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Figure 1: We present ProJo4D, a progressive joint optimization framework for estimating 4D rep-
resentation and physical parameters of deformable objects from sparse multi-view video. ProJo4D
significantly outperforms state-of-the-art inverse physics estimation algorithms, Spring-Gaus Zhong
et al. (2024) and GIC Cai et al. (2024), which perform sequential optimization of scene geometry
and physical parameters.

ABSTRACT

Neural rendering has advanced in 3D reconstruction and novel view synthesis.
With the integration with physics, it opens up new applications. The inverse prob-
lem of estimating physics from visual data, however, remains challenging, limiting
its effectiveness for applications like physically accurate digital twin creation in
robotics and XR. Existing methods that incorporate physics into neural render-
ing frameworks typically require dense multi-view videos as input, making them
impractical for scalable, real-world use. Given sparse multi-view videos, the se-
quential optimization strategy used by existing approaches introduces significant
error accumulation, e.g., poor initial 3D reconstruction leads to inaccurate material
parameter estimation in subsequent stages. Instead of sequential optimization, si-
multaneous optimization of all parameters also fails due to the highly non-convex
and often non-differentiable nature of the problem. We propose ProJo4D, a pro-
gressive joint optimization framework that gradually increases the set of jointly
optimized parameters, leading to fully joint optimization over geometry, appear-
ance, physical state, and material property. Evaluations on both synthetic and
real-world datasets show that ProJo4D outperforms prior work in 4D future state
prediction and physical parameter estimation, demonstrating its effectiveness in
physically grounded 4D scene understanding.

1 INTRODUCTION

Neural rendering techniques have made significant progress in 3D scene reconstruction and novel
view synthesis Mildenhall et al. (2020); Müller et al. (2022); Kerbl et al. (2023), but they often lack
adherence to the underlying physical laws (e.g., conservation of energy, momentum, or monotonic-
ity constraints). This gap severely restricts their usage in downstream applications that require not
only photorealistic appearance but also physically plausible behavior Chu et al. (2022). For instance,
in vision-based robot learning Li et al. (2024); Jiang et al. (2025); Abou-Chakra et al. (2024), agents
trained in simulations must seamlessly transfer the learned skills to the real world, which requires
accurate physical interactions within the synthetic environment. Similarly, XR applications in many
engineering and industrial settings require rendered objects to respond meaningfully to user inter-
actions (e.g., changes in material properties or object dimensions), environmental constraints, and
external forces to maintain immersion, usability, and seamless integration of virtual and physical
worlds Jiang et al. (2024); Zheng et al. (2025).
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Figure 2: ProJo4D progressively grows the set of optimized variables—3D Gaussian parameters,
deformation network, initial velocity, and material properties—across training stages to mitigate
error propagation common in sequential frameworks like PAC-NeRF Li et al. (2023b) and GIC (Cai
et al., 2024). The diagram illustrates the inter-dependencies among parameters in the inverse physics
estimation task, with colored dotted arrows indicating gradient flow during each optimization stage.

A recent body of work Cai et al. (2024); Li et al. (2023b); Zhong et al. (2024); Chen et al. (2025) has
attempted to bridge this gap by incorporating physics-based priors into neural rendering pipelines.
However, the state-of-the-art approaches typically rely on dense multi-view setups, often requiring
more than ten synchronized cameras with known poses. Such instrumentation imposes significant
practical barriers, particularly in scenarios demanding scalable, flexible, or in-situ data collection.
Whether in robot learning or industrial XR applications, the ability to create physically plausible
digital twins from sparse observations is critical for real-world deployment. Overcoming the depen-
dency on dense multi-view capture is thus crucial to realizing the full potential of neural rendering
in physically grounded, deployable systems.

Sparse-view settings pose significant challenges for accurate 3D reconstruction and physical prop-
erty estimation due to occlusions, shape ambiguities, and limited viewpoints. Existing methods that
excel under dense observations degrade markedly when faced with sparse inputs, primarily due to
the accumulation of errors in their sequential optimization pipelines Li et al. (2023b); Zhang et al.
(2024); Huang et al. (2024); Zhong et al. (2024); Cai et al. (2024); Liu et al. (2025). These se-
quential optimization pipelines typically begin by learning an initial 3D or 4D scene representation
from sparse images—often noisy and ambiguous—particularly in estimating geometry or particle
positions. This flawed representation then serves as the basis for inferring physical state parameters
(e.g., initial velocities) and subsequently material properties (e.g., stiffness, Poisson’s ratio). As a
result, errors introduced early propagate and compound, ultimately degrading both physical state
and material parameter estimates. Although some recent works Zhong et al. (2024) have explored
partial joint optimization of certain parameter subsets, they fall short of addressing the complete
inverse physics problem from the outset. Fully joint optimization of all parameters remains chal-
lenging due to the highly non-convex, partly non-differentiable nature of the problem Zhong et al.
(2021), often leading to poor local minima—particularly under sparse views.

To prove the effectiveness of progressive joint optimization strategy, without any model changes, we
utilize GIC’s 4D scene representation Cai et al. (2024) and physical models and only focus changing
the optimization strategy. Through extensive evaluations, we demonstrate that our progressive joint
optimization strategy significantly improves performance for inverse physics estimation on both
synthetic and real-world datasets, mitigating the drastic performance drop in sparse-view scenarios.
Our method outperforms the state-of-the-art GIC Cai et al. (2024), achieving superior results in 4D
future state prediction (Chamfer Distance 16.11 → 1.60), rendering in the future prediction (PSNR
17.58 → 22.30), and physical parameter estimation (Poisson’s ratio MAE 0.23 → 0.10, Young’s
Modulus MAE 0.18 → 0.09), as shown in Table 2.

