
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ON THE OPTIMAL MEMORIZATION CAPACITY OF
TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent research in the field of machine learning has increasingly focused on the
memorization capacity of Transformers, but how efficient they are is not yet well
understood. We demonstrate that Transformers can memorize labels with Õ(

√
N)

parameters in a next-token prediction setting for N input sequences of length n,
which is proved to be optimal up to logarithmic factors. This indicates that Trans-
formers can efficiently perform memorization with little influence from the input
length n owing to the benefit of parameter sharing. We also analyze the mem-
orization capacity in the sequence-to-sequence setting, and find that Õ(

√
nN)

parameters are not only sufficient, but also necessary at least for Transformers
with hardmax. These results suggest that while self-attention mechanisms can ef-
ficiently identify input sequences, the feed-forward network becomes a bottleneck
when associating a label to each token.

1 INTRODUCTION

In recent years, the Transformer architecture (Vaswani et al., 2017) has played a pivotal role in
the field of machine learning, becoming indispensable for a variety of models in the community. In
addition to the original breakthroughs in natural language processing, such as the GPT series (Brown
et al., 2020; Radford et al., 2018; 2019), it has been observed that in numerous applications, higher
accuracy can be achieved by replacing existing models with Transformers. In particular, models
such as the Vision Transformer (Dosovitskiy et al., 2021) in image processing and the Diffusion
Transformer (Peebles & Xie, 2023) in generative tasks have demonstrated exceptional performances
in a wide variety of tasks. These examples demonstrate how effective and versatile Transformers are
for a diverse range of purposes.

Although the high performance of Transformers has led to their widespread use in practice, there are
ongoing attempts to theoretically analyze what exactly contributes to their superior performance. In
particular, one important aspect of Transformers is their representational capabilities. Previous stud-
ies have explored from a variety of angles why Transformers have high expressive capacity and can
memorize vast amounts of data (Edelman et al., 2022; Gurevych et al., 2022; Takakura & Suzuki,
2023). For example, it has been shown that Transformers are universal approximators (having the
ability to approximate arbitrary functions) (Yun et al., 2019) or that a particular Transformer config-
uration can memorize a given set of data (Kim et al., 2023; Kajitsuka & Sato, 2023; Mahdavi et al.,
2023; Madden et al., 2024).

Nevertheless, while various studies have suggested that Transformers are indeed capable of mem-
orizing data, our understanding of how efficiently they can do so remains limited. Specifically, it
is not yet fully clear how certain characteristics of Transformers, such as parameter sharing, influ-
ence the reduction of model parameters and overall efficiency with respect to their memorization
capacity, the minimum size of networks required for memorizing any sequence of a given number
of data.

There are several key advantages to investigating whether a Transformer can efficiently memorize
data, such as the possibility of gaining a better understanding of Transformer’s strengths and pro-
viding useful insights for model design and selection. In addition, knowledge of memorization
efficiency can provide important information for evaluating generalization error (Belkin et al., 2019;
Nakkiran et al., 2021). Alternatively, if it turns out that Transformers do not offer a significant

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

efficiency advantage over feed-forward networks, it may suggest that currently widely used Trans-
formers may in fact be substitutable for feed-forward networks.

This paper investigates the efficiency of Transformers in achieving data memorization by analyzing
the necessary and sufficient model complexity for this task. To be more precise, we establish both
upper and lower bounds on the number of parameters needed for memorization in the next-token
prediction setting and demonstrate that they are of the same order up to logarithmic factors, thereby
showing that Transformers can achieve data memorization with nearly optimal efficiency.

Furthermore, the upper bound on memorization capacity in the next-token prediction setting can
be naturally extended to the sequence-to-sequence setting. This upper bound is also proved to be
optimal up to logarithmic factors in the sequence-to-sequence setting, at least for Transformers with
the hardmax function.

2 RELATED WORK

MEMORIZATION CAPACITY

Research on memorization capacity began at least as late as the 1960s (Cover, 1965; Nilsson, 1965;
Minsky & Papert, 1969). Specifically, Nilsson (1965) showed that one-hidden-layer neural networks
with N − 1 nodes is able to compute any label assignments for N data points. Later, Baum (1988)
exhibited that ⌈N/d⌉ neurons are sufficient for one-hidden-layer neural networks with threshold
units to memorize any set of N input-label pairs with the input dimension d, and Huang & Babri
(1998); Zhang et al. (2021) extended the results to more general activation functions.

The analysis of memorization capacity is closely linked to the concept of the Vapnik-Chervonenkis
(VC) dimension. While the memorization capacity of a model refers to the minimum size of the
model required for memorizing any tuple of N input-label pairs for some N , the VC dimension
considers whether the model is capable of shattering, that is, memorizing any possible label assign-
ments for some set of N input points, which in turn provides a lower bound on the memorization
capacity. For example, Goldberg & Jerrum (1995) estimated that the VC dimension of a feed-
forward network with ReLU activation functions and W parameters is at most O(W 2) by reducing
the network to a boolean formula. From this upper bound, it can be inferred that a feed-forward
network with ReLU activation functions requires at least Ω(

√
N) parameters to memorize arbitrary

N data points. Bartlett et al. (2019) further refined this analysis by examining the behavior of the
network as a function of its parameters and analyzing it layer by layer, and demonstrated that the
VC dimension of a ReLU network with width W and depth L is O(WL logW).

Remarkably, Park et al. (2021) proposed a construction method under the assumption that the data
points are separated by at least δ, showing that a feed-forward network using sigmoid or ReLU
activation functions with a sub-linear parameter order O(N2/3 + log δ) can memorize N data
points. Later, Vardi et al. (2022) demonstrated that, under similar assumptions, a ReLU network
with O(

√
N logN) parameters suffices for memorizing arbitrary N data points. This result is opti-

mal up to logarithmic factors, as it matches the lower bound Ω(
√
N) implied by the VC dimension

discussed above. Note that the assumption that data points are well separated is crucial to achieve
sub-linear memorization capacity; in fact, it has been shown that at least (N − 1)/2 parameters are
required to memorize arbitrary N distinct data points without such separation (Sontag, 1997). Ad-
ditionally, Siegel (2024) proved that Ω(N) parameters are necessary for memorizing N data points
when the separation δ between data points is exponentially small with respect to N .

Memorization capacity is not only theoretically intriguing but also practically significant. As the
model size increases, classical learning theory predicts that the training error decreases while the
generalization error follows a U-shaped curve. However, recent observations of the double descent
phenomenon (Belkin et al., 2019; Nakkiran et al., 2021) revealed that after achieving zero training
loss, the generalization error begins to decrease again. Analyzing memorization capacity helps iden-
tify the critical model size at which this shift occurs, providing valuable insights into the dynamics
of model performance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Comparisons between our results and related work regarding the memorization capacity of Trans-
formers. The variable ω in the bounds presented by Madden et al. (2024) represents the vocabulary
size, or the number of distinct word vectors that appear in input sequences.

Paper Setting Input #layers Upper bound Lower bound
Kim et al.
(2023) seq-to-seq token-wise

(r, δ)-separated Õ(n+
√
nN) Õ(n+

√
nN) -

Mahdavi
et al. (2023) next-token linearly

independent 1 O(d2N/n) -

Kajitsuka &
Sato (2023) seq-to-seq token-wise

(r, δ)-separated 1 O(dnN + d2) -

Madden
et al. (2024) next-token with positional

encoding 1 O(ωN) Ω(ωN)

Ours next-token token-wise
(r, δ)-separated Õ(

√
N) Õ(

√
N) Ω(

√
N)

seq-to-seq token-wise
(r, δ)-separated Õ(

√
nN) Õ(

√
nN) Ω

(√
nN

log(nN)

)

EXPRESSIVITY OF TRANSFORMERS

One of the foundational studies on the representation power of Transformers is the work by Yun et al.
(2019), who demonstrated that Transformers are universal approximators. Their proof already incor-
porates the idea of constructing a contextual mapping from data points to contexts and linking these
context ids to labels. Kim et al. (2023), whose work is most closely related to our work, improved
their contextual mapping approach and demonstrated that this mapping, constructed using 2n layers
of self-attention for N input sequences of length n, allows for memorization with Õ(n +

√
nN)

parameters under the same assumption that data points are well separated as in Park et al. (2021);
Vardi et al. (2022). Later, Kajitsuka & Sato (2023) showed that a single-layer, single-head Trans-
former already possesses memorization capacity under the same assumption, while self-attention
with hardmax does not. In contrast to the studies mentioned above, Mahdavi et al. (2023) demon-
strated that under the assumption that data points are linearly independent, a multi-head attention
with H heads and embedding dimension d > n can memorize Ω(Hn) data points in a next-token
prediction like setting. Madden et al. (2024) proved upper and lower bounds on the memorization
capacity of one-layer Transformers with parameters of infinite precision in the next-token predic-
tion setting. Chen & Zou (2024) investigated the behavior of Transformers with varying depths,
and specifically demonstrated that a single-layer Transformer can achieve memorization if input se-
quences are sufficiently zero-padded. However, they noted that their objective was not to explore
efficient constructions. The comparisons between our results and related work are summarized in
Table 1. Note that all the papers listed here that investigate single-layer Transformers assume either
infinite parameter precision or do not consider the bit-length required to represent parameters.

In addition to memorization capacity, there are studies highlighting other perspectives on Transform-
ers, including their function approximation capacity (Gurevych et al., 2022; Takakura & Suzuki,
2023; Jiang & Li, 2024), and their ability to efficiently represent sparse functions (Edelman et al.,
2022; Bhattamishra et al., 2023; Sanford et al., 2023; Trauger & Tewari, 2024; Wang et al., 2024b).

3 PRELIMINARIES

3.1 NOTATION

We denote vectors and matrices by bold lowercase and uppercase letters, respectively. Given a
vector v, we denote its i-th element as vi. Given a matrix A, we denote its i-th row as Ai,:, its
j-th column as A:,j and the element at position (i, j) as Ai,j . For a natural number m ∈ N+, we
use [m] to denote the set {1, . . . ,m}. In the context of the self-attention mechanism, we use σS to
represent the column-wise softmax function. Specifically, for a matrix A ∈ Ra×b, σS [A] ∈ Ra×b is
calculated by σS [A]i,j := exp(Ai,j)/

∑a
k=1 exp(Ak,j). Likewise, we use σH to denote the column-

wise hardmax function. Note that if there are multiple values in a column, its outputs are normalized

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

so that they sum up to 1. Mathematically, for a matrix A ∈ Ra×b, σH [A] ∈ Ra×b is calculated as
follows.

σH [A]i,j :=

{
1/|Ij | if Ai,j = maxk Ak,j ,

0 otherwise,
(1)

where Ij := argmaxk Ak,j := {k′ ∈ [a] | Ak′,j = maxk Ak,j} for any j ∈ [b]. We use σR to
denote the ReLU activation function, that is, σR[x] := max(0, x). Unlike σS and σH , σR is always
applied element-wise, regardless of whether the input is a vector or a matrix. For any natural number
x ∈ N, BINi:j(x) ∈ N represents the sequence of bits from the i-th bit to the j-th bit (counting from
the left) of x, interpreted as a natural number. For a vector v ∈ Ra, the L2 norm of v is denoted by
∥v∥2 :=

∑a
i=1 v

2
i . We use standard asymptotic notation. Specifically, f(n) = O(g(n)) indicates

that the function f grows at most as fast as g for sufficiently large n, and f(n) = Õ(g(n)) represents
that f grows at most as fast as g, up to logarithmic factors. Likewise, f(n) = Ω(g(n)) means that
the function f grows at least as fast as g for sufficiently large n. f(n) ≲ g(n) means that there
exists a positive constant c such that f(n) ≤ cg(n) holds.

In this paper, we basically use n to denote the length of an input sequence, N to denote the number
of input sequences, C to denote the number of classes, and d to denote the dimensionality of each
token. Additionally, index i is typically used to refer to the position of input sequences, while index
k is used to refer to the position of the token within an input sequence.

3.2 TRANSFORMER BLOCK

In this subsection, we introduce the architecture of Transformers (Vaswani et al., 2017). We ba-
sically follow the notations by Kim et al. (2023). Transformers are defined by stacking multiple
Transformer blocks, each of which consists of a self-attention layer and a feed-forward layer.

Self-attention layer: Given an input sequence Z ∈ Rm×n, the output of a self-attention layer
F (SA)

l : Rm×n → Rm×n at block l ∈ [L] is calculated by

F (SA)
l (Z) := Z +

H∑
h=1

W
(O)
hl W

(V)
hl ZσS

[(
W

(K)
hl Z

)⊤ (
W

(Q)
hl Z

)]
∈ Rm×n, (2)

where W
(V)
hl , W

(K)
hl , W

(Q)
hl ∈ Rs×m and W

(O)
hl ∈ Rm×s are value, key, query and projection

matrices at head h ∈ [H] with head size s, respectively.

Feed-forward layer: The output H ∈ Rm×n of the self-attention layer at block l is then passed to
the feed-forward layer, which performs the following token-wise operation:

F (FF)
l (H):,k := H:,k +W

(2)
l σR

[
W

(1)
l H:,k + b

(1)
l

]
+ b

(2)
l ∈ Rm (k ∈ [n]), (3)

where W
(1)
l ∈ Rq×m and W

(2)
l ∈ Rm×q are weight matrices with hidden dimension q, and b

(1)
l ∈

Rq and b
(2)
l ∈ Rm are bias terms.

Using the self-attention layer and the feed-forward layer, the Transformer block Fl : Rm×n →
Rm×n at block l ∈ [L] is defined as a composition of these two layers, that is, Fl := F (FF)

l ◦F (SA)
l ,

and the whole architecture of the Transformer N : Rd×n → R1×n is expressed by

N := Eout ◦ FL ◦ · · · ◦ F1 ◦ Ein, (4)

where Ein : Rd×n → Rm×n and Eout : Rm×n → R1×n are token-wise linear mappings.

In a Transformer, the width is determined by the combination of self-attention layers and feed-
forward layers. According to the definition proposed by Kim et al. (2023), the width of the Trans-
former model is defined as max(m, sH, q). We define the depth of a Transformer by the number of
blocks L.
Remark 3.1. The use of in/out token-wise linear mappings comes from the fact that Transformer
blocks by definition have the same input and output dimensions. The token-wise linear mappings
can be removed at the cost of a linear dependence of the number of parameters required for memo-
rization on the embedding dimension d.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.3 BIT COMPLEXITY

In this paper, we consider not only the number of parameters but also the number of bits required
to represent the model. Specifically, we adopt the definition of bit complexity proposed by Vardi
et al. (2022). According to this definition, the bit complexity of a parameter is defined as the number
of bits needed to represent that parameter. The bit complexity of a model is then defined as the
maximum bit complexity among its individual parameters. It is important to note that by multiplying
the bit complexity of the model by the number of parameters, we can estimate the total number of
bits required to represent the entire model.

4 MEMORIZATION CAPACITY OF TRANSFORMERS

In this section, we state the main theorems of this paper regarding the optimal memorization capacity
of Transformers. Section 4.1 defines the memorization capacity of Transformers and discuss the
main challenge behind this concept. In Sections 4.2 and 4.3, we provide upper and lower bounds
on the number of parameters required for Transformers to achieve memorization in the next-token
prediction setting and the sequence-to-sequence prediction setting, respectively.

4.1 PROBLEM SETTING

The aim of this study is to analyze the memorization capacity of Transformers. Informally, mem-
orization capacity refers to the minimum size of a model that can memorize a specific number of
arbitrary data points. To be more precise, let X and Y be input space and output space, respectively.
Then, given N input-label pairs (X(1), y(1)), . . . , (X(N), y(N)) ∈ X × Y , we are interested in the
model complexity of a model f : X → Y such that f(X(i)) = y(i) holds for any i ∈ [N]. In the
case of Transformers, the input space X consists of input sequences made up of n tokens, each of
which is a d-dimensional vector. Hence, we define the input space X as X := Rd×n.

Without any assumptions on the input data, it has been shown by Sontag (1997), that a linear order
of parameters is required to memorize arbitraryN data points. To achieve a sub-linear memorization
capacity, in this paper, we assume that the data points are well separated, a common assumption in
prior work (Park et al., 2021; Vardi et al., 2022; Kim et al., 2023; Kajitsuka & Sato, 2023; Siegel,
2024). In the case of Transformers, this concept is formalized as token-wise (r, δ)-separatedness
(Kim et al., 2023; Kajitsuka & Sato, 2023).

Assumption 4.1 (Token-wise separatedness). Let X(1), . . . ,X(N) ∈ Rd×n be N input sequences,
each of which consists of n word vectors with its dimension d. Then, we say that X(1), . . . ,X(N)

are token-wise (r, δ)-separated for some r, δ > 0 if the following two conditions are satisfied:

1. for every i ∈ [N] and k ∈ [n], ∥X(i)
:,k∥2 ≤ r holds.

2. for every i, j ∈ [N] and k, l ∈ [n], either X(i)
:,k = X

(j)
:,l or ∥X(i)

:,k −X
(j)
:,l ∥2 ≥ δ holds.

The notion of token-wise (r, δ)-separatedness ensures that the word vectors appearing in the input
sequences have an L2 norm of at most r, and are separated by at least δ in L2 norm from each other.

The main difficulty of memorization with Transformers, compared with feed-forward networks, lies
in the fact that tokens with identical values do not necessarily correspond to the same label. Instead,
it is crucial to capture the context in which each token appears within the entire input sequence. In
Transformers, while feed-forward layers operate on individual tokens, self-attention layers are the
only place that enables interactions between tokens within the input sequence. Therefore, the central
question we consider in this paper is:

how efficiently can self-attention layers capture the context of tokens?

