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Abstract

Spatial omics technologies provide rich insights into biological processes by jointly
capturing molecular profiles and the spatial organization of cells. The resulting
high-dimensional data can be naturally represented as graphs, where Graph Neural
Networks (GNNs) offer an effective framework to model interactions in the tissue.
Self-supervised pretraining methods such as Bootstrapped Graph Latents (BGRL)
and GRACE leverage graph augmentations to build invariances without costly la-
bels. Yet, the design of augmentation strategies remains underexplored, particularly
in the context of spatial omics. In this work, we systematically investigate how dif-
ferent graph augmentations affect embedding quality and downstream performance
in spatial omics. We evaluate a suite of existing and novel augmentations, including
transformations tailored to biological variation, across two representative tasks:
unsupervised domain identification in healthy tissue and supervised phenotype
prediction in cancer tissue. Our results show that carefully chosen augmentations
substantially improve performance, whereas poorly aligned or overly complex aug-
mentations may fail to help or even degrade performance. These findings highlight
the central role of augmentation design in enforcing meaningful invariances for
graph contrastive pretraining in spatial omics.

1 Introduction

Spatial omics technologies measure molecular profiles, such as RNA or protein expression, while
preserving the spatial context of cells in their natural environment. This modality provides a more
comprehensive view of cellular behavior, biological processes, disease mechanisms, and therapeutic
responses compared to non-spatial single-cell methods [1]. Spatial transcriptomics platforms like mul-
tiplexed error-robust fluorescence in situ hybridization (MERFISH) [2], spatially-resolved transcript
amplicon readout mapping (STARmap) [3], Xenium [4], and barcode in situ targeted sequencing
(BaristaSeq) [5] use microscopy or in situ sequencing to generate spatial maps of RNA expression.
Complementary proteomics methods such as imaging mass cytometry (IMC) [6] and co-detection by
indexing (CODEX) [7] measure protein abundances with spatial resolution.

The complex and high-dimensional data produced by these technologies can be naturally represented
as graphs, where nodes correspond to cells and edges encode spatial proximity or molecular similarity
[8]. To exploit all available information from spatial omics data, graph-based methods like graph
neural networks (GNNs) often exhibit superior characteristics compared to traditional analysis
methods not taking spatial dependencies in the data into account [9, 10]. GNNs are well-suited
to analyze spatial omics data, as they explicitly model relationships between cells through graph
structures using a message-passing mechanism [9].
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Pretraining enables GNNs to learn generalizable patterns from data before fine-tuning them for
specific tasks. Self-supervised or unsupervised pretraining methods are especially valuable in
biological contexts, where labeled data can be scarce and expensive [11]. Moreover, these approaches
can introduce inductive biases, for instance via graph augmentations, that help models prioritize
biologically relevant features and improve robustness [12].

A central principle of contrastive self-supervision is that it enforces invariance to augmentations:
two different views of the same input are trained to have similar embeddings. Early works such as
SimCLR [13] and its follow-ups demonstrated the effectiveness of this paradigm in computer vision
by treating augmented images as positives and enforcing representation consistency. Subsequent
methods like BYOL [14] removed the need for explicit negatives while still relying on augmented
views to build invariances. The choice of augmentations defines the invariances learned by the model,
in line with the InfoMin principle that views should remove nuisance factors but preserve task-relevant
information [15]. Recent work has shown that in graph domains, augmentations explicitly inject
desired invariances, such as robustness to node/edge perturbations or feature corruption [12, 16].

Several pretraining frameworks have operationalized these ideas in the graph setting. Deep Graph
Contrastive Representation Learning (GRACE) [16] builds invariance to structural and feature
perturbations via an InfoNCE-based contrastive loss. Bootstrapped Graph Latents (BGRL) [17]
achieves similar invariances without negative samples, relying instead on online–target encoder
consistency. Both methods demonstrate that invariances induced by carefully chosen augmentations
significantly enhance representation quality and downstream performance. While recent benchmarks
such as scSSL-Bench [18] have evaluated self-supervised learning in a biological context across
diverse single-cell omics modalities, spatial omics remains underexplored. Most existing applications
of GNNs to spatial omics adopt generic augmentations from other domains or do not leverage
augmentation at all [8, 19–21].

This work explores how different graph augmentation strategies affect the quality of node and
graph embeddings in spatial omics data. We investigate both existing graph augmentations, as
well as newly designed augmentations that encode biologically meaningful inductive biases. Their
effectiveness is evaluated on two representative downstream tasks in spatial omics: unsupervised
domain identification on healthy tissue and supervised phenotype prediction in cancer samples. These
tasks differ not only in supervision regime but also in biological complexity: domain identification on
healthy tissue emphasizes stable spatial compartments, while phenotype prediction on cancer tissue
must contend with tissue heterogeneity and noisy clinical labels [22–24]. To our knowledge, this is the
first systematic investigation of graph augmentations in spatial omics, introducing novel biologically
motivated transformations that explicitly encode inductive biases such as cellular plasticity and spatial
measurement variability.

