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Abstract
Substitution matrices, which are crafted to quan-
tify the functional impact of substitutions or dele-
tions in biomolecules, are central component of
remote homology detection, functional element
discovery, and structure prediction algorithms.
However, they are often limited to sequence data
and the conditioning on external priors can only
be given implicitly through the curation of the
ground-truth alignments they are crafted on. Here
we propose an algorithmic framework, based
on regularized optimal transport, for learning
graph-based substitution matrices from data, con-
ditioned on any functional knowledge. In particu-
lar, our graph-neural-network-based model learns
to produce substitution matrices and graph match-
ings such that the resulting metric correlates with
the function at hand. Our method shows promis-
ing performance in functional similarity classi-
fication and shows potential for interpreting the
functional importance of molecular substructures.

1. Introduction
Alignment algorithms, a crucial tool in bioinformatics, use
substitution matrices to measure the impact of changes in
the sequence and structure of biomolecules, with alignment
quality depending on the choice of these matrices [1].

Substitution matrices, like BLOSUM62 and PAM for amino
acids [2], [3], BLASTN for DNA [4], and specific matri-
ces for RNA and chemicals [5], [6], are based on the fre-
quency of modifications in homologous molecules [7]. Low-
frequency changes indicate functional significance, while
high-frequency changes suggest neutrality.

Conservation of structural data led to structural alphabets
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for alignments, such as Blast3D and Foldseek’s 3Di [8],
[9]. These matrices focus on structural fragments and target
specific protein families [10], organisms [11], and phylo-
genetic knowledge [12]. Alignment-free methods predict
the function of biomolecules using neural networks, as seen
in DeepFRI, RNAmigos, and ChemBERT [13]–[16], but
they lack interpretability compared to substitution matri-
ces. Ideally, substitution matrices would use prior knowl-
edge without needing pre-curated alignments. The DEDAL
model learns, in a data-driven fashion, substitution costs
using Pfam annotations, but relies on sequence data [17].

The graph edit distance [18], [19] models the similarity
between graphs based on an optimal matching between
their nodes, generalizing sequence alignment. The problem
is NP-hard, so several attempts have been made towards
developing heuristics, including machine-learning-based
approaches [20]–[25].

In a recent paper [26], the problem of automatically obtain-
ing task-specific substitution matrices for biological struc-
tures has been tackled taking inspiration from the graph edit
distance literature. The substitution matrices are learnt in a
metric learning framework based on a functional prior, and
they provide an interpretable explanation of which biochem-
ical substructure drive the function at hand.

The optimal transport problem [27], [28], which we use
in this paper, is in general concerned with finding the
minimum-cost transport plan between two distributions, and
it has been used in tasks like domain adaptation [29], graph
kernels [30], and generative adversarial networks [31].

1.1. Contributions

This work extends our recent paper: Structure- and
Function-Aware Substitution Matrices via Learnable Graph
Matching. In: RECOMB 2024 [26]. In particular, we:

1. generalize the GMSM (Graph Matching Substitution
Matrices) model to work with entropy-regularized op-
timal transport. This allows the model to have lower
time complexity and to be fully differentiable.

2. provide experimental evidence that the entropy regu-
larization helps in finding better substitution matrices.
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Figure 1. Architecture of GMSM. (a) Biochemical structures are transformed into graphs. (b) For each graph, its nodes are represented as
a structure-aware embeddings using the same GNN. (c) The model computes the substitution matrix from node embeddings and obtains
the graph alignment with respect to the learned substitution matrix.

2. Preliminaries
In what follows, we denote as a graph a tuple G = (V,E),
with V the set of nodes and E ⊆

(
V
2

)
the set of undirected

edges. Both nodes and edges can have discrete labels.

2.1. Graph Neural Networks

Message passing graph neural networks (GNNs), given
a graph G, iteratively produce for each node v ∈ VG,
at each level k = 1, . . . ,K, the embeddings hkv ∈ Rdk
as hkv = fupd

(
hk−1
v , fagg

(
{hk−1

u : u ∈ N (v)}
))
, where

fagg and fupd are the aggregate and the update operations,
respectively. The first layer of the GNN is fed with the initial
node embeddings h0v, e.g. one-hot encodings of the node
labels. Finally, one can get a graph-level readout hG by
aggregating the last-level embeddings via a function fout.