To explore this issue, we analyze both upper and lower bounds on the number of parameters re-
quired for memorization with Transformers in two settings: next-token prediction and sequence-to-
sequence prediction.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2 NEXT-TOKEN PREDICTION SETTING

4.2.1 UPPER BOUND

First, given N input sequences of length n, consider the problem setting in which a Transformer
memorizes labels corresponding to the n-th token of all input sequences. We call this task next-
token prediction setting. In this problem setting, how many parameters does a Transformer archi-
tecture require? Surprisingly, Õ(

√
N) is sufficient, that is, the input length n has almost no effect

on the number of parameters required for memorization, as the following theorem states.

In the next theorem, F (FF)
1 and F (FF)

2 represent feed-forward networks of arbitrary depth, unlike
eq. (3), which is limited to two layers. Note that deep feed-forward networks can also be imple-
mented with standard Transformers, by setting the projection matrix of the self-attention layer in
each block to zero. Furthermore, the assumption of consistency on labels in Theorem 4.1 is a neces-
sary requirement to perform memorization with a Transformer, due to its permutation equivariance.

Theorem 4.1 (Next-token prediction). Let (X(1), y(1)), . . . , (X(N), y(N)) ∈ Rd×n × [C] be a
sequence of input-label pairs such that

1. (X(1), y(1)), . . . , (X(N), y(N)) are consistently labeled, in the sense that for any i, j ∈
[N], we have y(i) = y(j) if

X(i)
:,n = X(j)

:,n and X(i) = X(j) up to permutations. (5)

2. X(1), . . . ,X(N) are token-wise (r, δ)-separated for some r ≥ 1 and 0 < δ ≤ 1.

Then, there exists a Transformer N : Rd×n → Rn with width 14 and depth Õ(
√
N) that memorizes

the dataset, that is,

N
(
X(i)

)
n
= Eout ◦ F (FF)

2 ◦ F (SA) ◦ F (FF)
1 ◦ Ein

(
X(i)

)
n
= y(i) (6)

holds for every i ∈ [N], as long as n,C, rδ−1 = NO(1) as N → ∞.

The formal statement of Theorem 4.1 and its proof can be found in Appendix B.1.1.
Remark 4.1 (Deep sets). In fact, Theorem 4.1 can be extended to deep sets (Zaheer et al., 2017),
which is a popular architecture to model a mapping from sets to labels. For details on this result,
see Appendix D.
Remark 4.2 (Embedding layer). A similar result holds for a Transformer with an embedding layer.
However, in this case, the presence of an embedding layer introduces a dependency on the size of
the vocabulary, which may result in a non-optimal order of parameters in the worst-case scenario.
Details regarding this discussion can be found in Appendix E.
Remark 4.3 (Dependence on d). The Transformer architecture defined by eq. (4) includes token-
wise linear mappings Ein : Rd → Rm and Eout : Rm → Rd, leading to Õ(d +

√
N) parameters

for a Transformer with depth Õ(
√
N) and width 14. As noted by Vardi et al. (2022) and Kim et al.

(2023), this dependence on the dimension d is unavoidable to preserve the information of the input
tokens.

Theorem 4.1 demonstrates that as long as the dimension d is of the order d = Õ(
√
N), the Trans-

former with a single self-attention layer can memorize N input sequences and their labels for next-
token prediction with Õ(

√
N) parameters, showing negligible dependence on the input length n.

In contrast, to accomplish the same task with a feed-forward network, it is necessary to use d × n
parameters to retain the information of the input sequence in Rd×n. This illustrates a significant
efficiency advantage of Transformers over feed-forward networks, thanks to parameter sharing.

4.2.2 PROOF OUTLINE OF THEOREM 4.1

Here we provide an outline of the proof of Theorem 4.1. See Appendix B.1.1 for its full proof.

The proof strategy is to construct a contextual mapping as in Yun et al. (2019), Kim et al. (2023)
and Kajitsuka & Sato (2023), and then construct a mapping from the context id to the label. Here, a

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

contextual mapping is a function used to distinguish tokens in each input sequence with the following
properties:

Definition 4.1 (Contextual mapping). Let X(1), . . . ,X(N) ∈ Rd×n be input sequences. Then, a
map CM : Rd×n → Rn is called an (r, δ)-contextual mapping if the following two conditions
hold:

1. For any i ∈ [N] and k ∈ [n],
∣∣CM(X(i))k

∣∣ ≤ r holds.

2. For any i, j ∈ [N] and k, l ∈ [n] such that X(i)
:,k ̸= X

(j)
:,l or X(i) ̸= X(j) up to permuta-

tions,
∣∣CM(X(i))k − CM(X(j))l

∣∣ ≥ δ holds.

In particular, CM(X(i))k is called a context id of the k-th token in X(i).

Intuitively, the two conditions above ensure that the contextual mapping is injective from “distinct”
data points to scalars. If such a mapping can be constructed, then a mapping from context ids to
labels can be realized using a feed-forward network with Õ(

√
N) parameters, as shown by Vardi

et al. (2022). In particular, if we can associate each distinct input sequence with a unique value,
referred to as a sequence id, then the context id of, for example, the k-th token in X(i) can be
constructed from the sequence id of X(i) and the token vector X(i)

:,k . Therefore, the primary focus
of our proof is on how to construct a mapping from each input sequence to its sequence id using a
feed-forward network and a single self-attention layer.

From a high-level perspective, our goal is to construct a feed-forward network ϕ : Rd → R with
Õ(

√
N) parameters such that the sums

n∑
k=1

ϕ(X
(1)
:,k), . . . ,

n∑
k=1

ϕ(X
(N)
:,k) (7)

are well-separated 1. The sum
∑n

k=1 ϕ(X
(i)
:,k) (i ∈ [N]) is then used as the sequence id of X(i).

Crucial observations for constructing ϕ with Õ(
√
N) parameters are as follows.

1. To distinguish N input sequences, it is sufficient to focus on at most N distinct word
vectors. More precisely, givenN input sequences, there are at mostN distinct word vectors
such that the input sequences can be identified by counting occurrences of these N words
A = {v1, . . . ,vN} ⊂ Rd (Lemma B.1).

2. Although a feed-forward network requires Ω(
√
N) parameters to memorize N data points

and their labels (Goldberg & Jerrum, 1995), a network that outputs zero for additional data
points not amongN data points can be constructed without significantly affecting the order
of the parameter count (Lemma C.1). Together with the first observation, all we need is to
construct a feed-forward network ϕ : Rd → R such that

n∑
k=1,X

(1)
:,k ∈A

ϕ(X
(1)
:,k), . . . ,

n∑
k=1,X

(N)
:,k ∈A

ϕ(X
(N)
:,k) (8)

are well-separated.
3. The final key observation is that rather than directly constructing ϕ, we first consider the

high-dimensional representation. Concretely, given arbitrary bijection g : A → [N], we
can map each input sequence X(i) to a high-dimensional vector X̃(i) ∈ RN as follows:

X̃(i) :=

n∑
k=1,X

(i)
:,k∈A

e
g(X

(i)
:,k)
, (9)

where e
g(X

(i)
:,k)

∈ {0, 1}N is a one-hot vector with 1 only in the g(X(i)
:,k)-th position. While

X̃(1), . . . , X̃(N) are distinct from the first observation and suitable candidates for sequence
1For simplicity, here we assume that the input sequences X(1), . . . ,X(N) are distinct up to permutations.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

ids, it requires Ω(N) parameters to express theseN -dimensional vectors with feed-forward
networks. This problem can be circumvented by compressing the high-dimensional vectors
into scalars using an adequate vector v, and we define ϕ by ϕ(x) := v⊤eg(x).

To ensure that a feed-forward network with Õ(
√
N) parameters can indeed implement the function

ϕ, we need to carefully analyze how separated the compressed versions of the high-dimensional rep-
resentations X̃(1), . . . , X̃(N) are. Detailed proof of this implementation is provided in Lemma B.3.

4.2.3 LOWER BOUND

In this subsection, we evaluate the minimal model complexity required for memorization with Trans-
formers in the next-token prediction setting to determine how close to optimal Theorem 4.1 is.

First, notice that the model obtained in Theorem 4.1 is optimal, in terms of bit counts.
Remark 4.4 (Optimality in terms of bit counts). As previously discussed in Remark 4.3, the Trans-
former model obtained in Theorem 4.1 has Õ(

√
N) parameters as long as d = Õ(

√
N). On the

other hand, the bit complexity of the model is Õ(log d +
√
N) (see the formal statement in Ap-

pendix B.1.1). Therefore, if d = Õ(
√
N), the total number of bits required to represent the model

is Õ(N). Given that there are 2N possible label assignments for N distinct data points with binary
labels, Õ(N) bits are optimal up to logarithmic factors for this setting. The more general case where
bit complexity is restricted to Õ(N ϵ) for some ϵ ∈ [0, 1/2] is discussed in Appendix F.

Having established the optimality in terms of bit counts, we now turn to evaluating how efficient the
number of parameters of the Transformer model considered in Theorem 4.1 is. The next theorem
provides a lower bound on the number of parameters required for memorization in the next-token
prediction setting.
Theorem 4.2 (Lower bound). Suppose a Transformer N : Rd×n → Rn defined by eq. (4) can
shatter a set of N distinct input sequences X(1), . . . ,X(N) ∈ Rd×n with X(i)

:,k = X
(i)
:,1 for any

i ∈ [N] and k ∈ [n], in the sense that for any label assignments y(1), . . . , y(N) ∈ {0, 1}, there are
parameters with which N (X(i))n = y(i) holds for any i ∈ [N]. Then, the Transformer N has at
least Ω(

√
N) parameters.

The proof of this theorem can be found in Appendix B.1.2. This result indicates that the Transformer
model described in Theorem 4.1 is also optimal in terms of the number of parameters. Specifically,
since memorization in the next-token prediction setting requires the ability to distinguish N input
sequences, this result provides the following crucial insight.

A Transformer with a single layer of self-attention already possesses necessary and sufficient
expressive capacity to identify input sequences.

In fact, as indicated in the proof outline in Section 4.2.2, we only employ the self-attention layer as
an averaging operation in the model obtained by Theorem 4.1. The observation that simple averag-
ing provides sufficient representational power has been confirmed experimentally by Yu et al. (2022)
with their PoolFormer architecture. In this paper, we provide theoretical support by demonstrating
that a Transformer with just a simple averaging operation already has optimal memorization capac-
ity. We also conducted experiments on two real-world datasets and a randomly generated dataset,
confirming that even a single layer of self-attention, as averaging, possesses sufficient representa-
tional capacity for memorization. For further details, please refer to Appendix H.

4.3 SEQUENCE-TO-SEQUENCE PREDICTION SETTING

Next, we consider the problem setting in which each token in an input sequence is assigned some
label and a Transformer memorizes them all. We call this task a sequence-to-sequence prediction
setting, or seq-to-seq prediction for short.

It is readily apparent that the seq-to-seq prediction can be regarded as rearranging the input sequence
so that each token is placed at the end of the sequence, and then performing next-token prediction
on nN input sequences obtained in this way. From this observation, we have the following corollary
from Theorem 4.1.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Corollary 4.1 (Seq-to-seq prediction). Let (X(1),y(1)), . . . , (X(N),y(N)) ∈ Rd×n × [C]n be a
sequence of input-label pairs such that

1. (X(1),y(1)), . . . , (X(N),y(N)) are consistently labeled, in the sense that for any i, j ∈
[N] and k, l ∈ [n], we have y(i)k = y

(j)
l if

X
(i)
:,k = X

(j)
:,l and X(i) = X(j) up to permutations. (10)

2. X(1), . . . ,X(N) are token-wise (r, δ)-separated for some r ≥ 1 and 0 < δ ≤ 1.

Then, there exists a Transformer N : Rd×n → Rn with width 14 and depth Õ(
√
nN) that memo-

rizes the dataset, that is,

N
(
X(i)

)
k
= Eout ◦ F (FF)

2 ◦ F (SA) ◦ F (FF)
1 ◦ Ein

(
X(i)

)
k
= y

(i)
k (11)

holds for every i ∈ [N] and k ∈ [n], as long as C, rδ−1 = (nN)O(1) as nN → ∞.
Remark 4.5 (Sparse Transformers). While Corollary 4.1 demonstrates that a Transformer with a
single-layer self-attention can achieve memorization in the seq-to-seq prediction setting, it inevitably
requires O(n2) computational complexity due to the self-attention mechanism. In line with recent
efforts to improve the scalability of Transformers by making attention maps sparse (Zaheer et al.,
2020; Yun et al., 2020), using two self-attention layers and appending an additional token to the
input sequence allows us to achieve the same behavior with an O(n) connections without affecting
the order of parameter counts. This idea of aggregating global information into the additional token
has gained interest in recent studies (Darcet et al., 2023; Wang et al., 2024a).

This corollary shows that at least Õ(
√
nN) parameters with bit complexity Õ(

√
nN) are enough to

memorize N input sequences of input length n. The next question is: is this order optimal for the
seq-to-seq prediction setting? As in the case of next-token prediction setting (Remark 4.4), we can
leverage a similar argument to show that this is optimal, at least in terms of bit counts.

Remark 4.6 (Optimality in terms of bit counts). If d = Õ(
√
nN), the construction by Corollary 4.1

uses Õ(
√
nN) parameters with bit complexity Õ(

√
nN) to memorize N input sequences of input

length n, which amounts to Õ(nN) bits. If all word vectors in input sequences are different, there
are 2nN binary label patterns. Therefore, to memorize such patterns, the number of states of the
model must be at least 2nN , which means that log 2nN = nN bits are required.

Unlike the next-token prediction setting, it is challenging to analyze the optimal lower bound on the
number of parameters necessary to memorize N input sequences with input length n for the seq-to-
seq prediction setting, mainly due to the presence of the softmax function. However, we partially
answer this question by considering a Transformer that uses not the softmax function, but instead
the hardmax function, often viewed as an approximation of the softmax.

More rigorously, we introduce the following self-attention layer with the hardmax function, which
we call the hard attention layer. For each block l ∈ [L] and its input Z ∈ Rm×n, the hard attention
layer at block l calculates

F (HA)
l (Z) := Z +

H∑
h=1

W
(O)
hl W

(V)
hl ZσH

[(
W

(K)
hl Z

)⊤ (
W

(Q)
hl Z

)]
∈ Rm×n, (12)

where σH : Rn×n → [0, 1]n×n is the column-wise hardmax function (see eq. (1) for its definition),
and W

(V)
hl , W

(K)
hl , W

(Q)
hl ∈ Rs×m and W

(O)
hl ∈ Rm×s are value, key, query and projection

matrices at head h ∈ [H] with head size s, respectively. It is worth noting that a simple averaging
operation can also be implemented using a hard attention layer by setting key and query matrices to
zero.

With this definition, we demonstrate that the number of parameters by Corollary 4.1 is actually
optimal up to logarithmic factors, at least for Transformers with the hardmax function. To state
the theorem, let W be the number of parameters and θ ∈ RW be a vector of all parameters of the
Transformer. We also denote by Nθ the Transformer to emphasize the presence of the parameter
vector θ.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Theorem 4.3 (Lower bound). Let Nθ : Rd×n → Rn be a Transformer defined by eq. (4) with self-
attention layers replaced with hard attention layers (eq. (12)). In addition, suppose Nθ can shatter
a set of N input sequences X(1), . . . ,X(N) ∈ Rd×n with X(i)

:,k ̸= X
(j)
:,l for any i, j ∈ [N] and

k, l ∈ [n] (i ̸= j or k ̸= l), in the sense that for any label assignments y(1), . . . ,y(N) ∈ {0, 1}n,
there is a parameter vector θ ∈ RW such that

Nθ(X
(i)) = y(i) (13)

for any i ∈ [N]. Then, the Transformer has at least W = Ω
(√

nN
log(nN)

)
parameters.

The proof of Theorem 4.3 builds on the approach used by Bartlett et al. (2019) to evaluate a lower
bound on the VC dimension of feed-forward networks. Specifically, considering a Transformer as
a function in variable its parameter vector, we partition the parameter space of the Transformer in
such a way that, within each cell of this partition, the function can be expressed as a polynomial in
terms of its parameters, and then evaluate the number of cells and the properties of the polynomials
within those cells.

The key novelty of the proof lies in the analysis of how parameter sharing and the hardmax function
affect the memorization capacity of Transformers. Parameter sharing in Transformers allows the
model to effectively behave like a network with its width scaled by the number of tokens, without
actually increasing the number of parameters. However, the proof shows that merely increasing the
width by a factor of n does not lead to a fundamental improvement in the memorization capacity of
the Transformer. The full proof of Theorem 4.3 can be found in Appendix B.2.

Theorem 4.3 demonstrates that the number of parameters in the model from Corollary 4.1 is within
logarithmic factors of the optimal lower bound. In addition, it provides another crucial insight.
As shown in the next-token prediction setting, Transformers can identify N input sequences with
Õ(

√
N) parameters and single self-attention layer, which implies that they are capable of capturing

the context of each token. In contrast, the memorization capacity in the seq-to-seq setting is prov-
ably lower-bounded by Ω̃(

√
nN), which includes an additional

√
n factor compared to the Õ(

√
N)

bound in the next-token prediction setting. Therefore, in the seq-to-seq prediction setting, the pri-
mary bottleneck is not the contextual mapping of tokens, but rather the feed-forward layers’ capacity
to map this token-level contextual information to labels.