2 BACKGROUND

2.1 NOTATION AND PROBLEM FORMULATION

We introduce the key notations and define the inverse physics estimation problem we aim to solve.

2
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Input Data. We are given a set of input images I = {It,c}t∈T ,c∈C , where It,c denotes an image
captured at time t from camera c. For each image It,c, the corresponding camera pose Pc from a
predefined set of cameras c ∈ C and the timestamp t ∈ T are assumed to be known. In addition
a transparency alpha map αt,c is often used for initial 3D/4D reconstruction, either rendered or
estimated using segmentation or matting.

3D / 4D Representation. Our scene representation is based on 3D Gaussian Splatting (Kerbl et al.,
2023). The 3D Gaussians are parameterized by their initial positions x̂0, covariance matrices Σ̂,
color features ĉ, and opacity σ̂. For representing 4D dynamics, we need additional parameters ψ.
The position of a Gaussian at time t is denoted by x̂t and is related to its initial position x̂0 via a
displacement function ∆(·), which models the motion of the Gaussians over time, parameterized by
ψ as:

x̂t = x̂0 +∆(x̂0, ψ, t). (1)

We denote the rendering function, a differentiable splatting algorithm (Kerbl et al., 2023), by
R(·, ·, ·, ·; ·). This function takes the Gaussian parameters (x̂t, Σ̂, ĉ, σ̂) at time t and the camera
pose Pc as input, and outputs a rendered image Î:

Ît,c = R(x̂t, Σ̂, ĉ, σ̂;Pc). (2)

Similarly, Rα(·, ·, ·; ·) denotes the alpha map rendering function and α̂ denotes the rendered alpha
map. For detailed rendering process, please refer to 3D Gaussian Splatting (Kerbl et al., 2023).

Physics Parameters. Throughout the paper, we will refer to both the initial physical state s, such
as initial velocity v0, and material parameters θm as physical parameters. Material parameters θm
include Young’s modulus E and Poisson’s ratio ν for elastic objects. We will assume that the
material model, e.g., elastic or plastic, is known a priori, consistent with all other prior works (Li
et al., 2023b; Cai et al., 2024).

A physics simulation model, denoted by S(·, ·, ·, ·), is used to predict the state of the system over
time. Given the initial positions x̂0, initial velocity v̂0, material parameters θ̂m, the simulation
outputs the predicted positions x̃t and its rendered image Ĩt,c at time t as:

x̃t = S(x̂0, v̂0, θ̂m, t), Ĩt,c = R(x̃t, Σ̂, ĉ, σ̂;Pc). (3)

Problem Formulation. In summary, our task is an inverse estimation problem: given input im-
ages I , their corresponding camera parameters P , we aim to estimate the underlying geometry x0,
appearance parameters (Σ, c, σ), and physical properties (v0, θm) of a deformable object.

2.2 RELATED WORKS

Differentiable Physics Simulation. Differentiable physics simulation is being widely used to op-
timize and estimate physics-related parameters (Xu et al., 2019; Sanchez-Gonzalez et al., 2020; Hu
et al., 2020; Geilinger et al., 2020; Zhong et al., 2021; Murthy et al., 2021; Wang et al., 2024). This
forms the foundation of this research area, raising important considerations about which differen-
tiable simulation frameworks to employ and how to design and schedule the optimization process.
Among the commonly used simulation methods are the spring-mass model (Zhong et al., 2024) and
the Material Point Method (MPM) (Jiang et al., 2016). The gradients from the simulations enable
updating physical parameters for system identification. Simplicits (Modi et al., 2024) can be used
for accelerated inverse physics (Chen et al., 2025), but it only supports (hyper)elastic materials with
simple gravity-only scenarios. We use differentiable MPM as the physics simulator S(·, ·, ·, ·).
Physics-based Neural Rendering. Existing neural rendering techniques that integrate physics can
be broadly categorized into two main directions: accurately estimating physical parameters from
videos (Li et al., 2023a; Yu et al., 2023; Kaneko, 2024; Xue et al., 2023; Qiao et al., 2022; Ma et al.,
2021; Guan et al., 2022), and generating plausible parameters or realistic dynamics from a static
scene (Zhai et al., 2024; Liu et al., 2024b;a).

In one of the early attempts in accurately estimating physical parameters, PAC-NeRF (Li et al.,
2023b), proposed a general framework, optimizing geometry and appearance, initial physical state,
and materials sequentially. Spring-Gaus (Zhong et al., 2024) introduced a spring-mass model ap-
plied to 3D Gaussian Splatting (Kerbl et al., 2023). Gaussian Informed Continuum (GIC) (Cai
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et al., 2024) further improves the physical parameter estimation and future prediction by using
learned 4D representations during physical parameter estimation to provide guidance for 3D losses.
Vid2Sim (Chen et al., 2025) further proposed using pretrained models for initial material parame-
ter estimates before per-scene optimization and using Simplicits Modi et al. (2024) for accelerated
optimization.

Table 1: Optimization strategies of ex-
isting methods. X, A, S, and M denote
positions, appearances, physical states,
and material parameters. 0 denotes ini-
tial 3D/4D representation learning be-
fore physical parameter estimation. △
denotes optional optimization, depend-
ing on the scene.

