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Abstract

What are the core learning algorithms in brains? Nativists propose that in-
telligence emerges from innate domain-specific knowledge systems,whereas
empiricists propose that intelligence emerges from domain-general systems
that learn domain-specific knowledge from experience. We address this
debate by reviewing digital twin studies designed to reverse engineer the
learning algorithms in newborn brains. In digital twin studies, newborn an-
imals and artificial agents are raised in the same environments and tested
with the same tasks, permitting direct comparison of their learning abili-
ties. Supporting empiricism, digital twin studies show that domain-general
algorithms learn animal-like object perception when trained on the first-
person visual experiences of newborn animals. Supporting nativism, digital
twin studies show that domain-general algorithms produce innate domain-
specific knowledge when trained on prenatal experiences (retinal waves).We
argue that learning across humans, animals, and machines can be explained
by a universal principle, which we call space-time fitting. Space-time fit-
ting explains both empiricist and nativist phenomena, providing a unified
framework for understanding the origins of intelligence.
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1. INTRODUCTION

The brain is the most powerful learning system in the known universe. Using just a few dozen
watts of energy—barely enough to run a dim light bulb—brains learn to perform a wide range
of tasks, efficiently transforming streams of high-dimensional sensory data into adaptive behav-
ioral responses. What core algorithms—present in newborn brains—drive these impressive feats
of learning and behavior? This question has inspired philosophers and scientists for more than
2,000 years, from Plato and Aristotle to Hume, Locke, von Helmholtz, and many others in the
twenty-first century. However, the origins and computational foundations of intelligence remain
unsolved mysteries in science and technology. There is disagreement about when intelligence
begins, what it consists of, what causes it to emerge, and how it changes with experience.

We propose an approach to resolve this debate by linking methods from developmental psy-
chology, computational neuroscience, virtual reality, and artificial intelligence. We first discuss
methodological challenges in resolving the nativist versus empiricist debate (Section 2) and ar-
gue that controlled-rearing studies will be essential for characterizing the brain’s core learning
algorithms (Section 3). We focus on efforts to automate controlled-rearing studies (Section 3.1),
which allows newborn animals to be raised in unnatural visual worlds. This methodological ad-
vance has allowed us to characterize the initial state of object perception and determine which
visual experiences are necessary and sufficient to develop object perception (Section 3.2).

We then describe conceptual challenges in resolving the nativist versus empiricist debate and
the need for closed-loop experimental systems for building robust theories of the origins of intel-
ligence (Section 4). Building on recent attempts to reverse engineer sensory systems (Section 4.1),
we extend the reverse-engineering paradigm to newborn animals (Section 4.2). The resulting
digital twin paradigm involves performing parallel controlled-rearing experiments on newborn
animals and artificial agents in a closed-loop scientific system (Figure 1). By raising animals and
machines in the same environments and testing them with the same tasks, we can directly mea-
sure whether nativist or empiricist algorithms learn more like newborn animals (Section 4.3).
We show that, when domain-general learning algorithms—including convolutional neural net-
works (CNNs) (Section 4.4) and vision transformers (ViTs) (Section 4.5)—are trained on the
first-person visual experiences of newborn animals, the algorithms learn animal-like object per-
ception, confirming a key empiricist prediction. We also show that domain-general algorithms
learn domain-specific visual knowledge when trained solely on retinal waves, illuminating how
domain-general algorithms could create innate knowledge in newborn brains (Section 4.6). We
posit that visual learning across humans, animals, and machines can be understood in terms
of a universal principle that we call space-time fitting, in which visual systems spontaneously
adapt (fit) to the spatiotemporal data distributions in the organism’s prenatal and postnatal en-
vironment. Space-time fitting integrates concepts related to learning in brains (e.g., Hebbian
learning, spike timing–dependent plasticity, predictive coding, statistical learning) and learning in
machines (e.g., backpropagation, generativemodeling, deep reinforcement learning) under a com-
mon principle. These different concepts reflect the same general principle of high-dimensional
systems iteratively adapting (fitting) to the spatiotemporal data distributions underlying sensory
experiences.

We conclude by returning to the nativist versus empiricist debate, emphasizing that space-time
fitting aligns with both nativist and empiricist views (Section 5). Empiricists have long posited
that powerful domain-general learning mechanisms acquire domain-specific knowledge through
experience, consistent with a space-time fitting process (Section 5.1). Nativists have long posited
the existence of rich innate knowledge, consistent with a space-time fitting process learning
from prenatal training data. We argue that space-time fitting can unite nativist and empiricist
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Figure 1

Digital twin studies involve raising newborn animals and artificial agents in the same environments and testing them with the same
tasks. This allows animals and machines to learn from the same experiences (training data), permitting direct comparison of their
learning abilities. Digital twin studies can be created for any perceptual, cognitive, or motor task. Figure adapted from Garimella et al.
(2024).

perspectives, leading to a unified understanding of the origins and computational basis of
intelligence (Section 5.2).

2. NATIVIST VERSUS EMPIRICIST THEORIES

Theories of the origins of intelligence broadly fall along a continuum that differs in terms of
the number and domain specificity of core learning systems (Buckner 2023). At one end of the
continuum lie nativist theories, which posit that intelligence emerges from a collection of in-
nate, domain-specific systems for learning about different kinds of things. Some researchers have
proposed dozens of specialized, evolutionarily ancient learning mechanisms (Pinker 2002), while
others have proposed a more modest number of core systems for learning about broad classes of
things (e.g., objects, places, agents, number) (Carey 2009, Spelke 2022). Nativist theories typically
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assume that a newborn’s sensory data are sparse, noisy, and impoverished; as such, nativists argue
that the core learning algorithms in newborn brains must have strong domain-specific knowledge
to solve perceptual and cognitive tasks.

At the other end of the continuum lie empiricist theories, which posit that intelligence emerges
from domain-general learning algorithms. For instance, theorists such as Locke, Hume, Skinner,
and Watson proposed that newborns start with a few domain-general faculties, and these fac-
ulties serve as the foundation for all other (learned) mental faculties (Hume 1739, Locke 1690,
Skinner 1938, Watson 1913). In contrast to nativist theories, empiricists typically assume that
newborns have access to richly structured sensory data for learning about the world. This is an
important difference between theories because, if training data are sufficiently rich, then domain-
general algorithms can learn domain-specific knowledge through experience (Reed et al. 2022).
Both empiricist and nativist theories agree that mature animals have domain-specific knowledge;
the theories differ in terms of whether domain-specific knowledge is learned versus hardcoded
into brains by evolutionary processes.

This debate has generated decades of seminal research about the cognitive abilities of infants,
toddlers, and children. However, scientists have long recognized that the only way to determine
what knowledge and learning mechanisms are present at birth is to study newborns. Studying
newborns circumvents much of the complexity associated with mature organisms, providing a
simpler system to understand the core drivers of biological intelligence.

Controlled-rearing studies on newborn animals have been particularly valuable for distinguish-
ing between nativist and empiricist views (Gibson 1963, Held & Hein 1963, Walk et al. 1957).
By rearing animals in strictly controlled environments, researchers can systematically manipulate
an animal’s experiences and measure what the animal learned from those experiences. Thus, re-
searchers can determine which experiences are necessary and sufficient for learning perceptual
and cognitive skills.