We conclude this section by leaving an open problem. Based on Theorem 4.3, for a Transformer to
memorize N sequences of length n with o(

√
nN) parameters, it is necessary to exploit the unique

characteristics of the softmax function, rather than using it as an approximation of hardmax.

Open Problem. Does a Transformer using the softmax function require Ω(
√
nN) parameters to

memorize N input-label pairs (X(1),y(1)), . . . , (X(N),y(N)) ∈ Rd×n × [C]n? Alternatively, is it
possible to construct a Transformer with o(

√
nN) parameters that can shatter arbitrary N token-

wise (r, δ)-separated input sequences in the seq-to-seq setting?

5 CONCLUSIONS

In this paper, we showed that in the next-token prediction setting, a Transformer with Õ(
√
N)

parameters can memorize N input sequences of length n and their labels, which we showed to be
optimal up to logarithmic factors. This result indicates that Transformers can perform next-token
prediction with almost no impact from the length of the input sequence. Notably, its proof indicates
that even a single self-attention layer used as an averaging operation possesses sufficient expressive
power to distinguish between input sequences efficiently. Furthermore, we demonstrated that in the
seq-to-seq prediction setting, Õ(

√
nN) parameters are also sufficient, and we proved that this is

optimal up to logarithmic factors, at least for Transformers using hardmax. These findings highlight
that the main bottleneck in seq-to-seq prediction tasks lies in the feed-forward layers’ capacity to
map each token to the corresponding label.

Given that a single layer of self-attention as an averaging operation suffices for distinguishing input
sequences from a memorization perspective, our results suggest that the advantages of using self-
attention might rather lie in the perspectives of optimization and generalization.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.

Peter L. Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension
and pseudodimension bounds for piecewise linear neural networks. Journal of Machine Learning
Research, 20(63):1–17, 2019. URL http://jmlr.org/papers/v20/17-612.html.

Eric B Baum. On the capabilities of multilayer perceptrons. Journal of Complexity, 4(3):193–
215, September 1988. ISSN 0885-064X. doi: 10.1016/0885-064X(88)90020-9. URL https:
//www.sciencedirect.com/science/article/pii/0885064X88900209.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, August 2019. doi: 10.1073/pnas.1903070116. URL https:
//www.pnas.org/doi/full/10.1073/pnas.1903070116. Publisher: Proceedings
of the National Academy of Sciences.

Satwik Bhattamishra, Arkil Patel, Varun Kanade, and Phil Blunsom. Simplicity Bias in Trans-
formers and their Ability to Learn Sparse Boolean Functions. In Proceedings of the 61st An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
5767–5791, Toronto, Canada, July 2023. Association for Computational Linguistics. URL
https://aclanthology.org/2023.acl-long.317.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel
Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-
ford, Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. In Ad-
vances in Neural Information Processing Systems 2020, volume 33, pp. 1877–1901. Cur-
ran Associates, Inc., 2020. URL https://papers.nips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Xingwu Chen and Difan Zou. What Can Transformer Learn with Varying Depth? Case Studies
on Sequence Learning Tasks. In Proceedings of the 41st International Conference on Machine
Learning, pp. 7972–8001. PMLR, July 2024. URL https://proceedings.mlr.press/
v235/chen24bp.html. ISSN: 2640-3498.

Thomas M. Cover. Geometrical and statistical properties of systems of linear inequalities with
applications in pattern recognition. IEEE Trans. Electron. Comput., 14:326–334, 1965. URL
https://api.semanticscholar.org/CorpusID:18251470.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision Transformers Need
Registers. In The Twelfth International Conference on Learning Representations, October 2023.
URL https://openreview.net/forum?id=2dnO3LLiJ1.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale. In The Ninth International Conference on Learning Representations, January 2021. URL
https://openreview.net/forum?id=YicbFdNTTy.

Benjamin L. Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive Biases and Variable
Creation in Self-Attention Mechanisms. In Proceedings of the 39th International Conference on
Machine Learning, pp. 5793–5831. PMLR, June 2022. URL https://proceedings.mlr.
press/v162/edelman22a.html. ISSN: 2640-3498.

Paul W. Goldberg and Mark R. Jerrum. Bounding the vapnik-chervonenkis dimension of concept
classes parameterized by real numbers. Machine Learning, 18(2):131–148, February 1995. ISSN
1573-0565. doi: 10.1007/BF00993408. URL https://doi.org/10.1007/BF00993408.

11

http://jmlr.org/papers/v20/17-612.html
https://www.sciencedirect.com/science/article/pii/0885064X88900209
https://www.sciencedirect.com/science/article/pii/0885064X88900209
https://www.pnas.org/doi/full/10.1073/pnas.1903070116
https://www.pnas.org/doi/full/10.1073/pnas.1903070116
https://aclanthology.org/2023.acl-long.317
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.mlr.press/v235/chen24bp.html
https://proceedings.mlr.press/v235/chen24bp.html
https://api.semanticscholar.org/CorpusID:18251470
https://openreview.net/forum?id=2dnO3LLiJ1
https://openreview.net/forum?id=YicbFdNTTy
https://proceedings.mlr.press/v162/edelman22a.html
https://proceedings.mlr.press/v162/edelman22a.html
https://doi.org/10.1007/BF00993408

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Iryna Gurevych, Michael Kohler, and Gözde Gül Şahin. On the Rate of Convergence of a Clas-
sifier Based on a Transformer Encoder. IEEE Transactions on Information Theory, 68(12):
8139–8155, February 2022. ISSN 1557-9654. doi: 10.1109/TIT.2022.3191747. URL https:
//ieeexplore.ieee.org/document/9837831. Conference Name: IEEE Transactions
on Information Theory.

Guang-Bin Huang and H.A. Babri. Upper bounds on the number of hidden neurons in feedforward
networks with arbitrary bounded nonlinear activation functions. IEEE Transactions on Neural
Networks, 9(1):224–229, 1998. doi: 10.1109/72.655045.

Haotian Jiang and Qianxiao Li. Approximation Rate of the Transformer Architecture for
Sequence Modeling, February 2024. URL http://arxiv.org/abs/2305.18475.
arXiv:2305.18475 [cs].

Tokio Kajitsuka and Issei Sato. Are Transformers with One Layer Self-Attention Using Low-
Rank Weight Matrices Universal Approximators? In The Twelfth International Conference on
Learning Representations, October 2023. URL https://openreview.net/forum?id=
nJnky5K944.

Junghwan Kim, Michelle Kim, and Barzan Mozafari. Provable Memorization Capacity of Trans-
formers. In the Eleventh International Conference on Learning Representations, February 2023.
URL https://openreview.net/forum?id=8JCg5xJCTPR.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Dekang Lin, Yuji Matsumoto, and
Rada Mihalcea (eds.), Proceedings of the 49th Annual Meeting of the Association for Compu-
tational Linguistics: Human Language Technologies, pp. 142–150, Portland, Oregon, USA, June
2011. Association for Computational Linguistics. URL https://aclanthology.org/
P11-1015.

Liam Madden, Curtis Fox, and Christos Thrampoulidis. Next-token prediction capacity: general
upper bounds and a lower bound for transformers, September 2024. URL http://arxiv.
org/abs/2405.13718. arXiv:2405.13718 [cs, math].

Sadegh Mahdavi, Renjie Liao, and Christos Thrampoulidis. Memorization Capacity of Multi-Head
Attention in Transformers. In The Twelfth International Conference on Learning Representations,
October 2023. URL https://openreview.net/forum?id=MrR3rMxqqv.

Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to Computational Geometry.
MIT Press, Cambridge, MA, USA, 1969.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: where bigger models and more data hurt. Journal of Statistical Mechanics:
Theory and Experiment, 2021(12):124003, February 2021. ISSN 1742-5468. doi: 10.1088/
1742-5468/ac3a74. URL https://dx.doi.org/10.1088/1742-5468/ac3a74. Pub-
lisher: IOP Publishing and SISSA.

Nils J. Nilsson. Learning Machines. McGraw-Hill, New York, 1965.

Sejun Park, Jaeho Lee, Chulhee Yun, and Jinwoo Shin. Provable Memorization via Deep Neural
Networks using Sub-linear Parameters. In Proceedings of Thirty Fourth Conference on Learning
Theory, pp. 3627–3661. PMLR, July 2021. URL https://proceedings.mlr.press/
v134/park21a.html. ISSN: 2640-3498.

William Peebles and Saining Xie. Scalable Diffusion Models with Transformers. In In-
ternational Conference on Computer Vision, pp. 4195–4205, 2023. URL https:
//openaccess.thecvf.com/content/ICCV2023/html/Peebles_Scalable_
Diffusion_Models_with_Transformers_ICCV_2023_paper.html.

12

https://ieeexplore.ieee.org/document/9837831
https://ieeexplore.ieee.org/document/9837831
http://arxiv.org/abs/2305.18475
https://openreview.net/forum?id=nJnky5K944
https://openreview.net/forum?id=nJnky5K944
https://openreview.net/forum?id=8JCg5xJCTPR
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/P11-1015
https://aclanthology.org/P11-1015
http://arxiv.org/abs/2405.13718
http://arxiv.org/abs/2405.13718
https://openreview.net/forum?id=MrR3rMxqqv
https://dx.doi.org/10.1088/1742-5468/ac3a74
https://proceedings.mlr.press/v134/park21a.html
https://proceedings.mlr.press/v134/park21a.html
https://openaccess.thecvf.com/content/ICCV2023/html/Peebles_Scalable_Diffusion_Models_with_Transformers_ICCV_2023_paper.html
https://openaccess.thecvf.com/content/ICCV2023/html/Peebles_Scalable_Diffusion_Models_with_Transformers_ICCV_2023_paper.html
https://openaccess.thecvf.com/content/ICCV2023/html/Peebles_Scalable_Diffusion_Models_with_Transformers_ICCV_2023_paper.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving Language Under-
standing by Generative Pre-Training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
Models are Unsupervised Multitask Learners. 2019.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Representational Strengths and Lim-
itations of Transformers, June 2023. URL http://arxiv.org/abs/2306.02896.
arXiv:2306.02896 [cs, stat].

Jonathan W. Siegel. Sharp Lower Bounds on Interpolation by Deep ReLU Neural Networks at
Irregularly Spaced Data, February 2024. URL http://arxiv.org/abs/2302.00834.
arXiv:2302.00834 [cs, stat].

Eduardo D. Sontag. Shattering All Sets of‘k’ Points in“General Position”Requires (k— 1)/2
Parameters. Neural Computation, 9(2):337–348, February 1997. ISSN 0899-7667, 1530-888X.
doi: 10.1162/neco.1997.9.2.337. URL https://direct.mit.edu/neco/article/9/
2/337-348/6035.

Shokichi Takakura and Taiji Suzuki. Approximation and Estimation Ability of Transformers for
Sequence-to-Sequence Functions with Infinite Dimensional Input. In Proceedings of the 40th
International Conference on Machine Learning, pp. 33416–33447. PMLR, July 2023. URL
https://proceedings.mlr.press/v202/takakura23a.html. ISSN: 2640-3498.

Jacob Trauger and Ambuj Tewari. Sequence Length Independent Norm-Based Generalization
Bounds for Transformers. In Proceedings of The 27th International Conference on Artificial In-
telligence and Statistics, pp. 1405–1413. PMLR, April 2024. URL https://proceedings.
mlr.press/v238/trauger24a.html. ISSN: 2640-3498.

Gal Vardi, Gilad Yehudai, and Ohad Shamir. On the Optimal Memorization Power of ReLU Neural
Networks. In The Tenth International Conference on Learning Representations, January 2022.
URL https://openreview.net/forum?id=MkTPtnjeYTV.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In
Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://papers.nips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Edward Wagstaff, Fabian B. Fuchs, Martin Engelcke, Michael A. Osborne, and Ingmar Posner.
Universal Approximation of Functions on Sets. Journal of Machine Learning Research, 23(151):
1–56, 2022. ISSN 1533-7928. URL http://jmlr.org/papers/v23/21-0730.html.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding.
September 2018. URL https://openreview.net/forum?id=rJ4km2R5t7.

Feng Wang, Jiahao Wang, Sucheng Ren, Guoyizhe Wei, Jieru Mei, Wei Shao, Yuyin Zhou, Alan
Yuille, and Cihang Xie. Mamba-R: Vision Mamba ALSO Needs Registers, May 2024a. URL
http://arxiv.org/abs/2405.14858. arXiv:2405.14858 [cs].

Zixuan Wang, Stanley Wei, Daniel Hsu, and Jason D. Lee. Transformers Provably Learn Sparse
Token Selection While Fully-Connected Nets Cannot. In Proceedings of the 41st Interna-
tional Conference on Machine Learning, pp. 51854–51912. PMLR, July 2024b. URL https:
//proceedings.mlr.press/v235/wang24ca.html. ISSN: 2640-3498.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Marilyn Walker, Heng Ji, and Amanda Stent
(eds.), Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp.
1112–1122, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
10.18653/v1/N18-1101. URL https://aclanthology.org/N18-1101.

13

http://arxiv.org/abs/2306.02896
http://arxiv.org/abs/2302.00834
https://direct.mit.edu/neco/article/9/2/337-348/6035
https://direct.mit.edu/neco/article/9/2/337-348/6035
https://proceedings.mlr.press/v202/takakura23a.html
https://proceedings.mlr.press/v238/trauger24a.html
https://proceedings.mlr.press/v238/trauger24a.html
https://openreview.net/forum?id=MkTPtnjeYTV
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://jmlr.org/papers/v23/21-0730.html
https://openreview.net/forum?id=rJ4km2R5t7
http://arxiv.org/abs/2405.14858
https://proceedings.mlr.press/v235/wang24ca.html
https://proceedings.mlr.press/v235/wang24ca.html
https://aclanthology.org/N18-1101

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, and
Shuicheng Yan. MetaFormer is Actually What You Need for Vision. In 2022 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 10809–10819, June 2022. doi:
10.1109/CVPR52688.2022.01055. URL https://ieeexplore.ieee.org/document/
9879612. ISSN: 2575-7075.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are
Transformers universal approximators of sequence-to-sequence functions? In The Eighth
International Conference on Learning Representations, December 2019. URL https://
openreview.net/forum?id=ByxRM0Ntvr.

Chulhee Yun, Yin-Wen Chang, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and San-
jiv Kumar. O(n) Connections are Expressive Enough: Universal Approximability of Sparse Trans-
formers. In Advances in Neural Information Processing Systems, volume 33, pp. 13783–13794.
Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/9ed27554c893b5bad850a422c3538c15-Abstract.html.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep Sets. In Advances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc., 2017. URL https://papers.nips.cc/paper_files/
paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Al-
berti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and
Amr Ahmed. Big Bird: Transformers for Longer Sequences. In Advances in Neu-
ral Information Processing Systems, volume 33, pp. 17283–17297. Curran Asso-
ciates, Inc., 2020. URL https://papers.nips.cc/paper/2020/hash/
c8512d142a2d849725f31a9a7a361ab9-Abstract.html.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Commun. ACM, 64(3):107–115, feb 2021.
ISSN 0001-0782. doi: 10.1145/3446776. URL https://doi.org/10.1145/3446776.

NOTATION TABLE

Numbers and Arrays
a A scalar

a A vector

A A matrix

n The length of an input sequence

N The number of input sequences

C The number of output classes

d Embedding dimension

X(i) i-th input sequence, consisting of n tokens of embedding dimension d

Sets
{{. . . }} Multiset (see Definition A.1)

R Set of real numbers

NX Set of all multisets over the domain X
[m] Set of all integers from 1 to m

Indexing
ai Element i of vector a, with indexing starting at 1

Ai,j Element i, j of matrix A

A:,i Column i of matrix A

14

https://ieeexplore.ieee.org/document/9879612
https://ieeexplore.ieee.org/document/9879612
https://openreview.net/forum?id=ByxRM0Ntvr
https://openreview.net/forum?id=ByxRM0Ntvr
https://proceedings.neurips.cc/paper/2020/hash/9ed27554c893b5bad850a422c3538c15-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/9ed27554c893b5bad850a422c3538c15-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html
https://papers.nips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://papers.nips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://doi.org/10.1145/3446776

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Ai,: Row i of matrix A

Functions
∥x∥2 L2 norm of x

supp(m) Support of m (see Definition A.2)

BINi:j(x) The sequence of bits from the i-th bit to the j-th bit (counting from the left) of x

σS Softmax function

σH Hardmax function

σR ReLU activation function

F (HA) Hardmax-based self-attention mechanism with a skip-connection

F (SA) Softmax-based self-attention mechanism with a skip-connection

F (FF) Feed-forward neural network with a skip-connection

Nθ Transformer with a parameter vector θ

Asymptotics
f(n) = O(g(n)) f grows at most as fast as g for sufficiently large n

f(n) = Õ(g(n)) f grows at most as fast as g for sufficiently large n, up to logarithmic factors

f(n) = Ω(g(n)) f grows at least as fast as g for sufficiently large n

f ≲ g There exists a positive constant c such that f ≤ cg holds

A DEFINITION OF MULTISETS

A multiset is a generalization of a set whose elements are allowed to be duplicated.

Definition A.1 (Multiset). A multiset over the domain X is identified by a function m : X → N,
which indicates the multiplicitym(x) of each element x ∈ X in the multiset. The set of all multisets
over the domain X is denoted by NX .

