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ABSTRACT

Large-scale Vision Transformers have achieved promising performance on down-
stream tasks through feature pre-training. However, the performance of vanilla
lightweight Vision Transformers (ViTs) is still far from satisfactory compared to
that of recent lightweight CNNs or hybrid networks. In this paper, we aim to
unlock the potential of vanilla lightweight ViTs by exploring the adaptation of
the widely-used re-parameterization technology to ViTs for improving learning
ability during training without increasing the inference cost. The main challenge
comes from the fact that CNNs perfectly complement with re-parameterization
over convolution and batch normalization, while vanilla Transformer architectures
are mainly comprised of linear and layer normalization layers. We propose to in-
corporate the linear ensemble into linear layers by expanding the depth of the
linear layers with batch normalization and fusing multiple linear features with hi-
erarchical representation ability through a pyramid structure. We also discover
and solve a new transformer-specific distribution rectification problem caused by
multi-branch re-parameterization. Finally, we propose our Two-Dimensional Re-
parameterized Linear module (TDRL) for ViTs. Under the popular self-supervised
pre-training and supervised fine-tuning strategy, our TDRL can be used in these
two stages to enhance both generic and task-specific representation. Experiments
demonstrate that our proposed method not only boosts the performance of vanilla
Vit-Tiny on various vision tasks to new state-of-the-art (SOTA) but also shows
promising generality ability on other networks. Code will be available.

1 INTRODUCTION

Inspired by the remarkable success of Transformers in natural language processing (NLP), Vision
Transformers (ViTs) (Dosovitskiy et al., 2020) have undergone significant advancements, especially
when trained on large-scale datasets with self-supervised learning (e.g., contrastive learning (Chen
et al., 2021) and masked image modeling (MIM) (He et al., 2022)). These developments have
led to the emergence of large-scale ViTs (Dehghani et al., 2023), which are expected to promote
performance mutations similar to Transformers in NLP and eventually become a unified framework
for visual or even multimodal tasks (Li et al., 2023; Xu et al., 2023). However, the performance
of lightweight ViT models is still far from satisfactory and even inferior to corresponding CNN
counterparts (Howard et al., 2019; Woo et al., 2023). Lightweight deep models are still dominated by
CNNs or carefully designed hybrid networks (Mehta & Rastegari, 2021; Liu et al., 2023; Vasu et al.,
2023b). Given that large ViT models are progressively unifying multimodal feature representation,
we believe that it is crucial to explore how to unlock the potential of vanilla lightweight ViTs, thereby
achieving uniformity across different model scales.

Fortunately, recent research has recognized this issue and made efforts to take a step forward (Wang
et al., 2023; Huang et al., 2023; Ren et al., 2023). MAE-Lite (Wang et al., 2023) gives a detailed
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analysis of the effects of MAE pre-training (He et al., 2022) and finds that ViT-Tiny can achieve
promising classification performance with proper configuration: 1) increasing the number of heads
to 12; 2) applying attention map distillation during pre-training; 3) carefully adjusting fine-tuning
settings. These valuable insights focus on image classification, which may not be applicable to
other tasks. TinyMIM (Ren et al., 2023) systematically studies different options in the distillation
framework to take full advantage of MIM pretraining. Different from these two aforementioned
methods which only focus on applying knowledge transfer during MAE pre-training, G2SD (Huang
et al., 2023) proposes to benefit the learning of small/tiny ViTs from both MAE pre-training and
downstream fine-tuning. While the generic-to-specific two-stage distillation approach does achieve
competitive performance for small models, its applicability may be limited due to the fine-tuning
requirements of large-scale teacher models on downstream tasks. Considering that obtaining generic
pre-trained large models (He et al., 2022; Radford et al., 2021) is relatively easier, it is more practical
to perform knowledge distillation solely during the pre-training stage.

While previous methods focus more on exploring training recipes, we turn to enhance the
lightweight ViTs itself: increase the model capacity during training while keeping the inference
unchanged via re-parameterization technology (Ding et al., 2021b;a; 2019; 2022). A typical re-
parameterized module usually consists of multi-branch networks primarily composed of convolu-
tions and batch normalization (Ioffe & Szegedy, 2015). Thanks to the particularity of batch nor-
malization, these modules retain their adaptive normalization during training and can be merged
into a single convolution operation at inference. Consequently, the additional parameters within
the re-parameterized module do not increase the inference cost. This approach has been success-
fully employed in the CNN-related networks (Ding et al., 2021b;a) and is even considered a default
technique in recent lightweight network designs (Vasu et al., 2023b;a). However, these convolution-
based re-parameterized modules can not be directly applied to vanilla Transformers because of their
non-convolution architecture. How to adapt this paradigm to vanilla ViTs remains unexplored.

In this paper, we systematically study the above issues and explore the linear-based re-
parameterization of vanilla Vision Transformers, without incorporating any convolutional opera-
tions. To enhance the training capacity of the linear layer, we design a delicate linear stack with
batch normalization in between them to incorporate adaptive normalization. A pyramid multi-branch
structure is further proposed to fuse hierarchical feature representations from linear-based branches
of different depths. Additionally, we discover the importance of distribution consistency along the
depth dimension of deep networks for training stability, especially for self-attention in ViTs. To
alleviate the distribution changes caused by the additive mechanism of re-parameterization, we in-
corporate additional distribution rectification operations to normalize the outputs. Based on the
above designs, we propose a Two-Dimensional Re-parameterized Linear module (TDRL) for ViTs.

To validate the effectiveness of our TDRL, we follow the pre-training and fine-tuning pipeline of
MAE He et al. (2022) and apply TDRL to the ViT-Tiny model. It achieves new state-of-the-art per-
formance on various visual tasks, such as image classification, semantic segmentation, and object de-
tection. Further experiments on more models/architectures including the relatively larger ViT-Small
network Dosovitskiy et al. (2020), generation network (Ho et al., 2020), and SOTA lightweight net-
works (Vasu et al., 2023b) also validate the generality of our proposed re-parameterization method.