3. CONTROLLED-REARING STUDIES OF NEWBORN CHICKS

To reverse engineer the origins of intelligence, we need an animal model whose environment
can be strictly controlled from birth. Primates, rats, and pigeons have been the dominant animal
models in psychology and neuroscience; however, these animals must be raised in natural visual
worlds (e.g., due to their need for a caregiver). This is problematic for distinguishing between
nativist and empiricist theories because the natural world provides ample opportunities for learn-
ing domain-specific knowledge through experience. For instance, neuroscientists have shown that
object recognition changes rapidly in response to statistical redundancies in the animal’s environ-
ment (e.g., Cox et al. 2005,Wallis & Bülthoff 2001), with significant neuronal rewiring occurring
in as little as one hour of experience with an altered visual world (Li & DiCarlo 2008, 2010).
Developmental psychologists, in turn, have discovered that newborn brains can encode statisti-
cal relationships soon after birth (e.g., Bulf et al. 2011, Kirkham et al. 2002, Saffran et al. 1996).
These findings allow for the possibility that even early developing domain-specific skills (e.g., skills
emerging days, weeks, or months after birth) are learned from experience early in postnatal life.

To avoid these roadblocks, we chose an animal model—newborn chicks (Gallus gallus)—that
is precocial and does not require a caregiver. It is possible to control all of a newborn chick’s
postnatal experiences from birth,1 providing causal control over how experience shapes newborn
minds (Wood & Wood 2015).

1We use the term “birth” colloquially to refer to the event in which an organism comes into the world
(including both parturition and hatching).
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Studies of chicks also shed light on human learning because avian and mammalian brains share
many features. On the circuit level, both contain homologous cortical circuits for processing sen-
sory input (Karten 2013). Although these circuits are organized differently in birds and mammals
(nuclear and layered organization, respectively), the circuits share similarities in terms of cell mor-
phology, gene expression, the connectivity pattern of the input and output neurons, and circuit
function (Calabrese &Woolley 2015,Dugas-Ford et al. 2012, Jarvis et al. 2005,Wang et al. 2010).
On the macro level, avian and mammalian brains share the same large-scale organizational prin-
ciples: Both are modular, small-world networks with a connective core of hub nodes that includes
visual, auditory, limbic, prefrontal, premotor, and hippocampal structures (Applegate et al. 2023,
Shanahan et al. 2013).Given the circuit-level and architecture-level similarities between avian and
mammalian brains, controlled-rearing studies of chicks can reveal general principles of learning
across species.

3.1. Automating Controlled-Rearing Studies

Initially, we attempted to study newborn chicks with the same methods that were previously used
to study human infants and newborn chicks in other labs: manual testing and direct observation.
In these early (unpublished) studies, we reared chicks individually in home cages, then manually
transported each chick to a test chamber, where we could present new objects and measure how
long they spent with each object, using stopwatches as measuring devices. The experiments were
laborious and time consuming, and the results were disappointing. When we moved the chicks
from their home chamber to the test chamber, the move often overwhelmed the chicks, and they
would freeze for long periods of time. This manual testing approach also limited the precision
and amount of data that could be collected from each chick, while opening the possibility of ex-
perimenter bias in how the stimuli were presented and/or how the chick’s behavior was measured.
Overall, the data we collected using manual testing and direct observation were sparse and noisy,
leading to datasets with low signal-to-noise ratios.

To make our experimental paradigm more comfortable for chicks and more efficient for re-
searchers, we spent years developing new controlled-rearing methods. In other fields—including
physics, chemistry, and astronomy—automation has been invaluable for improving data quality,
eliminating experimenter bias, and removing sources of noise by standardizing data collection pro-
cedures. To apply these benefits of automation to the study of newborn minds, we invented a fully
automated controlled-rearing method (Wood 2013). This method allowed us to raise newborn
chicks in strictly controlled environments from the onset of vision. Specifically, after hatching, we
move each chick to an automated controlled-rearing chamber (Figure 2a). We move the chicks
in darkness using night vision goggles to avoid exposing the chicks to any uncontrolled visual ex-
periences (Figure 2b). At that point, the chicks do not need to be moved again, since the chick’s
home chamber contains display walls (LCD monitors) for displaying preprogrammed training
and test stimuli to the chicks. To track the chick’s behavior, we embed microcameras in the ceil-
ings of the chamber, which track the chick’s behavior continuously. The camera data are passed
to an automated image-based tracking system, which measures the chick’s performance on the
task. Since stimuli presentation, data collection, and behavioral tracking are performed by com-
puters, this automated method eliminates experimenter bias and allows each chick’s behavior to
be tracked continuously and precisely across the first weeks of life (Figure 2c). Automation also
allows many subjects to be tested simultaneously. With this new tool, we can probe the initial
state of object perception and measure how vision changes as a function of particular experi-
ences, using high-precision methods (see the sidebar titled Using Automation to Study Newborn
Minds).
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Figure 2

(a) A newborn chick in a controlled-rearing chamber. (b) To avoid exposing the chicks to uncontrolled visual experiences, we use night
vision goggles for all animal husbandry. (c) Scatterplots and boxplots of the (left) measurement error and (right) effect sizes from samples
of automated (blue points) and nonautomated (yellow points) controlled-rearing studies. Each point represents the standard deviation or
Cohen’s d from one condition. Across many studies, the effect sizes obtained with automated methods were much larger than the effect
sizes obtained with nonautomated methods. Automated methods also produced much more precise measurements than nonautomated
methods. Data taken from Wood & Wood (2019). (d) Automated controlled-rearing studies have revealed powerful one-shot learning
abilities in newborn chicks. After encountering a single object, chicks can recognize the object across new viewpoints and backgrounds.
Chicks can also bind color and shape features into integrated object representations and remember objects that have moved out of view
(object permanence). (e) To develop these object perception skills, newborn chicks need slow and smooth visual experiences with objects
(slowness and smoothness constraints). Together, these findings show that newborn visual systems are powerful but constrained.

USING AUTOMATION TO STUDY NEWBORN MINDS

The accuracy of science depends on the precision of its methods. When fields produce precise measurements, the
data can rigorously guide and constrain theory selection. When fields produce noisy measurements, however, the
scientific method is not guaranteed to work. In fact, noisy data are regarded as a leading cause of the replication
crisis across multiple fields (Loken & Gelman 2017,Munafò et al. 2017, Simmons et al. 2011). Due to the method-
ological challenges associated with testing newborn subjects, prior studies have tended to produce noisy data with
a low signal-to-noise ratio. This has hindered attempts to characterize the brain’s core learning algorithms. Au-
tomated controlled rearing helps solve this noisy data problem. For instance, in a large sample of nonautomated
and automated controlled-rearing studies, automated studies produced measurements that were 3–4 times more
precise than nonautomated studies and produced effect sizes that were 3–4 times larger than nonautomated studies
(Figure 2c). Automation also eliminates experimenter bias and allows replications to be performed quickly and
easily. We argue that automation can be a powerful tool for improving measurement precision, producing high-
powered studies, and generating accurate data for distinguishing between candidate models of the origins of
intelligence.
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3.2. Origins of Object Perception

Perhaps the most important benefit of automated controlled rearing is that newborn animals can
be raised continuously in altered visual worlds. This is important because nativist and empiricist
theories make the same predictions when animals are raised in natural worlds (because knowledge
could be either innate or learned from experience early in postnatal life). After all, natural visual
environments provide ample evidence about the behavior of objects, so even young animals might
have access to sufficient training data to learn object perception from domain-general algorithms.
To distinguish between theories, we need a different approach. Rather than raising animals solely
in natural worlds (where nativist and empiricist theories make the same prediction), we must also
raise animals in impoverished and unnatural worlds (where nativist and empiricist theories make
different predictions). By systematically manipulating the object experiences available to new-
born animals, we can measure whether those experiences systematically alter the animals’ visual
knowledge.