Definition A.2. The support of a multisetm ∈ NX is defined by supp(m) = {x ∈ X | m(x) > 0}.

In addition, the cardinality of a multiset m ∈ NX is defined by

|m| :=

{∑
x∈supp(m)m(x) if | supp(m)| <∞,

∞ otherwise,
(14)

and the multiset m is called finite if |m| <∞.

In this paper, we only consider finite multisets, and in an abuse of notation we sometimes denote a
fintie multiset m ∈ NX by {{x1, . . . , x|m|}} ∈ NX , where x1, . . . , x|m| ∈ X are possibly dupli-
cated elements.

The following assumption guarantees that each value of the multiset is separated by a certain amount,
and the token-wise separatedness in the analysis of Transformer’s memorization can be translated
into this assumption.

Assumption A.1 (Element-wise separatedness). Let X := Rd and m(1), . . . ,m(N) ∈ NX be a
sequence of finite multisets with m(i) = {{x(i)

1 , . . . ,x
(i)

|m(i)|}} for each i ∈ [N]. Then, we say that

m(1), . . . ,m(N) are element-wise (r, δ)-separated for some r, δ > 0 if the following two conditions
are satisfied:

1. for every i ∈ [N] and k ∈ [|m(i)|], ∥x(i)
k ∥2 ≤ r holds.

2. for every i, j ∈ [N] and k ∈ [|m(i)|], l ∈ [|m(j)|], either x(i)
k = x

(j)
l or ∥x(i)

k −x
(j)
l ∥2 ≥ δ

holds.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B PROOF OF MAIN RESULTS

In the following, we will extensively use the concept of multisets. For the definition of multisets
and the notation used in this paper, refer to Appendix A. We also use the operator ≲ frequently. See
Section 3.1 for its definition.

To prove Theorem 4.1, we present several lemmas. Lemma B.1 shows that to distinguish between
N distinct multisets, it suffices to focus on the occurrence counts of at most N values. Lemma B.2
establishes the existence of a function that computes sequence ids used to distinguish between N
different multisets. Finally, Lemma B.3 states that the function obtained from Lemma B.2 with
Lemma B.1 can be implemented using a feed-forward network with Õ(

√
N) parameters.

Definition B.1. Let A ⊂ X and m ∈ NX be a multiset. Then, we define the restriction of m to A
by

m|A(x) :=
{
m(x) if x ∈ A,

0 otherwise.
(15)

Lemma B.1. Let m(1), . . . ,m(N) ∈ NX be a sequence of distinct multisets. Then, there exists a
subset A ⊂ X with its cardinality at most N such that m(1)|A, . . . ,m(N)|A are distinct.

Proof. We prove the lemma by induction. The base case of N = 1 is obvious.

Suppose that the lemma is correct for the case N = k, and we prove the case for N = k + 1.

Let m(1), . . . ,m(k+1) ∈ NX be a sequence of distinct multisets. Then, by applying the assumption
to the first k multisets m(1), . . . ,m(k) ∈ NX , we have a subset A ⊂ X with its cardinality at most
k such that m(1)|A, . . . ,m(k)|A are distinct. If m(1)|A, . . . ,m(k+1)|A are distinct, there is nothing
to prove. So we assume that m(k+1)|A coincides with m(i)|A for some i ∈ [k]. Notice that for any
j ∈ [k] with j ̸= i, m(j)|A and m(k+1)|A are distinct by the assumption.

Since m(i) and m(k+1) are distinct, there is an element x ∈ X \A such that m(i)(x) ̸= m(k+1)(x).
Then, the subset A′ ⊂ X defined by A′ := A ∪ {x} is the desired set for the case N = k + 1.

In the next lemma, we say that scalars a1, . . . , am are (r, δ)-separated if |ai| ≤ r for all i ∈ [m] and
|ai − aj | ≥ δ for all i, j ∈ [m] with ai ̸= aj .

Lemma B.2. Let m(1), . . . ,m(N) ∈ NX be a sequence of finite and distinct multisets with
|m(i)| ≤ M for every i ∈ [N]. Furthermore, let S ⊂ X be the union of all supports; that is,
S :=

⋃N
i=1 supp(m

(i)).

Then, there exists a function f : S → [⌈4N2|S|
√
π⌉] such that∑

x∈supp(m(1))

m(1)(x)f(x), . . . ,
∑

x∈supp(m(N))

m(N)(x)f(x) ∈ R (16)

are (4MN2|S|
√
π,
√
|S|)-separated.

Proof. Let g : S → [|S|] = {1, . . . , |S|} be an arbitrary bijective function. For each multiset m(i)

with i = 1, . . . , N , we define its high-dimensional representation by

m̃(i) :=
∑

x∈supp(m(i))

m(i)(x)eg(x) ∈ N|S|, (17)

where eg(x) ∈ {0, 1}|S| is a one-hot vector with 1 in the g(x)-th position. Since m(1), . . . ,m(N) are
distinct with |m(i)| ≤M for every i ∈ [N], we have∥∥∥m̃(i) − m̃(j)

∥∥∥2
2
=
∑
x∈S

(
m(i)(x)−m(j)(x)

)2
≥ 1, (18)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

for any i, j ∈ [N] with i ̸= j. , and the norm of each m̃(i) is upper-bounded by∥∥∥m̃(i)
∥∥∥
2
≤

∑
x∈supp(m(i))

m(i)(x)
∥∥eg(x)∥∥2 = |m(i)| ≤M. (19)

By applying Lemma G.1 to m̃(1), . . . , m̃(N), there is a unit vector v ∈ R|S| such that

1

N2

√
8

π|S|

∥∥∥m̃(i) − m̃(j)
∥∥∥
2
≤
∣∣∣v⊤

(
m̃(i) − m̃(j)

)∣∣∣ ≤ ∥∥∥m̃(i) − m̃(j)
∥∥∥
2

(20)

holds for any i, j ∈ [N]. Let h be the function h : S → Z, x 7→ ⌈N2|S|
√
πvg(x)⌉. Hereafter, we

see that this function has the desired properties.

Let v := (⌈N2|S|
√
πv1⌉, . . . , ⌈N2|S|

√
πvN⌉)⊤ ∈ Z|S|, i.e., the vector approximating N2|S|

√
πv

with integers. The approximation error is estimated as follows:

∥∥N2|S|
√
πv − v

∥∥2
2
≤

|S|∑
i=1

(
N2|S|

√
πvi − ⌈N2|S|

√
πvi⌉

)2 ≤ |S|, (21)

which means that
∥∥N2|S|

√
πv − v

∥∥
2
≤
√
|S|. Notice that∑

x∈supp(m(i))

m(i)(x)h(x) =
∑

x∈supp(m(i))

m(i)(x) · ⌈N2|S|
√
πvg(x)⌉

=
∑

x∈supp(m(i))

m(i)(x) · v⊤eg(x)

= v⊤m̃(i) (22)

holds for every i ∈ [N]. Then, the absolute value of the left-hand side is upper-bounded by∣∣∣∣∣∣
∑

x∈supp(m(i))

m(i)(x)h(x)

∣∣∣∣∣∣ =
∣∣∣v⊤m̃(i)

∣∣∣
≤ ∥v∥2∥m̃(i)∥2
≤ 2N2|S|

√
π ·M (23)

since the norm of v is upper-bounded by

∥v∥2 ≤
∥∥N2|S|

√
πv
∥∥
2
+
∥∥N2|S|

√
πv − v

∥∥
2

≤ N2|S|
√
π +

√
|S|

≤ 2N2|S|
√
π. (24)

On the other hand, for any i, j ∈ [N] with i ̸= j, we have∣∣∣∣∣∣
∑

x∈supp(m(i))

m(i)(x)h(x)−
∑

x∈supp(m(j))

m(j)(x)h(x)

∣∣∣∣∣∣
=
∣∣∣v⊤

(
m̃(i) − m̃(j)

)∣∣∣
≥
∣∣∣N2|S|

√
πv⊤

(
m̃(i) − m̃(j)

)∣∣∣− ∣∣∣(N2|S|
√
πv − v

)⊤ (
m̃(i) − m̃(j)

)∣∣∣
≥
∣∣∣N2|S|

√
πv⊤

(
m̃(i) − m̃(j)

)∣∣∣− ∥∥N2|S|
√
πv − v

∥∥
2
·
∥∥∥m̃(i) − m̃(j)

∥∥∥
2

> 2
√
|S|
∥∥∥m̃(i) − m̃(j)

∥∥∥
2
−
√
|S|
∥∥∥m̃(i) − m̃(j)

∥∥∥
2

≥
√
|S|, (25)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

since eq. (20) implies∣∣∣N2|S|
√
πv⊤

(
m̃(i) − m̃(j)

)∣∣∣ = N2|S|
√
π
∣∣∣v⊤

(
m̃(i) − m̃(j)

)∣∣∣
≥ N2|S|

√
π · 1

N2

√
8

π|S|

∥∥∥m̃(i) − m̃(j)
∥∥∥
2

> 2
√
|S|
∥∥∥m̃(i) − m̃(j)

∥∥∥
2
. (26)

Finally, the output of the function h is always bounded by
|h(x)| = |⌈N2|S|

√
πvg(x)⌉| ≤ N2|S|

√
π + 1 (∀x ∈ S). (27)

Thus, by setting f(x) := h(x) + ⌊2N2|S|
√
π⌋, we have a desired function.

Lemma B.3 (Separation of multisets). Let X := Rd and m(1), . . . ,m(N) ∈ NX be a sequence of
multisets with m(i) = {{x(i)

1 , . . . ,x
(i)

|m(i)|}} for each i ∈ [N]. Suppose that m(1), . . . ,m(N) satisfy
the following three conditions:

1. m(1), . . . ,m(N) are finite multisets whose cardinalities are at most M .

2. m(1), . . . ,m(N) are distinct.

3. m(1), . . . ,m(N) are element-wise (r, δ)-separated for some r ≥ 1, 0 < δ ≤ 1.

Let Cϕ := ⌈4N3
√
π⌉ and Rϕ := 20r(NM)2δ−1

√
πd. Then, there exists a neural network ϕ̃ :

Rd → R with width 12, depth

≲
√
N logN +

√
N

logN
·max{logRϕ, logCϕ}, (28)

(for the definition of ≲, see Section 3.1) and bit complexity bounded by

≲ log d+

√
N

logN
·max{logRϕ, logCϕ} (29)

such that ϕ̃(x) ∈ [⌈4N3
√
π⌉] ∪ {0} holds for any x ∈

⋃N
i=1 supp(m

(i)), and

|m(1)|∑
k=1

ϕ̃(x
(1)
k), . . . ,

|m(N)|∑
k=1

ϕ̃(x
(N)
k) (30)

are (4MN3
√
π, 1)-separated.

Proof. By applying Lemma B.1 to the sequence of distinct multisets m(1), . . . ,m(N), we have a
finite subset A ⊂ Rd with |A| ≤ N such that m(1)|A, . . . ,m(N)|A are distinct. Then, according to
Lemma B.2, there exists a function f : A→ [⌈4N2|A|

√
π⌉] such that∑

x∈supp(m(1)|A)

m(1)|A(x)f(x), . . . ,
∑

x∈supp(m(N)|A)

m(N)|A(x)f(x) (31)

are (4MN2|A|
√
π,
√
|A|)-separated, and in particular (4MN3

√
π, 1)-separated.

Hereafter, we consider a function ϕ : Rd → R such that

ϕ(x) :=

{
f(x) if x ∈ A,

0 otherwise,
(32)

and simulate ϕ by a neural network. Notice that the possible number of inputs for the function ϕ is
at most MN , and all outputs are natural numbers equal to or less than ⌈4N2|A|

√
π⌉ ≤ ⌈4N3

√
π⌉.

We define constants Rϕ and Cϕ by

Cϕ := ⌈4N3
√
π⌉, (33)

Rϕ := 20r(NM)2δ−1
√
πd. (34)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Then, Lemma C.1 guarantees the existence of the feed-forward network ϕ̃ with width 12, depth

≲
√
N logN +

√
N

logN
·max{logRϕ, logCϕ}, (35)

and bit complexity bounded by

≲ log d+

√
N

logN
·max{logRϕ, logCϕ} (36)

such that for any i ∈ [N] with m(i) = {{x(i)
1 , . . . ,x

(i)

|m(i)|}} and any k ∈ [|m(i)|], we have

ϕ̃(x
(i)
k) =

{
f(x

(i)
k) if x(i)

k ∈ A,

0 otherwise.
(37)

Thus, the outputs of ϕ̃ coincide with those of ϕ for all inputs x(i)
k with i ∈ [N] and k ∈ [|m(i)|].

Finally, we verify that the neural network ϕ̃ actually satisfies the desired property. For any i ∈ [N],
we have

|m(i)|∑
k=1

ϕ̃(x
(i)
k) =

∑
x∈supp(m(i))

m(i)(x)ϕ(x)

=
∑

x∈supp(m(i))∩A

m(i)(x)f(x)

=
∑

x∈supp(m(i)|A)

m(i)|A(x)f(x). (38)

Thus, eq. (31) implies that
∑|m(1)|

k=1 ϕ̃(x
(1)
k), . . . ,

∑|m(N)|
k=1 ϕ̃(x

(N)
k) are (4MN3

√
π, 1)-separated.

B.1 NEXT-TOKEN PREDICTION SETTING

B.1.1 UPPER BOUND

Here we state the complete statement of Theorem 4.1 with its bit complexity. 2 Before moving
on to the theorem, we introduce a uniform attention layer; that is, a self-attention layer with the
softmax function replaced by simple averaging. For an input Z ∈ Rm×n, the uniform attention
layer calculates

F (UA)(Z) := Z +W (O)W (V) 1

n

n∑
k=1

Z:.k (1, . . . , 1)︸ ︷︷ ︸
∈R1×n

∈ Rm×n, (39)

where W (V) ∈ Rs×m and W (O) ∈ Rm×s are value and projection matrices with head size s,
respectively. A uniform attention layer is a subset of a self-attention layer as it can be implemented
using a self-attention layer by setting key or query matrices to zero.

In the next theorem, F (FF)
1 and F (FF)

2 represent feed-forward networks of arbitrary depth, unlike
eq. (3), which is limited to two layers.

Theorem B.1 (Next-token prediction). Let (X(1), y(1)), . . . , (X(N), y(N)) ∈ Rd×n × [C] be a
sequence of input-label pairs such that

1. (X(1), y(1)), . . . , (X(N), y(N)) are consistently labeled, in the sense that for any i, j ∈
[N], we have y(i) = y(j) if

X(i)
:,n = X(j)

:,n and X(i) = X(j) up to permutations. (40)
2While the upper bounds provided in Theorem B.1 is in the form O(

√
N logN · logn), these upper bounds

can actually be reduced to O(
√

N log(nN)).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

2. X(1), . . . ,X(N) are token-wise (r, δ)-separated for some r ≥ 1 and 0 < δ ≤ 1.

Let R := 400
√
3dn3rN5δ−1π. Then, there exists a Transformer N : Rd×n → Rn with width 14,

depth

≲
√
N logN +

√
N

logN
·max{logR, logC}, (41)

(for the definition of ≲, see Section 3.1) and bit complexity bounded by

≲ log d+

√
N

logN
·max{logR, logC} (42)

that memorizes the dataset, i.e.,

N
(
X(i)

)
n
= Eout ◦ F (FF)

2 ◦ F (UA) ◦ F (FF)
1 ◦ Ein

(
X(i)

)
n
= y(i) (43)

holds for every i ∈ [N].

Proof. For simplicity, we assume in this proof that there is no skip-connection in feed-forward
layers, as the modification for networks with skip-connections is straightforward. For details on
implementing the memorization results for feed-forward networks in Transformers, refer to Kim
et al. (2023).

For each input sequence X(i) with i ∈ [N], we define its multiset expression m(i) ∈ N(Rd) by

m(i) : Rd → N,x 7→
∣∣∣{k ∈ [n]

∣∣∣X(i)
:,k = x

}∣∣∣ . (44)

The cardinality of m(i) for each i ∈ [N] is at most n, and the token-wise (r, δ)-separatedness of
X(1), . . . ,X(N) implies that m(1), . . . ,m(N) are element-wise (r, δ)-separated. In addition, the
consistency on the labels are rephrased as follows: for any i, j ∈ [N], we have y(i) = y(j) if
X

(i)
:,n = X

(j)
:,n and m(i) = m(j) hold.

Construction of F (FF)
1 : Applying Lemma B.3 to a sequence of all distinct multisets which appear

in {m(1), . . . ,m(N)}, we have a feed-forward network ϕ̃ : Rd → R with width 12, depth

≲
√
N logN +

√
N

logN
·max{logR1, logC1} (45)

with C1 := ⌈4N3
√
π⌉ and R1 := 20r(nN)2δ−1

√
πd, and bit complexity bounded by

≲ log d+

√
N

logN
·max{logR1, logC1} (46)

such that ϕ̃(X(i)
:,k) ∈ [⌈4N3

√
π⌉] holds for any i ∈ [N] and k ∈ [n], and∣∣∣∣∣∣

∑
x∈supp(m(i))

ϕ̃(x)−
∑

x∈supp(m(j))

ϕ̃(x)

∣∣∣∣∣∣ =
∣∣∣∣∣

n∑
k=1

ϕ̃(X
(i)
:,k)−

n∑
k=1

ϕ̃(X
(j)
:,k)

∣∣∣∣∣ ≥ 1 (47)

holds for any i, j ∈ [N] such that m(i) ̸= m(j).