2 Methods

Figure 1 provides a schematic overview of our study design. Graph augmentations (baseline and
advanced) are applied to input graphs, models are pretrained using BGRL and GRACE, and evaluated
on two downstream tasks: domain identification and phenotype prediction. The following subsections
describe each component in detail.

Notations A graph is denoted by G = (X,A), where X ∈ RN×F is the node feature matrix
with N nodes and F features per node, and A ∈ RN×N is the binary adjacency matrix. Graph
augmentations generate a new view G̃ = (X̃, Ã) by modifying X, A, or both. Node positions
are encoded in a spatial matrix P ∈ RN×d, with d = 2, yielding P̃ after augmentation. The
neighborhood of node i, denoted N (i), is defined as the set of nodes directly connected to i in A.

2.1 Baseline augmentations

Two baseline augmentations were used: DropFeatures and DropEdges. Models trained with these
augmentations served as baselines for performance comparisons. All augmentation hyperparameters
were tuned on validation sets over fixed ranges.
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Figure 1: Overview of the evaluation procedure. Graph augmentations (baseline and advanced)
are applied to input graphs. Models are pretrained using the BGRL and GRACE frameworks, then
evaluated on two downstream tasks: domain identification and phenotype prediction.

DropFeatures randomly masks features by setting entries in X to zero with probability p, resulting
in X̃ while keeping A unchanged. If X contains a cell type feature, it is masked by setting entries to
the numeric code of the "unassigned" type.

DropEdges randomly removes edges from A with probability p (Bernoulli sampling), resulting in Ã
while keeping X unchanged.

2.2 Advanced augmentations

Advanced augmentations include both published and novel methods. These were tested individually
and in combination to assess their effect on downstream tasks relative to baseline augmentations.

DropImportance masks node features and removes edges based on importance scores. Inspired by
prior work [25, 26], it is controlled by dropout rate µ and threshold λp. Node importance is derived
from log-degree centrality:

I
(n)
i =

log(1 + degi)− d̄

maxj log(1 + degj)− d̄
, (1)

where degi is the degree of node i and d̄ is the mean log-degree. The node feature drop probability is

pi = min((1− I
(n)
i ) · µ, λp). (2)

Edges are ranked by the mean importance of their endpoints,

I
(e)
ij = 1

2 (I
(n)
i + I

(n)
j ), (3)

normalized, and dropped with probability

pij = min((1− I
(e)
ij ) · µ, λp). (4)

This encourages invariance to the removal of less informative node features and edges.

SpatialNoise adds Gaussian noise to spatial positions:

p̃i = pi + ϵi, ϵi ∼ N (0, σ2I). (5)

This models experimental imprecision in cell localization and enforces invariance to small spatial
perturbations. This augmentation is applicable only to tasks with spatial coordinates (domain
identification).
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FeatureNoise adds Gaussian noise to node features:
x̃i = xi + ϵi, ϵi ∼ N (0, σ2I). (6)

This simulates variability in molecular readouts and enforces robustness to minor fluctuations in
expression.

SmoothFeatures applies a convex combination of each node’s features with the mean of its neighbors:

x̃i = (1− α)xi + α · 1
|N (i)|

∑
j∈N (i)

xj , (7)

where α ∈ [0, 1] controls the smoothing strength. This simulates transcript leakage [27] and enforces
invariance to local feature diffusion. This augementation is used only for domain identification.

PhenotypeShift randomly mutates discrete cell-type features ci according to a transition map M:

c̃i =

{
ci with probability 1− p,

sample(M[ci]) with probability p,
(8)

where M[ci] ⊆ C contains plausible phenotype alternatives. This models both plasticity (cell-
type switching) and misclassification noise, training robustness to annotation uncertainty. This
augmentation is used only for phenotype prediction. Details of M are dataset-specific.

2.3 The task of domain identification

The first task employed to evaluate augmentations is unsupervised Domain Identification. The
objective is to detect and segment spatially coherent regions within healthy tissue based on molecular
data (e.g., gene expression) and spatial data (e.g., spatial relationships). These regions, or domains,
ideally reflect biologically relevant structures such as tissue compartments or functional zones.

2.3.1 Data

We used three spatial transcriptomics datasets with expert domain annotations, obtained via the
benchmarking study of Schaub et al. (2025) [28]. Dataset details are summarized in Table 1.

Table 1: Datasets used for the domain identification task.

Dataset Technology Samples Cells

1 MERFISH 5 28,317
2 STARmap 4 4,397
3 BaristaSeq 3 5,257

Dataset 1 profiles 5 mouse brain samples via MERFISH [29]. Dataset 2 contains STARmap data
from mouse cortex [3], with expert annotations by Li and Zhou (2022) [30]. Dataset 3 comprises
BaristaSeq samples of mouse cortex tissue [31]. All datasets are publicly available [32].

2.3.2 Pipeline and model

An overview of the domain identification pipeline is shown in Figure 2. Each sample is prepro-
cessed into a graph, passed through a GCN encoder pretrained with BGRL or GRACE with spatial
regularization, and clustered into domains using the Leiden algorithm [33].

