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ABSTRACT

Recent research in the field of machine learning has increasingly focused on the
memorization capacity of Transformers, but how efficient they are is not yet well
understood. We demonstrate that Transformers can memorize labels with Õ(

√
N)

parameters in a next-token prediction setting for N input sequences of length n,
which is proved to be optimal up to logarithmic factors. This indicates that Trans-
formers can efficiently perform memorization with little influence from the input
length n owing to the benefit of parameter sharing. We also analyze the mem-
orization capacity in the sequence-to-sequence setting, and find that Õ(

√
nN)

parameters are not only sufficient, but also necessary at least for Transformers
with hardmax. These results suggest that while self-attention mechanisms can ef-
ficiently identify input sequences, the feed-forward network becomes a bottleneck
when associating a label to each token.

1 INTRODUCTION

In recent years, the Transformer architecture (Vaswani et al., 2017) has played a pivotal role in
the field of machine learning, becoming indispensable for a variety of models in the community. In
addition to the original breakthroughs in natural language processing, such as the GPT series (Brown
et al., 2020; Radford et al., 2018; 2019), it has been observed that in numerous applications, higher
accuracy can be achieved by replacing existing models with Transformers. In particular, models
such as the Vision Transformer (Dosovitskiy et al., 2021) in image processing and the Diffusion
Transformer (Peebles & Xie, 2023) in generative tasks have demonstrated exceptional performances
in a wide variety of tasks. These examples demonstrate how effective and versatile Transformers are
for a diverse range of purposes.

Although the high performance of Transformers has led to their widespread use in practice, there are
ongoing attempts to theoretically analyze what exactly contributes to their superior performance. In
particular, one important aspect of Transformers is their representational capabilities. Previous stud-
ies have explored from a variety of angles why Transformers have high expressive capacity and can
memorize vast amounts of data (Edelman et al., 2022; Gurevych et al., 2022; Takakura & Suzuki,
2023). For example, it has been shown that Transformers are universal approximators (having the
ability to approximate arbitrary functions) (Yun et al., 2019) or that a particular Transformer config-
uration can memorize a given set of data (Kim et al., 2023; Kajitsuka & Sato, 2023; Mahdavi et al.,
2023; Madden et al., 2024).

Nevertheless, while various studies have suggested that Transformers are indeed capable of mem-
orizing data, our understanding of how efficiently they can do so remains limited. Specifically, it
is not yet fully clear how certain characteristics of Transformers, such as parameter sharing, influ-
ence the reduction of model parameters and overall efficiency with respect to their memorization
capacity, the minimum size of networks required for memorizing any sequence of a given number
of data.

There are several key advantages to investigating whether a Transformer can efficiently memorize
data, such as the possibility of gaining a better understanding of Transformer’s strengths and pro-
viding useful insights for model design and selection. In addition, knowledge of memorization
efficiency can provide important information for evaluating generalization error (Belkin et al., 2019;
Nakkiran et al., 2021). Alternatively, if it turns out that Transformers do not offer a significant
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efficiency advantage over feed-forward networks, it may suggest that currently widely used Trans-
formers may in fact be substitutable for feed-forward networks.

This paper investigates the efficiency of Transformers in achieving data memorization by analyzing
the necessary and sufficient model complexity for this task. To be more precise, we establish both
upper and lower bounds on the number of parameters needed for memorization in the next-token
prediction setting and demonstrate that they are of the same order up to logarithmic factors, thereby
showing that Transformers can achieve data memorization with nearly optimal efficiency.

Furthermore, the upper bound on memorization capacity in the next-token prediction setting can
be naturally extended to the sequence-to-sequence setting. This upper bound is also proved to be
optimal up to logarithmic factors in the sequence-to-sequence setting, at least for Transformers with
the hardmax function.

2 RELATED WORK

MEMORIZATION CAPACITY

Research on memorization capacity began at least as late as the 1960s (Cover, 1965; Nilsson, 1965;
Minsky & Papert, 1969). Specifically, Nilsson (1965) showed that one-hidden-layer neural networks
with N − 1 nodes is able to compute any label assignments for N data points. Later, Baum (1988)
exhibited that ⌈N/d⌉ neurons are sufficient for one-hidden-layer neural networks with threshold
units to memorize any set of N input-label pairs with the input dimension d, and Huang & Babri
(1998); Zhang et al. (2021) extended the results to more general activation functions.