We extend the feed-forward network ϕ̃ to retain the information of the input token. Let V be a set of
all input tokens, that is, V = {X(i)

:,k | i ∈ [N], k ∈ [n]}. Since the input sequences are token-wise
(r, δ)-separated, by applying Lemma C.2 to V , we have a feed-forward network F : Rd → R with
width 1, depth 2 and bit complexity log(3dr(nN)2

√
πδ−1) such that

0 ≤ F (X
(i)
:,k) ≤ 10r(nN)2δ−1

√
πd (48)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

for every i ∈ [N] and k ∈ [n], and ∣∣∣F (X(i)
:,k)− F (X

(j)
:,l)
∣∣∣ ≥ 2 (49)

for every i, j ∈ [N] and k, l ∈ [n] with X
(i)
:,k ̸= X

(j)
:,l . Notice that the depth of the feed-forward

network ϕ̃ is at least 2. Thus, it is possible to parallelly attach the above 2-layer network F to the
first 2-layer of ϕ̃, and extend the hidden dimension of the remaining layers of ϕ̃ by one to propagate
the value of F to the last layer. Furthermore, we augment the output dimension by one more and pad
by 0, which is used to store the average value of ϕ̃. Let f (FF)1 : Rd → R3 be the network obtained
by the above procedure, that is, for any x ∈ Rd, the output of f (FF)1 is

f
(FF)
1 (x) = (ϕ̃(x), F (x), 0)⊤. (50)

Then, the width of f (FF)1 is that of ϕ̃ plus two, which is 14. The depth and the bit complexity of
f
(FF)
1 , on the other hand, remain the same, because the depth and the bit complexity of F is smaller

than those of ϕ̃. We also define a token-wise operation F (FF)
1 : Rd×n → R3×n by

F (FF)
1 (X):,k := f

(FF)
1 (X:,k) (k = 1, . . . , n). (51)

Construction of the self-attention layer: Let W (V) ∈ R3×3 and W (O) ∈ R3×3 be any value
matrix and projection matrix such that their multiplication is

W (O)W (V) =

(
0 0 0
0 0 0
1 0 0

)
. (52)

The output, which we denote by s
(i)
k ∈ R3, of the self-attention layer with the value matrix W (V)

and projection matrix W (O) for the input X(i) at index k ∈ [n] is calculated as

s
(i)
k := F (UA) ◦ F (FF)

1

(
X(i)

)
:,k

=
1

n

n∑
l=1

W (O)W (V)f
(FF)
1

(
X

(i)
:,l

)
+ f

(FF)
1

(
X

(i)
:,k

)

=
1

n

n∑
l=1

(
0 0 0
0 0 0
1 0 0

) ϕ̃(X
(i)
:,l)

F (X
(i)
:,l)

0

+

 ϕ̃(X
(i)
:,k)

F (X
(i)
:,k)

0


=

 ϕ̃(X
(i)
:,k)

F (X
(i)
:,k)

1
n

∑n
l=1 ϕ̃(X

(i)
:,l)

 . (53)

We verify that the right-hand side is a context id, in the sense of Definition 4.1. Fix any i, j ∈ [N].
If X(i)

:,n ̸= X
(j)
:,n , then according to eq. (49), we have

∣∣∣F (X(i)
:,n)− F (X

(j)
:,n)
∣∣∣ ≥ 2. On the other hand,

if X(i) are not permutation of X(j), i.e., m(i) ̸= m(j), then eq. (47) implies that∣∣∣∣∣ 1n
n∑

k=1

ϕ̃(X
(i)
:,k)−

1

n

n∑
k=1

ϕ̃(X
(j)
:,k)

∣∣∣∣∣ ≥ 1

n
. (54)

Therefore, the difference of any two n-th outputs of the self-attention layer is lower-bounded by∥∥∥s(i)n − s(j)n

∥∥∥
2
=

∥∥∥∥∥∥∥
 ϕ̃(X

(i)
:,n)

F (X
(i)
:,n)

1
n

∑n
k=1 ϕ̃(X

(i)
:,k)

−

 ϕ̃(X
(j)
:,n)

F (X
(j)
:,n)

1
n

∑n
k=1 ϕ̃(X

(j)
:,k)


∥∥∥∥∥∥∥
2

≥ min

{∣∣∣F (X(i)
:,n)− F (X(j)

:,n)
∣∣∣ , ∣∣∣∣∣ 1n

n∑
k=1

ϕ̃(X
(i)
:,k)−

1

n

n∑
k=1

ϕ̃(X
(j)
:,k)

∣∣∣∣∣
}

≥ 1

n
(55)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

for any i, j ∈ [N] such that either X(i)
:,n ̸= X

(j)
:,n or m(i) ̸= m(j) holds. As for the magnitude of each

output of the self-attention layer, it is upper-bounded by

∥∥∥s(i)n

∥∥∥
2
=

∥∥∥∥∥∥∥
 ϕ̃(X

(i)
:,n)

F (X
(i)
:,n)

1
n

∑n
k=1 ϕ̃(X

(i)
:,k)


∥∥∥∥∥∥∥
2

≤
∣∣∣ϕ̃(X(i)

:,n)
∣∣∣+ ∣∣∣F (X(i)

:,n)
∣∣∣+ ∣∣∣∣∣ 1n

n∑
k=1

ϕ̃(X
(i)
:,k)

∣∣∣∣∣
≤ ⌈4N3

√
π⌉+ 10r(nN)2δ−1

√
πd+ ⌈4N3

√
π⌉

≤ 20rn2N3δ−1
√
πd, (56)

where we used the assumption r ≥ 1 and δ ≤ 1 in the last line.

Construction of F (FF)
2 : What remains to do is construct a network f

(FF)
2 : R3 → R which

associates outputs of the self-attention layer with their corresponding labels. Specifically, since
we know from eqs. (55) and (56) that the sequence of unique elements in s

(1)
n , . . . , s

(N)
n are

(20rn2N3δ−1
√
πd, 1/n)-separated, by applying Lemma C.1 to N inputs s

(1)
n , . . . , s

(N)
n and their

labels y(1), . . . , y(N), we have a feed-forward network f (FF)2 : R3 → R with width 12, depth

≲
√
N logN +

√
N

logN
·max{logR2, logC} (57)

with R2 := 20 · 20rn2N3δ−1
√
πd · N2 · n ·

√
3π = 400

√
3dn3rN5δ−1π, and bit complexity

bounded by

≲

√
N

logN
·max{logR2, logC} (58)

such that f (FF)2 (s
(i)
n) = y(i) for every i ∈ [N]. In particular, this means that by defining a token-wise

operation F (FF)
2 : R3×n → Rn as

F (FF)
2 (X)k := f

(FF)
2 (X:,k) (k = 1, . . . , n), (59)

we have

F (FF)
2 ◦ F (UA) ◦ F (FF)

1

(
X(i)

)
:,n

= y(i) (60)

for every i ∈ [N].

Model complexity: The width of the Transformer F (FF)
2 ◦ F (UA) ◦ F (FF)

1 is the maximum of
widths of F (FF)

1 , F (UA) and F (FF)
2 , which is max(14, 3, 12) = 14. The depth is upper-bounded by

the addition of depths of F (FF)
1 and F (FF)

2 plus one, which implies that the depth is

≲
√
N logN +

√
N

logN
·max{logR1, logC1}

+
√
N logN +

√
N

logN
·max{logR2, logC}

≲
√
N logN +

√
N

logN
·max{logR, logC} (61)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

with R := R2 = 400
√
3dn3rN5δ−1π ≥ max{logR1, logC1, logR2}. Likewise, the bit complex-

ity is

≲ log d+

√
N

logN
·max{logR1, logC1, logR2, logC}

≲ log d+

√
N

logN
·max{logR, logC}. (62)

B.1.2 LOWER BOUND

For convenience, we restate the statement of Theorem 4.2 below.
Theorem B.2. Suppose a Transformer N : Rd×n → Rn defined by eq. (4) can shatter a set of N
distinct input sequences X(1), . . . ,X(N) ∈ Rd×n with X(i)

:,k = X
(i)
:,1 for any i ∈ [N] and k ∈ [n], in

the sense that for any label assignments y(1), . . . , y(N) ∈ {0, 1}, there are parameters with which
N (X(i))n = y(i) holds for any i ∈ [N]. Then, the Transformer N has at least Ω(

√
N) parameters.

Proof. We denote by L the depth of the Transformer F , and a feature matrix at block l = 1, . . . , L
by

hl(X) := F (FF)
l ◦ F (SA)

l ◦ · · · ◦ F (FF)
1 ◦ F (SA)

1 ◦ Ein(X) ∈ Rm×n, (63)

with h0(X) = Ein(X) and N (X) = Eout◦hL(X) for any input X ∈ Rd×n. Then, the permutation
equivariance of Transformers implies that the feature matrix hl at block l = 1, . . . , L satisfies

hl(X
(i)):,1 = · · · = hl(X

(i)):,n (64)

for each i ∈ [N]. Thus, the self-attention layer at block l = 1, . . . , L can be calculated by

F (SA)
l

(
hl−1(X

(i))
)
:,k

= hl−1(X
(i)):,k +

H∑
h=1

W
(O)
h,l W

(V)
h,l hl−1(x

(i))σS

[(
W

(K)
h,l hl−1(X

(i))
)⊤ (

W
(Q)
h,l hl−1(X

(i))
)]

= hl−1(X
(i)):,k +

H∑
h=1

W
(O)
h,l W

(V)
h,l hl−1(X

(i)):,k

=

(
I +

H∑
h=1

W
(O)
h,l W

(V)
h,l

)
hl−1(X

(i)):,k, (65)

where W
(O)
h,l , W

(V)
h,l , W

(K)
h,l and W

(Q)
h,l with h ∈ H are weight matrices for the self-attention

at block l, and I ∈ Rm×m is the identity matrix. This observation indicates that calculations of
self-attention layers for inputs X(1), . . . ,X(N) reduces to linear transformations, which in turn
implies that the behavior of the Transformer N at inputs X(1), . . . ,X(N) can be simulated by a
feed-forward network with equal or fewer parameters, and with inputs X(1)

:,1 , . . . , X
(N)
:,1 . Since it is

known that the VC dimension of ReLU-based feed-forward networks with W parameters is at most
O(W 2) (Goldberg & Jerrum, 1995), the Transformer N must have at least Ω(

√
N) parameters.

B.2 SEQUENCE-TO-SEQUENCE SETTING - LOWER BOUND

Before proceeding to the proof of Theorem 4.3, we cite the following lemma. Here sgn is the sign
function:

sgn(x) :=


1 if x > 0,

0 if x = 0,

−1 if x < 0.

(66)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Lemma B.4 (Goldberg & Jerrum (1995)). Suppose W ≤M and let P1, . . . , PM be polynomials of
degree at most D in W variables. Define

K :=
∣∣{(sgn(P1(a)), . . . , sgn(PM (a)))

∣∣ a ∈ RW
}∣∣ , (67)

i.e., K is the number of possible sign vectors attained by the polynomials. Then we have K ≤
(8eMD/W)W .

Hereafter, let W be the nubmer of parameters and θ ∈ RW be a vector of all parameters of a
Transformer. We also denote by Nθ the Transformer to emphasize the presence of the parameter
vector θ. For convenience, we present the statement of Theorem 4.3 below.
Theorem B.3 (Lower bound). Let Nθ : Rd×n → Rn be a Transformer defined by eq. (4) with self-
attention layers replaced with hard attention layers (eq. (12)). In addition, suppose Nθ can shatter
a set of N input sequences X(1), . . . ,X(N) ∈ Rd×n with X(i)

:,k ̸= X
(j)
:,l for any i, j ∈ [N] and

k, l ∈ [n] (i ̸= j or k ̸= l), in the sense that for any label assignments y(1), . . . ,y(N) ∈ {0, 1}n,
there is a parameter vector θ ∈ RW such that

Nθ(X
(i)) = y(i) (68)

for any i ∈ [N]. Then, the Transformer has at least W = Ω
(√

nN
log(nN)

)
parameters.

Proof. Recall that the Transformer Nθ : Rd×n → Rn is defined as

Nθ := Eout ◦ FL ◦ · · · ◦ F1 ◦ Ein, (69)

where the l-th block Fl : Rm×n → Rm×n is composed of a self-attention layer and a feed-forward
layer. For the Transformer Nθ to memorize all label assignments for given N input sequences with
length n, the number of possible sign assignments for outputs of the Transformer must be at least
equal to or more than 2nN , that is,

2nN ≤ K :=

∣∣∣∣∣
{(

sgn
(
Nθ(X

(i))k

))
i∈[N]
k∈[n]

∣∣∣∣∣ θ ∈ RW

}∣∣∣∣∣ (70)

must hold. We estimate the upper-bound on the right-hand of the above inequality.

Our strategy is to partition the set of parameters inductively with respect to the layers, so that on each
cell the output of the Transformer can be expressed by some polynomial function on the parameters.
To be more precise, we construct a sequence of partitions S0,S1, . . . ,SL ∈ P(RW) such that

1. for each l = 0, 1, . . . , L, Sl is a partition of the set of parameters, that is,

Si ∩ Sj = ∅ (∀Si, Sj ∈ Sl with Si ̸= Sj) and
⋃

S∈Sl

S = RW , (71)

and is also a refinement of Sl−1 when l ≥ 1, in the sense that for every cell S ∈ Sl, there
is a cell S′ ∈ Sl−1 with S ⊂ S′.

2. for each l ∈ [L], the number of cells in Sl satisfies

|Sl|
|Sl−1|

≤
(
8e · n3HN · (8l − 4)

Wl−1 + 2msH

)Wl−1+2msH

·
(

8e · nqN · 4l
Wl−1 + 2msH + (m+ 1)q

)Wl−1+2msH+(m+1)q

, (72)

where Wl−1 is the number of parameters up to the (l − 1)-th block, with W0 := dm, the
number of parameters in Ein.

3. for each l = 0, 1, . . . , L, outputs of the l-th block for input X(i) on each cell S ∈ Sl

p
(i)
l,u,k,S(θl) := Fl ◦ · · · ◦ F1 ◦ Ein(X(i))u,k (u ∈ [m], k ∈ [n]) (73)

are polynomial functions in variable θl of degree at most 4l+ 1, as long as θ varies within
the cell S. Here θl ∈ RWl is a part of θ corresponding to parameters up to the l-th block,
with θ0 defined by a parameter vector of Ein.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

First, we set S0 := {RW }. Notice that outputs Ein(X(i))u,k for all u ∈ [m], k ∈ [n] and i ∈ [N]
are polynomial functions in variable θ0 of degree 1, because Ein : Rd×n → Rm×n is a token-wise
linear mapping.

Next, suppose a sequence of partitions S0, . . . ,Sl−1 for l ∈ [L−1] is already given, and we construct
a partition Sl from them. Specifically, we subdivide each cell S ∈ Sl−1 to create a new partition Sl.
By assumption, on each cell S ∈ Sl−1 the inputs of the (l − 1)-th block Fl−1 for the input X(i)

p
(i)
l−1,u,k,S(θl−1) := Fl−1 ◦ · · · ◦ F1 ◦ Ein(X(i))u,k (u ∈ [m], k ∈ [n]), (74)

are polynomial functions in variable a parameter vector θl−1 of degree no more than 4(l − 1) + 1,
as long as θ varies in the cell S.

Self-attention subblock: Recall that the self-attention layer with the hardmax function in the l-the
block for the input sequence X(i) is calculated as follows.

F (HA)
l (Z(i)) := Z(i) +

H∑
h=1

W
(O)
hl W

(V)
hl Z(i)σH

[(
W

(K)
hl Z(i)

)⊤ (
W

(Q)
hl Z(i)

)]
, (75)

where Z(i) ∈ Rm×n is the input of the self-attention layer for input X(i). In particular, when θ

varies in a cell S ∈ Sl−1, Z(i)
u,k for each u ∈ [m], k ∈ [n] can be expressed by the polynomial

function p(i)l−1,u,k,S(θl−1) of degree 4(l − 1) + 1.

Hereafter, we subdivide each cell S ∈ Sl−1 to construct a refinement S(SA)
l of Sl−1 so that the

hardmax patterns

σH

[(
W

(K)
hl Z(i)

)⊤ (
W

(Q)
hl Z(i)

)]
∈ Rn×n (∀h ∈ H) (76)

remain the same on each cell S′ ∈ S(SA)
l . The (k, k′)-th element of the attention matrix at head

h ∈ [H] can be written by

a
(i)
l,h,k,k′,S(θl−1,W

(K)
hl ,W

(Q)
hl) :=

(
W

(K)
hl Z(i)

)⊤
:.k

(
W

(Q)
hl Z(i)

)
:,k′

=

m∑
u,u′=1

(
W

(K)
hl

⊤
W

(Q)
hl

)
u,u′

p
(i)
l−1,u,k,S(θl−1)p

(i)
l−1,u′,k′,S(θl−1),

(77)

from which we see that each element of the attention matrix is a polynomial function in variables
W

(K)
hl ,W

(Q)
hl and θl−1, of degree at most 8(l − 1) + 4, as long as θ varies in the cell S ∈ Sl−1.

