 090 1696

individual articles, which were scraped from var- 1697

ious news websites between late 2017 and early 1698

2018, encompassing a total of 647 distinct sources. 1699

Similar to the CC-News dataset, this dataset is less 1700

curated. We categorize the data providers based on 1701

the ’domain’ column, which specifies the distinct 1702

news media sources. 1703

The source attribution accuracy on these more 1704

diverse datasets using our WASA-LLM adopting 1705

Llama2 as the pre-trained model is illustrated in 1706

Tab. 11. The results indicate that our framework 1707

consistently achieves decent accuracy in source at- 1708

tribution across various datasets that mostly remain 1709

higher than the BM25 baseline. This further veri- 1710

fies the effectiveness of our WASA framework on var- 1711

ious datasets. However, it is also observed that the 1712

accuracy tends to be lower on the less curated and 1713

5https://huggingface.co/datasets/andyP/fake_
news_en_opensources
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Table 8: Source attribution accuracy and F1 score achieved by our WASA-LLM (i.e., obtained from second-stage
pre-training of different models on various datasets) for the ArXiv dataset.

Data Provider
GPT2 OPT Llama2

acc. top-3. F1 acc. top-3. F1 acc. top-3. F1

hep-th 65.60±7.40 94.40±2.61 0.730±0.04 67.60±13.22 99.20±1.10 0.622±0.35 88.00±5.29 96.67±3.06 0.810±0.07

hep-ph 85.20±4.15 96.80±3.03 0.708±0.13 87.60±5.55 98.80±2.68 0.820±0.07 71.33±8.08 96.67±2.31 0.853±0.08

quant-ph 74.80±6.72 91.60±5.90 0.678±0.08 76.80±6.72 98.00±3.46 0.808±0.07 72.00±5.29 95.33±1.15 0.820±0.13

astro-ph 86.40±2.61 94.40±2.61 0.793±0.03 86.00±4.47 98.40±2.19 0.818±0.03 69.33±6.43 98.00±2.00 0.850±0.06

cs.CV 82.00±4.00 95.20±3.03 0.790±0.08 85.20±6.72 99.20±1.10 0.610±0.35 78.00±2.00 97.33±2.31 0.787±0.10

cs.LG 77.60±3.58 98.80±1.10 0.808±0.08 83.20±4.38 99.60±0.89 0.688±0.06 79.33±1.15 98.00±2.00 0.737±0.06

cond-mat.mes-hall 64.80±5.22 98.40±0.89 0.693±0.08 74.00±3.74 99.20±1.10 0.742±0.10 76.00±8.72 99.33±1.15 0.783±0.10

gr-qc 76.40±2.61 96.40±1.67 0.748±0.08 82.00±5.10 99.20±1.10 0.728±0.09 86.00±5.29 98.00±2.00 0.780±0.14

cond-mat.mtrl-sci 64.80±3.63 95.20±3.35 0.845±0.06 71.60±5.18 99.20±1.79 0.752±0.11 73.33±6.43 94.00±5.29 0.860±0.06

cond-mat.str-el 70.80±1.01 96.40±1.67 0.810±0.11 69.60±8.29 99.60±0.89 0.752±0.11 80.67±2.31 96.00±4.00 0.703±0.04

Overall 74.84±10.06 95.76±1.67 0.758±0.02 78.36±8.29 99.04±0.89 0.738±0.05 77.40±1.91 96.87±1.62 0.800±0.03

Table 9: Source attribution accuracy and F1 score achieved by our WASA-LLM (i.e., obtained from second-stage
pre-training of different models on various datasets) for BookSum dataset.

Data Provider
GPT2 OPT Llama2

acc. top-3. F1 acc. top-3. F1 acc. top-3. F1

Adam Bede 82.40±3.29 95.60±2.19 0.805±0.01 85.20±3.35 96.00±2.15 0.745±0.01 85.33±5.03 94.67±6.11 0.820±0.06

David Copperfield 80.00±6.63 88.40±5.90 0.670±0.04 77.20±6.72 91.60±1.67 0.820±0.03 80.67±2.31 96.67±2.31 0.755±0.28

Dracula 66.80±6.26 86.00±6.16 0.880±0.10 71.60±8.17 91.60±2.97 0.905±0.12 74.67±6.11 90.67±4.16 0.915±0.06

Hamlet 91.20±4.38 96.80±2.28 0.700±0.08 97.60±2.19 99.20±1.10 0.920±0.10 98.00±0.00 99.33±1.15 0.810±0.03

Henry IV Part 1 90.40±2.61 98.40±2.61 0.375±0.53 97.20±1.10 99.60±0.89 0.885±0.13 98.67±1.15 100.00±0.00 0.995±0.01

Ivanhoe 83.60±3.28 94.40±1.67 0.790±0.21 89.20±5.40 93.60±4.34 0.920±0.04 85.33±8.33 94.67±4.16 0.820±0.08

Jane Eyre 74.00±6.16 90.00±4.00 0.805±0.11 80.00±2.00 96.40±3.85 0.810±0.10 77.33±15.53 94.67±3.06 0.785±0.18

Little Women 85.60±2.61 94.00±3.16 0.650±0.10 94.00±3.16 98.00±2.00 0.820±0.07 92.67±5.77 100.00±0.00 0.815±0.02

Middlemarch 72.80±3.35 94.40±2.61 0.755±0.09 76.00±5.83 93.20±3.35 0.755±0.06 74.67±7.02 93.33±4.62 0.815±0.02

The Pickwick Papers 52.40±4.78 80.00±6.16 0.775±0.11 64.00±9.27 79.20±5.76 0.850±0.21 65.33±6.43 88.67±1.15 0.850±0.21

Overall 77.92±1.57 91.80±0.24 0.723±0.08 83.20±1.08 93.84±1.01 0.840±0.01 83.27±4.50 95.27±1.53 0.840±0.06