To explore the origins of object perception, we have raised newborn chicks in impoverished
and unnatural virtual worlds. These studies provide clear evidence that chicks have an object-
based inductive bias at the onset of postnatal visual learning (Wood et al. 2024). This inductive
bias predisposes chicks to transform retinal inputs into object-centric scenes, containing bounded
objects that persist over space and time. Specifically, two signatures characterize an inductive bias:
(a) It allows systems to make inferences that go beyond the training data, and (b) it constrains the
range of input–output functions that can be learned (Lake et al. 2017, Mitchell 1980, Wolpert &
Macready 1997). Our experiments provide evidence for both signatures in newborn chicks.

First, newborn vision is powerful: Newborn chicks can generalize far beyond their prior experi-
ences with objects (Figure 2d). Soon after hatching, chicks can segment objects from backgrounds
(Wood & Wood 2021a), recognize objects across novel views (Wood & Wood 2017, 2020), bind
color and shape features into integrated object representations (Wood 2014), and recognize ob-
jects based on motion patterns (Goldman & Wood 2015). Likewise, chicks can rapidly learn to
recognize faces (Wood &Wood 2015), including human faces presented from novel views (Wood
&Wood 2021b). Chicks also have a robust sense of object permanence, allowing them to remem-
ber objects that have moved out of view (Prasad et al. 2019, Wood et al. 2024). All of these skills
are present soon after hatching, even when chicks have been raised in impoverished environments
containing a single object. Newborn chicks can thus solve challenging object perception tasks in
the absence of extensive experience with objects.

Second, newborn vision is constrained (Figure 2e).To characterize the constraints on newborn
vision, we raised chicks in unnatural worlds that altered the core visual experiences that animals
acquire in natural worlds. We focused on manipulating the slowness and smoothness of object
motion. Researchers have long observed that natural visual environments are slow and smooth:
Objects are typically present for seconds or longer, andwhen objects domove, theymove smoothly
across the retina (e.g., DiCarlo et al. 2012, Feldman & Tremoulet 2006, Földiák 1991, Gibson
1979, Stone 1996, Wallis & Rolls 1997, Wiskott & Sejnowski 2002). In consequence, visual fea-
tures that co-occur across short periods of time are, on average, more likely to correspond to
different images of the same object than to different objects. In principle, newborn visual systems
might learn how to see by encoding these slow and smooth signals from their visual environment.

By leveraging automated controlled rearing, we confirmed this prediction. We found that the
development of object perception requires visual experiences of object views changing slowly and
smoothly, adhering to the spatiotemporal properties of objects in the real world. Without slow
and smooth visual object experiences, chicks largely failed to develop object perception. The de-
velopment of object parsing (Wood & Wood 2021a), visual binding (Wood 2016), view-invariant
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object recognition (Wood & Wood 2016, 2018; Wood et al. 2016), face recognition (Wood &
Wood 2021b), and object permanence (Prasad et al. 2019) all required visual experience of objects
moving slowly and smoothly. If an object moved too quickly when being encoded intomemory, the
resulting object representation was distorted in the direction of object motion, effectively break-
ing object recognition (Wood & Wood 2016, 2021b). Similarly, if an object moved nonsmoothly
when being encoded into memory, chicks failed to solve simple color and shape recognition tasks
(Wood 2016), and their object representations failed to generalize across new views and rotation
speeds (Wood &Wood 2016, 2018). Experience with a natural (slow and smooth) environment is
necessary for the development of object perception.

Taken together, these findings support both nativist and empiricist claims. Nativists can em-
phasize that newborn animals havemany object perception skills during their first encounters with
objects. Empiricists can emphasize that experience heavily shapes object perception, with animals
needing specific kinds of experiences (slow and smooth) to develop object perception. To further
complicate the debate, one might question whether natural visual experience is required to learn
object perception or to maintain object perception skills that are already present at birth (Spelke
& Newport 1998). How do we resolve this debate? We suggest that a satisfying scientific expla-
nation for these empirical phenomena will require a reverse engineering perspective, in which we
try to build artificial systems (computational models) that learn like newborn animals.

4. REVERSE ENGINEERING BIOLOGICAL INTELLIGENCE

Why are the origins of intelligence still unknown? We suspect that, in addition to the method-
ological challenges discussed above, the field also faces conceptual challenges in understanding
the origins of intelligence.

Scientists studying the origins of intelligence have generally relied on verbal theories or simple
(low-dimensional) quantitative models. Relying on verbal theories is problematic because verbal
theories are underspecified. Any verbal theory can be formalized (computationally) in infinite
ways. Given their low-dimensional nature, verbal theories can also make predictions that are
vague and difficult to falsify. Similarly, relying on low-dimensional quantitative models is prob-
lematic because learning is complex, and its underlying mechanisms likely cannot be understood
through simple, low-dimensional models. The brain is a high-dimensional learning system (e.g.,
with 100 trillion adjustable synapses in the human brain; Azevedo et al. 2009), and during learning,
the brain changes as a function of high-dimensional sensory data (e.g., from 106 optic nerve fibers)
arising across nested periods of development (Adolph &Hoch 2019). This is a massive amount of
complexity to capture in just a few dimensions. Low-dimensional models also do not perform the
same tasks as animals (i.e., learning from raw sensory data). Thus, the models cannot be accurate
working models of the core learning algorithms in newborn brains.Given the limitations of verbal
theories and low-dimensional models, perhaps it is not surprising that scientists have been unable
to develop rigorous models of the core learning algorithms in brains. The field simply did not
have the right conceptual tools for simulating high-dimensional learning systems interacting with
high-dimensional sensory data across time.

Other fields have solved the complexity problem by building closed-loop scientific systems.
The idea of closed-loop systems comes from engineering, where the outputs of the system are
fed back into the system, as a form of feedback, to allow parameters to adjust in response to
environmental changes. In closed-loop scientific systems, experimental data are compared with
predictions made by theoretical models. The models, in turn, generate new predictions for refin-
ing, validating, and falsifying existing models. In physics, for example, tools like the Large Hadron
Collider automate high-energy particle collision experiments, and the resulting data are compared
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with predictions made by complex theoretical models, all without human intervention (ATLAS
Collab. et al. 2012). Likewise, in chemistry, computer simulations have allowed scientists to study
and predict complex chemical reactions.These simulations are guided by autonomous closed-loop
systems, where observed outputs are continuously compared with theoretical predictions (Volk
et al. 2023). These examples illustrate how humans have overcome the limits of human intuition
to build high-dimensional models of complex systems.