2.2. Graph Edit Distance

The graph edit distance [18], [19] is a distance that assesses
the similarity between two graphs. In particular, it is com-
puted as the minimum cumulative cost of the edit operations
required to transform one graph into another via node and
edge insertion, deletion, and substitution, each with an as-
sociated cost. When the edit costs form a metric [32], the
graph edit distance can be equivalently defined as a graph
matching problem:

Definition 2.1 (Graph Edit Distance [33]). Let G1 =
(V1, E1) and G2 = (V2, E2) be the source and the target
graphs respectively. Let V +

1 = V1 ∪ {ε1, . . . , ε|V2|} be the
vertex set of G1 enriched with |V2| dummy nodes ε to allow
for insertion and deletions. Let the same hold for V +

2 , with
|V1| dummy nodes. The graph edit distance (GED) between
G1 and G2 is defined by

GED(G1, G2) = min
π∈Π

∑
vi∈V +

1

cv(vi, π(vi))+

∑
vi,vj∈V1

ce(vi, vj , π(vi), π(vj)),

where Π denotes the set of bijections from V +
1 to V +

2 , and
cv denotes the cost for node edits and ce for edge edits.

The graph edit distance, which is closely related to the
Fused Gromov-Wasserstein distance [34], is known to be
NP-hard [18]. The bipartite graph matching heuristic [32]
to the graph edit distance is a heuristic technique to get
approximate GEDs in polynomial time. The main idea is
to transform the problem into a linear assignment prob-
lem, which is well-known to be polynomial-time solv-
able (e.g. with the Hungarian algorithm), by disregard-
ing edge edit operations. Let n = |V1| + |V2|. Let Π
be the set of matrices π ∈ Rn×n+ such that π1n = 1n,
πT1n = 1n. Then, the linear assignment problem to be
solved is dC(G1, G2) := minπ∈Π⟨C, π⟩ with ⟨·, ·⟩ being
the Frobenius inner product, and with node-edit cost matrix
C. Many approximation algorithms to the GED modify
the node assignment costs in order to account for edge edit
operations [35]. The common technique is to represent
nodes as rooted substructures, such as neighborhoods [36]
or subgraphs [37], and to compute the assignment costs ac-
cordingly. In fact, in this work we generalize this approach
by adding an entropic regularization to the linear assignment
problem in order to make it differentiable.

3. Methods
3.1. GMSM Architecture

We describe the architecture of the method GMSM, which
is designed to learn expressive and interpretable substitution
matrices for biological structures and, at the same time,
when given two such graph-represented structures, to output
an interpretable alignment of the two graphs based on such
substitution matrices.

Taking inspiration from the bipartite graph matching heuris-
tic for graph edit distance, we represent our graphs as bag of
learnable node features, and compute the edit distance be-
tween graphs by computing the optimal assignment between
such features. More formally, given a graph G we repre-
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sent each node v ∈ V as a parametric function ψθ(v,G),
which is implemented by a graph neural network (GNN)
parametrized by θ. For a pair of graphs G1, G2, the set
of node features is computed using the same parametric
function, a siamese network [38], as shown in Figure 1.

Then, the cost of substituting v with u is given by cu,v =
∥ψθ(v,G1)− ψθ(u,G2)∥2. Node insertion and deletion
costs are obtained by computing the distance to a learnable
embedding for a dummy isolated node ε. In particular, given
two graphs G1, G2, the model computes the corresponding
edit cost matrix CG1,G2(ψθ) = (cu,v)u∈V +

1 ,v∈V +
2

, which is
a submatrix of a global matrix C(ψθ).

Finally, the matching between the node features is com-
puted by solving an optimal transport problem [27], [28],
regularized with the entropic term Ω(π) =

∑
ij πij log πij :

π∗ = argminπ∈Π⟨CG1,G2
(ψθ), π⟩+ εΩ(π),

dψθ,ε(G1, G2) := ⟨CG1,G2
(ψθ), π

∗⟩.