Stage

Method Param. 0 1 2 3 4

PAC-NeRF Li et al. (2023b)
PhysDreamer Zhang et al. (2024)

X ✓
A ✓
S ✓
M ✓

Spring-Gaus Zhong et al. (2024)

X ✓ △
A ✓ △ △ △
S ✓ △
M ✓

GIC Cai et al. (2024)
MASIV Zhao et al. (2025)

X ✓
A ✓ ✓
S ✓
M ✓

Vid2Sim Chen et al. (2025)

X ✓ ✓
A ✓ ✓
S
M ✓ ✓

Ours

X ✓ ✓ ✓
A ✓ ✓ ✓
S ✓ ✓
M ✓

Methods in the generative category often synthesize re-
alistic videos using video diffusion models Zhang et al.
(2024); Huang et al. (2024); Lin et al. (2025). Using
the generated videos and differentiable physics simula-
tion, they estimate plausible parameters. Some approaches
also incorporate LLMs to get initial parameters Liu et al.
(2024b; 2025). While successful at producing visually
compelling dynamics, the primary objective here is typi-
cally visual plausibility and motion generation rather than
the accurate estimation of physical parameters from target
observations.

Our method contributes to the first category by address-
ing accurate physical parameter estimation from videos,
specifically under sparse views. While existing inverse
physics estimation techniques perform sequential opti-
mization Li et al. (2023b); Zhong et al. (2024); Cai et al.
(2024), as shown in Tab. 1, leading to error propagation
across multiple stages, ProJo4D introduces a progressive
joint optimization strategy that yield large improvements
in sparse-view scenarios.

3 PROJO4D
For a given scene, our approach follows a multi-stage pipeline to estimate the constituting param-
eters: the appearance of a deformable object, initial physical states, and material properties. As is
common in this domain, our pipeline begins with obtaining an initial 3D/4D representation. Our pri-
mary focus lies in the subsequent progressive joint optimization strategy designed to robustly solve
inverse physics estimation from limited observations.

3.1 MOTIVATION

Physical Parameter Estimation. Estimating the physical state and material parameters of an ob-
ject from visual observations is a challenging inverse problem. This is difficult primarily because
the whole system is non-linear and non-convex. To make it worse, some material models, like
non-Newtonian fluids, have non-differentiable but material-parameter-dependent branches. In ad-
dition, some of the physical parameters are strongly coupled, making it difficult to disambiguate
their individual contributions from visual cues. All these difficulties necessitate careful design of
optimization strategies to improve the chances of converging to a physically plausible and accurate
solution.

Figure 3: Comparison of error propagation in
sequential optimization. The gray region marks
the iterations during which the correspond-
ing parameter is optimized: velocity (MAE-v,
left) and material stiffness (MAE-logE, right).
Dense views reduce errors faster; sparse views
accumulate more errors.

Error accumulation in sparse vs. dense views
under sequential optimization. As discussed
above, most existing methods rely on sequential
optimization pipelines Li et al. (2023b); Cai et al.
(2024); Zhang et al. (2024), where parameters
are optimized in stages and estimates from earlier
stages are fixed as inputs for later ones. While
this strategy can help mitigate some challenges,
it introduces a new problem: errors from earlier
stages propagate and accumulate, with the effect
being substantially worse for sparse-view settings
compared to dense ones.

For sparse views, the initial geometry estimation
is considerably less accurate, and these errors cas-
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cade through subsequent optimization stages. This leads to large errors in estimating both initial
states and material properties. Figure 3 illustrates this phenomenon by plotting how mean absolute
errors (MAE) in velocity (v) and material parameters (logE) evolve during the sequential optimiza-
tion. We exclude the shared initial stage, where the 3D/4D representation is constructed, and focus
on the following two stages: velocity optimization (MAE v; left) and material parameter optimiza-
tion (MAE logE; right). With dense views, errors in the initial 3D/4D representation are smaller,
leading to reduced error propagation in subsequent stages, whereas sparse views suffer from greater
error accumulation across stages. For real-world deployments, capturing dense multi-view data with
precisely calibrated and synchronized cameras is often impractical. Consequently, mitigating error
accumulation and propagation becomes essential to extend the applicability of physics-based 4D
reconstruction methods in real-world scenarios.

(a) Elastic material model

(b) Sand material model
Figure 4: Material parameter estimation and fu-
ture prediction performances of different opti-
mization strategies in different material models.

Choice of optimization strategies: sequential
vs. joint vs. progressive. Figure 4 illus-
trates how optimization strategies affect estima-
tion accuracy and robustness across different ob-
ject shapes and material models. We plot the er-
ror in material properties (logE for elastic (a) and
θα for sand (b)) and in future 4D state simulation
(EMD) over optimization iterations. Sequential
optimization, while common, suffers from sig-
nificant error accumulation as shown in Fig. 4a,
leading to high estimation errors.

An alternative is joint optimization, adopted by
recent approaches such as Vid2Sim Chen et al.
(2025). This strategy can be effective for rela-
tively simple models like elastic objects (Fig. 4a),
but struggles with more complex systems such as
sand (Fig. 4b) or non-Newtonian materials, where
the optimization landscape is highly non-convex.
In such cases, while initial geometry may already
be close to ground truth, the physical parameters
are typically far from accurate, causing optimization to stagnate in sub-optimal regions. A hybrid
variant—performing joint optimization after sequential optimization—attempts to address this but
still inherits the limitations of the initial sequential stage. For example, when sequential optimization
fails for elastic objects, subsequent joint refinement yields only limited improvements compared to
alternatives (Fig. 4a).

These findings highlight the need for more principled optimization strategies that generalize across
diverse object shapes and material models. In the following section, we introduce our progressive
joint optimization approach, which mitigates these issues and consistently reduces estimation errors,
improving both performance and robustness.