The analysis of memorization capacity is closely linked to the concept of the Vapnik-Chervonenkis
(VC) dimension. While the memorization capacity of a model refers to the minimum size of the
model required for memorizing any tuple of N input-label pairs for some N , the VC dimension
considers whether the model is capable of shattering, that is, memorizing any possible label assign-
ments for some set of N input points, which in turn provides a lower bound on the memorization
capacity. For example, Goldberg & Jerrum (1995) estimated that the VC dimension of a feed-
forward network with ReLU activation functions and W parameters is at most O(W 2) by reducing
the network to a boolean formula. From this upper bound, it can be inferred that a feed-forward
network with ReLU activation functions requires at least Ω(

√
N) parameters to memorize arbitrary

N data points. Bartlett et al. (2019) further refined this analysis by examining the behavior of the
network as a function of its parameters and analyzing it layer by layer, and demonstrated that the
VC dimension of a ReLU network with width W and depth L is O(WL logW ).

Remarkably, Park et al. (2021) proposed a construction method under the assumption that the data
points are separated by at least δ, showing that a feed-forward network using sigmoid or ReLU
activation functions with a sub-linear parameter order O(N2/3 + log δ) can memorize N data
points. Later, Vardi et al. (2022) demonstrated that, under similar assumptions, a ReLU network
with O(

√
N logN) parameters suffices for memorizing arbitrary N data points. This result is opti-

mal up to logarithmic factors, as it matches the lower bound Ω(
√
N) implied by the VC dimension

discussed above. Note that the assumption that data points are well separated is crucial to achieve
sub-linear memorization capacity; in fact, it has been shown that at least (N − 1)/2 parameters are
required to memorize arbitrary N distinct data points without such separation (Sontag, 1997). Ad-
ditionally, Siegel (2024) proved that Ω(N) parameters are necessary for memorizing N data points
when the separation δ between data points is exponentially small with respect to N .

Memorization capacity is not only theoretically intriguing but also practically significant. As the
model size increases, classical learning theory predicts that the training error decreases while the
generalization error follows a U-shaped curve. However, recent observations of the double descent
phenomenon (Belkin et al., 2019; Nakkiran et al., 2021) revealed that after achieving zero training
loss, the generalization error begins to decrease again. Analyzing memorization capacity helps iden-
tify the critical model size at which this shift occurs, providing valuable insights into the dynamics
of model performance.
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Table 1: Comparisons between our results and related work regarding the memorization capacity of Trans-
formers. The variable ω in the bounds presented by Madden et al. (2024) represents the vocabulary
size, or the number of distinct word vectors that appear in input sequences.

Paper Setting Input #layers Upper bound Lower bound
Kim et al.
(2023) seq-to-seq token-wise

(r, δ)-separated Õ(n+
√
nN) Õ(n+

√
nN) -

Mahdavi
et al. (2023) next-token linearly

independent 1 O(d2N/n) -

Kajitsuka &
Sato (2023) seq-to-seq token-wise

(r, δ)-separated 1 O(dnN + d2) -

Madden
et al. (2024) next-token with positional

encoding 1 O(ωN) Ω(ωN)

Ours next-token token-wise
(r, δ)-separated Õ(

√
N) Õ(

√
N) Ω(

√
N)

seq-to-seq token-wise
(r, δ)-separated Õ(

√
nN) Õ(

√
nN) Ω

(√
nN

log(nN)

)

EXPRESSIVITY OF TRANSFORMERS

One of the foundational studies on the representation power of Transformers is the work by Yun et al.
(2019), who demonstrated that Transformers are universal approximators. Their proof already incor-
porates the idea of constructing a contextual mapping from data points to contexts and linking these
context ids to labels. Kim et al. (2023), whose work is most closely related to our work, improved
their contextual mapping approach and demonstrated that this mapping, constructed using 2n layers
of self-attention for N input sequences of length n, allows for memorization with Õ(n +