2 RELATED WORKS

Vision Transformers. ViTs (Dosovitskiy et al., 2020) have established the dominant position of
Transformer architecture in the vision domain recently. It shows competitive performance on various
downstream tasks (Touvron et al., 2021; Li et al., 2022; Liu et al., 2021; Zhang et al., 2022a; Peng
et al., 2023; Zhai et al., 2022; Zamir et al., 2022; Tan et al., 2023; Zhang et al., 2022b). However,
compared to CNN counterparts, ViTs perform poorly in limited model capacity or data scale due
to the lack of inductive bias (Dosovitskiy et al., 2020; Touvron et al., 2021). Most lightweight ViT
works draw inspiration from CNN designs to build hybrid architecture (Mehta & Rastegari, 2021;
Wu et al., 2022b; Chen et al., 2022; Liu et al., 2023; Vasu et al., 2023a), while few works tempt to
improve the performance of vanilla ViTs (Wang et al., 2023; Huang et al., 2023; Ren et al., 2023).
In this paper, we focus on improving the vanilla lightweight ViT networks via re-parameterization.

Self-supervised Learning. Self-supervised learning is the mainstream powerful paradigm for rep-
resentation modeling without the requirement of data labels (Balestriero et al., 2023). Among them,
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Figure 1: (a) Classical convolution-based re-parameterization architecture. (b) TDRL follows a
pyramid design of depths (i.e., Ln = n, n = {1, 2, ..., N}). Dashed lines with a single linear layer
indicate the skip connection. “Rectify” is the distribution rectification. (c) Re-parameterization
fusion: 1) merge each rep-branch into a single linear layer through Equation 13; 2) merge multiple
branches (each branch contains one linear layer) through Equation 2.

masked image modeling (MIM) has achieved surprising performance on ViTs (He et al., 2022;
Bao et al., 2021). Taking raw pixel, semantic features, or discrete tokens as reconstruction tar-
gets, most methods explore performance upper bound by finding better supervisions or scaling up
model capacity (Dehghani et al., 2023; Wei et al., 2022; Fang et al., 2023; Peng et al., 2022). It
has been demonstrated that MIM technologies can benefit large models. But their performance on
lightweight ViTs is always overlooked. MAE-Lite (Wang et al., 2023), TinyMIM (Ren et al., 2023),
and G2SD (Huang et al., 2023) are recent methods that investigate lightweight ViTs from the per-
spectives of training configurations and knowledge distillation (Hinton et al., 2015). Differently, we
develop a re-parameterized way for lightweight ViTs to take full advantage of MIM pre-training.

Structural Re-parameterization. Structural re-parameterization (or over-parameterization) means
the technology to scale up the model capacity during training while keeping the inference un-
changed. It is very useful to train compact CNN networks (Ding et al., 2021b;a; Guo et al., 2020;
Cao et al., 2022; Ding et al., 2019). These modules are built with linear operations (e.g., K × K
convolutions and average pooling) and batch normalization (Ioffe & Szegedy, 2015) to enhance their
training representation ability and keep efficient inference speed. However, these methods are de-
signed over convolution which can not be directly applied to convolution-free vision Transformers.
In this paper, we extend them to vanilla ViTs without any local convolutions.

3 METHODS

3.1 RE-VISITING STRUCTURAL RE-PARAMETERIZATION

We first re-visit the re-parameterization of CNN networks (Ding et al., 2021b). As shown in Figure 1
(a), a typical module is a multi-branch additive architecture. Each branch consists of a convolution
and a batch normalization. It enhances the learning ability during training and can be merged into a
single convolution layer for efficient inference. The merging process can be divided into two steps:

1) Intra-Branch Fusion: the fusion of convolution and batch normalization within each branch. Let
W ∈ RCout×Cin×K×K and b ∈ RCout denote the weight matrix and bias vector of a convolution
layer with K ×K kernel size, Cin input channels and Cout output channels. The scale, shift, mean,
and variance of batch normalization are denoted as γ, β, µ, σ ∈ RCout , respectively. The merged
convolutional parameters are as follows:

W
′

i,:,:,: =
γi
σi

Wi,:,:,:, b
′

i =
(bi − µi)γi

σi
+ βi, (1)

where i is the output channel index. If converting the convolution to a linear layer, we can also easily
fuse its weight and bias with batch normalization through Equation 1.
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2) Inter-Branch Fusion: the multiple branches can be further merged to a single convolution as:

W
′′
=

N∑
n=1

W
′n, b

′′
=

N∑
n=1

b
′n, (2)

where N is the number of branches, W
′n and b

′n are the fused weight and bias of the n-th branch.

3.2 TWO-DIMENSIONAL RE-PARAMETERIZED LINEAR MODULE

CNN networks perfectly complement with re-parameterization due to the wide usage of batch nor-
malization, for its intriguing calculation transformation characteristics during training and inference,
which happens to be the core of re-parameterization. However, ViTs are mainly comprised of lin-
ear and layer normalization layers (Ba et al., 2016). Due to the fact that the mean and variance
of layer normalization depend on the input during inference, layer normalization cannot be merged
with other operations statically as the way of batch normalization. We can only re-parameterize
linear layers in transformer networks. In other words, we have to propose a new structure mainly
based on linear layers while keeping the re-parameterization structure simple and mergeable in in-
ference by incorporating Linear Ensemble to linear layers. What’s more, we discover and solve a
new transformer-specific Distribution Rectification problem with re-parameterization.