As shown in [26], the function dψθ,0(·, ·) is symmetric and
satisfies the triangle inequality.

Unlike the original version of the model, which was lim-
ited to ε = 0 and had O

(
max(n1, n2)

3
)

time com-
plexity, the regularized version of GMSM can run in
O
(
max(n1, n2)

2
)

time [28], allowing for faster training.

Note that the function dψθ,ε depends on the size of the
graphs that are being compared. To avoid biasing the model
into considering smaller graphs as more similar, we nor-
malize the distance by the sum of the number of nodes
of the two graphs [22] and use the graph dissimilarity
d̂(G1, G2) = (|V1| + |V2|)−1dψθ,ε(G1, G2) as the output
of the GMSM model, rather than the unnormalized distance.

3.2. Training GMSM

Informally, we want that the graph dissimilarity induced by
the learned substitution matrix C(ψθ) correlates with the
functional labels at hand. In particular, we would like for
graphs belonging to the same class to have low distance,
and for graphs belonging to different classes to have higher
distance, as common in the metric learning setting [39]. In
particular, we use the margin loss proposed in [40].

Crucially, since one wants the cost matrixC := CG1,G2
(ψθ)

to be learnt based on the data at hand, the graph dissimi-
larity should have a well-defined gradient with respect to
C, to allow for the optimization of the loss function. The
original model GMSM, which sets ε = 0, relied on the
fact that when the solution to the optimal transport problem
is unique, the dissimilarity is differentiable with respect to
C by Danskin’s theorem. In fact, by adding a non-zero
entropic regularization, the assignment problem becomes
convex and everywhere differentiable [28], [41].

Proposition 3.1. Let π∗ = argminπ∈Π⟨C, π⟩+ εΩ(π) and
d(C) = ⟨C, π∗⟩. Then d(C) is differentiable with gradient

∇Cd(C) = argminπ∈Π⟨C, π⟩+ εΩ(π).

When ε = 0, we define π∗
A(C) the solution returned by the

assignment algorithm A (e.g. Hungarian algorithm). We
define ∇̃Cd(C) = π∗

A(C) and apply gradient descent to
GMSM with this re-defined gradient. When ε > 0, we
instead use the true gradient.

4. Experimental Evaluation
In this section, we provide experimental evidence that the
substitution matrices learned by our method indeed distill
useful information about the conditioning priors on which it
was trained, and in particular that the entropic regularization
can help the learning task. The code is publicly available1.

4.1. Experimental setup

We tackle the similarity-based classification task. Given two
graphs, the task is to predict whether or not they belong to
the same class, solely as a function of their learned distance.
In particular, we evaluate the triplet accuracy and the pair
AUROC, smilarly to [23]. The goal of this task is to evaluate
whether the learned dissimilarity between graphs correlates,
at both the short range and long range scale, with the con-
ditioning priors on which it was trained on. We focus here
on datasets of small molecules (see Section C.2), but the
method can be applied also to, e.g., proteins and RNA [26].

We ask how the substitution matrices learned by GMSM
compare to alternative architectures, isolating the effects
of graph-matching, structure-awareness and prior informa-
tion. To this end, we report the result of three baseline
architectures: WL kernel, which is an approach that only
captures structural information, Siamese-GNN, which has
the same GNN architecture, but replaces the graph matching
step by computing a graph-level pooled embedding for each
graph and by using the distance between such embeddings,
and GMSM with fixed uniform costs between all nodes.
Moreover, we report the results for GMSM both with and
without entropic regularization during training. Since the
goal is to obtain interpretable cost matrices between simple
substructures, we fix the number of message passing layers
in GMSM to 2. For the sake of a fair comparison, we do the
same for the baselines. In order to allow the model to output
one-to-one graph matchings, we set ε = 0 at inference time.

Note that this experiment is meant to isolate the effect of
different algorithmic components on the task rather than to
maximize molecule property prediction performance.