3.2 PROGRESSIVE JOINT OPTIMIZATION

Stage 0: Initial 3D / 4D Representation Learning. Most existing pipelines, including ours, start
with an initial 3D or 4D representation learning stage. Some methods Li et al. (2023b); Zhong et al.
(2024) learns a static 3D scene from the first image of each camera, while others Cai et al. (2024)
learn a full 4D representation from the multi-view image sequence. Our method is based on 4D
representation learning to leverage 3D guidance during the following stages. The parameters for 4D
representation are optimized by minimizing rendering losses over all frames and cameras:

Limg(Î , I) = λL1LL1(Î , I) + λSSIMLSSIM (Î , I), (4)

x̂∗
0, Σ̂

∗, ĉ∗, σ̂∗, ψ∗ = argmin
x̂0,Σ̂,ĉ,σ̂,ψ

∑
t∈T

∑
c∈C

λimgLimg
(
Ît,c, It,c

)
+ λαLL1

(
α̂t,c, αt,c

)
, (5)

where Ît,c and α̂t,c denote a rendered image and an alpha map, respectively (Sec. 2.1). LL1 and
LSSIM denote L1 loss and Structural similarity index measure (SSIM) loss, and λL1, λSSIM are
their corresponding loss weights.
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Stage 1: Initial Physical State Optimization. This is the first stage of our progressive optimization
strategy, focusing on estimating initial physical state parameters s, such as the initial velocity v̂0.
In this stage, we use the first few frames, following prior works Li et al. (2023b); Zhong et al.
(2024); Cai et al. (2024). This allows the optimization to focus on estimating initial velocity v̂0
before significant deformation or complex interactions take place, separating the influence of initial
motion from material response. At this stage, Gaussian parameters are also optimized. As the initial
velocity v0 is the only physical state parameters in most existing benchmarks, we only optimize v̂0
by minimizing a combined loss over the first few frames Tk:

v̂∗0 , x̂
∗
0, Σ̂

∗, ĉ∗, σ̂∗ = argmin
v̂0,x̂0,Σ̂,ĉ,σ̂

λimg
∑
t∈T

∑
c∈C

Limg
(
Ĩt,c, It,c

)
+ λgeo

∑
t∈T

Lgeo
(
x̃t, x̂t

)
, (6)

where Lgeo is the bidirectional chamfer distance, which measures the distance to the closest point
from both estimated and ground truth points. x̃t and Ĩt,c are positions from physics simulation
S(·) and their corresponding rendered image (Sec. 2.1). x̂t denotes the extracted positions from the
learned 4D representation using deformation network ∆(·), as proposed in GIC Cai et al. (2024).

Stage 2: Full Joint Optimization. After obtaining an improved estimate for physical states s, more
specifically v0, this stage progresses to include material parameters θ̂m during optimization. For this
stage, we utilize data from all frames. We use the same optimization objective as the previous stage:

v̂∗0 , θ̂
∗
m, x̂

∗
0, Σ̂

∗, ĉ∗, σ̂∗ = argmin
v̂0,θ̂m,x̂0,Σ̂,ĉ,σ̂

λimg
∑
t∈T

∑
c∈C

Limg
(
Ĩt,c, It,c

)
+ λgeo

∑
t∈T

Lgeo
(
x̃t, x̂t

)
.

(7)

Table 2: Evaluation on Spring-Gaus Zhong et al. (2024) dataset with 7 elastic objects of different
shapes and physical parameters, captured with sparse views (3 views). We measure 3D prediction
accuracy of future states using Chamfer Distance (CD) and Earth Movers Distance (EMD), image
rendering quality of future states using PSNR and SSIM, and MAE of Young’s Modulus (E) and
Poisson Ratio (ν). For rendering quality evaluation, we used future images from all cameras.

method apple banana chess cream cross paste torus mean

CD ↓
Spring-Gaus 12.12 51.35 3.68 2.97 40.30 73.08 15.00 26.93
GIC 2.13 8.37 7.51 8.16 2.51 81.24 2.81 16.11
GIC + ProJo4D 0.19 0.12 1.37 1.54 0.38 6.93 0.65 1.60

EMD ↓
Spring-Gaus 0.170 0.223 0.097 0.101 0.232 0.248 0.177 0.178
GIC 0.090 0.106 0.139 0.135 0.084 0.263 0.081 0.128
GIC + ProJo4D 0.054 0.024 0.066 0.052 0.031 0.142 0.031 0.057

PSNR ↑
Spring-Gaus 17.03 15.79 13.85 14.62 11.24 10.94 13.01 13.78
GIC 20.52 21.84 14.87 13.93 22.51 12.41 17.00 17.58
GIC + ProJo4D 27.10 28.65 17.96 18.76 28.09 15.20 20.354 22.30

SSIM ↑
Spring-Gaus 0.790 0.825 0.792 0.796 0.819 0.737 0.831 0.799
GIC 0.868 0.910 0.826 0.795 0.889 0.772 0.892 0.850
GIC + ProJo4D 0.930 0.959 0.886 0.885 0.943 0.852 0.933 0.913

MAE logE ↓ GIC 0.1840 0.4639 0.1807 0.0838 0.3239 0.1380 0.2436 0.2311
GIC + ProJo4D 0.0633 0.1519 0.0326 0.0336 0.0469 0.1705 0.2315 0.1043

MAE ν ↓ GIC 0.1439 0.1049 0.0622 0.1407 0.0955 0.2209 0.4851 0.1790
GIC + ProJo4D 0.0817 0.2237 0.0222 0.0295 0.0307 0.0928 0.1569 0.0911

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Baselines. We compared ours with the current state-of-the-art methods; PAC-NeRF Li et al. (2023b),
Spring-Gaus Zhong et al. (2024), GIC Cai et al. (2024), and Vid2Sim Chen et al. (2025).