Linear Ensemble. The basic re-parameterized unit of CNNs instinctively incorporates statistical
calculation characteristics with batch normalization. Replicating the unit into multiple branches im-
proves the module capacity. Each branch of convolution incorporates explicit inductive bias through
shared local kernels and padding for powerful spatial feature representation within a single layer.
However, simple linear replicas suffer the homogeneous problem, with each replica updated with
almost the same gradients during training. Thus, we propose to stack linear layers with batch nor-
malization in-between them for the linear ensemble. The rationality is three folds: 1) Linear stacking
with batch normalization is similar to MLP 1 which is appropriate to transformers and plays an im-
portant role to represent rich intra-token information (Dosovitskiy et al., 2020). Thus, it is inherently
appropriate for transformer networks. 2) Although batch normalization is not as suitable as layer
normalization for ViTs (Yao et al., 2021), it still can be used in-between layers for the linear en-
semble while keeping the original layer normalization unchanged. 3) The stacked linear layers with
batch normalization can be fused to a single linear layer. The batch normalization can be fused with
a precedent linear layer via Equation 1. Let W l ∈ RCl×Cl−1 and bl ∈ RCl denote the weight
and bias of the l-th (l = 1, 2, 3, ..., L) merged linear layer in the stack. Two adjacent layers (e.g.,
(l + 1)-th and l-th) can be merged as:

W
′

i,j(l + 1, l) =

k=Cl∑
k=1

W l+1
i,k W l

k,j , b
′

i(l + 1, l) =

Cl∑
k=1

blkW
l+1
i,k + bl+1

i , (3)

where i = 1, 2, 3, ..., Cl+1 and j = 1, 2, 3, ..., Cl−1 are the channel indexes. Based on Equation 3,
we can easily merge a sequence of linear layers of any length into one linear layer. Another effective
re-parameterization strategy of CNN-based structure is to use different kernel sizes (e.g., K × K
and 1 × 1) to vary the learning patterns of branches. Accordingly, we vary the depth of linear
stacks to build a pyramid multi-branch topology. The additive combination of features from these
re-parameterization branches exhibits abstract representation ability from shallow to deep. It not
only enhances the feature representation but also improves the diversity between branches.

Distribution Rectification. Numerous previous works have verified that distribution consistency
along the depth dimension is critical to deep networks, with influential works like different ini-
tialization and normalization methods (Ioffe & Szegedy, 2015; Ba et al., 2016; He et al., 2015;
Kumar, 2017). The above proposed re-parameterization structure will change the distribution be-
tween inputs and outputs due to its multi-branch additive mechanism, which will affect the training
stability of Vision Transformers, especially for Multi-Head Self Attention (MHSA). The standard
self-attention (Dosovitskiy et al., 2020) first calculates the attention map A ∈ RM×M based on
the pairwise similarity between query Q ∈ RM×Ck and key K ∈ RM×Ck , and then computes a
weighted sum over all values V ∈ RM×Cv :

Attention(Q,K,V ) = softmax(
A√
Ck

)V , A = QKT . (4)

1MLP stacks two linear layers with GELU and our stack multiple linear layers with batch normalization.
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Following Vaswani et al. (2017), assuming that the components of Q and K are independent random

variables with mean 0 and variance 1, the elements of attention map Ai,j =
∑k=Ck

k=1
Qi,kKk,j have

mean 0 and variance Ck. Typical Transformers perform Scaled Dot-Product Attention which scale
the dot product results by 1/

√
Ck to ensure the final output variance back to 1. However, in case

Q and K are re-parameterized as Q
′
=

∑NQ

n=1
Qn,K

′
=

∑NK

m=1
Km, the distribution of A

′

changes as follows:

A
′

i,j =

k=Ck∑
k=1

(

NQ∑
n=1

Qn
i,k)(

NK∑
m=1

Km
k,j) =

k=Ck∑
k=1

NQ∑
n=1

NK∑
m=1

Qn
i,kK

m
k,j . (5)

The re-parameterized distribution changes are amplified through the attention mechanism, where
the variance of elements in A

′

i,j increases to CkNQNK . It will increase the probability of extreme
values of A and affecting the stability of training2 (as shown in Figure3). Considering that attention
is fragile to distribution and the distribution of Q,K is much more complicated than the above
assumption, we use an additional batch normalization to modulate Q

′
,K

′
to rectify the distribution

changes. In other components like FFN, this distribution change may also result in the convergence
bottleneck. Considering that layer normalization is already used between MHSA and FFN, and
the variance change is not as large as in attention calculation3, we adopt the approach in Scaled
Dot-Product Attention and re-scale the features with

√
N rather than normalize it.

Main Architecture. As shown in Figure 1 (b), our proposed two-dimensional re-parameterized
linear module consists of N re-parameterized branches (denoted as rep-branch) and an additional
linear layer skip branch. The outputs of these branches are fused via element-wise addition. Each
rep-branch consists of LN basic re-parameterized units (a linear layer followed by a batch normal-
ization layer) and a final linear layer. Let fn,Ln(·) denote the n-th rep-branch with Ln basic units,
X ∈ RM×Cin and Y ∈ RM×Cout denote the input and output tensors where M is the sequence
length. In this pyramid structure, we set the number of basic units in a rep-branch the same as the
branch index. The whole calculation of TDRL can be formulated as:

Y = Rectify(Linear(X) +

N∑
n=1

fn,Ln
(X)), Ln = n, (6)

where Rectify(·) is the distribution rectification operation mentioned before. It ensures that each
rep-branch has different approximation abilities, thereby keeping their feature spaces away from
each other. In the following, we use P-WNS to denote the detailed configuration of this Pyramid
architecture with Width of N rep-branch and a Skip branch. In addition, we also design a Regular
version of TDRL whose Depth per branch is the same for comparison.

Y = Rectify(Linear(X) +

N∑
n=1

fn,L(X)). (7)

Similarly, we denote this type of TDRL with N rep-branch, L basic units per branch, and skip
branch as R-DLWNS. Compared to this regular version, we will show that the pyramid structure
exhibits better performance and diversity under similar model parameter sizes.

Figure 1 (c) shows the merging of the proposed linear re-parameterization module for inference:
1) intra-branch fusion: merge batch normalization within each unit via Equation 1 and merge all
linear layers in each rep-branch to a single linear layer via Equation 3; 2) inter-branch fusion:
merge all branches via Equation 2. The proposed TDRL can replace arbitrary linear layers in ViTs.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. Similar to previous MIM methods (He et al., 2022; Wang et al., 2023; Huang et al., 2023),
we pre-train our lightweight ViT models on ImageNet (Deng et al., 2009) which contains about 1.2M

2When extreme value exists in A, the softmax(·) function will scale the elements to close to 0 or 1, which
results in the extremely small gradients (since ∂y/∂x = y(1− y), y = softmax(x)).