noisy datasets (i.e., CC-News, IMDB62, and Fake1714

News) where the data from different data providers1715

may contain similar data compared to the datasets1716

with more formal language (i.e., ArXiv, BookSum,1717

DBpedia14). We discuss the characteristics of the1718

datasets as follows:1719

Imbalance Ratio of Data Sources. Here we ana-1720

lyze the balance and unique characteristics of the1721

data sources in each dataset we that have adopted.1722

Firstly, we calculate the imbalance ratio by divid-1723

ing the number of tokens in the largest data source1724

by that in the smallest, hence, the larger imbal-1725

ance ratio suggests that the data sources are more1726

imbalanced. The results shown in Table 12 indi-1727

cate that the data sources in our adopted datasets1728

are not perfectly balanced while some are particu-1729

larly imbalanced. This indicates that our proposed1730

method can generalize to imbalanced data sources1731

and achieve decent source attribution accuracy.1732

Characteristics of Data Sources. Our datasets1733

also encompass a variety of unique characteristics,1734

which ensures that our framework is applicable1735

across different applications. These include aca-1736

demic fields (ArXiv), general knowledge (DBpe-1737

dia14), and attributing authorship based on story 1738

or writing style (BookSum, CC-News, IMDB62, 1739

FakeNews). Our analysis reveals that both our 1740

framework and baselines face challenges in scenar- 1741

ios where the content from different data providers 1742

may be similar and the distinguishing features are 1743

restricted to writing style and word choice, natu- 1744

rally resulting in lower accuracy. This underscores 1745

the inherent difficulties of source attribution in ho- 1746

mogeneous topic environments, yet our method 1747

consistently outperforms the baselines across these 1748

challenging conditions. 1749

E.1.8 More Recent Model 1750

In addition, to verify the generalizability of our 1751

WASA framework on more recent models, we 1752

have adopted an additional pre-trained Llama3-8B 1753

model (Dubey et al., 2024). The source attribution 1754

accuracy of our WASA-LLM adopting Llama3-8B 1755

on the ArXiv dataset with 10 providers is illustrated 1756

in Tab. 13. The results show that with the use of a 1757

model with better capability, the source attribution 1758

accuracy of our WASA improves further. 1759
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Table 10: Error analysis of watermarks incurred by our WASA-LLM that is obtained from second-stage pre-training
of the GPT2 model on the ArXiv dataset. Note that the numbers shown here are the average taken across 5 runs
with different random seeds and ‘wtm’ is the short form of “watermark”.

category n_wtm n_match misclassify incorrect

hep-th 50 32.8±3.72 17.2±3.72 0±0.00

hep-ph 50 42.6±2.07 7.4±2.07 0±0.00

quant-ph 50 37.4±3.36 12.6±3.36 0±0.00

astro-ph 50 43.2±1.30 6.8±1.30 0±0.00

cs.CV 50 41.0±2.00 9.0±2.00 0±0.00

cs.LG 50 38.8±1.79 11.2±1.79 0±0.00

cond-mat.mes-hall 50 32.4±2.61 17.6±2.61 0±0.00

gr-qc 50 38.2±1.30 11.8±1.30 0±0.00

cond-mat.mtrl-sci 50 32.4±1.82 17.6±1.82 0±0.00

cond-mat.str-el 50 35.4±5.03 14.6±5.03 0±0.00

Total 500 374.2±10.18 125.8±10.18 0±0.00

Table 11: Source attribution accuracy on the dataset from diverse domains.

Dataset
acc. top-3. top-5.

BM25 ML WASA BM25 ML WASA BM25 ML WASA

DBpedia14 86.00 85.80 90.80 96.00 97.40 93.20 98.20 100.00 94.00
CC-News 45.00 51.00 60.20 71.20 76.20 79.40 84.00 88.40 85.00
IMDB62 29.60 50.80 67.20 48.20 79.60 89.40 65.80 91.00 97.00

FakeNews 33.40 42.40 62.63 53.40 63.40 85.00 62.20 77.20 93.13

E.2 Robustness1760

E.2.1 Additional Attacks on Generated1761

Sentences with Embedded Watermarks1762

As discussed in Sec. 4.2, an adversary may addi-1763

tionally modify the content of the generated sen-1764

tence while removing/modifying the generated wa-1765

termarks. Here, we will consider insertion, dele-1766

tion, synonym substitution, and syntactic transfor-1767

mation attacks. In insertion attacks on a gen-1768

erated watermarked sentence, either one word is1769

randomly inserted into the sentence (i.e., local-1770

ized insertion attacks), or various words are ran-1771

domly interspersed throughout the sentence (i.e.,1772

dispersed insertion attacks) (Kamaruddin et al.,1773

2018). For dispersed insertion attacks, we vary1774

the attack strengths by changing the number of in-1775

serted words from 5% to 20% of the total number1776

of words in the sentence. In deletion attacks, some1777

words in the text are randomly deleted. In synonym1778

substitution attacks (Kamaruddin et al., 2018), an1779

adversary substitutes some words in the generated1780

sentence with their synonyms while preserving the1781

semantic meaning of the sentence. Again, we tested1782

different attack strengths by varying the percentage1783

of randomly deleted and substituted words. In addi-1784

tion, we also performed the syntactic transforma- 1785

tion attack on the generated sentences whereby an 1786

adversary transforms the sentences (without alter- 1787

ing their semantic meanings) via techniques such 1788

as modifying the prepositions, tenses, and other 1789

syntax components. Here, we adopt two strong 1790

variants of such attacks on our WASA-LLM ob- 1791

tained from Llama2: Firstly, we use the PEGASUS 1792

model finetuned for paraphrasing (Zhang et al., 1793

2020) to paraphrases the input sentence. The accu- 1794

racy (top-3 accuracy) with our regeneration defense 1795

after this syntactic transformation attack is 69.20% 1796

(91.80%). In addition, we consider the DIPPER 1797

paraphraser (Krishna et al., 2024), which performs 1798

semantically equivalent rewriting. The accuracy 1799

(top-3 accuracy) with our regeneration defense af- 1800

ter using this paraphraser is 75.60% (96.40%). Be- 1801

sides the above attacks, we have further consid- 1802

ered a more recent oracle-based attack as proposed 1803

in (Zhang et al., 2023), which generates pertur- 1804

bation oracles with an open-source model and re- 1805

moves the watermarks in the attacked sentence. Un- 1806

der this attack, the watermark regeneration defense 1807

is also performed and we are still able to achieve 1808

a source attribution accuracy of 75.80%, which 1809
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Table 12: Balance and unique characteristics of the data sources in each dataset.

Dataset balance Characteristics

ArXiv 2.5 academic knowledge fields (with overlaps)
BookSum 17.51 book stories and writing style from book authors
DBpedia14 1.66 common knowledge fields
CC-News 5.37 writing style and word choices from news publishers
IMDB62 1.64 writing style and word choices from common Internet users
FakeNews 25.45 writing style and word choices from news publishers

Table 13: Source attribution accuracy on Llama3-8B
using ArXiv dataset.

Model acc. top-3. top-5.

Llama2-7B 77.40 96.87 99.40
Llama3-8B 80.20 98.20 99.00

further validates the robustness of our WASA frame-1810

work. The robustness of our WASA framework can1811

be validated by the marginal performance degrada-1812

tion in Tab. 2. In addition, the standard deviations1813

for this part of the results in Tab. 2 are reported in1814

Tab. 15.1815

E.2.2 Attacks on Input Sentences (Prompts)1816

An adversary may also manipulate the input sen-1817

tence (prompt) to our trained WASA-LLM to dis-1818

rupt watermark generation and hence source attri-1819

bution. The insertion, deletion, and syntactic1820

transformation attacks are the same as those de-1821

scribed in App. E.2.1, except that these attacks1822

are performed on the input sentences here. Sim-1823

ilar to App. E.2.1, we vary the attack strengths1824

for these three types of attacks. The results in1825

Tab. 2 show that these attacks also only lead to1826

marginal degradation in the source attribution ac-1827

curacy. Moreover, under the strong syntactic trans-1828

formation attacks, the source attribution remains1829

accurate (with an accuracy of 63.00% and a top-31830

accuracy of 89.00%), which provides further ev-1831

idence for the robustness of our WASA framework1832

against attacks on the input sentences. Its robust-1833

ness against these attacks can again be explained1834

by its reliable texts-to-watermarks mapping, which1835

allows our WASA-LLM to consistently generate the1836

correct watermarks even if the prompt is perturbed.1837

The standard deviations for this part of the results1838

in Tab. 2 are reported in Tab. 16.1839

Table 14: Reliable data provenance can be achieved due
to the ability of WASA-LLM to perform accurate source
attribution. WASA-LLM is obtained from second-stage
pre-training of the GPT2 model on the ArXiv dataset.
Note that the numbers shown here are the average taken
across 5 runs with different random seeds. ‘wtm’ is the
short form of “watermark”.