1github.com/BorgwardtLab/GraphMatchingSubstitutionMatrices
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Table 1. Similarity-based classification on small molecules

Method Mutagenicity NCI1 AIDS

Trip. acc. AUROC Trip. acc. AUROC Trip. acc. AUROC

WL kernel 0.535 ±0.004 0.531 ±0.003 0.519 ±0.005 0.516 ±0.004 0.411 ±0.008 0.427 ±0.005

Siamese-GNN 0.720 ±0.005 0.729 ±0.005 0.693 ±0.005 0.708 ±0.004 0.981 ±0.001 0.993 ±0.000

GMSM (uniform costs) 0.518 ±0.004 0.520 ±0.004 0.550 ±0.004 0.543 ±0.004 0.944 ±0.003 0.933 ±0.002

GMSM (ε = 0) 0.655 ±0.005 0.652 ±0.005 0.677 ±0.003 0.675 ±0.004 0.980 ±0.001 0.988 ±0.000

GMSM (ε ≥ 0) 0.663 ±0.005 0.659 ±0.005 0.689 ±0.003 0.686 ±0.004 0.981 ±0.002 0.986 ±0.000

4.2. Similarity-based classification

We see in Table 1 that GMSM without entropic regular-
ization (ε = 0.0) outperforms the simple WL kernel and
uniform-cost baselines, showing that training on class labels
yields indeed task-specific edit costs, as expected. Moreover,
the Siamese-GNN baseline, which is not forced to assign
similarities based on a graph matching, is more expressive
and yields better results, at the expense of not providing the
interpretable edit costs, which are the focus of this work.

Allowing for entropic regularization during training pro-
vides a performance boost, suggesting that the smoothness
of the objective leads to better convergence.

4.3. Regularization at inference time

If one is willing to sacrifice getting one-to-one graph match-
ings in output, the model can be run with entropic regular-
ization also at inference time. As shown in Section D.1, this
can yield better classification performance.

4.4. Retrieval

We also investigate, in Section D.2, the retrieval task, where
the model returns the graphs in a database that are most
similar to a query graph, testing the quality of the learned
graph dissimilarity at short scales. Results show that en-
tropic regularization can yield better results, although the
improvement is not as marked as in the classification task.

5. Analysis of the edit cost matrices
Figure 2 shows an example of two chemicals from the Mu-
tagenicity dataset that have a very different graph topology,
and therefore would be classified as dissimilar by method
such as the WL kernel, but that have the same label. In this
case, they are both known to be mutagenic. In particular,
GMSM (trained with ε = 1.0) learns to assign a low graph
dissimilarity between the two chemicals.

This example showcases the explainability of GMSM. In-
deed, we can observe that the substructures containing halo-
gens (Br and Cl) have very low edit costs. We hypothesize

Figure 2. Two sample chemicals from the Mutagenicity dataset,
shown on the left, and the edit cost matrix calculated by GMSM.

this is due to the known mutagenic effect of halogens [42]
and thus substituting halogens would not be likely to affect
the class label.

In general, these interpretable edit cost matrices offer in-
sights into the substructures driving the function at hand,
showcasing the potential of GMSM as tool for hypothesis
generation in biochemistry.

At the same time, we notice that these matrices reflect only
the way the particular instance of the model classifies pairs
of graphs, and is therefore subject to change depending
on the model architecture, the training data, and the initial
parameters of the model.

6. Conclusion
In this paper, we have extended the GMSM model, which
allows to obtain task-specific substitution matrices for bio-
chemical structures, to use entropy-regularized optimal
transport in its graph-matching module. We show that this
modification allows to lower the time complexity of the
model and at the same time to make its output differentiable
with respect to the model parameters. This in turn allows
the model to converge more easily to good solutions.
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[37] V. Carletti, B. Gaüzere, L. Brun, and M. Vento, “Approxi-
mate graph edit distance computation combining bipartite
matching and exact neighborhood substructure distance,”
in Graph-Based Representations in Pattern Recognition:
10th IAPR-TC-15 International Workshop, GbRPR 2015,
Beijing, China, May 13-15, 2015. Proceedings 10, Springer,
2015, pp. 188–197.

[38] D. Chicco, “Siamese neural networks: An overview,” Arti-
ficial neural networks, pp. 73–94, 2021.

[39] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality re-
duction by learning an invariant mapping,” in 2006 IEEE
computer society conference on computer vision and pat-
tern recognition (CVPR’06), IEEE, vol. 2, 2006, pp. 1735–
1742.