Data preprocessing and graph construction Each sample is first preprocessed using a sequence
of filtering and normalization steps. Genes are filtered based on the number of cells they are detected
in, and cells are filtered based on the number of genes they express. Cells lacking domain annotations
are removed. Raw gene expression values are then normalized to a target sum of 105 counts per cell,
log-transformed, and scaled to unit variance and zero mean. Principal Component Analysis (PCA) is
subsequently applied to the processed expression matrix.

Following preprocessing, one spatial omics graph is constructed per sample. Each cell is represented
as a node, with the top 50 principal components (PCs) serving as node features. Nodes are connected
to their k nearest neighbors in Euclidean space, with edge weights uniformly set to 1. The number of
neighbors k is optimized during hyperparameter search.
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Figure 2: Domain identification pipeline. Each sample is preprocessed into a graph, passed through
a GCN encoder pretrained with BGRL or GRACE and spatial regularization, and clustered into
domains via the Leiden clustering method.

Model and training A two-layer Graph Convolutional Network (GCN) is used to compute node
embeddings for each sample-specific graph. The network is trained in a self-supervised manner using
both the BGRL and GRACE frameworks.

To encourage spatial coherence in the learned representations, a spatial regularization term is added. It
penalizes high similarity in the embedding space for nodes that are spatially distant. This discourages
long-range spurious similarities. The resulting overall loss function is defined as:

Ltotal = LSSL + γspatial · 1
N2

∑
i,j

D
(s)
i,j · (1−D

(z)
i,j ), (9)

where D
(s)
i,j denotes the normalized Euclidean distance between cells i and j, and D

(z)
i,j denotes the

normalized distance between their embeddings in the latent space. The regularization strength is
controlled by the hyperparameter γspatial.

Self-supervised training is conducted across all data samples. For model selection and evaluation, the
dataset is split into 40% validation and 60% test samples. Hyperparameters such as learning rate and
spatial regularization strength are optimized using a validation-based hyperparameter search. The
model is trained using the Adam optimizer with a cosine annealing learning rate scheduler.

Clustering To obtain the final domain assignments for each node, the learned node embeddings
are clustered using the Leiden algorithm [33]. The resolution parameter of the Leiden clustering is
dynamically adjusted to match the number of ground truth domains in each sample. The resulting
predicted domain labels are then evaluated against the ground truth annotations using clustering
quality metrics. Metrics are calculated per sample and averaged across the validation or test set to
report the overall performance. All reported means and standard deviations are computed over 5
independent runs with different random seeds.

2.4 The task of phenotype prediction

The second task used to evaluate augmentations is supervised Phenotype Prediction in human non-
small cell lung cancer (NSCLC) tissue. The objective is to predict biological or clinical phenotypes
directly from spatially resolved molecular data. Here, we predict cancer relapse after treatment. A
detailed description of the data, model, and evaluation strategy for this task is provided below.

5



2.4.1 Data

The data used for phenotype prediction consists of one non-small cell lung cancer (NSCLC) spatial
proteomics dataset obtained by imaging mass cytometry [34]. Marker expression was quantified
with 45 metal-labeled antibodies in 1071 patients with at least 15 years follow-up, resulting in 1868
cancer samples. Each sample includes clinical annotations, for instance smoking status, cancer stage,
relapse, clinical outcome, or cancer subtype. The raw data can be downloaded from the resource
provided by Cords et al. (2024) [34].

2.4.2 Pipeline and model

The phenotype prediction pipeline is based on SPACE-GM [8]. An overview of the pipeline is shown
in Figure 3.

Figure 3: Phenotype prediction pipeline. Tissue graphs are built from omics data, subgraphs
extracted, passed through a GIN encoder pretrained with BGRL or GRACE, and classified with an
MLP.

Data preprocessing and graph creation Graphs were constructed from segmented cells using
Delaunay triangulation. Node features included cell type (integer-encoded) and cell size. Edge
features consist of a binary “near/distant” category based on centroid-to-centroid distance, using
a threshold of 20 µm, reflecting the typical size of human cells. From each tissue graph, h-hop
subgraphs were extracted (h = 3 by default).

Model and training An L-layer Graph Isomorphism Network (GIN) with edge-feature extension
[8] was used, where messages are defined as

m(ℓ)
vu = h(ℓ−1)

u + e(ℓ)vu , (10)

with e
(ℓ)
vu mapped via an embedding lookup. Subgraph embeddings were obtained by max-pooling

over final-layer node embeddings. The encoder was pretrained with BGRL and GRACE. For
classification, a 3-layer MLP was added and jointly fine-tuned with a weighted BCE loss.

All experiments were run on a cluster with NVIDIA RTX 4090 GPUs (24GB) and 16-core CPUs,
with up to 96GB RAM per job. Each training and evaluation run had a runtime of up to 4 hours.

Splits and optimization Pretraining used all samples without labels. For supervised fine-tuning,
1492 samples were used for training and 376 for evaluation, with evaluation split 50% validation
/ 50% test. Splits were stratified by relapse, and all samples from a patient were assigned to the
same fold. The performance was evaluated against the ground truth patient labels using standard
classification quality metrics. Hyperparameters were tuned on the validation set. All reported means
and standard deviations are computed on the test set over 5 independent runs with different random
seeds.
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2.5 Representation analysis

We assessed how augmentations influence the geometry of the learned embedding space by comparing
encoder representations across trained BGRL models. For each augmentation configuration, we
extracted node embeddings from the encoder on the evaluation set, resulting in an N by d matrix of
representations.