category n_wtm data provenance (n_match)

cond-mat.soft 50 ✗ (0±0.00)
q-bio.PE 50 ✗ (0±0.00)
cs.SY 50 ✗ (0±0.00)
eess.IV 50 ✗ (0±0.00)
hep-ex 50 ✗ (0±0.00)
math.LO 50 ✗ (0±0.00)
math.NA 50 ✗ (0±0.00)
math.ST 50 ✗ (0±0.00)
nlin.SI 50 ✗ (0±0.00)
physics.class-ph 50 ✗ (0±0.00)
hep-th 50 ✓ (32.8±3.70)
hep-ph 50 ✓ (42.6±2.07)
quant-ph 50 ✓ (37.4±3.36)
astro-ph 50 ✓ (43.2±1.30)
cs.CV 50 ✓ (41.0±2.00)
cs.LG 50 ✓ (38.8±1.79)
cond-mat.mes-hall 50 ✓ (32.4±2.61)
gr-qc 50 ✓ (38.2±1.30)
cond-mat.mtrl-sci 50 ✓ (32.4±1.82)
cond-mat.str-el 50 ✓ (35.4±5.03)

E.2.3 Character-Level Attacks 1840

Apart from the word-level attacks that additionally 1841

modify the content of the generated sentence while 1842

removing/modifying the generated watermarks, for 1843

the regenerated watermarks, we would also like to 1844

explore some character-level attacks on the gener- 1845

ated sentences similar to the setting in the work 1846

of Gao et al. (2018). These attacks aim to disrupt 1847

the original texts at a character level, thus making 1848

them stronger than word-level attacks; however, it 1849

is also potentially easier to identify such attacks (Li 1850

et al., 2023). Specifically, we consider character- 1851

level insertion, deletion, and character-swapping 1852

attacks. We also adopt our regeneration defense 1853

after these attacks are applied. Tab. 17 shows the 1854
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Table 15: Source attribution accuracy and standard deviation using regenerated watermarks by WASA-LLM (from
second-stage pre-training of GPT2 on ArXiv dataset) under attacks on generated sentences with embedded
watermarks (in addition to watermark removal/modification attacks).

strength
attacks on generated sentences with embedded watermarks

insertion attack deletion attack synonym substitution
acc. top-3. acc. top-3. acc. top-3.

0% 71.60±1.33 93.76±0.57 71.60±1.33 93.76±0.57 71.60±1.33 93.76±0.57

Localized 71.40±0.89 93.56±0.46 - - - -
5% 70.12±1.35 93.20±0.14 71.08±0.92 93.92±0.66 70.52±0.83 93.52±0.64

10% 69.12±1.90 92.20±0.47 71.84±1.36 93.68±0.78 71.02±0.81 92.88±0.95

15% 66.92±1.32 91.96±0.91 71.36±1.01 94.04±0.79 70.96±0.52 92.72±0.46

20% 65.12±2.37 91.44±0.50 70.00±1.17 93.24±0.54 69.20±1.89 93.20±0.62

Table 16: Source attribution accuracy and standard deviation using regenerated watermarks by WASA-LLM (from
second-stage pre-training of GPT2 on ArXiv dataset) under attacks on input sentences (in addition to watermark
removal/modification attacks).

strength
attacks on input sentences

insertion attack deletion attack synonym substitution
acc. top-3. acc. top-3. acc. top-3.

0% 74.84±2.04 95.76±1.24 74.84±2.04 95.76±1.24 74.84±2.04 95.76±1.24

Localized 74.20±1.76 95.40±1.02 - - - -
5% 74.20±2.40 95.40±0.62 73.56±1.48 95.52±0.86 72.84±2.13 95.24±1.06

10% 72.88±2.74 94.68±1.17 72.96±2.05 94.68±0.87 73.60±1.84 95.00±1.09

15% 71.52±2.09 93.20±0.71 72.68±1.74 94.12±1.02 71.88±1.40 94.20±1.10

20% 68.60±1.36 93.40±0.55 72.68±2.73 94.12±1.45 72.08±1.09 93.76±0.52

source attribution accuracy for the regenerated wa-1855

termarks.1856

As shown in Tab. 17, under these strong1857

character-level attacks, the source attribution ac-1858

curacy of our watermarks is lowered yet remains1859

decent. In addition, we would like to clarify that1860

since these character-level attacks can heavily in-1861

fluence the original readability of the texts, their1862

feasibility in realistic scenarios may be limited.1863

E.3 Scalability1864

In Sec. 4.3, we have verified WASA’s scalability to1865

a large number of data providers using the ArXiv1866

dataset. Here, we will also show in Tab. 18 the1867

attribution accuracy obtained from the OPT model1868

and in Tab. 19 the source attribution accuracy for1869

a larger number of books (i.e., data providers) us-1870

ing the BookSum dataset. It can be observed that1871

WASA generally does not scale as well (especially1872

for GPT2 and OPT) on the BookSum dataset as1873

compared to the ArXiv dataset because each data1874

provider in the former offers much less data. It1875

is also noteworthy that the larger Llama2 model1876

produces higher accuracy than the smaller GPT21877

and OPT models, especially when the number of1878

providers is larger on the BookSum dataset. Never-1879

theless, the source attribution accuracy still remains 1880

relatively high compared with BM25. As men- 1881

tioned in Sec. 4.3, with more data providers, we 1882

recommend using k > 1 in top-k source attribution 1883

due to higher resulting accuracy and identifying the 1884

true source from among them. 1885

For an even larger number of data providers, we 1886

adopt the Reddit Webis-TLDR-17 (Völske et al., 1887

2017) dataset, which comprises 3, 848, 330 posts, 1888

each with an average length of 270 words. These 1889

posts originate from various subreddits created by 1890

different users. Although the dataset was initially 1891

developed for summarization tasks, we utilize only 1892

the ’body’ column for the text and the ’subreddit’ 1893

column to identify the data providers. Using this 1894

dataset, we consider 500 data providers. Table 20 1895

shows the source attribution accuracy when the 1896

number of data providers increases to 500 trained 1897

on Llama2 model, where the accuracy still remains 1898

high compared with the BM25 baseline. 1899

E.4 Transferability 1900

Our generated watermarked text has the same struc- 1901

ture as the watermarked text used to train our WASA- 1902

LLM: They both embed 10-character watermarks 1903

into texts with characters from the same vocabulary. 1904
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Table 17: Source attribution accuracy using regenerated watermarks by WASA-LLM (from second-stage pre-training
of GPT2 on ArXiv dataset) under character-level attacks on generated sentences with embedded watermarks (in
addition to watermark removal/modification attacks).

strength
insertion attack deletion attack

strength
swap attack

acc. top-3. acc. top-3. acc. top-3.