[40] C.-Y. Wu, R. Manmatha, A. J. Smola, and P. Krahenbuhl,
“Sampling matters in deep embedding learning,” in Pro-
ceedings of the IEEE international conference on computer
vision, 2017, pp. 2840–2848.

[41] M. Cuturi, O. Teboul, and J.-P. Vert, “Differentiable ranking
and sorting using optimal transport,” in Advances in Neural
Information Processing Systems, vol. 32, 2019.

[42] H. Brem, A. B. Stein, and H. S. Rosenkranz, “The muta-
genicity and dna-modifying effect of haloalkanes,” Cancer
research, vol. 34, no. 10, pp. 2576–2579, 1974.

[43] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful
are graph neural networks?” In International Conference
on Learning Representations, 2018.

[44] C. Morris, M. Ritzert, M. Fey, et al., “Weisfeiler and leman
go neural: Higher-order graph neural networks,” 2019.

[45] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A
unified embedding for face recognition and clustering,” in
Proceedings of the IEEE conference on computer vision
and pattern recognition, 2015, pp. 815–823.
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A. Additional background
A.1. Optimal transport

In the discrete version of optimal transport, we consider two finite sets of with associated weights. Let {ai}mi=1 and {bj}nj=1

be two such sets with corresponding weight vectors, or probability distributions, u ∈ Rm and v ∈ Rn such that u⊤1n = 1
and v⊤1m = 1. Here, 1n and 1m are vectors of ones of appropriate dimensions. The goal is to find a transportation plan
π ∈ Rm×n

+ that transfers the mass from {ai} to {bj} while minimizing the total transportation cost. This can be formulated
as the linear program:

dC(u,v) = min
π∈Rm×n

+

⟨π,C⟩,

subject to the constraints π1n = u and π⊤1m = v, where cij represents the cost of transporting mass from ai to bj and
C = (cij)i=1,...,m;j=1,...,n. In [27] it was proposed an entropy-regularized version of the optimal transport problem, which
allows the resulting distance to be differentiable with respect to C and to solve the problem in quadratic time using the
Sinkhorn algorithm.

A closely related problem is the linear assignment problem, where the sets have the same size, i.e. n = m, and the weight
vectors are defined as u = v = 1n. Then, the feasible assignments are the set Π of matrices π ∈ Rn×n+ such that π1n = 1n,
πT1n = 1n. The task is then to find minπ∈Π⟨π,C⟩. The problem can be solved in cubic time, e.g., with the Hungarian
algorithm.

A.2. Graph neural networks

Message passing graph neural networks (GNNs), given a graph G, iteratively produce for each node v ∈ VG, at each level
k = 1, . . . ,K, the embeddings hkv ∈ Rdk as hkv = fupd

(
hk−1
v , fagg

(
{hk−1

u : u ∈ N (v)}
))
, where fagg and fupd are the

aggregate and the update operations, respectively. The first layer of the GNN is fed with the initial node embeddings h0v , e.g.
one-hot encodings of the node labels.

In [43] it was shown that there exist injective functions fagg, fupd yielding GNNs that are provably as expressive as color
refinement.

An example of such functions that leads to models that are provably as expressive as color refinement [44], denoting ∥ as
concatenation, is

hkv = mlp
(
hk−1
v

∥∥∥ ∑
u∈N (v)

hk−1
u

)
∈ Rdk .

In fact, provided that different node labels are encoded to linearly independent h0v’s, even the following simpler architecture,
denoting with σ a nonlinear function such as ReLU, is as expressive as color refinement [44]:

hkv = σ
(
W k

1 h
k−1
v +W k

2

∑
u∈N (v)

hk−1
u

)
∈ Rdk . (1)

We then let the final node embedding be a function of the per-layer node embeddings as ψ(v,G) = f({hkv : k =
0, . . . ,K}). We denote (v,G1) =ψ (u,G2) if ψ(v,G1) = ψ(u,G2), and denote by Vψθ the set of equivalence classes
induced by =ψ. Moreover, we will denote, with abuse of notation, G1 =ψ G2 if {{ψ(v,G1 = (V1, E1)) : v ∈ V1}} =
{{ψ(v,G2 = (V2, E2)) : v ∈ V2}}, and denote for brevity with Gψ the set G\ =ψ of equivalence classes induced by =ψ on
graphs.