3The variance is scaled to N following the same independent random assumption as before.
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Table 1: Comparison with SOTA methods on ImageNet validation. Teachers are used by default for
methods with pre-training. FT and P denote fine-tuning epochs and the size of backbone parameters
respectively. †means performing distillation during fine-tuning.

Method Network Teacher FT P (M) Acc(%)

Without Pre-training

MobileNet-v3 (Howard et al., 2019) CNNs N/A 600 6 75.2
ConvNeXt-V1-F (Liu et al., 2022b) CNNs N/A 600 5 77.5

VanillaNet-5 (Chen et al., 2023) CNNs N/A 300 15.5 72.5
MobileViT-S (Mehta & Rastegari, 2021) Hybrid N/A 300 6 78.3

EfficientViT-M3 (Liu et al., 2023) Hybrid N/A 300 7 73.4
DeiT-Ti (Touvron et al., 2021) ViTs N/A 300 5 72.2
Manifold-Ti (Jia et al., 2021) ViTs CaiT-S24 - 6 75.1†
MKD-Ti (Liu et al., 2022a) ViTs CaiT-S24 300 6 76.4†

DeiT-Ti (Touvron et al., 2021) ViTs RegNetY 300 6 74.5†
SSTA-Ti (Wu et al., 2022a) ViTs DeiT-S 300 6 75.2†

ImageNet Pre-training

DMAE-Ti (Bai et al., 2023) ViTs ViT-B 100 6 74.9
MAE-Lite (Wang et al., 2023) ViTs N/A 100 6 76.2

MAE-Ti (He et al., 2022) ViTs N/A 200 6 75.2
TinyMIM-Ti (Ren et al., 2023) ViTs TinyMIM-S 200 6 75.8

G2SD-Ti w/o S.D (Huang et al., 2023) ViTs ViT-B 200 6 76.3
G2SD-Ti (Huang et al., 2023) ViTs ViT-B 200 6 77.0†

TDRL (ours) ViTs ViT-B 200 6 78.3/78.6†
MAE-Lite (Wang et al., 2023) ViTs N/A 300 6 78.0

D-MAE-Lite (Wang et al., 2023) ViTs ViT-B 300 6 78.4
TDRL (ours) ViTs ViT-B 300 6 78.7/79.1†

training images. We validate the performance on downstream tasks including image classification
on ImageNet(Deng et al., 2009), semantic image segmentation on ADE20K (Zhou et al., 2019),
object detection and instance segmentation on MS COCO (Lin et al., 2014).

Implementation Details. We mainly conduct experiments on applying the proposed TDRL to the
projection layer of Q,K,V 4 in multi-head self-attention (MHSA) and two linear layers in the
feed-forward network (FFN). The configuration of TDRL remains consistent across all components.
Considering both effectiveness and efficiency, the default recipe of TDRL is set to P-W2S.

Following Wang et al. (2023), we conduct experiments on the classical vanilla ViT-Tiny which only
contains about 6M parameters. All blocks are re-parameterized with TDRL. Due to the recent SOTA
methods (Wang et al., 2023; Huang et al., 2023) adopting MIM pipeline for taking full advantage of
self-supervised learning, we also perform experiments based on them for a fair comparison. In pre-
training, we use the MAE pre-trained ViT-Base model as the teacher and perform generic distillation
recipes as in Huang et al. (2023). More concretely, the student decoder contains 4 Transformer
blocks with an embedding dimension of 128. We align the outputs of the student decoder with the
4-th teacher decoder features including visible and masked patches to transfer generic knowledge.
We use a single linear layer to align the features of ViT-Tiny and its teacher model and ignore the
class token in loss calculating. For optimization, we use AdamW optimizer (Loshchilov & Hutter,
2017) (with the initial learning rate 2.4e-3, weight decay 0.05, and batch size 4096) to train the
model for 300 epochs. Images are randomly resized and cropped with a resolution of 224x224.

For image classification, we fine-tune pre-trained models for 200/300 epochs. For semantic seg-
mentation, we replace the backbone of UperNet (Xiao et al., 2018) with ViT-Tiny and fine-tune the
model for 160K iterations. We use the BEiT(Bao et al., 2021) semantic segmentation codebase. The
input image resolution is 512x512. For object detection and instance segmentation tasks, we follow

4The final projection layer in MHSA is ignored since its weight can be merged with that of V .
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Table 2: Validation of semantic segmentation (ADE20K) and object detection tasks (MS COCO). *
means that the resolution is 640x640 as in (Li et al., 2021). †means performing distillation during
fine-tuning. ‡means that the results are based on Mask R-CNN (He et al., 2017).

Method #Params (M) Segmentation Detection
Seg/Det mIoU AP bbox APmask

Swin-T (Liu et al., 2021) 59.9/47.8 44.5 46.0‡ 41.6‡
ConvNeXt-T (Liu et al., 2022b) 60.0/48.1 46.0 46.2‡ 41.7‡

DINO-S (Caron et al., 2021) 42.0/44.5 44.0 49.1 43.3
iBOT-S (Zhou et al., 2021) 42.0/44.5 45.4 49.7 44.0
MAE-S (He et al., 2022) 42.0/44.5 41.1/44.9† 45.3 40.8

MAE-Ti (He et al., 2022) 11.0/27.7 36.9/42.0† 37.9/43.5† 34.9/39.0†
MAE-Lite (Wang et al., 2023) 11.0/27.7 37.6 39.9* 35.4*

D-MAE-Lite (Wang et al., 2023) 11.0/27.7 42.0 42.3* 37.4*
G2SD-Ti (Huang et al., 2023) 11.0/27.7 41.4/44.5† 44.0/46.3† 39.6/41.3†

TDRL (ours) 11.0/27.7 42.5/45.2† 46.5/47.4† 41.5/42.1†

the ViTDet (Li et al., 2022) and use the detectron2 (Wu et al., 2019) codebase to train the model with
64 batch size for 100 epochs. The image resolution is 1024x1024. If performing specific distillation
in fine-tuning as Huang et al. (2023), the teacher is ViT-Base which achieves 83.6%, 48.1 mIoU and
51.6AP bbox on image classification, semantic segmentation and object detection. Re-parameterized
architecture is used in the fine-tuning stage. More details are provided in the Appendix A.