Datasets. We used the synthetic dataset from Spring-Gaus Zhong et al. (2024), PAC-NeRF Li et al.
(2023b), and the GSO dataset from Vid2Sim Chen et al. (2025). In the Spring-Gaus dataset, 7
distinct object shapes are provided, whereas the GSO dataset offers 12 shapes; both datasets only

6
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Figure 5: Visual comparison of ProJo4D(Ours) with GIC Cai et al. (2024) for novel-view rendering
and prediction in future timestep on the Spring-Gaus dataset, using sparse-view inputs. ProJo4D
produces more consistent and physically plausible results across both current and future views.
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Figure 6: Visual comparison of ProJo4D(Ours) with GIC Cai et al. (2024) for novel-view rendering
on ‘Sand’ (left) and ‘elastic’ (right) materials from the PAC-NeRF dataset, using sparse-view inputs.
ProJo4D reconstructs significantly better geometry than GIC.

involve elastic materials with varying parameters. We used the PAC-NeRF synthetic dataset that
comprises five different material models: elastic (Neo-Hookean), Newtonian fluid, non-Newtonian
fluid, plasticine, and sand (Drucker-Prager), each sharing the same object shape but with different
physical parameters. The dataset has a total of 45 scenes, and we report the mean and standard
deviation for each material model. To evaluate how our proposed optimization strategy can improve
performance in sparse-view settings, we selected only three cameras from the ten cameras available
for both datasets: the second, sixth, and tenth cameras from each scene using Spring-Gaus and
PAC-NeRF datasets. For the GSO dataset, we used the same experimental settings as Vid2Sim. To
compare with other baselines, we used the same train/test splits provided by each dataset.

For real-world evaluation, we use the Spring-Gaus dataset, which provides exactly three cameras
for each scene. Following Spring-Gaus Zhong et al. (2024), we optimize with the same data prepro-
cessing steps. We train each model on the first 14 frames and test on the remaining 6 frames.

Metrics. To evaluate our method against state-of-the-art approaches, we adopt two categories of
metrics: future state prediction and physical parameter estimation, following prior works Li et al.
(2023b); Zhong et al. (2024); Cai et al. (2024). For future state prediction, we measure the 3D
discrepancy between simulated positions x̃t and ground-truth positions xt using Chamfer Distance
(CD) and Earth Mover’s Distance (EMD). We also assess the 2D rendering quality of predicted
future states from both seen viewpoints (three in our experiments) and novel viewpoints using peak
signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). For physical parameter
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Table 3: Evaluation on PAC-NeRF dataset Li et al. (2023b), containing five material types with ten
different parameter settings each (except sand, which has five), all sharing the same object shape. We
report 3D future state prediction accuracy using Chamfer Distance (CD) and Earth Mover’s Distance
(EMD), and evaluate material estimation with mean absolute error (MAE) across parameters. ”N/A”
indicates parameters not applicable to a given material type.

Elasticity Newtonian Non-Newtonian Plasticine Sand

CD ↓
GIC 5.512 ± 3.311 0.537 ± 0.315 0.689 ± 0.398 2.012 ± 1.797 20.262 ± 43.360
+ ProJo4D 0.913 ± 0.301 0.339 ± 0.108 0.473 ± 0.248 1.103 ± 0.948 0.264 ± 0.017
+ Full Joint 1.318 ± 1.117 0.346 ± 0.095 8.104 ± 13.563 17.678 ± 18.170 53.564 ± 19.404

EMD ↓
GIC 0.126 ± 0.041 0.103 ± 0.007 0.040 ± 0.007 0.062 ± 0.027 0.122 ± 0.162
+ ProJo4D 0.042 ± 0.007 0.039 ± 0.004 0.038 ± 0.005 0.053 ± 0.018 0.045 ± 0.006
+ Full Joint 0.049 ± 0.023 0.040 ± 0.005 0.099 ± 0.073 0.124 ± 0.074 0.223 ± 0.020

MAE v0 ↓
GIC 0.008 ± 0.004 0.009 ± 0.004 0.015 ± 0.008 0.010 ± 0.005 0.007 ± 0.004
+ ProJo4D 0.007 ± 0.003 0.008 ± 0.002 0.005 ± 0.003 0.024 ± 0.056 0.005 ± 0.003
+ Full Joint 0.020 ± 0.033 0.008 ± 0.004 0.080 ± 0.099 0.092 ± 0.102 0.046 ± 0.032

MAE log(E) ↓
GIC 0.189 ± 0.217 N/A N/A 1.597 ± 1.150 N/A
+ ProJo4D 0.124 ± 0.099 N/A N/A 0.742 ± 0.780 N/A
+ Full Joint 0.216 ± 0.299 N/A N/A 2.856 ± 2.196 N/A

MAE ν ↓
GIC 0.123 ± 0.103 N/A N/A 0.134 ± 0.112 N/A
+ ProJo4D 0.048 ± 0.034 N/A N/A 0.084 ± 0.029 N/A
+ Full Joint 0.061 ± 0.053 N/A N/A 0.075 ± 0.057 N/A

MAE log(µ) ↓
GIC N/A 0.103 ± 0.125 0.869 ± 0.598 N/A N/A
+ ProJo4D N/A 0.134 ± 0.175 0.491 ± 0.363 N/A N/A
+ Full Joint N/A 0.294 ± 0.314 2.315 ± 1.100 N/A N/A

MAE log(κ) ↓
GIC N/A 3.180 ± 1.085 0.725 ± 0.704 N/A N/A
+ ProJo4D N/A 1.425 ± 1.148 0.462 ± 0.344 N/A N/A
+ Full Joint N/A 3.312 ± 1.679 1.673 ± 1.918 N/A N/A

MAE log(τY ) ↓
GIC N/A N/A 0.069 ± 0.069 0.327 ± 0.365 N/A
+ ProJo4D N/A N/A 0.144 ± 0.071 0.144 ± 0.125 N/A
+ Full Joint N/A N/A 1.839 ± 3.242 6.612 ± 7.739 N/A

MAE log(η) ↓
GIC N/A N/A 0.519 ± 0.264 N/A N/A
+ ProJo4D N/A N/A 0.463 ± 0.244 N/A N/A
+ Full Joint N/A N/A 1.455 ± 2.263 N/A N/A

MAE θfric ↓
GIC N/A N/A N/A N/A 6.785 ± 8.458
+ ProJo4D N/A N/A N/A N/A 4.998 ± 2.542
+ Full Joint N/A N/A N/A N/A 67.893 ± 12.416

estimation, we report mean absolute error (MAE), following previous literature Li et al. (2023b);
Zhong et al. (2024); Cai et al. (2024).