A.3. Heuristics for the graph edit distance

The bipartite graph matching heuristic [32] to the graph edit distance is an heuristic technique to get approximate GEDs in
polynomial time. The main idea is to transform the problem into a linear assignment problem, which is well-known to be
polynomial-time solvable (e.g. with the Hungarian algorithm), by disregarding edge edit operations and only considering
node edit ones.
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Then, the linear assignment problem to be solved is

dC(G1, G2) := min
π∈Π

⟨C, π⟩ = min
π∈Π

∑
vi∈V +

1

cvi,π(vi),

with ⟨·, ·⟩ being the Frobenius inner product, and with cost matrix C defined as

C =



c1,1 · · · c1,n2 c1,ε · · · ∞
...

. . .
...

...
. . .

...
cn1,1 · · · cn1,n2 ∞ · · · cn1,ε

cε,1 · · · ∞ 0 · · · 0
...

. . .
...

...
. . .

...
∞ · · · cε,n2 0 · · · 0


where ci,j denotes the cost of a node substitution vi → vj , ci,ε denotes the cost of a node deletion ui → ε, and cε,j denotes
the costs of a node insertion ε → vj with vi ∈ V1 and vj ∈ V2; and where Π is the set of permutation matrices of size
|V1|+ |V2|, representing bijections from V +

1 to V +
2 .

If one chooses ci,j = cv(vi, vj), i.e. setting the cost of assigning node vi to node vj as the node edit cost in the original
problem, then dC(G1, G2) lower bounds GED(G1, G2).

Many approximation algorithms to the GED modify the node assignment costs in order to account for edge edit operations
[35]. The common technique is to represent the nodes as some local substructure around them, such as neighborhoods [36]
or subgraphs [37], and to compute the assignment costs accordingly. In many practical applications, representing the graph
as such a bag of local structures is enough to compute a good approximation to the true edit distance [35].

In fact, in this work we generalize this approach by representing nodes as their GNN embeddings and by adding an entropic
regularization to the linear assignment problem in order to make it differentiable.

A.4. Metric learning

Common losses for metric learning are the contrastive loss [39] and the triplet loss [45], which act on pairs and triplets of
graphs, respectively. We use the margin loss proposed in [40], which reportedly yields better results than the contrastive one.
Moreover, it can work with randomly sampled pairs, while the triplet loss usually requires hard or semi-hard sample mining
to work properly [40].

In particular, for a pair of graphs G1, G2, the loss is defined as

ℓmargin(G1, G2) = max
(
0, α+ y(d̂C(G1, G2)− β)

)
,

with y = 1 for positive pairs, i.e. both graphs belonging to the same class, and y = −1 for negative pairs. This loss strives
to push the graph dissimilarities of graphs belonging to the same class to be less than β − α and the dissimilarities of graphs
belonging to different classes to be more than β + α. In our experiments, we set β = 0.5 and α = 0.1.

B. Architecture of GMSM
Our model, GMSM, is implemented as follows. The GNN message passing layers are realized by Equation 1, with the
nonlinearity realized by a ReLU. We fix the number of layers to K = 2. The final node embeddings ψ(v,G) are obtained

by concatenating the embeddings for each layer and by normalizing them, i.e. hv =
∥∥∥K
k=0

hkv and ψ(v,G) = hv/∥hv∥2.

Then, the cost of substituting the structure rooted at v with the one rooted at u is given by cu,v = ∥ψθ(v,G1)− ψθ(u,G2)∥2.
Node insertion and deletion costs are obtained by computing the distance to a learnable embedding for a dummy isolated
node ε, that is cv,ε = cε,v = ∥ψθ(v,G1)− ψθ(ε)∥2. Note that the normalization of the embeddings makes it so that the edit
costs are bounded in [0, 2].