This perspective echoes Newell (1973), who famously argued that the most effective way to
make theoretical progress in themind sciences is not to “play 20 questions with nature”by focusing
on binary verbal reasoning and simple low-dimensional models (see also Kanwisher et al. 2023,
Kriegeskorte &Douglas 2018). Instead, scientists should attempt to build unified task-performing
computational systems. These systems (models) should be capable of performing the tasks they
aim to explain (e.g., converting high-dimensional sensory signals into actions) and be testable
across a wide variety of tasks.

4.1. Reverse Engineering Sensory Systems

Computational neuroscience has embraced this approach by attempting to reverse engineer sen-
sory systems. The reverse-engineering paradigm involves comparing brains to artificial neural
networks (ANNs) that are trained to perform real-world tasks (e.g., object segmentation, face
recognition, navigation). Since the ANNs perform the same tasks as biological systems by using
algorithms that are based on brain-like units (e.g., neurons), the ANNs can serve as testable hy-
potheses about the algorithms underlying biological intelligence (Schrimpf et al. 2020). Brains and
ANNs can then be integrated into closed-loop scientific systems, allowing neuroscientists to find
ANN models that can accurately predict neural and behavioral patterns produced by biological
systems. This paradigm has been successfully applied to vision (Yamins et al. 2014), audition (Kell
et al. 2018), olfaction (Wang et al. 2021), visually guided action (Michaels et al. 2020), language
(Schrimpf et al. 2021), navigation (Whittington et al. 2022), decision making (Binz & Shulz 2023),
and memory (Nayebi et al. 2021).

This closed-loop approach is effective because it allows researchers to discover high-
performing models. The ANNs perform the same tasks as animals, so ANNs and animals can
be directly compared in a closed loop, allowing effective search through large classes of high-
dimensional models. By testing a wide variety of ANN models, researchers can determine which
model features are most important for improving model accuracy (and which are not). Features
can be progressively added and refined in new models in a continuous feedback loop between
model engineering and model testing (Schrimpf et al. 2020).

Since the closed loop links biological and artificial systems, this approach produces models at
an engineering level of abstraction: a level close enough to biology to preserve the essential details
needed to mimic biological intelligence but abstract enough to discard inessential details (Doerig
et al. 2023).This helps researchers focus on themodel features thatmatter for producing brain-like
intelligence. For instance, when reverse engineering the ventral visual stream, researchers found
that feedforward networks can account for a large proportion of the explainable variance in neural
activation in response to particular images (Yamins et al. 2014). While adding additional features
to the model (e.g., recurrency, memory, lateral connections, spiking) might improve model per-
formance, it is useful to know that a relatively simple model (i.e., consisting solely of feedforward
connections) is sufficient to reproduce much of the neural and behavioral signatures of mature
visual systems.

ANN models are also valuable because they can serve as integrative models of intelligence.
For example, when researchers find a compelling image-computable model of the ventral visual

www.annualreviews.org • Reverse Engineering Visual Intelligence 153



D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  I
nd

ia
na

 U
ni

ve
rs

ity
 -

 B
lo

om
in

gt
on

 (
ar

-2
23

53
5)

 IP
:  

12
9.

79
.1

97
.1

03
 O

n:
 T

ue
, 1

5 
A

pr
 2

02
5 

14
:1

4:
36

VS10_Art07_Wood ARjats.cls August 22, 2024 10:21

system, that model can then be evaluated across a wide range of tasks (e.g., all tasks that take
pictures and/or videos as input). This allows researchers to evaluate a single model across many
tasks, thereby building up integrative (unified) models of the target domain (e.g., object recog-
nition). There is optimism that the reverse-engineering paradigm (i.e., comparing biological and
artificial systems in closed-loop systems) will allow scientists to build unified models of biological
intelligence (Doerig et al. 2023, Lindsay 2021, Richards et al. 2019).

4.2. The Digital Twin Approach

While reverse engineering has led to success with mature animals, this paradigm has not yet been
applied to newborn animals. Ultimately, reverse engineering newborn cognition will be essential
for building unified models of intelligence because all biological skills (e.g., object perception,
navigation, numerical cognition, social cognition,motor control) are products of the core learning
algorithms in newborn brains. To this end, the goal of our research program is to reverse engineer
the core learning algorithms in brains. To do so, we developed digital twin studies, which involve
performing parallel controlled-rearing experiments on newborn animals and artificial agents
(Figure 1). We raise newborn animals and artificial agents in the same environments and test
them with the same tasks, allowing for a direct comparison of their learning abilities.

Digital twin studies explicitly link newborn animals and artificial agents in a closed-loop sci-
entific system. Newborn animals provide data for guiding the development of artificial agents
that learn like animals. Artificial agents, in turn, serve as task-performing models for studying the
origins and computational basis of intelligence. Digital twin studies thus allow us to ask ques-
tions that cannot be addressed with verbal theories or low-dimensional quantitative models, such
as:

■ What core learning algorithms are necessary and sufficient to develop psychological skills?
■ What experiences are necessary and sufficient to develop psychological skills?
■ How do core learning algorithms and experience interact to produce psychological skills?
■ Why do newborn animals develop the psychological skills that they do?

Digital twin studies involve raising artificial agents (embodied ANNs) in virtual simulations
of the environments faced by newborn animals (Figure 1). By raising biological and artificial
agents in the same environments, we can give them the same training data and test them with
the same tasks. The ANN experiments are performed in a video game engine (Unity 3D), which
provides photorealistic accuracy while circumventing the limitations of time and cost associated
with physical hardware.

Virtual studies offer many other advantages. First, unlike physical robots, ANNmodels can be
easily shared between scientists. This allows scientists to rapidly test competing models, fostering
a culture of open verification of scientific findings. Second, not only the ANN models, but also
entire experiments, can be exchanged between researchers.These virtual experiments—formatted
as games in video game engines—can be disseminated widely and used by other research groups,
enabling rapid replication. Third, the virtual nature of both the models and experiments makes it
possible to build large-scale scientific testbeds. These testbeds will allow a single model to be eval-
uated across a range of psychological tasks, enriching our understanding of models and producing
unified models of biological intelligence.

4.3. Machine Learning Algorithms and the Nativist–Empiricist Debate

Digital twin studies involve building artificial agents that have machine learning (ML) algorithms.
This approach therefore requires ML algorithms that resemble the learning systems described in
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1960–1980 1980–2000 2000–2010 2010–2020 2020–2023 Present

Rule-based
systems

Rule-based systems

Feature
engineering

Shallow
learning

NATIVIST ALGORITHMS EMPIRICIST ALGORITHMS

Deep
Learning

Move to
domain-general

models

Unified
domain-general

models

Early computer vision focused on rule-based 
systems, where algorithms were written to solve 
specific tasks. Algorithms were hardcoded with 
domain-specific knowledge and did not adapt or 
learn from data.

Shallow learning
Learning begins to play a more prominent role in 
computer vision. Algorithms are combined with 
hardcoded features to build visual systems. 
Algorithms still relied on hardcoded knowledge,
as features had to be manually designed.

Move to domain-general models
Researchers discover that domain-general 
learning algorithms can solve a range of 
tasks. Transformers, initially introduced for 
language processing, are also effective for 
learning visual tasks.