Hypeparameters. To focus on the optimization strategy, we use the same learning rates as GIC
for both Spring-Gaus and the PAC-NeRF datasets. We also optimized with the same number of
iterations for Stage 1 and 2 as GIC. We set the loss weights for image loss λimg and Chamfer
distance λgeo to 1/|C| and 1.0, respectively (Eqs. 6 and 7).

4.2 RESULTS

Synthetic Datasets. The Spring-Gaus dataset evaluates performance across diverse object shapes
and appearances. As shown in Tab. 2 and Fig. 7, both Spring-Gaus and GIC degrade significantly un-
der sparse views, especially on trajectory-sensitive scenes such as toothpaste, whereas our method
remains considerably more robust. Fig. 5 further illustrates that existing approaches fail to esti-
mate geometry and physical parameters, critically failing to predict future trajectories. In contrast,
our method remains robust with sparse views, achieving a tenfold reduction in Chamfer Distance,
roughly half the Earth Mover’s Distance on average, and a substantial PSNR boost (17.58 → 22.30).

The PAC-NeRF dataset evaluate the accuracy and robustness to different material models and their
parameters. Table. 3 and Fig. 6 show both quantitatively and qualitatively that our methods out-
performs GIC across different material models and different metrics and parameters. Both non-
Newtonian and Plasticine, has non-differentiable branch, which poses additional challenge to the
progressive joint optimization strategy. Nevertheless, our method improves upon GIC in 4/5 para-
maters for Non-Newtonian and in 3/4 parameters for Plasticine, and strong improvement in 3D
reconstruction (CD & EMD). In summary ProJo4D shows consistent improvement across different
material models and different object shapes across both datasets.
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Table 4: Future state prediction and ma-
terial parameter estimation on the GSO
dataset (original setting).

PSNR ↑ MAE logE ↓ MAE ν ↓
PAC-NeRF 20.11 2.50 0.21
Spring-Gaus 18.32 - -
GIC 19.20 2.01 0.16
Vid2Sim 25.07 0.51 0.06
GIC* 21.90 0.59 0.07
GIC* + ProJo4D 26.80 0.31 0.06

We also evaluate our method on the GSO dataset from
Vid2Sim Chen et al. (2025). To ensure a fair compari-
son, we reran GIC and our proposed method using the
same material model as Vid2Sim on the GSO dataset. Al-
though Vid2Sim, PAC-NeRF, and GIC all adopt the Neo-
Hookean material model for elastic objects, their exact
formulations differ. The variant, GIC*, in Tab. 4 reports
the performance of GIC with the identical material model
as Vid2Sim. As the results indicate, aligning the material
models leads to improved performance for GIC. More-
over, our proposed optimization strategy, ProJo4D, con-
sistently demonstrates further performance gains.

In multi-parameter inverse problems, exact recovery of every parameter is often ill-posed: multiple
parameter configurations can generate nearly indistinguishable dynamics in future state simulation.
Worse performance in a parameter while improvement in others does not necessarily indicate worse
overall inverse physics estimation, rather the future state prediction accuracy is often a more reli-
able indicator of the overall estimation quality. Examples are “banana” and “paste’ in Spring-Gaus
dataset: while ProJo4D underperforms GIC in a single physics parameter, it consistently achieves
lower CD and EMD and higher PSNR in future prediction. Taken together, ProJo4D not only im-
proves parameter estimation overall but, more importantly, delivers reliable gains in future state
predictive accuracy—an outcome that is especially relevant for downstream applications such as
simulation and digital twin construction.

Table 5: 2D future state prediction accuracies on
Spring-Gaus real-world dataset Li et al. (2023b).

bun burger dog pig potato mean

PSNR ↑
Spring-Gaus 26.79 35.13 30.31 31.95 28.96 30.63
GIC 32.14 36.89 33.35 32.30 35.02 34.05
GIC + ProJo4D 37.35 39.01 36.07 38.90 40.18 38.30

SSIM ↑
Spring-Gaus 0.986 0.995 0.993 0.994 0.989 0.991
GIC 0.994 0.995 0.995 0.996 0.995 0.995
GIC + ProJo4D 0.997 0.996 0.996 0.997 0.997 0.996

Real-world Dataset. Table 5 provides results
on the Spring-Gaus real-world dataset. Since no
ground truth three-dimensional mesh or material
parameters are available, we evaluate using only
two-dimensional metrics: PSNR and SSIM. Be-
cause Spring-Gaus works exclusively with elas-
tic objects, we use the elastic material model for
both GIC Cai et al. (2024) and our method. Con-
sistent with the synthetic data results in Tabs. 2
and 3, our method outperforms other approaches in both PSNR and SSIM on real-world images.
This performance improvement demonstrates that our proposed optimization strategy significantly
enhances estimation performance not only in synthetic but also in real-world settings, with additional
visual results provided in the appendix.

Figure 7: The average Chamfer
distance of different methods un-
der dense and sparse views.

Ablation Study. On the Spring-Gaus Dataset, we evaluate
the robustness of different approaches under both dense and
sparse view settings. As shown in Fig. 7, while Spring-Gaus
and GIC exhibit significant degradation in sparse-view scenar-
ios, resulting in drastic increases in Chamfer Distance, our
method ProJo4D maintains consistently low errors. This in-
dicates that ProJo4D effectively alleviates error accumulation
under limited viewpoints, achieving superior generalization to
sparse observations.