This yields a global learnable substitution matrix C(ψθ) = (cu,v)u,v∈Vψθ of costs between elements of Vψθ ∪ {ε}, which
correspond to nodes and their rooted subgraph explored by the GNN. In particular, given two graphs G1, G2, the model
computes the corresponding edit cost matrix CG1,G2

(ψθ) = (cu,v)u∈V +
1 ,v∈V +

2
, which is a submatrix of C(ψθ).

8



Structure- and Function-Aware Substitution Matrices via Differentiable Graph Matching

Finally, the matching between the node features is computed by solving an optimal transport problem [27], [28], regularized
with the entropic term Ω(π) =

∑
ij πij log πij :

π∗ = argminπ∈Π⟨CG1,G2
(ψθ), π⟩+ εΩ(π),

dψθ,ε(G1, G2) := ⟨CG1,G2(ψθ), π
∗⟩.

Finally, the model outputs the graph dissimilarity d̂(G1, G2) = (|V1|+ |V2|)−1dψθ,ε(G1, G2), as well as the edit cost matrix
and the transport plan.

With respect ot the original work [26], we substituted the GNN layers from GAT layers [46] to layers given by Equation 1
[44] and we concatenate the embedding of all the layers. This yields a provably more expressive model [44].

C. Experimental setup
The model is trained taking the same number of random positive and negative pairs from the training set. In particular,
for each anchor graph we sample positive pairs by selecting 10 random graphs with the same label, and for each each of
such positive pairs we sample negative pairs by selecting 10 random graphs with different label. The model parameters are
optimized with respect to the margin loss, using β = 0.5 and α = 0.1, with the Adam optimizer. We set the learning rate to
0.001. The best model is selected using the validation set pair AUROC metric on the classification task, using early stopping.
For the GMSM with regularization, we choose ε ∈ {0.1, 1.0} based on the validation set pair AUROC metric. In particular,
for the Mutagenicity and NCI1 datsets, the highest validation AUROC is obtained for ε = 1.0, while for the AIDS
datset it is obtained for ε = 0.1. These models are then used at inference time on both the similarity-based classification
task and the retrieval task. The models are tested using the same sampling strategy for random positive and negative pairs
from the validation and test set.

C.1. Tasks

The first task we tackle is the similarity-based classification task. Given two graphs, the task is to predict whether or not they
belong to the same class, solely as a function of their learned distance. In particular, we evaluate two metrics. The first
one is the triplet accuracy. Namely, given an anchor graph, one graph from the same class of the anchor (positive pair) and
one graph from another class (negative pair), the triplet of graphs is considered a successful prediction if the distance of
the positive pair is lower than the one of the negative pair. The second is pair AUROC, the area under the ROC curve for
classifying pairs of graphs as similar or not based on a distance threshold. The goal of this task is to evaluate whether the
learned dissimilarity between graphs correlates, at both the short range and long range scale, with the conditioning priors on
which it was trained on. We report the means and standard deviations over 5 different random samples from the training set.

The second task we evaluate is the retrieval task. In particular, given a query graph, the task is to return a set of graphs that
are the most similar to the query one. The goal of this task is to evaluate the quality of the learned graph similarity at very
short scales. Indeed, for the retrieval task it does not matter if some positive pairs are at a high distance as long as there are
enough positive pairs at a very short distance, which will be returned as hits by the retrieval procedure. In particular, we take
as queries the graphs of the test set, and search for the hits in the training set, which serves then as the searchable database.
We report the precision@k (P@k), for k ∈ {10, 50}. In particular, we report the mean and the standard deviation over all
queries.

C.2. Datasets

In our experimental evaluation we three small molecule datasets. All datasets are split into training, validation and test sets
at random and with ratios {0.8, 0.1, 0.1}.

The datasets are obtained from the TUDataset [47] and contain small molecules annotated with a label on mutagen activity
(Mutagenicity [48], [49]), on activity against non-small cell lung cancer (NCI1 [50]) and on evidence of anti-HIV
activity (AIDS [49]).
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D. Additional experimental results
D.1. Sensitivity to entropic regularization

Table 2 report the test set metrics for GMSM models that are trained and run at inference time with different levels of
entropic regularization.