To compare these embeddings, we used linear Centered Kernel Alignment (CKA)[35]. CKA eval-
uates how similarly two representation spaces preserve pairwise relationships between samples by
comparing their centered Gram matrices. It is invariant to rotations and uniform scaling, which makes
it suitable for assessing changes in geometry induced by different augmentations. For each task,
we computed linear CKA between the embedding matrices produced by all pairs of augmentation
configurations. The resulting pairwise similarity matrices show how closely the different learned
embedding spaces resemble each other.

3 Results

3.1 Unsupervised domain identification in healthy mouse brain tissue

We first evaluated the effect of augmentations on domain identification in healthy mouse brain tissue.
Baseline models were trained with DropFeatures and DropEdges, and compared against models with
advanced augmentations or their combinations. The Noise augmentation denotes the joint application
of SpatialNoise and FeatureNoise. Performance was measured using normalized mutual information
(NMI), homogeneity (HOM), and completeness (COM).

Results with BGRL and GRACE are shown in Tables 2 and 3. Under BGRL, DropImportance
improved NMI from 0.61 (baseline) to 0.66, with the next-best performance achieved by combining
all augmentations (0.65). Under GRACE, DropImportance again achieved the best result (0.66
compared to 0.65 baseline), and was the only augmentation regime that substantially improved over
the baseline. Across both frameworks, DropImportance provided the most consistent gains. With
BGRL, nearly all augmentation regimes improved upon the baseline, whereas in GRACE the gains
were smaller because the baseline was already comparatively strong.

Table 2: Performance on domain identification task using BGRL. Clustering performance on
healthy mouse brain tissue using different augmentation strategies. Reported as mean ± standard
deviation across 5 random seeds. The best and second-best results by mean are highlighted.

Augmentations NMI HOM COM

Baseline 0.6145 ± 0.0195 0.6188 ± 0.0234 0.6121 ± 0.0175
Baseline + Noise 0.6488 ± 0.0083 0.6419 ± 0.0093 0.6576 ± 0.0074
DropImportance 0.6585 ± 0.0033 0.6552 ± 0.0065 0.6635 ± 0.0008
DropImportance + Noise 0.6488 ± 0.0166 0.6507 ± 0.0135 0.6498 ± 0.0217
SmoothFeatures 0.6497 ± 0.0065 0.6465 ± 0.0097 0.6538 ± 0.0061
DropImp. + Noise + SmoothFeat. 0.6540 ± 0.0104 0.6507 ± 0.0110 0.6579 ± 0.0103

Table 3: Performance on domain identification task using GRACE. Clustering performance on
healthy mouse brain tissue using different augmentation strategies. Reported as mean ± standard
deviation across 5 random seeds. The best and second-best results by mean are highlighted.

Augmentations NMI HOM COM

Baseline 0.6470 ± 0.0081 0.6475 ± 0.0081 0.6484 ± 0.0110
Baseline + Noise 0.6405 ± 0.0221 0.6390 ± 0.0157 0.6438 ± 0.0271
DropImportance 0.6639 ± 0.0056 0.6569 ± 0.0082 0.6726 ± 0.0046
DropImportance + Noise 0.6477 ± 0.0125 0.6409 ± 0.0120 0.6557 ± 0.0127
SmoothFeatures 0.6460 ± 0.0100 0.6423 ± 0.0115 0.6509 ± 0.0085
DropImp. + Noise + SmoothFeat. 0.6412 ± 0.0058 0.6336 ± 0.0050 0.6502 ± 0.0080
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Qualitative results of the models trained using BGRL are shown in Figure 4 for a representative
MERFISH sample. Different augmentation strategies produce visibly different domain segmentations,
broadly consistent with the quantitative metrics.

Overall, domain identification highlights how augmentations can improve unsupervised discovery
of spatial structure in healthy tissue. To complement this, we next evaluate phenotype prediction,
a supervised task in noisy and heterogeneous human cancer tissue. Together, these tasks represent
distinct regimes, unsupervised and supervised, as well as healthy and cancerous tissue, which help
reveal when particular augmentations are most beneficial.

Figure 4: Predicted and ground-truth domains in MERFISH tissue. Visualization of a representa-
tive mouse brain sample. The left-most panel shows expert-annotated ground truth; remaining panels
display predicted domains under different augmentation strategies. Augmentations strongly influence
segmentation quality, broadly consistent with the quantitative results.

3.2 Supervised phenotype prediction in human cancer tissue

We evaluated augmentation strategies on relapse prediction in NSCLC samples, with performance
measured by F1 score and AUROC (Tables 4 and 5). Models were trained with baseline augmentations
(DropFeatures and DropEdges) and compared against advanced augmentations. In PhenotypeShift,
we incorporated biologically motivated cell state transitions, including tumor adaptation to hypoxia,
fibroblast subtype plasticity, and T cell differentiation into regulatory, exhausted, or proliferative
states, while also accounting for myeloid–neutrophil annotation noise.