0% 71.60±1.33 93.76±0.57 71.60±1.33 93.76±0.57 0% 71.60±1.33 93.76±0.57

5% 69.60±2.05 91.08±1.79 69.60±2.03 92.08±1.85 2% 69.90±6.48 91.88±2.65

10% 60.95±3.21 89.64±4.73 60.15±2.75 88.96±5.08 4% 68.70±8.77 91.28±3.11

Table 18: Source attribution accuracy and F1 score for
OPT-1.3B model on ArXiv dataset.

n acc. top-3. top-5. F1

10 78.36±2.04 99.04±1.22 99.36±0.61 0.743±0.06

25 69.76±0.21 90.48±0.71 95.76±0.79 0.697±0.01

50 61.14±1.37 82.63±1.25 89.37±0.82 0.613±0.01

100 48.86±0.95 73.34±0.76 81.54±0.27 0.487±0.01

So, our generated watermarked text can be readily1905

used as training data for other LLMs that, like our1906

WASA-LLM, can also generate synthetic text with1907

watermarks. That is, our generated watermarked1908

text is transferable to other LLMs as their training1909

data.1910

E.5 Adaptability1911

Our WASA framework only requires mild modifica-1912

tions to existing LLMs (Sec. 3.2) and can hence be1913

easily adapted to fit various LLMs. This has been1914

empirically verified by our results in Secs. 4.1&4.31915

and App. E.1&E.3 that given the same experi-1916

mental setup, accurate source attributions can be1917

achieved by WASA-LLM that is obtained from our1918

second-stage pre-training of various LLMs (i.e.,1919

GPT2, OPT, Llama2).1920

F Detailed Results from Ablation Studies1921

Here, we will present detailed results from our1922

ablation studies. In all our ablation studies, we1923

use second-stage pre-training of the GPT2-Large1924

model on the ArXiv dataset to obtain WASA-LLM.1925

F.1 Effectiveness of our WASA-LLM Training1926

We have mainly implemented two important algo-1927

rithmic designs to help our WASA-LLM learn an ac-1928

curate texts-to-watermarks mapping (Sec. 3.2): (1)1929

using a designated embedding space for watermark1930

tokens and (2) separating the prediction/generation1931

spaces for the word and watermark tokens. Here,1932

we compare our WASA-LLM with two baselines:1933

tokenizerGPT implementing only the first design1934

of a designated embedding space for watermark 1935

tokens, and originalGPT (original GPT2-Large) 1936

implementing neither design. We apply our second- 1937

stage pre-training to both baselines using the same 1938

(watermarked) data from the ArXiv dataset which 1939

was used for second-stage pre-training of the GPT2- 1940

Large model to obtain our WASA-LLM, and evaluate 1941

the source attribution accuracy following that of 1942

Sec. 4.1. The results in Tab. 21 show that the first 1943

design alone does not improve the source attribu- 1944

tion accuracy whereas the combination of both de- 1945

signs brings about a significant improvement. This 1946

is because merely creating the embedding space 1947

for watermark tokens does not help in learning the 1948

mapping from the texts to watermarks, and it is 1949

of particular importance to combine both designs 1950

for our WASA-LLM to perform well. Moreover, our 1951

WASA-LLM achieves a significantly better source at- 1952

tribution accuracy at the expense of incurring more 1953

computational time. Note that originalGPT takes 1954

longer training time than tokenizerGPT because 1955

there is no designated embedding space for wa- 1956

termark tokens in originalGPT, hence resulting in 1957

more training instances used. 1958

F.2 Strategy for Selecting Sentences to 1959

Watermark 1960

As we have discussed in Sec. 3.1, for every data 1961

provider, we embed watermarks into the sentences 1962

with top TF-IDF scores and then use these water- 1963

marked sentences for the second-stage pre-training 1964

(Sec. 3.2) of the GPT2 model to obtain our WASA- 1965

LLM. This is because the sentences with high 1966

TF-IDF scores are more representative of the text 1967

data from a data provider, which makes it easier 1968

to learn the mapping from the texts of different 1969

data providers to their corresponding unique water- 1970

marks. Here, we will evaluate whether this strat- 1971

egy is effective by comparing it with the natural 1972

baseline of randomly selecting sentences to embed 1973

watermarks. The results in Tab. 22 show that when 1974

selecting 20% of the sentences for watermarking, 1975
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Table 19: Source attribution accuracy for different numbers of books (i.e., data providers) on the BookSum dataset.
BM25 source attribution results are obtained using Llama2.

n BM25 ML
GPT2 OPT Llama2

acc. top-3. top-5. acc. top-3. top-5. acc. top-3. top-5.

10 54.07±12.3 48.40±2.44 77.92±1.57 91.80±0.24 96.52±0.76 83.20±1.08 93.84±1.01 97.80±0.42 83.27±4.50 95.27±1.53 97.67±0.46

25 43.68±3.40 32.80±0.82 52.69±4.87 68.80±6.76 75.33±7.38 64.04±0.79 76.85±0.94 83.71±0.41 65.65±5.85 81.79±4.36 87.84±2.38

50 29.70±0.37 21.88±0.77 45.18±2.91 62.23±6.10 67.63±5.78 54.17±0.90 70.01±0.84 76.79±0.43 56.67±5.30 73.80±3.18 81.55±0.05

100 29.61±0.35 14.76±0.39 18.50±1.83 40.15±1.17 44.52±1.74 24.01±5.08 55.70±1.17 63.31±1.25 55.43±1.09 72.73±0.31 79.78±1.08

Table 20: Source attribution accuracy for 500 data
providers on Llama2 model trained on Reddit Webis-
TLDR-17 dataset.

n method acc. top-3. top-5.

500
BM25 19.02 30.52 36.01

ML 12.08 21.39 26.66
WASA 35.66 48.65 54.39

Table 21: Comparison of source attribution accuracy
achieved by WASA-LLM (obtained from second-stage
pre-training of the GPT2 model) vs. the baseline models
on the ArXiv dataset where ‘n_wtm’ denotes the num-
ber of generated sentences with watermark, and ‘acc.’
denotes the source attribution accuracy.

model n_wtm acc. n_samples training time

BM25 - 54.73 - -
ML - 52.84 -
originalGPT 412 45.69 163507 6h30m3s
tokenizerGPT 439 44.01 140599 5h3m6s
WASA-LLM 448 74.84 159387 8h9m24s

the strategy of random embedding decreases the1976

source attribution accuracy, which validates the ef-1977

fectiveness of our strategy of selecting sentences1978

with high TF-IDF scores to watermark.1979

Table 22: Source attribution accuracy achieved by WASA-
LLM (obtained from second-stage pre-training of the
GPT2 model on the ArXiv dataset) using different strate-
gies to select the sentences for watermarking.

embedding strategy acc. top-3.