As shown by the results, adding an entropic regularization at inference time can boost the classification performance. In
particular, for models trained with high regularization (ε = 1.0), using regularization also at inference time provides a
significant increase in the metrics. This could be due to the fact that when one removes the regularization at inference time,
there is shift in the distributions of the predicted graph dissimilarities. Maintaining the regularization, this shift is removed.
For models trained with smaller or no regularization, this clear behavior does not appear. Adding regularization at inference
time can nonetheless prove to be an effective hyperparameter to select with a validation set.

Table 2. Effect of entropic regularization at inference time

Training Inference Mutagenicity NCI1 AIDS

Trip. acc. AUROC Trip. acc. AUROC Trip. acc. AUROC

GMSM (ε = 0.0)
ε = 0.0 0.655 ±0.005 0.652 ±0.005 0.677 ±0.003 0.675 ±0.004 0.980 ±0.001 0.988 ±0.000

ε = 0.1 0.663 ±0.003 0.661 ±0.004 0.664 ±0.004 0.661 ±0.004 0.977 ±0.001 0.985 ±0.000

ε = 1.0 0.651 ±0.004 0.648 ±0.005 0.660 ±0.004 0.658 ±0.005 0.984 ±0.001 0.988 ±0.000

GMSM (ε = 0.1)
ε = 0.0 0.651 ±0.005 0.648 ±0.005 0.679 ±0.003 0.676 ±0.004 0.981 ±0.002 0.986 ±0.000

ε = 0.1 0.660 ±0.003 0.659 ±0.004 0.676 ±0.002 0.674 ±0.004 0.979 ±0.001 0.985 ±0.000

ε = 1.0 0.646 ±0.005 0.643 ±0.005 0.662 ±0.003 0.659 ±0.005 0.984 ±0.002 0.987 ±0.000

GMSM (ε = 1.0)
ε = 0.0 0.663 ±0.005 0.659 ±0.005 0.689 ±0.003 0.686 ±0.004 0.973 ±0.001 0.980 ±0.000

ε = 0.1 0.677 ±0.004 0.673 ±0.004 0.652 ±0.003 0.643 ±0.004 0.972 ±0.001 0.980 ±0.000

ε = 1.0 0.680 ±0.004 0.682 ±0.005 0.690 ±0.003 0.692 ±0.004 0.980 ±0.001 0.984 ±0.000

D.2. Retrieval

In the retrieval task, we observe as in the classification task, that GMSM models are in general more expressive that the
WL kernel and the baseline with uniform costs, although the latter performs surprisingly well on AIDS. Moreover, the
Siamese-GNN model in general outperforms GMSM. Interestingly, the GMSM model trained with entropic regularization
and selected based on the validation performance on the classification task, as described in Section C, preform very similarly
to GMSM trained with no entropic regularization.

Table 3. Retrieval performance on small molecules

Method Mutagenicity NCI1 AIDS

P@10 P@50 P@10 P@50 P@10 P@50

WL kernel 0.700 ±0.276 0.643 ±0.248 0.701 ±0.256 0.627 ±0.203 0.892 ±0.180 0.802 ±0.193

Siamese-GNN 0.785 ±0.297 0.779 ±0.293 0.777 ±0.338 0.771 ±0.332 0.988 ±0.105 0.985 ±0.116

GMSM (uniform costs) 0.646 ±0.262 0.613 ±0.215 0.597 ±0.229 0.575 ±0.179 0.998 ±0.021 0.991 ±0.073

GMSM (ε = 0) 0.773 ±0.294 0.751 ±0.271 0.773 ±0.292 0.744 ±0.278 0.991 ±0.076 0.988 ±0.090

GMSM (ε ≥ 0) 0.774 ±0.284 0.757 ±0.268 0.772 ±0.289 0.747 ±0.268 0.988 ±0.094 0.985 ±0.111

D.3. Stability of the learnt substitution matrices

The learnt substitution matrices depend on the model parameters that are learnt from the training data at hand, and therefore
correspond in local minima in the loss function landscape. Because of this, they can depend on several factors, including the
specific model architecture, the training data and the initialization of the parameters. For example, we observe that switching
from the GAT-based architecture in the original GMSM paper [26] to the more expressive architecture we use here leads to
different edit costs, e.g., for the graphs of Figure 2.
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