Under BGRL, the baseline achieved F1 = 0.59 and AUROC = 0.60. FeatureNoise improved AUROC
to 0.61, while DropImportance alone decreased performance. The best F1 was obtained with
PhenotypeShift (0.64), while the best AUROC was achieved by FeatureNoise (0.61). Combining all
augmentations yielded intermediate gains (F1 = 0.62, AUROC = 0.60).

Under GRACE, the results showed similar patterns. The best F1 score was obtained with DropImpor-
tance + FeatureNoise (0.63), while the best AUROC was achieved with Baseline + FeatureNoise
(0.59). The second best scores were achieved using PhenotypeShift both in terms of F1 score (0.63)
and AUROC (0.59). Adding all augmentations together did not improve over single strategies. Over-
all, these results indicate that for phenotype prediction in cancer, both noise-based and biologically
motivated augmentations may improve performance, but combining them provides only limited
additional benefit, if at all.

3.3 Representation Analysis

To understand how augmentations influence the learned embedding geometry, we compared encoder
representations across all configurations using linear CKA. Results of this representation analysis are
presented in Figure 5.
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Table 4: Performance on phenotype prediction task using BGRL. Relapse prediction in NSCLC
samples using BGRL pretraining with different augmentation strategies. Reported as mean ± standard
deviation across 5 random seeds. The best and second-best results by mean are highlighted.

Augmentations F1 Score AUROC

Baseline 0.5896 ± 0.0213 0.5986 ± 0.0142
Baseline + FeatureNoise 0.6265 ± 0.0155 0.6084 ± 0.0097
DropImportance 0.6171 ± 0.0245 0.5848 ± 0.0031
DropImportance + FeatureNoise 0.6277 ± 0.0011 0.5665 ± 0.0106
PhenotypeShift 0.6375 ± 0.0090 0.6006 ± 0.0098
DropImp. + FeatNoise + PhenotypeShift 0.6218 ± 0.0291 0.6030 ± 0.0100

Table 5: Performance on phenotype prediction task using GRACE. Relapse prediction in NSCLC
samples using GRACE pretraining with different augmentation strategies. Reported as mean ±
standard deviation across 5 random seeds. The best and second-best results by mean are highlighted.

Augmentations F1 Score AUROC

Baseline 0.6157 ± 0.0125 0.5759 ± 0.0194
Baseline + FeatureNoise 0.6208 ± 0.0142 0.5932 ± 0.0090
DropImportance 0.6137 ± 0.0355 0.5707 ± 0.0074
DropImportance + FeatureNoise 0.6338 ± 0.0052 0.5545 ± 0.0122
PhenotypeShift 0.6318 ± 0.0096 0.5897 ± 0.0167
DropImp. + FeatNoise + PhenotypeShift 0.6070 ± 0.0409 0.5870 ± 0.0088

For the domain identification task, most single augmentations yielded representations that were
moderately similar to the baseline model. FeatureNoise, DropImportance, and SmoothFeatures all
produced CKA values between 0.72 and 0.88, indicating that these transformations preserve the
global structure of the tissue manifold while inducing controlled shifts in representation geometry.
DropImportance produced a noticeable but not drastic shift from the baseline (CKA 0.76). In contrast,
combining DropImportance with FeatureNoise caused a substantial reduction in similarity (CKA
0.52 to 0.60 relative to all the other models). This indicates that the combined perturbations interfere
with the invariances induced by DropImportance and disrupt the structure of the embedding.

The phenotype prediction task showed a markedly different pattern. Here, only PhenotypeShift
maintained moderate similarity to the baseline (CKA about 0.75). All other augmentations produced
very low similarity to baseline embeddings (CKA below 0.2). This suggests that variation here
is more easily overwritten by overly strong or misaligned invariances, leading to large shifts in
the representation space. This pattern is consistent with PhenotypeShift being the most effective
augmentation for this task.

These findings show that the geometry of the learned representation reacts differently to augmentation
choice depending on the tissue context. Domain identification in healthy tissue benefits from con-
trolled geometric shifts that emphasize structural regularities in tissue, whereas phenotype prediction
in cancer tissue is sensitive to augmentations that distort the underlying topological structure.

4 Discussion

We systematically evaluated the role of graph augmentations in self-supervised GNN pretraining
for spatial omics, using both BGRL [17] and GRACE [16] across two tasks: domain identification
and phenotype prediction. While the absolute performance scores are modest, this primarily reflects
the intrinsic difficulty and noise of these tasks in spatial omics data. Our models nonetheless reach
performance levels comparable to recent state-of-the-art approaches, demonstrating the validity of the
setup. The results show that augmentation choice has a decisive impact on downstream performance.
In line with prior contrastive learning work [13–15], we find that well-aligned augmentations can
enhance representations by encoding task-relevant invariances, whereas overly strong or misaligned
transformations can degrade performance.
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Figure 5: Representational analysis using CKA. Linear CKA similarity matrices comparing encoder
representations across all augmentation configurations in the domain and phenotype tasks. The values
quantify how similarly each configuration structures the embedding space and highlight augmentation
induced shifts in representation geometry.