4.2 COMPARISONS WITH SOTA METHODS

Image Classification. In Table 1, we summarize the detailed comparison of our TDRL with several
types of SOTA methods on image classification, including supervised methods (e.g., MobileNet-
v3 (Howard et al., 2019) and ConvNetXt-V1-F (Liu et al., 2022b)), self-supervised methods (e.g.,
MAE-Ti (He et al., 2022)) and some distillation methods with vanilla ViT-Tiny (e.g., DMAE-Ti (Bai
et al., 2023) and G2SD-Ti (Huang et al., 2023)). In general, our TDRL achieves the best classifica-
tion accuracy under various epoch settings. For example, compared to vanilla ViTs, it outperforms
the best-performed one (e.g., G2SD and MAE-Lite) by 1.3% under 200 fine-tuning epochs and by
0.3% under 300 fine-tuning epochs. Compared to carefully designed CNNs or hybrid networks,
i.e., MobileViT-S (Mehta & Rastegari, 2021), TDRL achieves 0.5% improvements. We also follow
G2SD to perform specific distillation in fine-tuning and find that our performance can be further
improved to 79.1%.

Dense Prediction Tasks. Except for classification, we demonstrate the advance of pre-trained mod-
els for dense prediction tasks, like segmentation, object detection and instance segmentation. As
summarized in Table 2, TDRL achieves the best performance for dense prediction compared with
other ViT-Tiny-based methods. Concretely, TDRL obtains more than 3.2 mIoU, 3.9 AP bbox and 3.1
APmask gains compared with MAE-Ti (He et al., 2022) and MAE-Lite (Wang et al., 2023). Com-
pared with G2SD (Huang et al., 2023) which benefits from two-stage knowledge distillation, TDRL
achieves slightly better performance in object detection and instance segmentation without knowl-
edge distillation during fine-tuning. What’s more, compared with ViT-Small-based and elaborately
designed CNNs/hybrid architectures, TDRL shows surprising performance to some extent. It out-
performs MAE-S (He et al., 2022) for both two tasks and shows superiority on all metrics (e.g., 0.7
mIoU) compared with Swin-T (Liu et al., 2021) which contains many inductive biases. We obverse
that the performance without fine-tuning distillation on ADE20K is not as extraordinary as on MS
COCO (i.e., its non-distillation performance on ADE20K is not close to G2SD with specific distil-
lation), which may be caused by the data size. Insufficient data may require a well-learned teacher
to guide the training, which results in the new best performance on ADE20K (i.e., 45.2 mIoU). We
provide an additional analysis on large-scale ImageNet in the Appendix B.1. Compared to image
classification, the improvement gaps from TDRL on dense prediction tasks are considerably larger,
which may be attributed to task difficulty. TDRL can benefit better on complex dense prediction
tasks than the classification task by improving representation ability.
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4.3 ABLATION STUDY AND ANALYSIS

In this section, we systematically study the properties of the proposed TDRL. Experiments are
mainly conducted on the ImageNet classification task. By default, we fine-tune the model for 100
epochs without teachers for efficiency. We give more experiments and analysis, such as robustness
evaluation and efficiency comparison, in the Appendix.
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Figure 2: (a) Effects of skip branch of TDRL in FFN. (b) Performance of various sizes for three
types of TDRL in FFN. The hybrid parameters of these variations are L and N . * means that we
keep the re-parameterized architecture in fine-tuning. (c) Comparison of CKA (Nguyen et al., 2020)
similarity between rep-branches. (d) Comparison of embedding positions for ViTs.

Ablation on Re-parameterization. Here, we conduct the main ablation of TDRL when applying it
to Transformers, including the architecture design and re-parameterized components in ViTs.

1) Architecture Design. We first test the importance of skip branch through three variants in FFN,
involving width and depth expansion. Skip branch performs a shorter gradient propagation path
compared to rep-branch to alleviate gradient vanishing. One can find that all variants suffer from
non-negligible performance degradation without it in Figure 2 (a). Then, we validate the superiority
of our pyramid structure compared to the regular version in terms of performance and module size.
As shown in Figure 2 (b), the pyramid-wise architecture (i.e., P-WNS) can achieve the best accuracy
compared to other versions (e.g., R-DLW1S and R-D1WNS) under similar parameter sizes. What’s
more, we compare the inter-branch diversity between our pyramid structure (P-WNS) and the width
expansion version (R-D1WNS) through CKA similarity in Figure 2 (c). It can be found that P-WNS
shows a much richer representation ability than R-D1WNS, even under a smaller number of rep-
branches. We also compare the effects with or without TDRL in fine-tuning under P-WNS variants
and find that keeping it can further stimulate the potential of the lightweight model. Considering
both the effectiveness and efficiency, we select P-W2S as the default settings.

2) Re-parameterized Components. Finally, we evaluate the effects of applying TDRL to different
components of ViTs in Figure 2 (d). Except for Patch Embedding (PE), the introduction of TDRL
in other components can bring significant improvements.

Attention Distribution Rectification. As analyzed before, re-parameterization of self-attention
will amplify the distribution changes, which may seriously affect the training stability. We ex-
perimentally track the effects of distribution changes through maximum attention logits and their
corresponding attention activation. In detail, we calculate the average maximum activation before
and after softmax operation within each block on ImageNet validation datasets (shown in Figure 3
(a)-(b)). Without distribution rectification, the maximum value of their dot product is prone to ex-
treme values for all the 12 Transformer blocks(over 1, 000), leading to attention weights of near-zero
entropy (i.e., almost one-hot attention map). In contrast, performing re-scale or normalization pre-
vents divergence due to uncontrolled attention logit growth, which ensures that the behavior of the
attention map is similar to that of the baseline. Accordingly, in Figure 3 (c), we can clearly observe
a rapid increase in attention logits during the training process5. Compared with re-scale and normal-

5On experiments, we observe the NAN value after a few thousand steps without normalization, which may
be caused by the data overflow.
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Figure 3: (a)-(b) Effects of feature distributions on Q/K re-parameterization with the recipe of
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ization. The results without rectification come from the last checkpoint before the collapse, while
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√
Ck.