Feature engineering
Computer vision starts hardcoding features to 
solve specific tasks (e.g., object recognition). As 
with prior models, these systems were hardcoded 
with domain-specific knowledge and did not 
adapt or learn from data.

Deep learning
Researchers discover that deep learning 
models can automatically learn layers of 
features from raw data. Algorithms still had 
some hardcoded domain-specific knowledge, 
but the emphasis shifts to learning from data.

Unified domain-general models
Engineers now unify models, using the 
same domain-general learning algorithm to 
power language, vision, and motor control. 
Intelligence emerges from experience, not 
from hardcoded knowledge.

Figure 3

In computer vision, there has been a progression from hardcoded, domain-specific algorithms to flexible, domain-general algorithms.
This trend reflects the field’s evolving understanding of how systems can learn effectively from data. In the 1960s–1980s, early
computer vision focused on rule-based systems where algorithms were written to solve specific tasks. For example, edge detection
algorithms identified edges in images by looking at areas where there was a sharp change in intensity or color. These algorithms were
hardcoded with domain-specific knowledge and did not adapt or learn from data. In the 1980s–2000s, the next stage of computer vision
focused on hand-engineering features to solve specific tasks (e.g., object and face recognition). This led to the development of
hardcoded feature descriptors (e.g., Scale-Invariant Feature Transform, Histogram of Oriented Gradients). As with prior models, these
systems were hardcoded with domain-specific knowledge and did not adapt or learn from data. In the 2000s–2010s, machine learning
began to play a more prominent role in computer vision. Algorithms like Support Vector Machines were combined with hardcoded
features to build object detection systems. These systems still largely relied on domain-specific knowledge, as features had to be
manually designed. In the 2010s–2020s, deep learning models, unlike previous approaches, could automatically learn hierarchical
features from raw data. Convolutional neural network architectures (e.g., AlexNet, VGGNet) did have some hardcoded domain-specific
features (convolutional layers), but these models learned the filters and features directly from the data rather than relying on
hand-engineered features. From 2020 to 2023, as deep learning matured, researchers explored architectures that were less reliant on
hardcoded domain-specific inductive biases. Transformers, initially introduced for language processing tasks, were found to be highly
effective for vision tasks. This showed that domain-general architectures could be effective in solving complex visual tasks. At present,
researchers are now unifying models, where the same architecture is used for multiple domains, such as language, vision, and motor
control. This signifies a shift toward domain-general learning algorithms that are agnostic to data type. This mirrors the empiricist
view in the nativist–empiricist debate, as learning is guided more by data and less by hardcoded, domain-specific knowledge.

theories of the origins of intelligence. To what extent does ML rely on nativist (domain-specific)
versus empiricist (domain-general) learning algorithms?

In computer vision, there has been a gradual progression from hardcoded domain-specific
algorithms to domain-general algorithms that learn from data (Figure 3). During the early
days of artificial intelligence (1960s–1980s), researchers built rule-based systems that were de-
signed to solve specific tasks (e.g., edge detection) (Canny 1986, Marr & Hildreth 1980, Sobel
& Feldman 1968). The algorithms were hardcoded with specific heuristics and did not learn
from data. As computer vision progressed (1980s–2000s), researchers realized that some features
were better than others for tasks like object detection and face recognition, which led to the de-
velopment of feature descriptors, such as Scale-Invariant Feature Transform (Lowe 1999) and
Histogram of Oriented Gradients (Dalal & Triggs 2005). These feature descriptors, while still
human engineered, provided a way to extract complex representations from images. During the
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early 2000s, learning began to play a more prominent role in computer vision. Algorithms like
Support Vector Machines (Boser et al. 1992) were combined with handcrafted features to build
object detection systems.However, these systems still largely relied on hardcoded domain-specific
knowledge.

With the rise of deep learning, particularly convolutional neural networks (CNNs), the field
experienced a shift toward empiricist-like learning principles. Unlike prior approaches, CNNs
could automatically learn features from raw sensory data. CNNs still had some hardcoded knowl-
edge in the form of convolutional layers, which are effective at processing grid-like data (e.g.,
images).However, CNNs learned the features directly from the data, rather than relying on hand-
engineered features. As deep learning matured, researchers became even less reliant on hardcoded
knowledge. For example, convolutional layers are now unnecessary for computer vision (Chen
et al. 2020, Dosovitskiy et al. 2020). Vision transformers (ViTs) do not have a CNN’s hardcoded
bias toward local spatial structure, but instead are based entirely on the flexible (learned) allocation
of attention.Nevertheless, transformer architectures are still effective on vision tasks.Transformer
architectures are also effective across a variety of domains, including natural language processing,
their initial purpose (Vaswani et al. 2017). Transformers show that domain-general algorithms can
learn to solve many real-world tasks.

Most recently, researchers have started using the same architectures and learning objectives
across domains, including language, vision, speech, navigation, and decision making. Using trans-
former architectures, which can serve as computational building blocks for both language and
vision, researchers have developed a unified self-supervised learning technique, called masked
autoencoding (MAE) (He et al. 2022). MAE involves masking random patches from the input
image and reconstructing the missing patches in the pixel space. This learning objective encour-
ages ANNs to learn the underlying data distributions producing the images, so the networks can
predict features in the masked patches. The MAE learning objective is simple and domain gen-
eral, and it is highly effective for both language learning (Devlin et al. 2019) and visual learning
(Feichtenhofer et al. 2022, Tong et al. 2022). Hardcoding less domain-specific knowledge appears
to give ANNs more flexibility and power.

Using digital twin studies, we can directly test where newborn visual systems fall on this
spectrum from nativist to empiricist algorithms. Do artificial agents need innate (hardcoded)
knowledge to learn like newborn animals? Or are domain-general algorithms sufficient to learn
animal-like object perception?

4.4. Digital Twin Studies with Convolutional Neural Networks

CNNs are ideal starting points for testing whether domain-general algorithms can learn the same
object perception skills as newborn animals. As discussed above, CNNs learn visual features from
data. However, CNNs still have some innate knowledge built into their architecture because
(a) they have a strong spatial inductive bias encoded in their retinotopic architecture and (b) they
are typically considered to be specialized models for sensory processing (e.g., vision, audition,
olfaction).

Research on CNNs has demonstrated that domain-specific visual knowledge can emerge
from these domain-general algorithms when they are optimized for specific tasks. For example,
behavioral signatures of face recognition emerge when CNNs are trained on face recognition
(Dobs et al. 2023). Domain-specific learning has also been observed for letter perception ( Janini
et al. 2022), shape perception (Ritter et al. 2017), and scene recognition (Zhou et al. 2014). CNNs
can also learn to cluster images according to distal properties such as reflectance and illumination,
despite receiving no explicit information about these properties (Storrs et al. 2021). Another
example of domain-specific learning in CNNs comes from visual illusions. CNNs trained for
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low-level visual tasks show a human-like propensity to fall prey to visual illusions (Gomez-Villa
et al. 2019), indicating that visual illusions may be a form of learned domain-specific knowledge.