Domain identification benefited most from structural perturbations, with DropImportance improving
performance by removing structurally redundant nodes and edges, albeit at the cost of additional
computational overhead due to the need to compute and rank node and edge importance scores.
In contrast, phenotype prediction showed limited gains from structural perturbations and instead
improved with noise-based and biologically motivated augmentations such as FeatureNoise and
PhenotypeShift. Composing these augmentations, however, provided only limited additional benefit
or even hurt performance. A likely explanation is that the combined perturbations either dilute
informative signal or exceed the capacity of the model to leverage additional invariances in this
noisy, small-sample setting. These divergent outcomes highlight the distinct demands of the two
tasks: in healthy tissue, domain identification profits from invariance to redundant structure, as tissue
compartments are relatively stable, whereas in heterogeneous cancer tissue, phenotype prediction
must contend with biological variability and label uncertainty [22–24].

Our findings parallel those in image and graph contrastive learning. SimCLR [13] demonstrated
that augmentation design largely determines representation quality, while BYOL [14] and BGRL
[17] highlighted that not all perturbations are beneficial. GRACE [16] also emphasized the role of
augmentation strategies for graphs. Our results extend these insights to spatial omics: invariances
induced by augmentations must be carefully matched to biological and experimental noise character-
istics to improve downstream generalization. This has direct implications for the use of spatial omics
in translational research, where robust embeddings can support diagnostics and patient stratification.

This study was limited to two downstream tasks and a curated set of augmentations. Domain
identification was based on a small number of annotated healthy tissue samples, constraining statistical
power, while phenotype prediction was restricted to a single cancer cohort. Moreover, the two tasks
differed both in supervision regime and biological complexity, making it difficult to disentangle
whether augmentation effectiveness depends primarily on task type (unsupervised vs. supervised)
or tissue context (healthy vs. cancerous). Future work could address this by including supervised
tasks on healthy tissue and unsupervised tasks on cancer tissue. Beyond these design choices, broader
evaluation on additional omics technologies and clinical endpoints will be important. More extensive
augmentation design could directly support translational use cases such as patient stratification or
treatment response prediction, where robustness to biological noise is critical.

In summary, augmentation design is a critical factor in self-supervised learning on spatial omics
graphs. Effective augmentations encode biologically plausible invariances, improving model robust-
ness and downstream accuracy, while misaligned ones can add cost without benefit. Our results
reinforce the view that augmentation choice is not incidental but a central design decision in graph
contrastive learning.
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Veličković, and Michal Valko. Large-scale representation learning on graphs via bootstrapping.
arXiv preprint arXiv:2102.06514, 2021. URL https://arxiv.org/abs/2102.06514.

[18] Olga Ovcharenko, Florian Barkmann, Philip Toma, Imant Daunhawer, Julia Vogt, Sebastian
Schelter, and Valentina Boeva. scSSL-Bench: Benchmarking Self-Supervised Learning for
Single-Cell Data. arXiv e-prints, art. arXiv:2506.10031, June 2025. doi: 10.48550/arXiv.2506.
10031.

[19] Yuxuan Hu, Jiazhen Rong, Yafei Xu, Runzhi Xie, Jacqueline Peng, Lin Gao, and Kai Tan. Unsu-
pervised and supervised discovery of tissue cellular neighborhoods from cell phenotypes. Nature
Methods, 21(2):267–278, January 2024. ISSN 1548-7105. doi: 10.1038/s41592-023-02124-2.
URL http://dx.doi.org/10.1038/s41592-023-02124-2.

[20] Shay Shimonov, Joseph M Cunningham, Ronen Talmon, Lilach Aizenbud, Shruti J Desai, David
Rimm, Kurt Schalper, Harriet Kluger, and Yuval Kluger. Sorbet: Automated cell-neighborhood
analysis of spatial transcriptomics or proteomics for interpretable sample classification via gnn.
bioRxiv, January 2024. doi: 10.1101/2023.12.30.573739. URL http://dx.doi.org/10.
1101/2023.12.30.573739.

[21] Kaize Ding, Zhe Xu, Hanghang Tong, and Huan Liu. Data Augmentation for Deep Graph
Learning: A Survey. arXiv e-prints, art. arXiv:2202.08235, February 2022. doi: 10.48550/
arXiv.2202.08235.