(c) The trend of logits maximum (blue) and attention maximum (orange) during training. The hori-
zontal axis represents the steps. (d) The Top-1 ImageNet classification accuracy of different settings.

ization, we find that normalization shows superiority in terms of ImageNet classification accuracy
(in Figure 3 (d)). We provide more analysis about FFN in the Appendix B.2.

Generality of TDRL. In addition to applying TDRL in vanilla ViT-Tiny, we also apply it to other
networks to show its generic ability. As summarized in Table 3, we first validate the effect of
TDRL in a slightly larger model (i.e., ViT-Small and Swin-Ti (Liu et al., 2021)), then expand the
experiments on the recent lightweight CNN, hybrid networks (VanillaNet-5 (Chen et al., 2023) and
Mobileone-S0 (Vasu et al., 2023b)), and image generation models (e.g., DDPM (Ho et al., 2020)).
It can be found that all these methods benefit from the proposed TDRL, indicating that our proposed
TDRL is suitable for various networks on different tasks.

Table 3: Applications of TDRL on various networks and different tasks. For ViT-Small, we fol-
low the same pre-training recipe and fine-tune it for 100 epochs without distillation. The model is
re-parameterized in fine-tuning. For other networks, we use official codes and replace the corre-
sponding linear layers with the proposed TDRL. For image generation, we conduct experiments on
Cifar10 (Krizhevsky et al., 2009).

TDRL Classification Accuracy (%) ↑ Image Generation FID ↓
ViT-Small Swin-Ti Mobileone-S0 VanillaNet-5 DDPM

× 80.8 76.2 71.3 71.1 10.4√
81.3 (+0.5) 78.2 (+2.0) 75.1 (+3.8) 71.5 (+0.4) 9.2 (+1.2)

5 CONCLUSION

This paper explores the potential of boosting vanilla lightweight ViTs via re-parameterization. To
enhance the representation ability of linear layers in ViTs, we propose a multi-branch pyramid archi-
tecture (TDRL) with branches consisting of various depths of linear layers and batch normalization.
What’s more, we discover and alleviate the distribution explosion problem when applying the pro-
posed TDRL to Vision Transformers by distribution rectification. Experiments show that our TDRL
can efficiently improve the performance of lightweight ViTs as well as other transformer or hybrid
networks.

Limitations and societal impact. Similar to previous re-parameterized methods, our TDRL im-
proves performance without compromising inference efficiency. But it results in extra training costs
for larger capacity. However, existing models can still benefit from TDRL under similar training
costs (see B.6). We hope our work can promote the research on lightweight ViTs in the future.
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REPRODUCIBILITY STATEMENT

Our proposed method, TDRL, is a lightweight module whose PyTorch-style implementation is pro-
vided in the supplementary materials. The pre-training and fine-tuning settings can be found in the
Appendix A.1A.2.
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A EXPERIMENTAL DETAILS

A.1 PRE-TRAINING DETAILS

Our self-supervised pre-training strategy follows the recent popular MAE (He et al., 2022), including
the optimizer, learning rate, batch size, mask ratio, etc. As for models, we use ViT-Tiny as the
encoder and replace its linear layers in MHSA/FFN with the proposed TDRL. By default, we re-
parameterize all blocks of ViT-Tiny. Following MAE-Lite (Wang et al., 2023), we set the number
of heads in ViT-Tiny as 12. In the decoder, we use 4 blocks with an embedding dimension of
128. The teacher model is MAE pre-trained ViT-Base provided by the official repository6. We use
an additional linear layer to align the last decoder features from the student and the 4-th decoder
features from the teacher and calculate the loss for both visible and invisible patches.

A.2 FINE-TUNING DETAILS

To evaluate the effectiveness of the proposed TDRL, we fine-tune the pre-trained models on three
mainstream tasks, including classification, semantic segmentation, object detection and instance
segmentation tasks.

Table 4: Fine-tuning settings of ViT-Tiny for ImageNet classification.

Config Value (w/o distillation) Value (w distillation)

Teacher N/A ViT-Base
Warmup epochs {5, 5, 10} {5, 5, 10}
Training epochs {100, 200, 300} {100, 200, 300}

Layer-wise lr decay 0.85 (w/o TDRL), 0.65 (TDRL) 0.75 (w/o TDRL), 0.65 (TDRL)

Optimizer AdamW
Base learning rate 1e−3

Weight decay 0.05
Optimizer momentum β1, β2 = 0.9, 0.999

Batch size 1024
Learning rate schedule Cosine decay

Augmentation RandAug(10, 0.5) (Cubuk et al., 2020)
Colorjitter 0.3

Label smoothing 0
Mixup, Cutmix 0.2, 0

Drop path 0

Image Classification. We follow previous work (Huang et al., 2023; Wang et al., 2023) to set
the fine-tuning recipes and summarize them in Table 4. The difference between using TDRL and
merging TDRL in the fine-tuning stage comes from the layer decay (e.g., 0.65 vs. 0.85). To evaluate
the effect of these two settings for the baseline, we also fine-tune it with 0.65 layer decay and find
that the performance is similar to the original one. Thus, the improvements indeed come from
our proposed TDRL, rather than the fine-tuning recipes. When using ViT-Small as the target, the
augmentation recipes are the same as Huang et al. (2023).

Semantic Segmentation. In this experiment, we use codebase provided by G2SD (Huang et al.,
2023) and follow its settings. Differently, we also change the layer decay when using TDRL in
fine-tuning. In detail, we set layer decay to 0.80 when using specific distillation, otherwise set it to
0.75.

Object Detection and Instance Segmentation. Following G2SD (Huang et al., 2023), we fine-tune
the model for 100 epochs with a batch size of 64. The layer decay is set to 0.7 by default. We set
the learning rate to 3e−4 if distillation is not used, otherwise set it to 1e−4.