TF-IDF (ours) 74.84 95.76
Randomly Embed 71.40 94.48

F.3 Impact of Enforced Watermark1980

Generation1981

As discussed in Sec. 4.1, to evaluate the source1982

attribution accuracy in our experiments, we have1983

adopted a simple technique to enforce watermark1984

generation in order to simplify the evaluations.1985

That is, if a watermark is not generated after the1986

generation of the sentence is completed, we add the1987

Table 23: Comparison of source attribution accuracy
and perplexity achieved by WASA-LLM (obtained from
second-stage pre-training of the GPT2 model on the
ArXiv dataset) across different dataset sizes.

dataset size acc. top-3. perplexity

10%: 100MB 68.80 94.10 14.6135
33%: 300MB 74.84 95.76 12.6570
66%: 600MB 76.28 95.88 11.6749
100%: 1GB 78.48 95.80 11.3171

token [WTM ] to the end of the sentence to enforce 1988

the watermark generation. Here, we will evaluate 1989

the impact of this enforced watermark generation. 1990

The results in Tab. 24 show that the forcefully gen- 1991

erated watermarks and naturally generated water- 1992

marks have comparable source attribution accuracy. 1993

This shows that the technique of enforced water- 1994

mark generation we have adopted has minimal im- 1995

pact on the evaluations of the source attribution 1996

accuracy (Sec. 4.1). 1997

F.4 Unattributable Content Analaysis 1998

Here we consider the special case where the LLM- 1999

generated content is not attributable to any data 2000

provider. Note that in our main experiments, such a 2001

case does not exist since all data providers have wa- 2002

termarked their training data. Such unattributable 2003

content might be generated from public datasets 2004

used for pretraining the LLM, but we do not con- 2005

sider attributing sources to the public datasets in 2006

this paper as stated in Sec. 2; instead, we have 2007

focused on attributing to the data providers’ wa- 2008

termarked private datasets. Moreover, it is hard 2009

to design prompts to enforce the model to gener- 2010

ate content only from pretrain-knowledge, making 2011

it difficult to design corresponding experiments. 2012

Therefore, here we choose the setting by training 2013

our framework with data from both 5 watermarked 2014

data providers and 5 unwatermarked data providers 2015

to force our WASA-LLM to be able to generate con- 2016

tent that is not attributable to the watermarked data 2017

providers. In this setting, our framework generates 2018

watermarks for 12% of the sentences generated 2019
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Table 24: Source attribution accuracy achieved by WASA-LLM (i.e., obtained from second-stage pre-training of the
GPT2 model on the ArXiv dataset) for naturally generated watermarks (denoted by ‘watermark_nf’) vs. forcefully
generated watermarks (denoted by ‘watermark_f’).

category n_watermark_nf n_match_nf acc._nf n_watermark_f n_match_f acc._f

hep-th 45.8 30.4 66.38 4.2 2.4 57.14
hep-ph 44.2 37.8 85.52 5.8 4.8 82.76
quant-ph 46.0 35.4 77.00 4 2 50.00
astro-ph 44.2 38.6 87.33 5.8 4.6 79.31
cs.CV 44.2 36.4 82.35 5.8 4.6 79.31
cs.LG 44.4 35.0 78.83 5.6 3.8 67.86
cond-mat.mes-hall 44.8 28.8 64.29 5.2 3.6 69.23
gr-qc 43.2 33.8 78.24 6.8 4.4 64.71
cond-mat.mtrl-sci 46.6 30.6 65.67 3.4 1.8 52.94
cond-mat.str-el 44.6 31.6 70.85 5.4 3.8 70.37

Total 448 338.4 75.54 52 35.8 68.85

from the 5 unwatermarked data providers while2020

generating watermarks for 87.6% of the sentences2021

generated from the 5 watermarked data providers.2022

By analyzing the watermarks for sentences from un-2023

watermarked data providers, we observe that 100%2024

of these watermarks are from the watermarked data2025

providers. This suggests that if there exists content2026

not attributable to any data provider, our framework2027

sometimes might misclassify it to the watermarked2028

data providers.2029

F.5 Effectiveness of WASA for Supervised2030

Finetuning (SFT) Task2031

In this section, we show that our WASA framework2032

can be effective for SFT tasks as well. Over-2033

all, while finetuning for the SFT task, our WASA-2034

LLM can also learn the mapping from the texts of2035

the data providers to their unique watermarks using2036

an algorithm akin to the one described in Sec. 3.2.2037

Then, during sample prediction, our WASA-LLM can2038

provide not only the predicted label but also the2039

corresponding watermark.2040

Specifically, for the SFT task, we apply prompt2041

finetuning (Gao et al., 2021) where we introduce2042

a prompt (manual template) after each training2043

data. We then introduce the watermark follow-2044

ing the training data by embedding it after the la-2045

bel. Each supervised data point si is a sequence2046

of tokens: si = [u1, u2, . . . , u|si|] where |si| is2047

the token count for si. For instance, si = “What2048

he can’t do is read a book” in Fig. 5. We ex-2049

tend si by appending a template, which results in2050

s
template
i = [u1, u2, . . . , u|si|, u|si|+1, . . . , u|si|+p]2051

with the template example being “Are you sar-2052

castic? Yes/No”. A data point embedded 2053

with a watermark is denoted as si
template′ = 2054

[u1, u2, . . . , u|si|+p, w1, . . . , wm] where w’s repre- 2055

sent watermark tokens. As shown in Fig. 5, an in- 2056

visible watermark may follow after the label “Yes”. 2057

Figure 5: Example of training samples in the SFT
dataset.

The training objective of WASA-LLM for SFT is a 2058

combination of maximizing the probability of label 2059

word prediction and the probability of watermark 2060

generation. Since we only need to predict the label 2061

word, the predictive distribution can be simplified 2062

to 2063

P (u|si|+p|u1, u2, . . . , u|si|, u|si|+1, . . . , u|si|+p−1)

= hl[|si|+ p− 1] ·W⊤
e [label word indices]

(10) 2064

where W⊤
e [label word indices] means to only use 2065

the label words’ embedding. So, 2066

Lsft(s
template
i

′
) = logPu(u|si|+p|u1, u2, . . . , u|si|+p−1) , 2067

2068

Lwtm(s
template
i

′
)

=
∑m

j=1 logPw(wj |u1, u2, . . . , u|si|+p, w1, . . . , wj−1) .
2069

Then, the loss involves a combination of loss for 2070

label prediction, specifically in predicting the label 2071

word (i.e., Yes/No in the case of sarcasm), and loss 2072

for watermark generation. In particular, the loss 2073

is LossWASA-LLM(s
template
i

′
) = Losssft(s

template
i

′
) + 2074
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Losswtm(s
template
i

′
) in which2075

Losssft(s
template
i

′
) = CE(P (u|si|+p), u|si|+p) ,

Losswtm(s
template
i

′
) =

∑m
j=1 CE(Pw(wj), wj) .