[22] Cyril Neftel, Julie Laffy, Mariella G. Filbin, Toshiro Hara, Marni E. Shore, Gilbert J. Rahme,
Alyssa R. Richman, Dana Silverbush, McKenzie L. Shaw, Christine M. Hebert, John Dewitt,
Simon Gritsch, Elizabeth M. Perez, L. Nicolas Gonzalez Castro, Xiaoyang Lan, Nicholas
Druck, Christopher Rodman, Danielle Dionne, Alexander Kaplan, Mia S. Bertalan, Julia Small,
Kristine Pelton, Sarah Becker, Dennis Bonal, Quang-De Nguyen, Rachel L. Servis, Jeremy M.
Fung, Ravindra Mylvaganam, Lisa Mayr, Johannes Gojo, Christine Haberler, Rene Geyeregger,
Thomas Czech, Irene Slavc, Brian V. Nahed, William T. Curry, Bob S. Carter, Hiroaki Wakimoto,
Priscilla K. Brastianos, Tracy T. Batchelor, Anat Stemmer-Rachamimov, Maria Martinez-Lage,
Matthew P. Frosch, Ivan Stamenkovic, Nicolo Riggi, Esther Rheinbay, Michelle Monje, Orit
Rozenblatt-Rosen, Daniel P. Cahill, Anoop P. Patel, Tony Hunter, Inder M. Verma, Keith L.
Ligon, David N. Louis, Aviv Regev, Bradley E. Bernstein, Itay Tirosh, and Mario L. Suvà.
An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell, 178
(4):835–849.e21, August 2019. ISSN 0092-8674. doi: 10.1016/j.cell.2019.06.024. URL
http://dx.doi.org/10.1016/j.cell.2019.06.024.

12

https://arxiv.org/abs/2010.13902
https://arxiv.org/abs/2010.13902
https://arxiv.org/abs/2102.06514
http://dx.doi.org/10.1038/s41592-023-02124-2
http://dx.doi.org/10.1101/2023.12.30.573739
http://dx.doi.org/10.1101/2023.12.30.573739
http://dx.doi.org/10.1016/j.cell.2019.06.024


[23] Karin Pelka, Matan Hofree, Jonathan H. Chen, Siranush Sarkizova, Joshua D. Pirl, Vjola Jorgji,
Alborz Bejnood, Danielle Dionne, William H. Ge, Katherine H. Xu, Sherry X. Chao, Daniel R.
Zollinger, David J. Lieb, Jason W. Reeves, Christopher A. Fuhrman, Margaret L. Hoang, Toni
Delorey, Lan T. Nguyen, Julia Waldman, Max Klapholz, Isaac Wakiro, Ofir Cohen, Julian
Albers, Christopher S. Smillie, Michael S. Cuoco, Jingyi Wu, Mei-ju Su, Jason Yeung, Brinda
Vijaykumar, Angela M. Magnuson, Natasha Asinovski, Tabea Moll, Max N. Goder-Reiser,
Anise S. Applebaum, Lauren K. Brais, Laura K. DelloStritto, Sarah L. Denning, Susannah T.
Phillips, Emma K. Hill, Julia K. Meehan, Dennie T. Frederick, Tatyana Sharova, Abhay Kanodia,
Ellen Z. Todres, Judit Jané-Valbuena, Moshe Biton, Benjamin Izar, Conner D. Lambden,
Thomas E. Clancy, Ronald Bleday, Nelya Melnitchouk, Jennifer Irani, Hiroko Kunitake, David L.
Berger, Amitabh Srivastava, Jason L. Hornick, Shuji Ogino, Asaf Rotem, Sébastien Vigneau,
Bruce E. Johnson, Ryan B. Corcoran, Arlene H. Sharpe, Vijay K. Kuchroo, Kimmie Ng, Marios
Giannakis, Linda T. Nieman, Genevieve M. Boland, Andrew J. Aguirre, Ana C. Anderson, Orit
Rozenblatt-Rosen, Aviv Regev, and Nir Hacohen. Spatially organized multicellular immune
hubs in human colorectal cancer. Cell, 184(18):4734–4752.e20, September 2021. ISSN 0092-
8674. doi: 10.1016/j.cell.2021.08.003. URL http://dx.doi.org/10.1016/j.cell.2021.
08.003.

[24] Andrew L. Ji, Adam J. Rubin, Kim Thrane, Sizun Jiang, David L. Reynolds, Robin M. Meyers,
Margaret G. Guo, Benson M. George, Annelie Mollbrink, Joseph Bergenstråhle, Ludvig Larsson,
Yunhao Bai, Bokai Zhu, Aparna Bhaduri, Jordan M. Meyers, Xavier Rovira-Clavé, S. Tyler
Hollmig, Sumaira Z. Aasi, Garry P. Nolan, Joakim Lundeberg, and Paul A. Khavari. Multimodal
analysis of composition and spatial architecture in human squamous cell carcinoma. Cell,
182(2):497–514.e22, July 2020. ISSN 0092-8674. doi: 10.1016/j.cell.2020.05.039. URL
http://dx.doi.org/10.1016/j.cell.2020.05.039.

[25] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph Contrastive
Learning with Adaptive Augmentation. CoRR, 2010.14945, 2020. URL https://arxiv.
org/abs/2010.14945.

[26] Yichun Li, Jin Huang, Weihao Yu, and Tinghua Zhang. Neighborhood-enhanced contrast for
pre-training graph neural networks. Neural Computing and Applications, 36(8):4195–4205,
2024. doi: 10.1007/s00521-023-09274-6. URL https://link.springer.com/article/
10.1007/s00521-023-09274-6.