We define a partition P(SA)
l,S of S based on the hardmax patterns, that is, the minimal partition of S

such that on each cell, all outputs of the hardmax function remain the same. To estimate the size of
P(SA)
l,S , we instead consider sign patterns of polynomials{

a
(i)
l,h,k,k′,S − a

(i)
l,h,k′′,k′,S

∣∣∣ i ∈ [N], h ∈ [H], k, k′, k′′ ∈ [n]
}
, (78)

because whenever sign patterns of the above set of polynomials do not change on some subset of
the parameter space, the hardmax patterns must also remain the same. Applying Lemma B.4 to the
above collection of polynomials, the size of the partition P(SA)

l,S is upper-bounded by(
8e · n3HN · (8l − 4)

Wl−1 + 2msH

)Wl−1+2msH

. (79)

We define a refinement S(SA)
l of Sl−1 by subdividing each cell S ∈ Sl−1 in this way, and its size is

upper-bounded by ∣∣∣S(SA)
l

∣∣∣ ≤ |Sl−1| ·
(
8e · n3HN · (8l − 4)

Wl−1 + 2msH

)Wl−1+2msH

. (80)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

On each cell S′ ∈ S(SA)
l , the hardmax patterns remain unchanged, which implies that(

Z(i)σH

[(
W

(K)
hl Z(i)

)⊤ (
W

(Q)
hl Z(i)

)])
u,k

(u ∈ [m], k ∈ [n], h ∈ [H]) (81)

are polynomial functions in variable θl−1 of degree at most 4(l − 1) + 1, as long as θ moves in the
cell S′ ∈ S(SA)

l . This further means that each element of the output F (HA)
l (Z(i)) is a polynomial

function in variables W (O)
hl ,W

(V)
hl with h ∈ [H] and θl−1, of degree at most 4(l − 1) + 3 on each

cell S′ ∈ S(SA)
l .

Feed-forward subblock: As for feed-forward layers, we follow the analysis given by Bartlett et al.
(2019). On each cell S′ ∈ S(SA)

l , the hidden layer at the k-th token for input X(i) is

W
(1)
l F (HA)

l (Z(i)):,k + b
(1)
l ∈ Rq, (82)

whose v-th element is a polynomial function in variables W
(O)
hl ,W

(V)
hl with h ∈ [H], W (1)

l , b
(1)
l

and θl−1 of degree at most 4(l − 1) + 4. Notice that sign patterns of polynomials{
W

(1)
l,v,:F

(HA)
l (Z(i)):,k + b

(1)
l,v

∣∣∣ i ∈ [N], v ∈ [q], k ∈ [n]
}

(83)

completely determine whether or not the ReLU activation function in the middle layer fires. There-
fore, by defining P(FF)

l,S′ as the minimal partition of S′ such that the activation pattern remains the

same on each cell, the size of P(FF)
l,S′ is upper-bounded by Lemma B.4 as

∣∣∣P(FF)
l,S′

∣∣∣ ≤ (8e · nqN · 4l
Wl−1 + 2msH + (m+ 1)q

)Wl−1+2msH+(m+1)q

. (84)

We define a refinement S(FF)
l of S(SA)

l by subdividing each cell S′ ∈ S(SA)
l into P(FF)

l,S′ . Then,
outputs of the feed-forward layer

p
(i)
l,u,k,S′′(θl) = F (HA)

l (Z(i))u,k +W
(2)
l,u,;σR

[
W

(1)
l F (HA)

l (Z(i)):,k + b
(1)
l

]
+ b

(2)
l,u (85)

for any u ∈ [m], k ∈ [n] and i ∈ [N] are polynomial functions in variable θl of degree at most
4(l − 1) + 5 = 4l + 1, as long as the parameter vector θ varies in the cell S′′ ∈ S(FF)

l .

Finally, we set Sl as Sl := S(FF)
l . Then, from the above observations we know that outputs of the

l-th block are polynomial functions in variables Wl of degree at most 4l + 1 as long as θ moves
within each cell S′′ ∈ Sl, as desired. In addition, we have

|Sl|
|Sl−1|

≤
(
8e · n3HN · (8l − 4)

Wl−1 + 2msH

)Wl−1+2msH

·
(

8e · nqN · 4l
Wl−1 + 2msH + (m+ 1)q

)Wl−1+2msH+(m+1)q

, (86)

which satisfies the second property. In this way, we have a desired sequence of partitions S0, . . . ,SL.

Outputs of the L-th block for input X(i) (i ∈ [N])

FL ◦ · · · ◦ F1 ◦ Ein(X(i))u,k (u ∈ [m], k ∈ [n]) (87)

are polynomial functions in variable θL of degree at most 4L+ 1 as long as θ varies in each cell of
SL, which in turn implies that final outputs of the Transformer

p
(i)
k,S(θ) := Nθ(X

(i))k = Eout ◦ FL ◦ · · · ◦ F1 ◦ Ein(X(i))k (k ∈ [n]) (88)

are polynomial functions in variable θ of degree at most 4L + 2 if the parameter vector θ moves
within each cell S ∈ SL.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Applying Lemma B.4 to the set of polynomials {p(i)k,S(θ)}i∈[N],k∈[n] on each cell of SL allows us to
upper-bound K as follows.

K =

∣∣∣∣∣
{(

sgn
(
Nθ(X

(i))k

))
i∈[N]
k∈[n]

∣∣∣∣∣ θ ∈ RW

}∣∣∣∣∣
≤
∑
S∈SL

∣∣∣∣∣
{(

sgn
(
Nθ(X

(i))k

))
i∈[N]
k∈[n]

∣∣∣∣∣ θ ∈ S

}∣∣∣∣∣
≤ |SL| ·

(
8e · nN · (4L+ 2)

W

)W

. (89)

Since |SL| = |S0| ·
∏L

l=1 |Sl|/|Sl−1| and |S0| = 1, the right-hand side is further expanded as

K ≤
(
8e · nN · (4L+ 2)

W

)W

·
L∏

l=1

|Sl|
|Sl−1|

≤
(
8e · nN · (4L+ 2)

W

)W

·
L∏

l=1

(
8e · n3HN · (8l − 4)

Wl−1 + 2msH

)Wl−1+2msH (
8e · nqN · 4l

Wl−1 + 2msH + (m+ 1)q

)Wl−1+2msH+(m+1)q

≤

(
8e · nN · (4L+ 2) +

∑L
l=1

[
8e · n3HN · (8l − 4) + 8e · nqN · 4l

]
W

)W

, (90)

where we used the weighted arithmetic-geometric inequality in the last line, with W defined by

W :=W +

L∑
l=1

[Wl−1 + 2msH +Wl−1 + 2msH + (m+ 1)q] . (91)

Notice that Wl for each l ∈ [L] is the number of parameters up to the l-th block, which indicates

Wl = md+

l∑
l′=1

[4msH + 2(m+ 1)q]

= md+ l [4msH + 2(m+ 1)q]

≥ 4lH + 2lq (92)

with W = WL + md. With this observation, the numerator on the right-hand side of eq. (90) is
upper-bounded by

8e · nN · (4L+ 2) +

L∑
l=1

[
8e · n3HN · (8l − 4) + 8e · nqN · 4l

]
≤ 8e · nN · (4L+ 2) + 8e · n3N ·

L∑
l=1

(8lH + 4lq)

≤ 8e · nN · (4L+ 2) + 8e · n3N ·
L∑

l=1

2Wl

≤ 48e · n3N ·W, (93)

where we used 4L + 2 ≤ 4W and
∑L

l=1 2Wl ≤ 2W +
∑L

l=1 2Wl−1 ≤ 2W in the last line. Thus,
the right-hand side of eq. (90) is upper-bounded by

K ≤
(
48en3N ·W

W

)W

=
(
48en3N

)W
. (94)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Recall that in order to memorize all label assignments for N input sequences with length n, K is at
least equal to or more than 2nN , which gives us an upper-bound of nN :

nN ≤ log2

[(
48en3N

)W]
=W log2

(
48en3N

)
≤ 3W log2 (48enN) . (95)

Here we evaluate a crude upper-bound ofW with respect to the numberW of parameters as follows.

W =W +

L∑
l=1

[2Wl−1 + 4msH + (m+ 1)q]

≤W + 2

L∑
l=1

Wl

≤W + 2LW ≤ 3W 2, (96)

which implies nN ≤ 3W log2 (48enN) ≤ 9W 2 log2 (48enN). Therefore, the Transformer has at

least W = Ω
(√

nN
log(nN)

)
parameters.

C MEMORIZATION OF FEED-FORWARD NETWORKS

In this section, we extend the result on the optimal memorization of feed-forward networks proved
by Vardi et al. (2022). Specifically, the following lemma states that we can freely add data points
without severely affecting the memorization capacity of feed-forward networks, as long as their
labels are zero. We would like to note that Vardi et al. (2022) implicitly used this result to show the
memorization capacity of feed-forward networks with a bounded depth. Thus, our aim here is to
explicitly state the result and provide a rigorous proof.

Lemma C.1 (Extension of Vardi et al. (2022)). Let N,V, d, C ∈ N with N ≤ V , and r ≥ 1, 0 <
δ ≤ 1. Let y(1), . . . , y(N) ∈ [C] be a set of N labels and x(1), . . . ,x(V) ∈ Rd be a set of V inputs
such that ∥x(i)∥ ≤ r for every i ∈ [V] and ∥x(i)−x(j)∥ ≥ δ for every i, j ∈ [V] with i ̸= j. Denote
R := 20rV 2δ−1

√
πd. Then, there exists a neural network F : Rd → R with width 12, depth

≲
√
N logN +

√
N

logN
·max{logR, logC}, (97)

(for the definition of ≲, see Section 3.1) and bit complexity

≲ log d+

√
N

logN
·max{logR, logC} (98)

such that F (x(i)) = y(i) for every i ∈ [N] and F (x(i)) = 0 for every i ∈ [V] \ [N].

Proof. The proof goes basically the same as was done in the proof of the original theorem by Vardi
et al. (2022): we construct a three sub-networks F1, F2 and F3 with width at most 12, and then
concatenate those networks to create the final network F = F3 ◦ F2 ◦ F1. The only architectural
difference lies in the construction of F1, and the rest of the proof is dedicated to verifying that the
resulting network F satisfies F (x(i)) = 0 for i ∈ [V] \ [N].

STAGE I: PROJECTING ONTO A ONE-DIMENSIONAL SUBSPACE

In this stage, we construct a sub-network F1 : Rd → R, which projects each input onto the line R
while approximately retaining their distance. We use the following lemma from Vardi et al. (2022).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Lemma C.2 (Vardi et al. (2022)). Let x(1), . . . ,x(N) ∈ Rd with ∥x(i)∥ ≤ r for every i ∈ [N]
and ∥x(i) − x(j)∥ ≥ δ for every i, j ∈ [N] with i ̸= j. Then, there exists a neural network
F : Rd → R with width 1, depth 2 and bit complexity log(3drN2

√
πδ−1), such that 0 ≤ F (x(i)) ≤

10rN2δ−1
√
πd for every i ∈ [N] and |F (x(i))− F (x(j))| ≥ 2 for every i, j ∈ [N] with i ̸= j.

Instead of applying the above lemma to the set of N inputs x(1), . . . ,x(N), here we apply it to the
set of V inputs x(1), . . . ,x(V). Then, we obtain a neural network F̃1 : Rd → R with width 1,
depth 2 and bit complexity log(3drV 2

√
πδ−1), such that 0 ≤ F̃1(x

(i)) ≤ 10rV 2δ−1
√
πd for every

i ∈ [V] and |F̃1(x
(i))− F̃1(x

(j))| ≥ 2 for every i, j ∈ [V] with i ̸= j.

By a slight modification to the bias term, we may construct a neural network F1 : Rd → R such that
2 ≤ F1(x

(i)) ≤ R := 20rV 2δ−1
√
πd without affecting its width, depth and bit-complexity. We

adopt F1 as the first sub-network.

STAGE II: FINDING THE RIGHT SUBSET

In this stage, we adopt the same construction strategy for the second sub-network F2 : R → R as
was done in the proof of Vardi et al. (2022). We use Lemma G.3, whose statement is the strengthened
version of the one by Vardi et al. (2022).

We denote the outputs F1(x
(1)), . . . , F1(x

(V)) of the first sub-network F1 for x(1), . . . ,x(V) by
x1, . . . , xV . In addition, by rearranging labels, we assume without loss of generality that the first N
outputs x1, . . . , xN are in an increasing order, that is, x1 < · · · < xN .

Let m :=
√
N logN , and w1, . . . , w√

N logN and u1, . . . , u√N logN be two sets of
√

N
logN · logC-

bit sequences and
√

N
logN · logR-bit sequences, respectively, such that for every i ∈ [N], let

j :=

⌈
i ·
√

logN
N

⌉
∈ [m], k := i mod

√
N

logN , then w1, . . . , w√
N logN and u1, . . . , u√N logN

are defined by identities

BINk·logC+1:(k+1)·logC(wj) = y(i), (99)

BINk·logR+1:(k+1)·logR(uj) = ⌊xi⌋, (100)

where we used the fact that the outputs of the first sub-network F1 are non-negative and upper-
bounded by R := 20rV 2δ−1

√
πd

Next, by applying Lemma G.3 to w1, . . . , w√
N logN and u1, . . . , u√N logN , respectively, we obtain

two networks Fw
2 : R → R and Fu

2 : R → R with width 4, depth 3
√
N logN+2 and bit complexity

at most
√

N
logN ·max{logC, logR}+ ⌈logR⌉ such that for every i ∈ [N],

Fw
2 (xi) = wji and Fu

2 (xi) = uji (101)

hold with ji :=

⌈
i ·
√

logN
N

⌉
. By concatenating these two networks Fw

2 and Fu
2 , we construct a

second sub-network F2 : R → R3 such that for any i ∈ [N] we have

F2(xi) =

(
xi
wji
uji

)
. (102)

As for the outputs of F2 for xN+1, . . . , xV , since the construction of the first sub-network F1 assures
that |xi − xj | ≥ 2 for every i, j ∈ [V] with i ̸= j, Lemma G.3 indicates that for any i ∈ [V] \ [N],
we have

F2(xi) =

(
xi
w
u

)
, (103)

where w (resp. u) is either 0 or wj (resp. uj) for some j ∈ [m].

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

STAGE III: BIT EXTRACTION FROM THE CRAFTED WEIGHTS

As in the previous stage, we follow the same construction strategy as is done in Vardi et al. (2022).
However, here we inspect the behavior of the third sub-network for xN+1, . . . , xV .

We use the function obtained by Lemma G.6 with ρ = logC, n =
√

N
logN and c = logR as the third

sub-network F3 : R3 → R with width 12, depth 3
√

N
logN ·max{logR, logC}+ 2

√
N

logN + 2 and

bit complexity
√

N
logN max{logR, logC} + 2. Then, we construct the final network F : Rd → R

by setting F := F3 ◦ F2 ◦ F1.

VERIFICATION OF BEHAVIOR AND MODEL COMPLEXITY

Hereafter, we check that the configured network F = F3 ◦ F2 ◦ F1 correctly outputs the desired
values, that is, for any i ∈ [N] we have

F (x(i)) = y(i), (104)

and for any i ∈ [V] \ [N]

F (x(i)) = 0. (105)

Fix i ∈ [N] with ji :=
⌈
i ·
√

logN
N

⌉
. The output of F2 ◦ F1 for x(i) is

F2 ◦ F1(x
(i)) =

(
xi
wji
uji

)
. (106)

Since ⌊xi⌋ = BINρ·k+1:ρ·(k+1)(uji) with k := i mod
√

N
logN by definition, Lemma G.6 implies

F3 ◦ F2 ◦ F1(x
(i)) = BINρ·k+1:ρ·(k+1)(wij) = y(i) as desired.

On the other hand, for any i ∈ [V] \ [N], the output of F2 ◦ F1 for x(i) is

F2 ◦ F1(x
(i)) =

(
xi
w
u

)
, (107)

where w (resp. u) is either 0 or wj (resp. uj) for some j ∈ [m]. If u = 0, then xi satisfies

|xi − 1/2− BINρ·j+1:ρ·(j+1)(u)| = |xi − 1/2| > 1, (108)

because the construction of the first sub-network F1 guarantees that x1, . . . , xV ≥ 2. Thus,
Lemma G.6 implies that F (x(i)) = F3 ◦ F2 ◦ F1(x

(i)) = 0 as desired. On the other hand,
if u = uj for some j ∈ [m], xi should satisfy |xi − 1/2 − BINρ·k+1:ρ·(k+1)(u)| > 1 for any

k ∈ {0, . . . ,
√

N
logN − 1}. This is because for each k, BINρ·k+1:ρ·(k+1)(u) equals ⌊xl⌋ for some

l ∈ [N] by definition, which together with the separatedness of x1, . . . , xV implies

|xi − 1/2− BINρ·k+1:ρ·(k+1)(u)| = |xi − 1/2− ⌊xl⌋|
> |xi − xl| − |xl − 1/2− ⌊xl⌋|
≥ 2− 1/2 > 1. (109)

Therefore, the output of F = F3 ◦ F2 ◦ F1 for xi in this case is again 0.

The width of F is the maximal width of its sub-networks, which corresponds to the width of F3, i.e.,
12. The depth of F is the sum of the depths of F1, F2 and F3, which is estimated as

2 + 3
√
N logN + 2 + 3

√
N

logN
·max{logR, logC}+ 2

√
N

logN
+ 2

≲
√
N logN +

√
N

logN
·max{logR, logC}. (110)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

The bit complexity of F is the maximal bit complexity of its sub-networks, which is upper-bounded
by

max

{
log(3drV 2

√
πδ−1),

√
N

logN
·max{logC, logR}+ ⌈logR⌉,√

N

logN
max{logR, logC}+ 2

}

≲ log d+

√
N

logN
·max{logC, logR}. (111)

D MEMORIZATION CAPACITY OF DEEP SETS

Refer to Appendix A for the definition of multiset and the notation in this paper.