2076

To demonstrate the effectiveness of WASA-LLM for2077

SFT data, we conduct experiments using the Self-2078

Annotated Reddit Corpus (SARC) (Khodak et al.,2079

2018) which is an SFT dataset. This dataset, which2080

is designed for sarcasm detection, includes 1.32081

million sarcastic comments sourced from Reddit;2082

Tab. 26 shows the details of this dataset. The2083

dataset contains a column named ‘subreddit’ which2084

indicates the sub-forums dedicated to specific top-2085

ics. Different subreddits are used to represent vari-2086

ous data providers. Similar to the setting in Sec. 4,2087

we select 10 data providers in the experiment. We2088

calculate the TF-IDF scores of all training points2089

from each data provider and select those with the2090

top 50% of the TF-IDF scores (i.e., most repre-2091

sentative sentences) for watermarking. We also2092

adopt GPT2-Large as the pre-trained model. For2093

the sarcasm task’s template, we adopt the Ques-2094

tion Prompt (Liu et al., 2023b). Then, in terms of2095

evaluating the source attribution accuracy, we ran-2096

domly select each data point as the input/prompt2097

to the trained WASA-LLM and use the subreddit of2098

that data point as the source. The other evaluation2099

settings are the same as that in Sec. 4.1.2100

Tab. 25 illustrates that a top-1 source attribu-2101

tion accuracy of 50.80% and a top-3 accuracy of2102

78.80% can be achieved using our WASA-LLM. The2103

performance is inferior compared to that observed2104

in generation tasks, primarily due to the increased2105

challenge in learning mappings from texts to wa-2106

termarks because texts in the SFT dataset contain2107

fewer tokens on average. Specifically, the mean2108

token count per sequence in this dataset, includ-2109

ing the template data, is approximately 18.4 which2110

contrasts with the average of 512 tokens per se-2111

quence in unsupervised tasks. Despite this, the2112

achieved accuracy significantly surpasses the base-2113

line of 10.00%. Furthermore, the model exhibits2114

a decent sarcasm prediction accuracy of 86.60%2115

which even surpasses the performance of the origi-2116

nal GPT2. One of the reasons may be that certain2117

subreddits are more likely to contain sarcastic com-2118

ments and our watermarking framework coinciden-2119

tally captures this pattern. The results demonstrate2120

that our WASA framework is still effective for SFT2121

data and can maintain the performance preservation2122

property.2123

Table 25: Comparison of performances of the origi-
nal GPT2 model trained with unwatermarked data and
our WASA-LLM in terms of sarcasm prediction accuracy
(‘pred acc’) and source attribution accuracy (‘acc’ and
‘top-3’).

model pred acc. acc. top-3. training time

random 50.00 10.00 30.00 -
unwatermarked 84.80 - - 3h37m38s
WASA-LLM 86.60 50.80 78.80 4h32m17s

Table 26: Information on the Self-Annotated Reddit
Corpus (SARC) dataset.

Training Evaluation

Comments 910K 101K
Unique tokens 464K 109K
Total tokens 9.5M 1M

F.6 Relative Positions of Generated 2124

Watermarks 2125

Figure 6: Distribution of the relative positions of the
generated watermarks in the generated sentence.

To further investigate the nature of our generated 2126

watermarks, we have analyzed the distribution of 2127

the relative positions of the generated watermarks 2128

in the generated sentences. As shown in Fig. 6, 2129

the generated watermarks are uniformly distributed 2130

within a sentence. This is because when we embed 2131

watermarks into the selected sentences for LLM 2132

training, the position of the embedded watermark 2133

is randomly selected. Therefore, after the LLM is 2134

trained, the position of the generated watermark in 2135

the generated sentence is also uniformly distributed. 2136

This uniform distribution of watermarks makes it 2137

harder for an adversary to remove the watermark, 2138

compared to the scenario where the watermarks are 2139

at a fixed position. 2140
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F.7 Application in Continuous Training2141

Pipeline2142

Our WASA framework also naturally supports con-2143

tinuous training: since each data provider has inde-2144

pendent watermarks, we can seamlessly integrate2145

any new data provider’s watermarked data into2146

the current WASA-LLM by continuing the second-2147

stage pre-training using those data. To empirically2148

demonstrate this, we conduct the following exper-2149

iment: initially, we obtain a WASA-LLM through2150

second-stage pre-training of the Llama2-7B model2151

using the data from 10 providers on the ArXiv2152

dataset (the same one as Table 1, Sec. 4.1). We2153

then continue to perform second-stage pre-training2154

with data from 10 additional providers, each with2155

new watermarks, thereby increasing the total num-2156

ber of data providers to 20. The source attribu-2157

tion accuracy (top-3/top-5 accuracy) for the 102158

additional providers is 84.20% (95.80%/98.40%),2159

demonstrating that we can preserve high source2160

attribution accuracy with the continuous training2161

pipeline.2162

F.8 Impact of Number of Watermarks in2163

Training Data2164

Here, we will evaluate the impact of the number2165

of watermarks in the training data on the source2166

attribution accuracy achieved by WASA-LLM. Fol-2167

lowing that of Sec. 3.1, we vary the percentage2168

of sentences selected for watermarking (i.e., top2169

X% of the TF-IDF scores) and evaluate its impact2170

on our WASA-LLM obtained from second-stage pre-2171

training of the GPT2 model on the ArXiv dataset.2172

Fig. 7 (left) shows that as the number of water-2173

marks increases, the source attribution accuracy2174

firstly increases and then declines. This is because2175

an overly small number of watermarks results in2176

insufficient data for learning an accurate texts-to-2177

watermarks mapping; meanwhile, if watermarks2178

are added to an excessively large number of sen-2179

tences, then some of the watermarked sentences2180

may not be representative of the texts from their2181

data providers, which also increases the difficulty2182

of learning the mapping from the texts of the data2183

providers to their unique watermarks (see Sec. 3.1).2184

In addition, Fig. 7 (right) shows that increasing2185

the number of added watermarks in general leads2186

to worse text generation performances (i.e., larger2187

perplexity) of the WASA-LLM. The detailed results2188

are provided in Tab. 27. Moreover, Fig. 8 shows a2189

clearer visualization of the results in smaller per-2190

centages. 2191

Figure 7: Source attribution accuracy and perplexity
achieved by WASA-LLM (i.e., obtained from second-
stage pre-training of the GPT2 model on the ArXiv
dataset) vs. percentage of watermarked sentences in the
training data.

Table 27: Comparison of source attribution accuracy
achieved by WASA-LLM (i.e., obtained from second-
stage pre-training of the GPT2 model on the ArXiv
dataset) for different percentages of watermarked sen-
tences in the training data. The percentage of blocks
that are watermarked is given as well.

pct. sentences pct. blocks acc. top-3. perplexity

20% 88.25% 74.84 95.76 12.6570
40% 96.88% 74.16 95.45 12.9180
60% 98.86% 74.32 95.04 13.3096
80% 99.38% 73.48 95.40 14.1952
100% 100.00% 72.24 95.00 15.8465

Figure 8: Source attribution accuracy and perplexity
achieved by WASA-LLM (i.e., obtained from second-
stage pre-training of the GPT2 model on the ArXiv
dataset) vs. percentage of watermarked sentences in the
training data on a smaller scale of 0.05% − 1% for a
clearer visualization.