5 CONCLUSION

We introduced ProJo4D, a progressive joint optimization framework that incrementally expands
jointly optimized parameters guided by their sensitivity. This strategy ensures robust estimation of
geometry, appearance, and physical parameters under highly ambiguous, sparse-view inputs. Evalu-
ations on benchmark datasets show that ProJo4D consistently outperforms state-of-the-art methods
in 4D future state prediction, novel view rendering, and physical parameter estimation, demonstrat-
ing practical relevance.

While ProJo4D shows strong performance in 4D scene reconstruction and inverse physics estima-
tion from sparse-view videos, it shares limitations common to existing methods. First, it cannot
overcome fundamental challenges from underlying material models, such as non-differentiable,
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material-parameter-dependent branches, which require longer iterations and increase sensitivity to
learning rates for some, including non-Newtonian fluids. Second, reliance on computationally inten-
sive physics simulations, specifically MPM, results in high costs. Future work should explore accel-
erating simulations via neural surrogates, differentiable Neural PDEs, or other lightweight methods.
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A SUPPLEMENTARY MATERIAL

We provide additional qualitative results in the form of videos for two synthetic datasets, Spring-
Gaus and PAC-NeRF, as well as the real-world dataset from Spring-Gaus. These materials are
accessible via the included index.html file.

Table 6: Performance comparison results across different material types and configurations. We
evaluate 3D future state prediction accuracy and material parameter estimation. Bold values indicate
best performance for each metric and material type. X, A, S, and M denote positions, appearances,
physical states, and material parameters.

Stage 1 Elastic Newtonian Non-Newtonian Plasticine Sand

CD ↓

S 0.953 ± 0.295 6.319 ± 7.854 9.668 ± 4.543 21.891 ± 17.848 2.727 ± 0.531
M 1.020 ± 0.314 4.830 ± 6.432 9.205 ± 3.559 20.470 ± 17.660 4.067 ± 2.469
SM 1.057 ± 0.349 4.896 ± 4.254 9.682 ± 4.126 20.434 ± 17.976 2.743 ± 0.543
XAS (ProJo4D) 0.913 ± 0.301 0.339 ± 0.108 0.473 ± 0.248 1.103 ± 0.948 0.264 ± 0.017
XAM 1.053 ± 0.339 3.226 ± 1.607 9.164 ± 4.587 20.368 ± 16.643 2.457 ± 0.359
XASM (Full Joint) 1.318 ± 1.117 0.346 ± 0.095 8.104 ± 13.563 17.678 ± 18.170 53.564 ± 19.404

MAE v0 ↓

S 0.007 ± 0.003 0.074 ± 0.045 0.132 ± 0.031 0.102 ± 0.091 0.085 ± 0.039
M 0.035 ± 0.025 0.089 ± 0.045 0.154 ± 0.052 0.131 ± 0.107 0.150 ± 0.128
SM 0.013 ± 0.009 0.073 ± 0.044 0.149 ± 0.086 0.128 ± 0.070 0.095 ± 0.034
XAS (ProJo4D) 0.007 ± 0.003 0.008 ± 0.002 0.005 ± 0.003 0.024 ± 0.056 0.005 ± 0.003
XAM 0.099 ± 0.036 0.125 ± 0.045 0.162 ± 0.031 0.173 ± 0.091 0.252 ± 0.056
XASM (Full Joint) 0.020 ± 0.033 0.008 ± 0.004 0.080 ± 0.099 0.092 ± 0.102 0.046 ± 0.032

B ABLATION STUDY

We investigate progressive joint optimization strategies that start by optimizing only a subset of
parameters before transitioning to full joint optimization. We further compare these progressive
approaches against direct full joint optimization.

To this end, we modify the parameter set optimized in Stage 1 and conduct experiments on the
PAC-NeRF dataset, which contains multiple material models. Because different material models
involve distinct parameterizations, we report only metrics that are common across all models. In
particular, we use the Chamfer distance to evaluate the accuracy of future dynamics estimation and
mean absolute error for initial velocity estimation.

As shown in Tab. 6, our progressive method demonstrates stability across different material mod-
els. Fully optimizing all parameters immediately after obtaining 3D/4D representations (XASM in
Tab. 6) achieves performance comparable to our method for relatively simple material models (Elas-
tic and Newtonian). However, it shows significant degradation for more complex material models
(Non-Newtonian, Plasticine, and Sand). This suggests that while full joint optimization can perform
as effectively as carefully designed optimization strategies for simpler models, it becomes unreliable
as the material models become complex.

We additionally evaluate robustness with respect to the number of camera views in Tab. 7. As
shown in the table, future prediction and material parameter estimation performance improve as the
number of camera views increases. By adjusting only the parameter sets optimized at each stage,
the performance remains robust even when the number of views decreases.

We also compare alternative optimization strategies in Tab. 8, including sequential and cyclic ap-
proaches. ”Sequential” refers to the baseline, GIC. To account for the fact that joint optimization
changes the effective number of iterations per parameter set, we compare ProJo4D with an extended
sequential baseline (“Sequential+”) that matches both the total number of iterations and the number
of images used per parameter set. Table. 9 summarizes the number of iterations for each stage for
the different optimization strategies. Results show that simply increasing iterations does not mean-
ingfully improve performance. We further evaluate iterative optimization (“Cycles”), where one
parameter set is optimized at a time and repeated for several cycles while keeping total iterations
constant. Two configurations are tested: (XA-S-M)×4-A, which repeats Stages 0–2, and XA-(S-M-
A)×4, which repeats Stages 1–3, both with 4 cycles. For example, (XA-S-M)×4-A runs Stage 0
for 10K, Stage 1 for 25, Stage 2 for 25, repeated 4 times, then Stage 3. These results indicate
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Figure 8: Average optimization trajectories for SpringGaus scenes. The left third (dark gray) cor-
responds to Stage 0, the middle third (light gray) to Stage 1, and the right third (white) to Stage 2.
EMD and PSNR measure future-state prediction, while MAE logE and MAE ν measure material
parameter estimation. EMDx0 indicates the earth moving distance at time 0 (canonical space). For
visualization, Stage 0 is rescaled because it has many more iterations than Stages 1 and 2. Unlike
existing methods, which do not optimize positions using physics-informed gradients or refine ge-
ometry, our method introduces physics-informed gradients during optimization, resulting in better
geometry even with the same visual inputs.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Ablation study on the impact of different numbers of camera views. ProJo4D consistently
improves performance across varying numbers of views.