To directly test whether CNNs learn like newborn animals, we performed digital twin studies
(Lee et al. 2021; L.Pandey,D.Lee, S.Wood and J.Wood,manuscript under review).We first raised
newborn chicks in strictly controlled visual environments and measured the chicks’ view-invariant
object recognition performance (Wood 2013). We then simulated the training data available to
the chicks by creating virtual replicas of the controlled-rearing chambers in a video game engine
and recording the first-person images acquired by agents moving through the chambers. Finally,
we trained self-supervised CNNs with the simulated first-person images from the virtual animal
chambers and tested the CNNs with the same images used to test the chicks. This approach
allowed us to train newborn chicks and CNNs in the same environment and test them with the
same test stimuli, enabling direct comparison of their learning abilities.

We found that self-supervised CNNs spontaneously learn view-invariant object features when
trained on the first-person visual experiences of newborn chicks. For both chicks and CNNs,
impoverished environments (e.g., containing a single object) provide sufficient visual experi-
ence for learning view-invariant features. We also found that CNNs produce well-structured
representations, containing information about both object identity and other latent variables of
interest (e.g., object distance, viewing position).When CNNs receive the same visual experiences
as chicks, we observe parallel development of view-invariant object recognition in CNNs and
chicks.

To what extent did performance depend on hardcoded versus learned features of the model?
One possibility is that CNNs learned view-invariant features in impoverished environments be-
cause CNNs have a strong hardcoded inductive bias. The convolutional operation reflects the
spatial structure of natural images, including local connectivity, parameter sharing, and hierar-
chical structure (LeCun et al. 2015). This spatial bias allows CNNs to generalize well from small
datasets and learn useful feature hierarchies that capture the structure of visual images (Cao &Wu
2022, Liu & Deng 2015). This innate spatial knowledge might also explain how CNNs learn like
newborn chicks (i.e., both animals and machines might have a strong inductive bias supporting
spatial learning).

4.5. Digital Twin Studies with Vision Transformers

Is hardcoded spatial knowledge necessary for algorithms to learn like newborn chicks? To test
whether algorithms that aremore domain general can learn like newborn visual systems,we turned
to ViTs. Unlike CNNs, ViTs lack convolutional processing (hardcoded knowledge about spatial
relationships) and hierarchical feature extraction (hardcoded knowledge about local relationships
between features). Instead, ViTs process an image by dividing it into patches (with positional en-
codings) and applying a domain-general attention mechanism (the same employed in language
transformers) to encode spatial relationships.

This minimalistic approach to hardcoded knowledge generally improves performance, since
ViTs often outperform CNNs and other models with stronger hardcoded inductive biases. For
instance, ViTs demonstrate state-of-the-art performance on visual tasks, including object segmen-
tation and recognition (Dosovitskiy et al. 2020, Zhou et al. 2021), face recognition (Zhou et al.
2021), and action recognition (Ulhaq et al. 2022, Yang et al. 2022), while also generating high-
quality readouts for estimation of optical flow, occlusions, object segments, and relative depth
(Bear et al. 2023). ViTs thus provide a powerful existence proof that domain-general algorithms
can be a strong foundation for vision.

To compare learning across ViTs and newborn chicks, we used the digital twin approach de-
scribed above, where we trained and tested ViTs with the simulated first-person visual experiences
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from the virtual animal chambers (Pandey et al. 2023). We built ViTs that—like chicks—learned
by leveraging the temporal structure of natural visual experience, without relying on labeled data.
This temporal ViT algorithm, which we call Vision Transformers with Contrastive Learning
through Time (ViT-CoT), learns representations that maximize similarity between temporally
adjacent images and minimize similarity between nonadjacent images. These representations re-
flect the underlying dynamics, context, and patterns across time. We found that ViT-CoT learns
view-invariant object features when trained on the visual experiences of newborn chicks. This
ViT architecture also learned well-structured visual representations containing information about
both object identity and viewing position. For both chicks and ViTs, impoverished environments
(with a single object) contained sufficient visual experience for learning view-invariant object
features.

We conclude that neither CNNs nor ViTs are more data hungry than newborn chicks. This
finding reinforces the possibility that CNNs and ViTs can be used as image-computable models
of visual learning and development. More generally, these studies show that domain-general al-
gorithms, combined with the embodied data streams available to newborn animals, are sufficient
to drive the development of animal-like object recognition.

4.6. Simulating Prenatal Learning in Machines

The above results support the central claim of empiricism: The core learning algorithms support-
ing biological vision can be domain general in nature. However, these results do not necessarily
oppose the central claim of nativism: that domain-specific knowledge is present and functional at
birth. Although researchers often consider birth (or hatching) to be the starting point of learning,
prenatal learning plays a critical role in the development of vision. In principle, domain-general
algorithms might produce domain-specific knowledge if those algorithms are trained on prenatal
experiences.

Researchers have been particularly interested in retinal waves as a potential source of in-
nate (prenatal) visual development. During prenatal development, neurons in the retina generate
spontaneous, synchronized clusters of activity among neighboring groups of cells (Arroyo et al.
2016, Blankenship & Feller 2010, Wang & Bergles 2015, Wenner 2012). These clusters of ac-
tivation are called waves because they propagate smoothly over space and time and contain
spatiotemporal statistics similar to those found in the natural visual world (Ge et al. 2021). Thus,
these object-like patterns could predispose newborns to perceive the world in terms of endur-
ing objects that persist over space and time. In support of this view, Albert et al. (2008) showed
that efficient learning systems trained on simulated retinal waves develop neurons with a local-
ized, oriented, bandpass structure, similar to neurons in the primary visual cortex. We extended
this result by asking whether retinal waves are sufficient to learn view-invariant object features
(L. Pandey, S.M.W.Wood and J.N.Wood, unpublished results).

To test whether domain-general algorithms can learn view-invariant features when trained
solely on retinal waves (prenatal sensory data), we performed digital twin experiments training
CNNs and ViTs on retinal waves (Figure 4). When these domain-general algorithms were
trained solely on simulated retinal waves, the algorithms developed high-level object features,
allowing the networks to solve the same view-invariant object recognition task as newborn
chicks. Thus, when domain-general algorithms learn from prenatal experiences, the networks
develop domain-specific knowledge. These results simultaneously provide evidence for a core
empiricist claim—domain-specific knowledge can be learned from domain-general learning
systems—and a core nativist claim—domain-specific knowledge can develop from prenatal
experiences.
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Figure 4 (Figure appears on preceding page)

To evaluate whether ML algorithms learn like newborn chicks, we 1⃝ select a ML model (e.g., a CNN or ViT), 2⃝ test the untrained
model’s performance (blue bars), 3⃝ train the model on the visual experiences of newborn chicks, and 4⃝ test the trained model’s
performance (green bars). Comparing the untrained and trained models reveals whether the models could learn from the same visual
experiences as chicks. The algorithms were tested on the view-invariant recognition task from Wood (2013), in which chicks were
reared in environments containing a single object seen from a single viewpoint range, then tested on their ability to recognize that
object across novel views. Each row shows the performance of the algorithm when trained on different types of simulated data. Both
algorithms had the same learning objective (contrastive learning through time), which leverages time as a teaching signal to learn
representations, akin to biological visual systems. Both CNNs and ViTs learned animal-like object recognition when trained on
prenatal experiences and when trained on the first-person views acquired by newborn chicks in controlled-rearing chambers.
Abbreviations: CNN, convolutional neural network; ML, machine learning; MLP, multilayer perceptron; ViT, vision transformer.