[27] Yue You, Yuting Fu, Lanxiang Li, Zhongmin Zhang, Shikai Jia, Shihong Lu, Wenle Ren,
Yifang Liu, Yang Xu, Xiaojing Liu, Fuqing Jiang, Guangdun Peng, Abhishek Sampath Kumar,
Matthew E. Ritchie, Xiaodong Liu, and Luyi Tian. Systematic comparison of sequencing-
based spatial transcriptomic methods. Nature Methods, 21(9):1743–1754, July 2024. ISSN
1548-7105. doi: 10.1038/s41592-024-02325-3. URL http://dx.doi.org/10.1038/
s41592-024-02325-3.

[28] Darius P. Schaub, Behnam Yousefi, Nico Kaiser, Robin Khatri, Victor G. Puelles, Christian F.
Krebs, Ulf Panzer, and Stefan Bonn. PCA-based spatial domain identification with state-of-the-
art performance. Bioinformatics, 41(1):5, 2025. doi: 10.1093/bioinformatics/btaf005. URL
https://academic.oup.com/bioinformatics/article/41/1/btaf005/7945104.

[29] Jeffrey R. Moffitt, Devjanee Bambah-Mukku, Stephen W. Eichhorn, Eric Vaughn, Karthik
Shekhar, Jonathan D. Perez, Nimrod D. Rubinstein, Junjie Hao, Aviv Regev, Catherine Dulac,
and Xiaowei Zhuang. Molecular, spatial, and functional single-cell profiling of the hypothalamic
preoptic region. Science, 362(6416):eaat5324, 2018. doi: 10.1126/science.aau5324. URL
https://www.science.org/doi/abs/10.1126/science.aau5324.

[30] Zheng Li and Xiang Zhou. BASS: multi-scale and multi-sample analysis enables accurate cell
type clustering and spatial domain detection in spatial transcriptomic studies. Genome Biol-
ogy, 23(1):168, 2022. doi: 10.1186/s13059-022-02734-7. URL https://genomebiology.
biomedcentral.com/articles/10.1186/s13059-022-02734-7.

[31] Brian Long, Jeremy Miller, and The SpaceTx Consortium. SpaceTx: A Roadmap for Bench-
marking Spatial Transcriptomics Exploration of the Brain, 2023. URL https://arxiv.org/
abs/2301.08436.

13

http://dx.doi.org/10.1016/j.cell.2021.08.003
http://dx.doi.org/10.1016/j.cell.2021.08.003
http://dx.doi.org/10.1016/j.cell.2020.05.039
https://arxiv.org/abs/2010.14945
https://arxiv.org/abs/2010.14945
https://link.springer.com/article/10.1007/s00521-023-09274-6
https://link.springer.com/article/10.1007/s00521-023-09274-6
http://dx.doi.org/10.1038/s41592-024-02325-3
http://dx.doi.org/10.1038/s41592-024-02325-3
https://academic.oup.com/bioinformatics/article/41/1/btaf005/7945104
https://www.science.org/doi/abs/10.1126/science.aau5324
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-022-02734-7
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-022-02734-7
https://arxiv.org/abs/2301.08436
https://arxiv.org/abs/2301.08436


[32] Zhiyuan Yuan, Fangyuan Zhao, Senlin Lin, Yu Zhao, Jianhua Yao, Yan Cui, Xiao-Yong Zhang,
and Yi Zhao. Benchmarking spatial clustering methods with spatially resolved transcriptomics
data. Nature Methods, 21(4):712–722, 2024. doi: 10.1038/s41592-024-02215-8. URL
https://www.nature.com/articles/s41592-024-02215-8.

[33] V. A. Traag, L. Waltman, and N. J. van Eck. From Louvain to Leiden: guaranteeing well-
connected communities. Scientific Reports, 9(1):5233, 2019. doi: 10.1038/s41598-019-41695-z.
URL https://www.nature.com/articles/s41598-019-41695-z.

[34] Lena Cords, Stefanie Engler, Martina Haberecker, Jan Hendrik Rüschoff, Holger Moch, Na-
talie de Souza, and Bernd Bodenmiller. Cancer-associated fibroblast phenotypes are associ-
ated with patient outcome in non-small cell lung cancer. Cancer Cell, 42(3):396–412, 2024.
doi: 10.1016/j.ccell.2023.12.021. URL https://www.cell.com/cancer-cell/fulltext/
S1535-6108(23)00449-X.

[35] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of
Neural Network Representations Revisited. arXiv e-prints, art. arXiv:1905.00414, May 2019.
doi: 10.48550/arXiv.1905.00414.

14

https://www.nature.com/articles/s41592-024-02215-8
https://www.nature.com/articles/s41598-019-41695-z
https://www.cell.com/cancer-cell/fulltext/S1535-6108(23)00449-X
https://www.cell.com/cancer-cell/fulltext/S1535-6108(23)00449-X

	Introduction
	Methods
	Baseline augmentations
	Advanced augmentations
	The task of domain identification
	Data
	Pipeline and model

	The task of phenotype prediction
	Data
	Pipeline and model

	Representation analysis

	Results
	Unsupervised domain identification in healthy mouse brain tissue
	Supervised phenotype prediction in human cancer tissue
	Representation Analysis

	Discussion