F.9 Impact of Lengths of Conditioned 2192

Sentence and Generated Sentence 2193

Recall that in our main experiments, we have used 2194

a sentence with 200 characters as the input/prompt 2195

(i.e., the conditioned sentence) to our WASA-LLM, 2196

and let the WASA-LLM generate synthetic texts with 2197

100 tokens (Sec. 4.1). In this section, we vary 2198

the character lengths of both the conditioned sen- 2199

tence and the generated synthetic texts, and eval- 2200

uate their impact on the source attribution accu- 2201

racy achieved by WASA-LLM (i.e., obtained from 2202
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second-stage pre-training of the GPT2 model on2203

the ArXiv dataset). The results in Tab. 28 show that2204

longer conditioned sentences (i.e., inputs/prompts)2205

lead to better performances. Moreover, when the2206

length of the conditioned sentences is fixed (at 200),2207

increasing the length of the generated synthetic2208

texts consistently reduces the number of forcefully2209

generated watermarks (App. F.3) while preserving2210

the source attribution accuracy achieved by WASA-2211

LLM.2212

Table 28: Impact of the lengths of the conditioned sen-
tences (inputs/prompts) and the generated synthetic sen-
tences on the source attribution accuracy achieved by
WASA-LLM (obtained from second-stage pre-training of
the GPT2 model on the ArXiv dataset) where ‘len. cond.’
stands for the character length of the conditioned sen-
tences, ‘tokens syn.’ refers to the number of tokens
in the generated synthetic sentences, and ‘pct. wtm_f’
denotes the percentage of forcefully generated water-
marks.

len. cond. tokens syn. acc. top-3. pct. wtm_f

100 100 63.92 89.96 15.2%
100 200 64.36 89.48 5.2%
200 100 74.84 95.76 8.6%
200 200 75.20 95.64 4.2%
200 300 74.24 95.40 2.2%
200 400 74.60 95.24 1.0%

F.10 Impact of Length of Watermark2213

In our main experiments, we have adopted a water-2214

mark design that consists of 10 characters/tokens2215

(Sec. 3.1). However, our WASA framework allows2216

for the use of watermarks with different lengths.2217

Here, we will test the impact of the length of2218

the watermarks on the source attribution accuracy2219

achieved by WASA-LLM (obtained from second-2220

stage pre-training of the GPT2 model on the ArXiv2221

dataset). The results in Tab. 29 show that for water-2222

marks with 5, 10, and 15 characters, their source2223

attribution accuracies are comparable while the 5-2224

character watermark achieves slightly better perfor-2225

mances. This is likely because when the watermark2226

is shorter, the resulting watermark prediction prob-2227

lem becomes relatively easier (i.e., the number of2228

parameters in the last linear layer is smaller), which2229

may lead to better watermark prediction and gen-2230

eration. However, note that a long watermark is2231

favored when there is a need to scale to a large num-2232

ber of data providers. Therefore, our WASA frame-2233

work offers the flexibility to choose watermarks2234

with different lengths, and the preferred watermark2235

length can be application-dependent.2236

Table 29: Source attribution accuracy achieved by WASA-
LLM (obtained from second-stage pre-training of the
GPT2 model on the ArXiv dataset) using watermarks
with different lengths.

len. watermarks acc. top-3.

5 characters 76.12 95.48
10 characters 74.84 95.76
15 characters 74.12 95.28

Table 30: Source attribution accuracy achieved by WASA-
LLM (obtained from second-stage pre-training of the
GPT2 model on the ArXiv dataset) after training with
more epochs.

n_epochs acc. top-3.

1 74.84 95.76
2 76.96 96.00
3 75.88 95.88

F.11 Impact of Number of Watermark 2237

Characters 2238

In our main experiments, we have used 6 invisible 2239

Unicode characters to form each character in the 2240

10-character watermark. Our WASA framework also 2241

allows for the use of watermarks such that each 2242

character in the watermark can be chosen among 2243

a different number of available characters. Tab. 31 2244

shows the source attribution accuracy achieved 2245

by WASA-LLM (obtained from second-stage pre- 2246

training of the GPT2 model on the ArXiv dataset) 2247

when each character in the watermark can be cho- 2248

sen among only 2 available characters: U+200B: 2249

Zero Width Space and U+200C: Zero Width Non- 2250

Joiner. The results are comparable while the one 2251

with 2 available characters shows slightly worse 2252

top-3 accuracy. This is likely because when fewer 2253

available characters are used, the watermarks for 2254

different categories are more similar to each other, 2255

which may make top-3 classification more difficult. 2256

Table 31: Impact of the number of available characters
(used to make up each character in the 10-character
watermark) on the source attribution accuracy achieved
by WASA-LLM (obtained from second-stage pre-training
of the GPT2 model on the ArXiv dataset).

n_available_characters acc. top-3.

2 75.48 89.92
6 74.84 95.76
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F.12 Impact of Amount of Data for2257