Deep set (Zaheer et al., 2017) is a well-known architecture used for modeling functions that take a
set, or more generally a multiset as input. The architecture is stated in a very general form, and it is
known (Wagstaff et al., 2022) that any permutation invariant function for multisets over countable
domain X can be decomposed by appropriate functions ϕ and ρ as follows:

(ϕ, ρ)(m) = ρ

(
n∑

k=1

ϕ(xk)

)
with m = {{x1, . . . ,xn}} ∈ NX . (112)

In this paper, we define a deep set by a tuple (ϕ, ρ), where ϕ and ρ are feed-forward networks. In
addition, the width of the deep set (ϕ, ρ) is defined as the maximum of the widths of ϕ and ρ, and
the depth of (ϕ, ρ) as the addition of the depths of ϕ and ρ.

Theorem D.1 (Memorization of deep sets). Let X := Rd and (m(1), y(1)), . . . , (m(N), y(N)) ∈
NX × [C] be a sequence of input-label pairs such that m(1), . . . ,m(N) satisfy the following three
conditions:

1. m(1), . . . ,m(N) are finite multisets whose cardinalities are at most M .

2. m(1), . . . ,m(N) are distinct.

3. m(1), . . . ,m(N) are element-wise (r, δ)-separated for some r ≥ 1, 0 < δ ≤ 1 (Assump-
tion A.1).

Let R := 80M2N5rδ−1π
√
d. Then, there exists a deep set (ϕ̃, ρ̃) with width 12, depth

≲
√
N logN +

√
N

logN
·max{logR, logC}, (113)

(for the definition of ≲, see Section 3.1) and bit complexity bounded by

≲ log d+

√
N

logN
·max{logR, logC} (114)

which memorizes the dataset, that is,

(ϕ̃, ρ̃)(m(i)) = ρ̃

|m(i)|∑
k=1

ϕ̃(x
(i)
k)

 = y(i) (115)

holds for every i ∈ [N] with m(i) = {{x(i)
1 , . . . ,x

(i)

|m(i)|}}.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Proof of Theorem D.1. Let Cϕ := ⌈4N3
√
π⌉ and Rϕ := 20r(NM)2δ−1

√
πd. Then, applying

Lemma B.3 readily implies that there exists a neural network ϕ̃ : Rd → R with width 12, depth

≲
√
N logN +

√
N

logN
·max{logRϕ, logCϕ}, (116)

and bit complexity bounded by

≲ log d+

√
N

logN
·max{logRϕ, logCϕ} (117)

such that ϕ̃(x) ∈ [⌈4N3
√
π⌉] ∪ {0} holds for any x ∈

⋃N
i=1 supp(m

(i)), and
|m(1)|∑
k=1

ϕ̃(x
(1)
k), . . . ,

|m(N)|∑
k=1

ϕ̃(x
(N)
k) (118)

are (4MN3
√
π, 1)-separated.

Since the correspondence
∑|m(i)|

k=1 ϕ̃(x
(i)
k) to the label y(i) is injective, we can consider the memo-

rization of N input-label pairs|m(1)|∑
k=1

ϕ̃(x
(1)
k), y(1)

 , . . . ,

|m(N)|∑
k=1

ϕ̃(x
(N)
k), y(N)

 ∈ R× [C] (119)

with feed-forward networks. Specifically, let Rρ be

Rρ := 20 · 4MN3
√
π ·N2 · 1−1 ·

√
π = 80MN5π. (120)

Then, according to Lemma C.1, we have a feed-forward network ρ̃ : R → R with width 12, depth

≲
√
N logN +

√
N

logN
·max{logRρ, logC}, (121)

and bit complexity bounded by

≲

√
N

logN
·max{logRρ, logC} (122)

such that for any i ∈ [N] we have

ρ̃

|m(i)|∑
k=1

ϕ̃(x
(i)
k)

 = y(i), (123)

as desired.

Model complexity. With the configurations defined above, the deep set (ϕ̃, ρ̃) provably memorizes
the dataset. Lastly, we check its model complexities, that is, width, depth and bit complexity.

The width of both ϕ̃ and ρ̃ is 12, and thus the width of the deep set (ϕ̃, ρ̃) is also 12. As for depth
and bit complexity, we define R by

R := 80M2N5rδ−1π
√
d. (124)

Notice that Rϕ, Cϕ and Rρ are all upper-bounded by R, because of the assumption r ≥ 1 and
0 < δ ≤ 1. The depth of the deep set (ϕ̃, ρ̃) is the addition of the depth of each feed-forward
network, and thus upper-bounded by

≲
√
N logN +

√
N

logN
·max{logR, logC}. (125)

Likewise, the bit complexity of the deep set (ϕ, ρ) is the maximum of the bit complexity of each
feed-forward network, which is upper-bounded by

≲ log d+

√
N

logN
·max{logR, logC}. (126)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

E TRANSFORMERS WITH EMBEDDING LAYER

In this section, we examine the memorization capacity of Transformers equipped with an embedding
layer. When considering an embedding layer, input sequences consist of a sequence of token ids,
rather than a sequence of word vectors. Mathematically, N input sequences we consider in this
section are expressed by N vectors

x(1), . . . ,x(N) ∈ [ω]n, (127)

where ω represents the vocabulary size, i.e., the number of distinct token ids that can occur in the
input sequence. Then, the embedding layer F (EM) : [ω]n → Rm×n is defined by the token-wise
operation

F (EM)(x)k := W (EM)exk
∈ Rm (k ∈ [n]), (128)

with W (EM) ∈ Rm×ω the embedding matrix used as a lookup table, and exk
∈ {0, 1}ω one-hot

vector with 1 in the xk-th position.

Given the input sequences and the embedding layer defined in this way, we now state the theorem on
the memorization capacity of Transformers with the embedding layer. As in Theorem B.1, F (FF) in
the next theorem represents a token-wise feed-forward network of arbitrary depth, and F (UA) is a
uniform attention layer (see eq. (39) for its definition). Remarkably, the number of parameters now
depends on ω, which is unavoidable due to the use of the embedding layer.

Theorem E.1. Let (x(1), y(1)), . . . , (x(N), y(N)) ∈ [ω]n × [C] be a sequence of input-label pairs
that are consistently labeled, in the sense that for any i, j ∈ [N], we have y(i) = y(j) if

x(i)n = x(j)n and x(i) = x(j) up to permutations. (129)

Let R := 200
√
3n2rN5δ−1ωπ. Then, there exists a Transformer with the embedding layer N (EM) :

[ω]n → Rn with the number of parameters

≲ ω +
√
N logN +

√
N

logN
·max{logR, logC}, (130)

and the bit complexity

≲ logω +

√
N

logN
·max{logR, logC} (131)

that memorizes the dataset, i.e.,

N (EM)(x(i))n = Eout ◦ F (FF) ◦ F (UA) ◦ F (EM)(x(i))n (132)

holds for every i ∈ [N].

Proof. The only difference in the proof from Theorem B.1 is that the role previously performed by
the feed-forward network F (FF)

1 is now implemented by the embedding layer F (EM). Specifically,
for each input sequence x(i) with i ∈ [N], we define its multiset expression m(i) ∈ N[ω] by

m(i) : [ω] → N, x 7→ |{k | x(i)k = x}|. (133)

The cardinality ofm(i) for each i ∈ [N] is at most n, and the consistency on the labels are rephrased
as follows: for any i, j ∈ [N], we have y(i) = y(j) if x(i)n = x

(j)
n and m(i) = m(j) hold.

According to Lemma B.1, there exists a subsetA ⊂ [ω] with its cardinality at most min{ω,N} such
that m(1)|A, . . . ,m(N)

A are distinct. Then, by applying Lemma B.2 to m(1)|A, . . . ,m(N)
A , we have a

function f : A→ [⌈4N2
√
π ·min{ω,N}⌉] such that∑

x∈supp(m(1)|A)

m(1)(x)f(x), . . . ,
∑

x∈supp(m(N)|A)

m(N)(x)f(x) (134)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

are (4nN2
√
π ·min{ω,N}, 1)-separated. We directly implement the function f in the embedding

layer. Namely, we define the embedding matrix W (EM) ∈ R3×ω in the embedding layer F (EM)

with m = 3 by

W (EM)
:,x :=

{
(f(x), x, 0)⊤ if x ∈ A,

(0, x, 0)⊤ otherwise,
(135)

for each x ∈ [ω]. The bit complexity of the embedding layer is at most log[⌈4N2
√
π·min{ω,N}⌉]+

logω, and since the construction of the remaining parts of the Transformer can be carried out simi-
larly to Theorem B.1, we omit those details here.

F MEMORIZATION CAPACITY WITH LIMITED BIT COMPLEXITY

In this section, we consider how the memorization capacity of networks changes when the number of
bits available for each parameter of the network is bounded. The following lemma extends Theorem
6.2 from Vardi et al. (2022), with the only difference that it also explicitly supports additional data
points with zero labels.
Lemma F.1 (Extension of Vardi et al. (2022)). Let N,V, d, C ∈ N with N ≤ V , and r ≥ 1, 0 <
δ ≤ 1. Let y(1), . . . , y(N) ∈ [C] be a set of N labels and x(1), . . . ,x(V) ∈ Rd be a set of V inputs
such that ∥x(i)∥ ≤ r for every i ∈ [V] and ∥x(i) − x(j)∥ ≥ δ for every i, j ∈ [V] with i ̸= j.
Denote R := 20rV 2δ−1

√
πd and let B ∈ [

√
N]. Then, there exists a neural network F : Rd → R

with width 13, depth

≲
N
√
logB

B
+

N

B
√
logB

·max{logR, logC}, (136)

(for the definition of ≲, see Section 3.1) and bit complexity

≲ log d+
B√
logB

·max{logR, logC} (137)

such that F (x(i)) = y(i) for every i ∈ [N] and F (x(i)) = 0 for every i ∈ [V] \ [N].

Proof. The proof idea is the same as the one for Theorem 6.2 from Vardi et al. (2022): we con-
struct a N

B2 + 1 sub-networks F1, . . . , FN/B2+1 with width at most 13, and then concatenate
those networks to create the final network F . For the first sub-network F1, we use the same net-
work as in the proof of Lemma C.1, which projects the inputs x(1), . . . ,x(N),x(N+1), . . . ,x(V)

into scalars x1, . . . , xN , xN+1, . . . , xV while approximately keeping a distance between them.
Next, we partition x1, . . . , xN into N

B2 subsets each containing B2 data points. For each sub-
set x(i−1)·B2+1, . . . , xi·B2 (i ∈ [NB2]), we use Lemma C.1 with zero labels at other data points
x1, . . . , x(i−1)·B2 and xi·B2+1, . . . , xV to obtain a sub-networks F̃2, . . . , F̃N/B2+1 with width 12,
depth

≲ B
√
logB +

B√
logB

·max{logR, logC}, (138)

and bit complexity

≲
B√
logB

·max{logR, logC}. (139)

Finally, we extend the widths of F̃2, . . . , F̃N/B2 by one to create sub-networks F2, . . . , FN/B2 such
that

Fi

(
x
r

)
=

(
x

r + F̃i(x)

)
(i = 2, . . . , N/B2). (140)

By concatenating all sub-networks and one projection layer ϕ(x, y) := y to obtain the final network
F = ϕ ◦ FN/B2+1 ◦ · · · ◦ F2 ◦ F1, whose depth is upper-bounded by

≲
N

B2

(
B
√
logB +

B√
logB

·max{logR, logC}
)

=
N
√
logB

B
+

N

B
√
logB

·max{logR, logC}. (141)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

For each i = [N], there is a unique index j ∈ {2, . . . , N/B2} such that F̃j(xi) = y(i) holds and at
the same time we have F̃k(xi) = 0 for any k ∈ {2, . . . , N/B2} with k ̸= j. Thus, the output of F
for x(i) is calculated as

F (x(i)) = ϕ

(
xi

F̃j(xi)

)
= y(i). (142)

On the other hand, for any i ∈ {N + 1, . . . , V } and j ∈ {2, . . . , N/B2}, the output of F̃j(xi) is
always zero, which implies F (x(i)) = 0 as desired.

By replacing feed-forward networks used in the proof of Theorem 4.1 with Lemma F.1, we obtain
the upper bound on the memorization capacity of Transformers with limited bit complexity. Notably,
the following theorem shows that a Transformer with Õ(N1−ϵ) parameters can memorize N data
points in the next-token prediction setting when each parameter is restricted to Õ(N ϵ) bits for some
ϵ ∈ [0, 1/2], under the condition that n,C, rδ−1 = NO(1) and d = Õ(N1−ϵ) as N → ∞.

Theorem F.1 (Next-token prediction with limited bits). Let (X(1), y(1)), . . . , (X(N), y(N)) ∈
Rd×n × [C] be a sequence of input-label pairs such that

1. (X(1), y(1)), . . . , (X(N), y(N)) are consistently labeled, in the sense that for any i, j ∈
[N], we have y(i) = y(j) if

X(i)
:,n = X(j)

:,n and X(i) = X(j) up to permutations. (143)

2. X(1), . . . ,X(N) are token-wise (r, δ)-separated for some r ≥ 1 and 0 < δ ≤ 1.

Let R := 400
√
3dn3rN5δ−1π and B ∈ [

√
N]. Then, there exists a Transformer N : Rd×n → Rn

with width 15, depth

≲
N
√
logB

B
+

N

B
√
logB

·max{logR, logC}, (144)

(for the definition of ≲, see Section 3.1) and bit complexity bounded by

≲ log d+
B√
logB

·max{logR, logC} (145)

that memorizes the dataset, i.e.,

N
(
X(i)

)
n
= Eout ◦ F

(FF)

2 ◦ F (UA) ◦ F (FF)

1 ◦ Ein
(
X(i)

)
n
= y(i) (146)

holds for every i ∈ [N].

Proof. The proof goes basically the same as is done in the proof of Theorem 4.1, but this time feed-
forward networks with limited bit complexity (Lemma F.1) replace two token-wise feed-forward
networks in the proof of Theorem 4.1, namely, F (FF)

1 and F (FF)
2 .

The first token-wise feed-forward network F (FF)
1 defined by eq. (51) is essentially composed of

ϕ̃ : Rd → R obtained from Lemma B.3, which in turn is constructed from ϕ : Rd → R defined by
eq. (32) using Lemma C.1. Therefore, let us consider representing ϕ with a feed-forward network
with limited bit complexity using Lemma F.1, and the resulting network ϕ̃ : Rd → R has width 13,
depth

≲
N
√
logB

B
+

N

B
√
logB

·max{logRϕ, logCϕ}, (147)

where Cϕ := ⌈4N3
√
π⌉ and Rϕ := 20r(NM)2δ−1

√
πd, and bit complexity

≲ log d+
B√
logB

·max{logRϕ, logCϕ}. (148)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Then, the first token-wise feed-forward network F (FF)

1 : Rd×n → R3×n with limited bit complexity
is defined using ϕ in the same manner as in eq. (51).

Similarly, the second token-wise feed-forward network F (FF)
2 is defined using Lemma C.1 to asso-

ciate s(1)n , . . . , s
(N)
n defined by eq. (53) with labels y(1), . . . , y(N). Thus, this time we use Lemma F.1

to construct a feed-forward network f
(FF)

2 : R3 → R with width 13, depth

≲
N
√
logB

B
+

N

B
√
logB

·max{logR2, logC}, (149)

with R2 := 20 · 20rn2N3δ−1
√
πd · N2 · n ·

√
3π = 400

√
3dn3rN5δ−1π, and bit complexity

bounded by

≲
B√
logB

·max{logR2, logC} (150)

such that f
(FF)

2 (s
(i)
n) = y(i) for every i ∈ [N], which induces the second token-wise feed-forward

network F (FF)

2 : R3×n → Rn with limited bit complexity.

G TECHNICAL LEMMAS

This section summarizes various technical lemmas. In this section, LEN(n) ∈ N for any n ∈ N
represents the number of bits in its binary representation.
Lemma G.1 (Park et al. (2021)). Let d ∈ N. Then, for any finite subset X ⊂ Rd, there exists a unit
vector v ∈ Rd such that

1

|X |2

√
8

πd
∥x− x′∥2 ≤

∣∣v⊤ (x− x′)
∣∣ ≤ ∥x− x′∥2 (151)

holds for any x,x′ ∈ X .
Lemma G.2 (Vardi et al. (2022)). Let a, b ∈ N with a < b. Then, there exists a neural network F
with depth 2, width 2 and bit complexity LEN(b) such that F (x) = 1 for x ∈ [a, b] and F (x) = 0
for x > b+ 1

2 or x < a− 1
2 .

Lemma G.3. Let x1 < · · · < xN < R with R > 0 and |xi − xj | ≥ 2 for every i, j ∈ [N] with
i ̸= j. Let m ∈ N with m < N and let w1, . . . , wm ∈ N where LEN(wj) ≤ b for every j ∈ [m].
Let k := ⌈N

m⌉. Then, there exists a neural network F : R → R with width 4, depth 3m + 2 and bit
complexity b+ ⌈logR⌉ such that F satisfies

1. for every i ∈ [N], F (xi) = w⌈ i
k ⌉,

2. for every x ∈ R with |x − xi| ≥ 2 for all i ∈ [N], the output F (x) is either 0 or wj for
some j ∈ [m].