5. THE ORIGINS OF INTELLIGENCE AS SPACE-TIME FITTING

What core learning algorithms underlie visual intelligence? Above, we argue that distinguish-
ing between nativist and empiricist theories requires a closed-loop scientific system (digital twin
studies), in which newborn animals and artificial agents are raised in the same environments and
tested with the same tasks. Through parallel controlled-rearing studies of newborn animals and
artificial agents, we can test which learning algorithms—and which experiences—are necessary
and sufficient to develop visual intelligence. To date, we have discovered that sparse visual ex-
periences with objects are sufficient for newborn animals to develop object perception, provided
that the objects move slowly and smoothly.Without slow and smooth experiences, newborn visual
systems develop distorted object perception. Likewise, we discovered that domain-general algo-
rithms (e.g., CNNs and ViTs) are sufficient for learning object perception when the algorithms
are trained on the first-person visual experiences of newborn animals. CNNs and ViTs also show
evidence for a slowness constraint when trained on the visual experiences of human infants; like
newborn visual systems, these algorithms learn better representations when they are trained in
more slowly changing visual environments (Sheybani et al. 2023). Therefore, we posit that visual
learning across humans, animals, and machines can be parsimoniously understood in terms of a
domain-general principle, called space-time fitting, in which visual systems spontaneously adapt
(fit) to the spatiotemporal data distributions of the visual environment (Figure 5).

We use space-time fitting to refer to a class of direct-fit learning models that become adapted
to their training data through brute-force fitting processes (for a detailed discussion of direct-fit
models, see Hasson et al. 2020). This term is inspired by Gibson’s (1979) use of the term direct
perception. Similar to evolutionary processes (a brute-force fitting process by which organisms
become adapted to their environment), direct-fit models use a brute-force fitting process to learn
how to perceive and act on the world. By optimizing millions of parameters (connection weights)
across millions of samples (experiences), direct-fit models learn to solve real-world tasks by fitting
their internal parameters to the data distributions in the environment.

Unlike classic models in developmental psychology, direct-fit models do not learn simple,
human-interpretable rules or representations of the world. Instead, direct-fit models build com-
plex, high-dimensional representations by iteratively adjusting large numbers of parameters to fit
(adapt) to the structure of the environment. These representations approximate the distal vari-
ables (e.g., objects, scenes) that produce proximal retinal images.We emphasize that, although the
learning algorithms that implement direct fitting are complex (e.g., millions of adjustable param-
eters), direct-fit models are conceptually simple and parsimonious. In fact, the processes driving
direct fit mirror the processes driving natural selection, in which organisms become adapted to
their environment through iterative selection (Hasson et al. 2020). Both evolution and develop-
ment can be conceptualized as blind, brute-force fitting processes in which organisms gradually
adjust to the environment.
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Figure 5

Space-time fitting theory. (a) Space-time fitting explains the core empiricist claim (i.e., that domain-specific knowledge emerges from
domain-general learning mechanisms) and the core nativist claim (i.e., that domain-specific knowledge exists at birth). (b) A timeline
showing how a single core domain-general learning algorithm develops innate domain-specific knowledge.

Space-time fitting models are the subset of direct-fit algorithms that perform unsupervised
learning from spatiotemporal data. Many direct-fit algorithms for vision learn from supervision
(e.g., vanilla CNNs, vanilla ViTs) and/or from spatial statistics (e.g., SimCLR, MAEs; Chen et al.
2020, He et al. 2022). However, a limited number of algorithms—the space-time fitters—learn
from spatiotemporal data without supervision [e.g., SimCLR-CLTT (Schneider et al. 2021), ViT-
CoT (Pandey et al. 2023), VideoMAEs (Tong et al. 2022)]. We hypothesize that this subset of
direct-fit models learns the most like newborn visual systems.We speculate that space-time fitters
will both (a) show the same generalization abilities and (b) show the same learning constraints
(e.g., slowness and smoothness constraints) as newborn animals.

Space-time fitting is a new term intended to integrate learning in brains and machines under
a common principle (Figure 6a). For brains, Hebbian learning, spike timing–dependent plastic-
ity, reinforcement learning, and predictive coding are all ways to fit brains to spatiotemporal data
distributions via iterative, brute-force learning. Likewise, for machines, backpropagation, gener-
ative modeling, and deep reinforcement learning are popular artificial intelligence approaches
that involve iterative, brute-force learning of underlying data distributions.While these concepts
are typically treated separately, we argue that they reflect the same general principle of high-
dimensional systems iteratively adapting (fitting) to spatiotemporal data distributions. As such,
space-time fitting provides a unified conceptual framework for understanding learning in brains
and machines.

Space-time fitting models are flexible (Figure 6b), spontaneously learning representations by
adapting to the spatiotemporal statistics of the environment. Accordingly, space-time fitting mod-
els of visual learning make a key prediction: Since representations are learned by fitting to the data
distributions in the environment, the representations in the brain will ultimately mirror the data
distributions in the environment (after prolonged periods of development). Thus, manipulating
the spatiotemporal data distributions in an animal’s environment should systematically alter the
newborn’s visual representations.

We have confirmed this prediction across a range of controlled-rearing studies. As reviewed in
Section 3.2, we found that it is possible to systematically alter a newborn chick’s object perception
behavior simply by varying the speed at which objects move (Wood & Wood 2016, 2018). When
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Self-organizing systems
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Figure 6

(a) Space-time fitting links concepts from learning in brains (blue box) and machines (pink box) under a common principle. These
different concepts reflect the same general principle of high-dimensional systems iteratively adapting (fitting) to the spatiotemporal
data distributions in the visual environment. This brute-force learning approach can be implemented in different ways across biological
and artificial learning systems. (b) A visualization of space-time fitting in a simplified three-dimensional space. Space-time fitting is a
flexible learning process: During prenatal and postnatal development, the representational landscape (blue sheet) in brains and machines
gradually adapts to the spatiotemporal data distributions in the environment.

reared with slowly rotating objects, chicks build abstract object representations that are selective
for object identity and tolerant to identity-preserving image changes; conversely, when reared
with quickly rotating objects, chicks build view-dependent representations that are selective for
familiar motion features.We found the same pattern for face recognition (Wood &Wood 2021a).
When animals are raised in environments with altered space-time data distributions, the animals
learn altered forms of object perception, confirming a key prediction of space-time fitting models
of visual learning.

5.1. Implications for the Nativist Versus Empiricist Debate

Digital twin studies provide an engineering-level framework for developmental psychology, in
which models learn about the world in their own right. By attempting to build systems that learn
like animals, we can systematically explore which core algorithms and experiences matter for
reproducing biological intelligence in machines. This engineering-level framework opens new
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possibilities for using high-performing ANN models as runnable, computationally precise, and
neurally mechanistic models of the origins of intelligence. Ultimately, we suspect that digital twin
studies will support both empiricist and nativist claims (Figure 5a). Because the verbal models that
have dominated the nativist–empiricist debate are low-dimensional models intended to explain
high-dimensional processes, both nativist and empiricist observations can be explained through a
unified high-dimensional model.