Number of cameras

2 3 10

CD ↓ GIC 12.00 16.11 0.95
+ ProJo4D 1.66 1.60 0.65

EMD ↓ GIC 0.129 0.128 0.049
+ ProJo4D 0.055 0.057 0.034

PSNR ↑ GIC 16.57 17.58 22.98
+ ProJo4D 20.56 22.30 26.95

SSIM ↑ GIC 0.844 0.850 0.930
+ ProJo4D 0.880 0.913 0.951

MAE logE ↓ GIC 0.4951 0.2311 0.1286
+ ProJo4D 0.1094 0.1043 0.0643

MAE log ν ↓ GIC 0.2752 0.1790 0.0458
+ ProJo4D 0.1374 0.0911 0.0654

Table 8: Ablation study of alternative optimization strategies. The order of optimization is repre-
sented using X (position), A (appearance), S (velocity), and M (material parameters). ”Sequential”
denotes standard optimization (GIC), updating one parameter set at a time. ”Sequential+” runs ad-
ditional iterations while keeping the same strategy, ensuring each parameter set receives at least
as many iterations as in ProJo4D. ”Cyclic” strategies repeat optimization over particle stages with
fewer iterations per cycle, keeping the total number of iterations constant. We use 4 cycles (N=4)
in our experiments. Results show that cyclic optimization improves performance over sequential
strategies but does not match ProJo4D.

ProJo4D Sequential Sequential+ Cyclic Cyclic
XA-XAS-XASM XA-S-M-A XA-S-M-A (XA-S-M)×4-A XA-(S-M-A)×4

CD ↓ 1.60 16.11 16.72 14.63 3.20
EMD ↓ 0.057 0.128 0.135 0.136 0.085

PSNR ↑ 22.30 17.58 18.01 16.96 19.04
SSIM ↑ 0.913 0.850 0.854 0.834 0.882

MAE logE ↓ 0.1043 0.2311 0.1958 0.2547 0.1616
MAE log ν ↓ 0.0911 0.1790 0.2984 0.2524 0.2686

Table 9: Iterations and image batch sizes for each stage in Tab. 8. Batch size is shown in parentheses;
for stages with multiple cameras and frames, we use the format (the number of cameras × the
number of frames).

ProJo4D Sequential (GIC) Sequential+

Stage 0 40K (1) 40K (1) 47K (1)
Stage 1 100 (3x3) 100 (3x3) 200 (3x3)
Stage 2 100 (3x20) 100 (3x20) 100 (3x20)
Stage 3 0 40K (1) 40K (1)

that introducing cyclic optimization too early, before the 4D representation is sufficiently accurate,
can degrade performance. While cyclic optimization can outperform simple sequential strategies
when applied after 4D representation learning, it still does not match the performance or stability of
ProJo4D’s progressive joint optimization.
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C HYPERPARAMETERS

Stage 0: 3D/4D representation learning. To isolate the effects of physical parameter optimization
from unrelated factors, we use the same 3D/4D representations as the base system. For GIC +
ProJo4D, we initialize with the identical 4D representations used by GIC and run only Stage I and
Stage II. For both GIC and ProJo4D, the 4D representations are obtained after 40K iterations of
4D representation learning: a 3K-iteration warmup for static scene representation followed by 37K
iterations with deformation networks for full 4D modeling.
Stage I & II. We used the same hyperparameters as the baseline (GIC) to rule out performance
gains from hyperparameter tuning. For the Spring-Gaus dataset, ProJo4D uses 100 iterations for
Stage I and 100 for Stage II, matching GIC. Although GIC includes an additional 30K iterations for
appearance refinement, we do not require this step because appearance is jointly optimized during
Stage I and Stage II.
For the PAC-NeRF dataset, we follow the iteration schedule used in GIC for each material type:

• Elastic: 100 iterations for Stage I and 150 for Stage II
• Newtonian: 100 iterations for Stage I and 250 for Stage II
• Non-Newtonian: 100 iterations for Stage I and 350 for Stage II
• Plasticine: 100 iterations for Stage I and 300 for Stage II
• Sand: 100 iterations for Stage I and 150 for Stage II

D EXPERIMENTAL DETAILS FOR THE GSO DATASET.

Although Vid2Sim, PAC-NeRF, and GIC all adopt the Neo-Hookean material model for elastic
objects, their exact formulations differ. Specifically, PAC-NeRF and GIC define the Kirchhoff stress
tensor τ as:

τPAC−NeRF = µFFT + (λJ − µ)I, (8)
where F is the deformation gradient and J is the determinant of F . Here, µ and λ denote the Lamé
parameters. In contrast, Vid2Sim follows the formulation used in Simplicits, where the Kirchhoff
stress tensor is defined as:

τSimplicits = µFFT + (λ(J − 1)− µ)JI. (9)

To ensure a fair comparison, we reran GIC and our proposed method using the same material model
(Eq. 9) on the GSO dataset.
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