Proof of Lemma G.3. Most of the proof is the same as in Lemma A.4. from Vardi et al. (2022), and
the only difference is that we now examine how the function behaves outside of x1, . . . , xN .

For any j ∈ [m], we use Lemma G.2 with a = ⌊xj·k−k+1⌋ and b = ⌊xj·k + 1⌋ to construct a
feed-forward network F̃j : R → R such that F̃j(x) = 1 for any x ∈ [⌊xj·k−k+1⌋, ⌊xj·k + 1⌋], and
F̃j(x) = 0 for any x > ⌊xj·k + 1⌋ + 1

2 or x < ⌊xj·k−k+1⌋ − 1
2 . In particular, this means that

F̃j(xi) = 1 for any i ∈ [j · k − k + 1, j · k]. Here j · k may become bigger than N , and in such a
case j · k is replaced with N . Then, we define a feed-forward network Fj : R → R by

Fj

((
x
y

))
:=

(
x

y + wj · F̃j(x)

)
, (152)

and the whole network F : R → R by F (x) =

(
0
1

)⊤

Fm ◦ · · · ◦ F1

((
x
0

))
. For the

verification of the correct behavior of the function F for inputs x1, . . . , xN , and the analysis of its

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

model complexity, we refer the reader to the proof by Vardi et al. (2022). Instead, we check the
output of F for inputs outside of xi with i = 1, . . . , N . For any input x ∈ R such that |x− xi| ≥ 2
for all i ∈ [N], there are two situations.

1. x ∈ [⌊xj·k−k+1⌋, ⌊xj·k + 1⌋] for some j ∈ [m]: in this case, only F̃j(x) outputs 1, and
other sub-network F̃j′(x) with j′ ̸= j output 0, which results in F (x) = wj .

2. for any j ∈ [m], x > ⌊xj·k +1⌋+ 1
2 or x < ⌊xj·k−k+1⌋− 1

2 holds: in this case, F̃j(x) = 0
for j ∈ [m] and thus F (x) = 0.

Putting the above two cases together, we see that the output F (x) for every x ∈ R with |x−xi| ≥ 2
(∀i = 1, . . . , N) is 0 or wj for some j ∈ [m].

Lemma G.4 (Vardi et al. (2022)). Let n ∈ N and let i, j ∈ N with i < j ≤ n. Denote Tel-
garsky’s triangle function by ψ(z) := σR(σR(2z) − σR(4z − 2)). Then, there exists a neural
network F : R2 → R3 with width 5, depth 3(j − i + 1), and bit complexity n + 2, such that

for any x ∈ N with LEN(x) ≤ n, if the input of F is
(
ψ(i−1)

(
x
2n + 1

2n+1

)
ψ(i−1)

(
x
2n + 1

2n+2

)), then it outputs: ψ(j)
(

x
2n + 1

2n+1

)
ψ(j)

(
x
2n + 1

2n+2

)
BINi:j(x)

.

Lemma G.5 (Vardi et al. (2022)). There exists a network F : R2 → R with width 2, depth 2 and bit

complexity 2 such that F
((

x
y

))
= 1 if x ∈ [y, y + 1] and F

((
x
y

))
= 0 if x > y + 3

2 or

x < y − 1
2 .

The following lemma is an extension of the lemma by Vardi et al. (2022), in that the outputs for
unexpected inputs are also considered.
Lemma G.6. Let ρ, n, c ∈ N. Let u ∈ N with LEN(u) = ρ ·n and let w ∈ N with LEN(w) = c ·n.
Assume that for any ℓ, k ∈ {0, 1, . . . , n − 1} with ℓ ̸= k we have that |BINρ·ℓ+1:ρ·(ℓ+1)(u) −
BINρ·k+1:ρ·(k+1)(u)| ≥ 2. Then, there exists a network F : R3 → R with width 12, depth 3n ·
max{ρ, c}+ 2n+ 2 and bit complexity n ·max{ρ, c}+ 2, such that for every x > 0, if there exist
j ∈ {0, 1, . . . , n− 1} where ⌊x⌋ = BINρ·j+1:ρ·(j+1)(u), then:

F

((
x
w
u

))
= BINρ·j+1:ρ·(j+1)(w). (153)

In addition, if x satisfies |x− 1/2− BINρ·j+1:ρ·(j+1)(u)| > 1 for any j ∈ {0, . . . , n− 1}, then

F

((
x
w
u

))
= 0. (154)

Proof. We follow exactly the same construction of a neural network by Vardi et al. (2022). As such,
for a detailed analysis of the depth and bit complexity of each network defined here, we refer the
reader to the original paper and omit it here.

For each i = 0, . . . , n − 1, we construct a network Fi as follows. First, we use Lemma G.4 for u
and w, respectively to obtain two networks Fw

i and Fu
i with width 5, depth at most 3 · max{ρ, c}

and bit complexity at most nmax{ρ, c}+ 2 such that

Fu
i

(
ψ(i·ρ) (u

2n·ρ + 1
2n·ρ+1

)
ψ(i·ρ) (u

2n·ρ + 1
2n·ρ+2

)) =

 ψ((i+1)·ρ) (u
2n·ρ + 1

2n·ρ+1

)
ψ((i+1)·ρ) (u

2n·ρ + 1
2n·ρ+2

)
BINi·ρ+1:(i+1)·ρ(u)

 , (155)

Fw
i

(
ψ(i·c) (w

2n·c + 1
2n·c+1

)
ψ(i·c) (w

2n·c + 1
2n·c+2

)) =

 ψ((i+1)·c) (w
2n·c + 1

2n·c+1

)
ψ((i+1)·c) (w

2n·c + 1
2n·c+2

)
BINi·c+1:(i+1)·c(w)

 . (156)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Next, we use Lemma G.5 with inputs x and y = BINi·ρ+1:(i+1)·ρ(u) to obtain the neural network
F ỹ
i : R → R with width 2, depth 2 and bit complexity at most ρ such that

F ỹ
i

((
x

BINi·ρ+1:(i+1)·ρ(u)

))
=

{
1 if BINi·ρ+1:(i+1)·ρ(u) ≤ x ≤ BINi·ρ+1:(i+1)·ρ(u) + 1,

0 if |x− 1/2− BINi·ρ+1:(i+1)·ρ(u)| > 1.

(157)

In addition, we construct a 1-layer feed-forward network F y
i by

F y
i

(
x
y

)
:= σR(x · 2c+1 − 2c+1 + y). (158)

Putting the networks defined above and trivial modifications together, we define a neural network Fi

such that Fi satisfies

Fi :


x

ψ(i·ρ) (u
2n·ρ + 1

2n·ρ+1

)
ψ(i·ρ) (u

2n·ρ + 1
2n·ρ+2

)
ψ(i·c) (w

2n·c + 1
2n·c+1

)
ψ(i·c) (w

2n·c + 1
2n·c+2

)
y



7→



x
ψ((i+1)·ρ) (u

2n·ρ + 1
2n·ρ+1

)
ψ((i+1)·ρ) (u

2n·ρ + 1
2n·ρ+2

)
ψ((i+1)·c) (w

2n·c + 1
2n·c+1

)
ψ((i+1)·c) (w

2n·c + 1
2n·c+2

)
y + σR

(
F ỹ
i

((
x

BINi·ρ+1:(i+1)·ρ(u)

))
· 2c+1 − 2c+1 +BINi·c+1:(i+1)·c(w)

)


.

(159)

Finally, we concatenate Fi for each i = 0, . . . , n− 1 to construct a network F : R3 → R by
F := G ◦ Fn−1 ◦ · · · ◦ F0 ◦H (160)

where G and H are additional 1-layer feed-forward networks such that

H : R3 → R5,

(
x
w
u

)
7→


x

u
2n·ρ + 1

2n·ρ+1

u
2n·ρ + 1

2n·ρ+2

w
2n·c + 1

2n·c+1

w
2n·c + 1

2n·c+2

0

 , (161)

and G : R5 → R outputs the fifth coordinate of the input. Note that with these configurations, it can
be proved by induction that inputs of Fi for each i = 0, . . . , n− 1 are always of the form eq. (159).

Hereafter, we verify that the network F actually satisfies the desired behavior. Notice that the output
of F is expressed as

F

((
x
w
u

))
=

n−1∑
i=0

σR

(
F ỹ
i

((
x

BINi·ρ+1:(i+1)·ρ(u)

))
· 2c+1 − 2c+1 +BINi·c+1:(i+1)·c(w)

)
.

(162)

If there exist j ∈ {0, 1, . . . , n− 1} with ⌊x⌋ = BINρ·j+1:ρ·(j+1)(u), the right-hand side becomes

F

((
x
w
u

))
= σR

(
1 · 2c+1 − 2c+1 +BINj·c+1:(j+1)·c(w)

)
+

n−1∑
i=0
i̸=j

σR
(
0 · 2c+1 − 2c+1 +BINi·c+1:(i+1)·c(w)

)
= BINj·c+1:(j+1)·c(w), (163)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

because BINi·c+1:(i+1)·c(w) ≤ 2c+1 holds for any i = 0, . . . , n− 1.

On the other hand, if x satisfies |x − 1/2 − BINρ·j+1:ρ·(j+1)(u)| > 1 for any j ∈ {0, . . . , n − 1},
the output of F becomes

F

((
x
w
u

))
=

n−1∑
i=0

σR
(
0 · 2c+1 − 2c+1 +BINi·c+1:(i+1)·c(w)

)
= 0, (164)

as desired.

H EXPERIMENTS

In this section, we empirically investigate whether the memorization capacity of real-world Trans-
formers aligns with the behavior predicted by our theoretical analysis when varying the size of the
dataset and the length of input sequences.

H.1 SETUP

We trained Transformers in the next-token prediction setting on two real-world datasets and one
randomly generated dataset of various sizes and evaluated the minimum network size required to
memorize each dataset, plotting the results to examine the correlation between dataset size and
network size. To validate our theoretical analysis, the architecture of the Transformer used in our
experiments followed the same structure as the model described in Theorem B.1. To be more precise,
we consider the following architecture:

N
(
X(i)

)
n
= Eout ◦ F (FF)

2 ◦ F (UA) ◦ F (FF)
1 ◦ Ein

(
X(i)

)
n
, (165)

where F (FF)
1 and F (FF)

2 are token-wise feed-forward layers (eq. (3)) stacked for #blocks blocks
with the hidden dimension q = 4m and embedding dimension m = 2 3. Since the number of
parameters in the model is approximately proportional to #blocks, we use #blocks as a proxy for
memorization capacity in our experiments by varying it to evaluate the minimum network size re-
quired for memorization. The model was trained using the AdamW optimizer (Loshchilov & Hutter,
2019) with full-batch updates. To focus on the representational capacity of models and minimize
the influence of optimization, we tuned hyperparameters such as a learning rate and warmup interval
using Optuna (Akiba et al., 2019).

H.2 RESULTS

Validation of memorization with Transformers using single uniform-attention: We first validate
that a single layer of uniform attention actually suffices for memorization. Specifically, we trained a
simplified Transformer defined in eq. (165), consisting of one uniform attention layer and two token-
wise feed-forward networks, on two real-world datasets: MultiNLI dataset (Williams et al., 2018)
from GLUE benchmark (Wang et al., 2018) and IMDb dataset (Maas et al., 2011). For both datasets,
the length of input sequences was truncated to 8, and outputs at the 0-th token were compared with
labels using cross-entropy loss. While this setup does not correspond to next-token prediction in the
traditional sense, it aligns with the next-token prediction setting considered in this paper.

The results are summarized in figure 1 for MultiNLI dataset and figure 2 for IMDb dataset. Overall,
our experiments confirmed that as the number of blocks increases, the training loss can be reduced
to nearly zero, and the accuracy tends to approach one. This outcome aligns with the predictions
of Theorem B.1, demonstrating that even a single layer of uniform attention, when paired with an
appropriate number of feed-forward networks, is sufficient for memorization.

Varying the dataset size while the sequence length is fixed: We next examined how the memo-
rization capacity of Transformers changes when varying the dataset size while keeping the sequence

3The embedding dimension was set to 2 so that it becomes difficult for models to memorize even small
datasets.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000
Training Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Tr
ai

ni
ng

 L
os

s

#blocks = 1
#blocks = 10
#blocks = 20
#blocks = 30
#blocks = 40
#blocks = 50

(a) Training loss on MultiNLI dataset

0 200 400 600 800 1000
Training Epochs

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

#blocks = 1
#blocks = 10
#blocks = 20
#blocks = 30
#blocks = 40
#blocks = 50

(b) Accuracy on MultiNLI dataset

Figure 1: Training losses and accuracies of Transformers with #blocks = 1, 10, 20, 30, 40, 50 on a dataset
of size N = 2000 with input sequence length n = 8 sampled from MultiNLI dataset. Each model
was trained using full-batch gradient descent for 1000 epochs, and the best-performing model was
selected after running two trials of hyperparameter tuning with Optuna.

0 200 400 600 800 1000
Training Epochs

0.00

0.05

0.10

0.15

0.20

0.25

Tr
ai

ni
ng

 L
os

s

#blocks = 1
#blocks = 10
#blocks = 20
#blocks = 30
#blocks = 40

(a) Training loss on IMDb dataset

0 200 400 600 800 1000
Training Epochs

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

#blocks = 1
#blocks = 10
#blocks = 20
#blocks = 30
#blocks = 40

(b) Accuracy on IMDb dataset

Figure 2: Training losses and accuracies of Transformers with #blocks = 1, 10, 20, 30, 40 on a dataset of size
N = 3000 with input sequence length n = 8 sampled from IMDb dataset. Each model was trained
using full-batch gradient descent for 1000 epochs, and the best-performing model was selected after
running two trials of hyperparameter tuning with Optuna.

length fixed. Specifically, we trained Transformers on datasets sampled from the MultiNLI dataset,
where the sequence length was fixed at n = 8 and the dataset size N ranged from 600 to 1700 in
increments of 100. For each dataset, we determined the minimum number of #blocks required for
the network to memorize the data. Here, a network was considered to have successfully memorized
the dataset when the training error fell below a threshold of ϵ = 0.01.

Figure 3 summarizes the evaluation of the memorization capacity of Transformers on MultiNLI
datasets of varying sizes. From this figure, we can observe the following two points.

1. Square-root scaling for small datasets: For smaller dataset sizes, particularly in the range
of N = 600 to N = 1400, the memorization capacity of the Transformer scales approx-
imately as

√
N . This behavior aligns well with the theoretical prediction of Theorem 4.1

and Theorem 4.2, which suggests that the memorization capacity of Transformers in the
next-token prediction setting scales as Θ

√
N .

2. Rapid increase for larger datasets: Beyond N = 1400, the memorization capacity ex-
hibits a sharp increase, deviating from the earlier

√
N scaling. This phenomenon has also

been observed in the experiments conducted by Kim et al. (2023). A plausible explana-
tion is that the bit-length of each parameter in the network is fixed during the experiments.
As the dataset size grows, the precision of the parameters becomes insufficient for optimal
memorization. Under this regime, the analysis of Transformers with limited bit complexity,

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

as discussed in Appendix F, becomes applicable, predicting that the memorization capacity
scales linearly with the dataset size N .

600 800 1000 1200 1400 1600
Dataset Size

2

4

6

8

10

12

14

16

#b
lo

ck
s

Figure 3: Memorization capacity, that is, the minimum size of Transformers required for memorizing
MultiNLI dataset with size N = 600, . . . , 1700 in increments of 100. In this figure, the depth
#blocks of the two token-wise feed-forward networks F (FF)

1 and F (FF)
2 in eq. (165) is used as the

variable on the vertical axis to control the size of the network. Each model was trained using full-
batch gradient descent for 1000 epochs, and the best-performing model was selected after running
ten trials of hyperparameter tuning with Optuna.

Varying the sequence length while the dataset size is fixed: We also investigated how the mem-
orization capacity changes when the size of a randomly generated dataset is fixed at N = 500 and
the input sequence length n is varied across 10, 100, 1000 and 10000. In this experiment, each word
token is a 6-dimensional vector, with each element sampled independently from the uniform dis-
tribution over the interval [0, 1). Similarly, each label is either +1 or −1, sampled independently
from the Rademacher distribution. Using the mean squared error as the loss function, a network was
considered to have successfully memorized the dataset when the training error fell below a thresh-
old of ϵ = 0.01. Surprisingly, the results showed that, for all sequence lengths, a Transformer with
#blocks = 4 was the smallest model capable of achieving memorization. An insight from this ex-
perimental result is that, while the upper bound of the memorization capacity given by Theorem 4.1
has a gap ofO(log n) compared to the lower bound in Theorem 4.2, real-world Transformers appear
to align more closely with the lower bound of Theorem 4.2, that is, the memorization capacity might
be nearly independent of the input sequence length n.

41

	Introduction
	Related Work
	Preliminaries
	Notation
	Transformer block
	Bit complexity

	Memorization Capacity of Transformers
	Problem setting
	Next-token prediction setting
	Upper bound
	Proof outline of Theorem 4.1
	Lower bound

	Sequence-to-sequence prediction setting

	Conclusions
	Definition of Multisets
	Proof of Main Results
	Next-token prediction setting
	Upper bound
	Lower bound

	Sequence-to-sequence setting - Lower bound

	Memorization of Feed-Forward Networks
	Memorization Capacity of Deep Sets
	Transformers with Embedding Layer
	Memorization Capacity with Limited Bit Complexity
	Technical Lemmas
	Experiments
	Setup
	Results