6https://github.com/facebookresearch/mae
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A.3 MORE IMPLEMENTATION DETAILS OF TDRL

When applying TDRL to the Patch Embedding, we should make some modifications. Formally, PE
performs k×k convolution with k stride to encode image patches ( with size of k×k) independently.
To combine with the proposed TDRL, we replace the first linear layer of each branch (containing
rep-branch and skip branch) with a convolution layer. At inference time, batch normalization can be
converted into convolution followed by Ding et al. (2021b). And we thereafter merge a convolution
and a linear as follows:

W
′

i,j,:,: =

Cc
out∑

k=1

W l
i,kW

c
k,j,:,:, b

′

i =

Cc
out∑

k=1

W l
i,kb

c
k + bli, (8)

where W c ∈ RCc
out×Cc

in×K×K , bc ∈ RCc
out , W l ∈ RCl

out×Cl
in and bl ∈ RCl

out are the weights and
biases of convolution and linear. And Cc

out = Cl
in is the prerequisite. By the way, this way can be

used when combining our TDRL with other convolutions.

A.4 MORE DETAILS OF APPLYING TDRL TO OTHER MODELS

Here, we give more details when applying TDRL to different models which are summarized in
Table 3. For ViT-Small, we follow the same settings as ViT-Tiny. TDRL is used in both FFN and
MHSA. The fine-tuning settings are the same as MAE (He et al., 2022). For Swin-Ti (Liu et al.,
2021)7, we replace the linear layers with the proposed TDRL in the FFN. We train the Swin-Ti with
or without our TDRL on ImageNet directly for 100 epochs. For Mobileone (Vasu et al., 2023b)8

which has already 3 × 3 and 1 × 1 convolution-based re-parameterization, we replace its 1 × 1
convolution-based re-parameterized modules with our TDRL and also combine TDRL with 3 × 3
convolution re-parameterized modules. To fuse 3 × 3 convolution and linear layer, we can follow
the Equation 8. For VanillaNet Chen et al. (2023)9, we replace its two sequential 1× 1 convolutions
with the proposed TDRL. The batch size is set to 512. For DDPM (Ho et al., 2020)10, we replace its
1×1 convolutions within all the self-attention blocks with our TDRL. All the results summarized in
Table 3 are reproduced by ourselves. In these experiments, the default setting of TDRL is P-W2S.

B MORE ANALYSIS

B.1 DISTILLATION: ONE-STAGE VS. TWO-STAGE

In Table 2, we find that TDRL may still need a well-learned teacher in fine-tuning to achieve the
SOTA performance when data is insufficient (e.g., ADE20K (Zhou et al., 2019)), which can be
alleviated by increasing the training data (e.g., MS COCO (Lin et al., 2014)). Here, we further com-
pare the one-stage distillation and the two-stage distillation on a large-scale ImageNet classification
dataset (Deng et al., 2009) in Table 5. One can see that our proposed TDRL shows superiority com-
pared to the baseline either with specific distillation or without specific distillation. More concretely,
the improvement in terms of accuracy is at least larger than 0.97%. Compared to the baseline with
specific distillation, our TDRL still outperforms 0.62% without the specific distillation, indicating
its advantage can be stimulated by enough data.

B.2 MORE ANALYSIS FOR DISTRIBUTION RECTIFICATION

We have analyzed the impacts of distribution for Attention calculation before. Here, we give more
discussion about it for other components of ViTs. Due to the pre-normalization mechanism, the dis-
tribution changes of features will accumulate through the skip connection within FFN and MHSA.
That is, distribution rectification may also be important when applying TDRL to FFN or the V pro-
jection in MHSA. To evaluate it, we test the accuracy gap between the models with and without
distribution rectification. As shown in Figure 4, the performance gap increases from around zero to

7https://github.com/microsoft/Swin-Transformer.git
8https://github.com/open-mmlab/mmpretrain
9https://github.com/huawei-noah/VanillaNet

10https://github.com/zoubohao/DenoisingDiffusionProbabilityModel-ddpm-
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Table 5: Comparison on ImageNet with or without specific distillation in fine-tuning. All models
are fine-tuned with 100 epochs. Re-parameterized architecture is kept in fine-tuning.

Method Specific Distillation Accuracy (%) △ (%)

Baseline × 76.24 -
TDRL (ours) × 77.39 +1.15

Baseline
√

76.77 -
TDRL (ours)

√
77.74 +0.97

0.18% with the increasing of rep-branchs in FFN. It indicates that the greater the change in distri-
bution, the more significant the corrective effect. In addition, we compare the difference between
applying TDRL only in FFN and both in FFN and MHSA (0.13% vs. 0.21%). It can be found that
the effect of distribution rectification is also proportional to the number of layers applied to TDRL.

-0.05
0

0.05
0.1

0.15
0.2

0.25

1 2 3
Number of rep-branch N for P-WNS

ImageNet Accuracy Gap (%)

FFN FFN+MHSA

Figure 4: Comparison of distribution rectification. The values are the accuracy gap between the
models with and without distribution rectification. We use P-WNS as the configuration of TDRL.
All models are fine-tuned for 100 epochs with re-parameterization.

Table 6: Robustness comparison. “IN” is short for ImageNet.

Method IN IN-A IN-R IN-S IN-V2-F IN-V2-Thr IN-V2-Top

G2SD-Ti 77.0 12.9 39.0 25.9 65.6 - -
D-MAE-Lite 78.4 13.9 40.6 28.0 66.7 74.9 80.1
TDRL (ours) 78.7 14.7 41.4 28.1 67.1 75.5 80.3

B.3 ROBUSTNESS EVALUATION

We evaluate the robustness by directly testing these ImageNet-trained methods on several ImageNet
variants, including ImageNet-A (Hendrycks et al., 2021b), ImageNet-R (Hendrycks et al., 2021a),
ImageNet-S (Wang et al., 2019) and ImageNet-V2 (Recht et al., 2019). In Table 6, we can see
that TDRL outperforms other methods on all test sets, which implies that our method can hold the
generalization capability while boosting the downstream task performances.