Second-Stage Pre-training to Obtain2258

WASA-LLM2259

Here, we will evaluate the impact of using vary-2260

ing amounts of data from the ArXiv dataset for2261

our second-stage pre-training (Sec. 3.2) of the2262

GPT2 model to obtain WASA-LLM. As discussed in2263

App. D.1, in our main experiments for the ArXiv2264

dataset, we have used 33% of text data from every2265

category (i.e., data provider) to reduce computa-2266

tions. Here, we will vary this percentage to evaluate2267

its impact on both the source attribution accuracy2268

and the text generation performance achieved by2269

our WASA-LLM. The results in Tab. 23 demonstrate2270

that as more data is used, both the source attribution2271

accuracy and the text generation ability (i.e., per-2272

plexity) achieved by our WASA-LLM are generally2273

improved.2274

F.13 Impact of Number of Training Epochs2275

As we have discussed in App. D.2, we have trained2276

our WASA-LLM for one epoch during the second-2277

stage pre-training (Sec. 3.2). Here, we will eval-2278

uate the performance of WASA-LLM after training2279

with more epochs. The results in Tab. 30 show2280

that training with multiple epochs in general fur-2281

ther improves the performance. This demonstrates2282

the potential of our WASA framework to achieve2283

even better source attribution accuracy (than those2284

presented in our current experiments) with more2285

computations.2286

G Case Studies2287

G.1 Generated Texts with Imperceptible2288

Watermarks2289

We have discussed in Sec. 3.3 how our trained2290

WASA-LLM can be used to generate synthetic texts2291

with embedded watermarks. Fig. 9 below shows an2292

example of the watermarked texts generated by our2293

WASA-LLM, which verifies that the generated water-2294

marks that are embedded into the generated texts2295

are indeed imperceptible to human eyes. Therefore,2296

the readability of the generated texts will not be2297

affected much.2298

G.2 Generated Data and its Source2299

To facilitate a better demonstration of the perfor-2300

mance of our WASA framework, we perform a case2301

study on the synthetic data generated by our WASA-2302

LLM. The examples shown in Figs. 10 and 11 are2303

the generated texts from our WASA-LLM trained2304

with the ArXiv dataset and the Booksum dataset, 2305

respectively. They further verify the invisibility of 2306

the generated watermarks and demonstrate that our 2307

framework preserves the quality of the generated 2308

texts. 2309

G.3 Generated Data with Two Source 2310

Considering the special cases where the generated 2311

data is a combination of data from two providers, 2312

our current WASA framework naturally handles 2313

them: We can use the generated top-k watermarks 2314

to identify the k most likely data providers in order 2315

to account for cases where there are multiple data 2316

providers. 2317

To demonstrate our framework’s capability in 2318

this context, we have crafted several case studies 2319

simulating examples of text that are combinations 2320

of two data providers. We select two pieces 2321

of text generated by different data providers 2322

and manually concatenate them. Subsequently, 2323

we use the concatenated text as the prompt 2324

forWASA-LLM to generate the top-3 watermarks. 2325

As an example in Fig. 12, we have crafted the 2326

texts as the concatenation of the generated texts 2327

from two data providers gr-qc (with watermark 2328

‘U+200DU+2064U+200BU+200BU+200CU+200 2329

BU+200BU+200DU+2063U+200C’) 2330

and quant-ph (with watermark 2331

‘U+2062U+2063U+200CU+2063U+2063U+20 2332

63U+200CU+200CU+200BU+200D’). In such 2333

cases, our framework is able to produce the 2334

watermarks corresponding to both data providers 2335

among the top-3 generated watermarks. Note 2336

that in the above example and the next, we 2337

manually visualize the watermarks for illustrative 2338

purposes, while in real cases, the watermarks 2339

remain invisible. 2340

As another example, we have crafted the 2341

texts (i.e., shown in Fig. 13) as the concate- 2342

nation of the generated texts from another 2343

two data providers astro-ph (with watermark 2344

‘U+2063U+200DU+200CU+200CU+200BU+200B 2345

U+2062U+200CU+2063U+200B’) 2346

and cs.CV (with watermark 2347

‘U+200BU+2064U+200DU+200BU+200CU+200D 2348

U+2064U+2062U+2063 U+2064’). In this case, 2349

our framework is also able to generate the 2350

watermarks for both data providers among the 2351

top-3 watermarks. These results demonstrate 2352

the potential of our top-k source attribution to 2353

handle scenarios in which the generated data is a 2354

combination of multiple data providers. 2355
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Figure 9: An example of our WASA-LLM-generated synthetic texts with embedded watermarks that are imperceptible
to human eyes.

Figure 10: Generated text from ArXiv dataset (astro-ph category).

H Frequently Asked Questions2356

The paper assumes data providers are willing to2357

embed watermarks in their data to track usage,2358

but in practice, they may prioritize data privacy2359

over adding any extra information. Firstly, the2360

objective of this work is to protect the IP rights of2361

the data providers under the setting that there is a2362

necessity to certify the source of online content pro-2363

duced by LLMs, as discussed in Sec.1. Under this2364

setting, the data providers are willing to have their2365

identity disclosed and attributed to. In practice, this2366

setting may correspond to authors of academic pa-2367

pers who are willing to be identified and cited for2368

their work.2369

Meanwhile, as discussed in App. 5, in our WASA2370

framework, only the watermark can be seen in the2371

generated data, which does not imply personal in-2372

formation about the data providers. Therefore, data2373

privacy can be preserved as long as the mapping2374

from watermarks to data providers is kept confiden-2375

tial. In practice, if some data providers prioritize2376

data privacy and do not want their identities to be2377

revealed, they may request the LLM owner to not2378

decode their watermarks and reveal them as sources2379

to the public, in which case users will not be able to2380

infer any private information from the watermark2381

itself.2382

From another perspective, given our proposed2383

watermarking scheme, data providers will also be2384

able to check data provenance and see whether their2385

watermarked data have been misused, which serves2386

as a protection of data privacy in a different sense.2387

It seems the removal of all invisible charac-2388

ters could render the watermarks ineffective.2389

Firstly, we have considered various scenarios where2390

the generated watermark is modified or removed2391

in our paper (Sec. 4.2 and App. E.2). We have 2392

tested our watermark regeneration defense against 2393

these scenarios to regenerate the attacked water- 2394

mark and preserve a high source attribution accu- 2395

racy of 71.60% (top-3 93.76%), which is compara- 2396

ble to the original 74.84% (top-3 95.76%). Thus, 2397

our watermark regeneration is an effective defense 2398

mechanism to address the straightforward removal 2399

of watermarks. 2400

Secondly, we would like to consider the usage 2401

of our framework where source attribution is per- 2402

formed immediately as the LLM generates text 2403

together with the watermark. Under this setting, 2404

the identification of the data provider of the gen- 2405

erated text takes place right after LLM generation 2406

and there would be no opportunity for attackers to 2407

modify the generated watermarks. In practice, this 2408

setting may correspond to the scenario that when 2409

the user queries an LLM, the source is provided 2410

along with the output of the LLM. 2411

How does the evaluation, particularly the exper- 2412

imental setup correlate with realistic scenarios 2413

where LLMs generate novel content? In real- 2414

world scenarios, source attribution is more likely 2415

to be performed on LLM-generated content to find 2416

the source for the generation. In our evaluation, 2417

the source attribution accuracy is also measured 2418

on the generated sentence of the LLMs, using the 2419

sentences selected from the training datasets as in- 2420

puts/prompts. Hence, our evaluation design aligns 2421

with the real-world source attribution applications 2422

on both performing on synthetic data. Note that 2423

we use the sentences from the training datasets 2424

as inputs/prompts to LLMs solely to decide the 2425

ground-truth source for the generated content: On 2426

the one hand, we can determine the source of the 2427
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Figure 11: Generated text from BookSum dataset (Adam Bede category).

Figure 12: Combined generated text from ArXiv dataset (gr-qc and quant-ph categories) with top-3 watermarking
covering both watermarks.

generated sentence directly as the source (training2428

data provider) for the input/prompt (as validated2429

in App. E.3); On the other hand, if we choose in-2430

puts/prompts as those we do not know the source,2431

it would be more challenging to decide the source2432

for the generated sentence and make the evaluation2433

of source attribution less reliable.2434

Importantly, we have adopted various datasets in2435

our experiments that correspond to different real-2436

life use cases. The ArXiv and DBpedia datasets cor-2437

respond to paper and knowledge attribution, while2438

the BookSum dataset refers to story attribution.2439

The CC-News, IMDB, and FakeNews datasets rep-2440

resent a more challenging use case: the attribution2441

of word/expression usage.2442
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Figure 13: Combined generated text from ArXiv dataset (astro-ph and cs.CV categories) with top-3 watermarking
covering both watermarks.
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