5.1.1. Space-time fitting explains empiricist phenomena. Empiricists have long posited
powerful domain-general learning mechanisms capable of acquiring domain-specific knowledge
from experience, consistent with a generic space-time fitting process. Space-time fitting models
thus provide existence proofs that empiricist principles can underlie visual intelligence. There is
also evidence that direct-fit models (such as space-time fitting) can support intelligence in other
domains, including audition, language, navigation, decisionmaking, andmotor control (Chen et al.
2021, Li et al. 2022, Radosavovic et al. 2023, Schrimpf et al. 2021). Space-time fitting can even be
used to build single unified systems that solve a range of tasks. For example, Gato—a transformer
agent—learned how to perform hundreds of real-world tasks, developing a form of general in-
telligence by leveraging direct-fit learning principles. The existence of systems like Gato shows
that space-time fitters can be viable models of embodied intelligence. These models suggest that
a large fraction of biological intelligence is the direct consequence of brains fitting to the multi-
modal data streams acquired by animals. Space-time fitters thus fulfill a core promise of empiricist
thinking: the discovery of a domain-general system that can learn to solve many tasks.

Digital twin studies allow researchers to rigorously evaluate domain-general models of the
core learning algorithms in brains. Researchers can directly test what is learnable—and what is
not—from a visual environment, thereby grounding empiricist theories in a closed-loop scien-
tific system. The space of empiricist theories is vast, so researchers need strategies to effectively
search through the model space. By directly comparing learning across animals and machines,
we can efficiently test which algorithms (models) learn like newborn animals and falsify incorrect
algorithms.

5.1.2. Space-time fitting explains nativist phenomena. Space-time fitting also accords with
nativist theories. According to most nativists, knowledge present at birth qualifies as innate
knowledge. However, innate knowledge could either be hardwired through evolutionarily prede-
termined neural circuitry or learned during prenatal development. This opens the possibility that
innate knowledge develops from domain-general learning algorithms.Digital twin studies provide
computationally explicit evidence for this claim, illuminating both how and why innate knowledge
exists in the first place. By simulating core algorithms learning from prenatal experiences, we can
see that innate visual knowledge emerges spontaneously during development.

As reviewed in Section 4.6, domain-general algorithms learn high-level visual knowledge when
trained solely on retinal waves, which are widely available during prenatal development. Retinal
waves are highly structured across space and time,mimicking the second-order correlations of nat-
ural images (Albert et al. 2008). When domain-general algorithms are trained on retinal waves,
the systems learn domain-specific knowledge about the visual world. This finding (partially) ex-
plains how newborn animals (e.g., chicks, babies) could have an object-based inductive bias at birth
(Section 3.2): An object-based inductive bias is an emergent property of a core domain-general
algorithm (space-time fitting) learning from prenatal experiences.

In consequence, we do not see space-time fitting as a direct challenge to nativist theories
(Figure 5b). Instead, space-time fitting provides a unifying explanation for why innate knowledge
exists in the first place. Innate knowledge might be the outcome of a core domain-general
learning system adapting (fitting) to prenatal training data (e.g., retinal waves). We hypothesize
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that space-time fitting algorithms are the medium from which core knowledge emerges, akin to
DNA being the medium from which animal bodies emerge. Mental skills and animal species are
both emergent phenomena of high-dimensional systems (brains and DNA, respectively) fitting
to the environment on different timescales (development versus evolution).

5.2. Conclusions and Next Steps

These are the early days of this research program. We have only tested a handful of models
and tasks with the digital twin approach. Despite promising initial findings with domain-general
algorithms, it may turn out that more domain-specific algorithms will best match newborn an-
imals. To promote a community-wide effort to address this classic debate and reverse engineer
the core learning algorithms in brains, we developed a public website—the Origins of Intelli-
gence Testbed—that allows researchers to directly test whetherML algorithms learn like newborn
animals across a range of tasks. Researchers can download virtual environments that mimic the
environments of the newborn chicks, insert ML algorithms into artificial chicks, and raise artifi-
cial chicks in the same training and test environments as biological chicks. Our hope is that this
testbed will link nativist and empiricist views, creating a unified framework for studying the origins
of intelligence.

SUMMARY POINTS

1. The nativist versus empiricist debate (also known as the nature versus nurture debate)
is one of the oldest debates in the mind sciences. This debate concerns the learning
algorithms underlying intelligence and the role of experience in building knowledge.

2. Nativists argue that biological intelligence emerges from a collection of innate, domain-
specific systems for learning about different kinds of things (e.g., objects, agents, places,
and numbers). Empiricists argue that biological intelligence emerges from domain-
general learning faculties that develop domain-specific knowledge from experience.

3. We address this debate by introducing digital twin studies designed to reverse engi-
neer the learning algorithms in newborn brains. In digital twin studies, newborn animals
and artificial agents are raised in the same environments and tested with the same tasks,
permitting direct comparison of their learning abilities.

4. Supporting empiricism, digital twin studies show that domain-general algorithms from
artificial intelligence learn animal-like object perception when trained on the first-
person visual experiences of newborn animals. Supporting nativism, digital twin studies
show that domain-general algorithms learn innate domain-specific knowledge when
trained on prenatal experiences (retinal waves).

5. We argue that these findings—and visual learningmore generally—can be explained by a
universal principle that we call space-time fitting. Space-time fitting provides a common
framework for understanding learning across humans, animals, and machines.

6. Space-time fitting unifies concepts related to learning in brains and machines under a
common principle. Different concepts across biological and artificial intelligence reflect
the same general principle of high-dimensional systems iteratively adapting (fitting) to
the spatiotemporal data distributions in the visual environment.

7. We conclude that space-time fitting explains both empiricist and nativist phenomena,
providing a unified framework for understanding the origins of intelligence.
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FUTURE ISSUES

1. Digital twin studies suggest that domain-general algorithms can explain visual learning
in newborn chicks. Can domain-general algorithms also explain visual learning in other
species, including humans?

2. Space-time fitting provides a unified framework for understanding visual learning across
humans, animals, andmachines.Can space-time fitting also explain learning in other sen-
sory domains (e.g., audition, proprioception) and cognitive capacities (e.g., navigation,
social cognition, language, decision making)?

3. Space-time fitting algorithms trained on prenatal visual experience (retinal waves) de-
velop domain-specific knowledge, providing an explanation for why innate knowledge
exists in the first place. Can learning from prenatal experiences also explain other canon-
ical innate abilities documented in developmental psychology and animal behavior?

4. Digital twin studies show that domain-general models can be transformed into domain-
specific models by fitting them to prenatal data distributions, thereby producing innate
object knowledge (i.e., knowledge emerging before models gain visual experience with
objects). However, it is unclear how postnatal visual learning interacts with prenatally
trained networks to produce mature object knowledge.

5. The blind, brute-force learning processes underlying space-time fitting share much in
common with the blind, brute-force fitting processes underlying natural selection. Can
evolution and development be united under a common framework in which organ-
isms adapt to the environment at different timescales (i.e., evolution as slow fitting and
development as faster fitting)?

6. Space-time fitting algorithms iteratively adapt to environmental data distributions.How
much do space-time data distributions vary within and between species? How might
differences in natural perceptual experiences generate different perceptual knowledge
across species?
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