B.4 COMPARISON WITHOUT PRETRAINING

Here, we evaluate the efficiency of our proposed TDRL without MIM pertaining. Specifically,
we directly train ViT-Tiny and our TDRL on ImageNet for 100 epochs. ViT-Tiny achieves 63.5%
accuracy, and our TDRL increases the accuracy to 65.9%. This proves that our TDRL does not rely
on pretraining and distillation.
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Table 7: Comparison of our TDRL under various fine-tuning epochs.

Fine-tuning Epochs 100 200 1,000

Accuracy (%) 77.7 78.6 79.9

Table 8: Efficiency comparison between pre-training and inference on V100 GPUs. In the pre-
training, the batch size per GPS is set to 256. And the inference batch size is 128. P is the learnable
parameters and FLOPs denotes the computational complexity. Values in the (·) denote the propor-
tion of increase compared to the baseline (i.e., G2SD-Ti (Huang et al., 2023)).

Method Pre-training Inference Speed
Memory (G) Epoch Times (s) P (M) FLOPs (G) (s/iteration)

Baseline 12.57 326 5.72 1.26 0.35
TDRL (ours) 18.22 (+44.9%) 462 (+41.7%) 48.86 9.72 0.35 (+0%)

B.5 LONG EPOCHS OR LARGE MODELS

To evaluate the effect of the training epoch, we fine-tune our TDRL for different epochs. As sum-
marized in Table 7, our proposed TDRL can be beneficial for larger epochs. We further explore
the potential of our TDRL for large models, such as DeiT-B (Touvron et al., 2021). In detail, we
directly train DeiT-B with or without TDRL on ImageNet for 100 epochs and find that TDRL can
still improve the accuracy by 0.6% for large models. Note that we only adopt TDRL in Q,K,V
of DeiT-B to reduce training costs. In addition, we find that applying our TDRL to a larger network
may require stronger regular constraints (e.g., weight decay) during training.

B.6 EFFICIENCY COMPARISON

Although TDRL improves the model capacity of ViTs, it brings additional optimized parameters.
Here, we summarize the training cost and inference speed in Table 8. It can be found that the cost
increase of memory and training times does not exceed 50%. And the improvement in training pa-
rameters and computational complexity is relatively significant. In the inference stage, our inference
speed is as fast as the baseline. For a fair comparison, we reduce the pre-training epochs to keep
the total pre-training time the same between the baseline and our TDRL. As summarized in Table 9,
our TDRL still outperforms the baseline (i.e., G2SD) by 0.59% in terms of image classification ac-
curacy, which indicates our superiority. In addition, we can flexibly select the recipes of TDRL in
terms of module size and replacement places to balance the training cost and test performance. To
validate it, we compare the trend of image classification accuracy and pre-training times in Figure 5.
As the pre-training cost increases, we can efficiently improve the performance in classification.

B.7 MORE COMPARISON WITH NAIVE DESIGNS

Here, we compare our proposed TDRL with the naive version that directly converts convolutions
to linear layers in Figure 1 (a). As summarized in Table 10, we can find that our proposed TDRL
shows better performance than the naive version under similar parameter conditions. For example,
TDRL outperforms the naive version by 0.64% at around 30 MB training parameters. It further
demonstrates the superiority of our proposed method.

B.8 OVERFITTING ANALYSIS

As our TDRL is much larger than a single linear layer, one of the concerns of practical application
may be listed in the overfitting. In our experiments, we have not observed overfitting issues. The
reasons may be as follows: 1) The datasets we used are relatively big for ViT-Tiny, even with our
proposed TDRL; 2) Batch normalization in TDRL not only improves the training representation but
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Table 9: Comparison of our TDRL and baseline under the similar pre-training time. The configura-
tion of TDRL is P-W1S applied in FFN. The fine-tuning efficiency of the baseline and our method
is the same since we merge the re-parameterized architecture after pre-training.

Method Pre-train time (hours) Pre-train epoch Fine-tune epoch Accuracy (%)

Baseline (G2SD) 32.33 300 100 76.24
TDRL (ours) 32.02 220 100 76.73 (+0.59)
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Figure 5: Comparison of image classification accuracy and pre-training efficiency. “-V-N” repre-
sents that the TDRL is applied in V within MHSA for the first N blocks. The pre-training epoch is
set to 300, while all models are fine-tuned for 100 epochs without re-parameterized architectures.

also reduces the risk of overfitting; 3) The feature dimension along the network is not changed (fea-
tures are limited to the original dimension before outputting from TDRL), resulting in the increased
intrinsic dimension. This also reduces the risk of overfitting compared to directly increasing the
depth of the network or the feature dimension. We further train ViT-Tiny with or without TDRL on
a small dataset (i.e., Cifar10 (Krizhevsky et al., 2009)) which contains 50,000 training images. The
results indicate that overfitting still does not occur. TDRL still improves the performance of ViT-
Tiny by 1.0% (70.9% vs. 69.9%). When the size of datasets is too small for the network, we may
face overfitting issues. However, considering the rapid development of data size and our lightweight
model research targets, the probability of overfitting in practical applications is very low.

B.9 MORE ANALYSIS FOR DENSE PREDICTION TASKS.

To demonstrate the gains resulting from our re-parameterization structure rather than the additional
batch normalization layers, we conduct experiments on semantic segmentation that apply batch
normalization to the MHSA and FFN. We observe that adding only the batch normalization layer
does not bring any effective improvement (37.8 vs. 41.4 in terms of mIoU). This experiment further
validates the effectiveness of our re-parameterization structure.
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Table 10: Comparison of our TDRL and naive version that directly converts convolutions to linear
layers in the typical CNN-based re-parameterized module. The re-parameterized modules are ap-
plied in FFN. The naive version contains 8 branches, while TDRL is set to R-D2W1S for similar
parameters.

Method Trainin Parameters (M) Accuracy (%)

Baseline 5.72 76.24

Naive 30.75 76.26 (+0.02)

TDRL 31.03 76.90 (+0.66)
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