√
nN)

parameters under the same assumption that data points are well separated as in Park et al. (2021);
Vardi et al. (2022). Later, Kajitsuka & Sato (2023) showed that a single-layer, single-head Trans-
former already possesses memorization capacity under the same assumption, while self-attention
with hardmax does not. In contrast to the studies mentioned above, Mahdavi et al. (2023) demon-
strated that under the assumption that data points are linearly independent, a multi-head attention
with H heads and embedding dimension d > n can memorize Ω(Hn) data points in a next-token
prediction like setting. Madden et al. (2024) proved upper and lower bounds on the memorization
capacity of one-layer Transformers with parameters of infinite precision in the next-token predic-
tion setting. Chen & Zou (2024) investigated the behavior of Transformers with varying depths,
and specifically demonstrated that a single-layer Transformer can achieve memorization if input se-
quences are sufficiently zero-padded. However, they noted that their objective was not to explore
efficient constructions. The comparisons between our results and related work are summarized in
Table 1. Note that all the papers listed here that investigate single-layer Transformers assume either
infinite parameter precision or do not consider the bit-length required to represent parameters.

In addition to memorization capacity, there are studies highlighting other perspectives on Transform-
ers, including their function approximation capacity (Gurevych et al., 2022; Takakura & Suzuki,
2023; Jiang & Li, 2024), and their ability to efficiently represent sparse functions (Edelman et al.,
2022; Bhattamishra et al., 2023; Sanford et al., 2023; Trauger & Tewari, 2024; Wang et al., 2024b).

3 PRELIMINARIES

3.1 NOTATION

We denote vectors and matrices by bold lowercase and uppercase letters, respectively. Given a
vector v, we denote its i-th element as vi. Given a matrix A, we denote its i-th row as Ai,:, its
j-th column as A:,j and the element at position (i, j) as Ai,j . For a natural number m ∈ N+, we
use [m] to denote the set {1, . . . ,m}. In the context of the self-attention mechanism, we use σS to
represent the column-wise softmax function. Specifically, for a matrix A ∈ Ra×b, σS [A] ∈ Ra×b is
calculated by σS [A]i,j := exp(Ai,j)/

∑a
k=1 exp(Ak,j). Likewise, we use σH to denote the column-

wise hardmax function. Note that if there are multiple values in a column, its outputs are normalized
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so that they sum up to 1. Mathematically, for a matrix A ∈ Ra×b, σH [A] ∈ Ra×b is calculated as
follows.

σH [A]i,j :=

{
1/|Ij | if Ai,j = maxk Ak,j ,

0 otherwise,
(1)

where Ij := argmaxk Ak,j := {k′ ∈ [a] | Ak′,j = maxk Ak,j} for any j ∈ [b]. We use σR to
denote the ReLU activation function, that is, σR[x] := max(0, x). Unlike σS and σH , σR is always
applied element-wise, regardless of whether the input is a vector or a matrix. For any natural number
x ∈ N, BINi:j(x) ∈ N represents the sequence of bits from the i-th bit to the j-th bit (counting from
the left) of x, interpreted as a natural number. For a vector v ∈ Ra, the L2 norm of v is denoted by
∥v∥2 :=

∑a
i=1 v

2
i . We use standard asymptotic notation. Specifically, f(n) = O(g(n)) indicates

that the function f grows at most as fast as g for sufficiently large n, and f(n) = Õ(g(n)) represents
that f grows at most as fast as g, up to logarithmic factors. Likewise, f(n) = Ω(g(n)) means that
the function f grows at least as fast as g for sufficiently large n. f(n) ≲ g(n) means that there
exists a positive constant c such that f(n) ≤ cg(n) holds.

In this paper, we basically use n to denote the length of an input sequence, N to denote the number
of input sequences, C to denote the number of classes, and d to denote the dimensionality of each
token. Additionally, index i is typically used to refer to the position of input sequences, while index
k is used to refer to the position of the token within an input sequence.

3.2 TRANSFORMER BLOCK

In this subsection, we introduce the architecture of Transformers (Vaswani et al., 2017). We ba-
sically follow the notations by Kim et al. (2023). Transformers are defined by stacking multiple
Transformer blocks, each of which consists of a self-attention layer and a feed-forward layer.

Self-attention layer: Given an input sequence Z ∈ Rm×n, the output of a self-attention layer
F (SA)

l : Rm×n → Rm×n at block l ∈ [L] is calculated by

F (SA)
l (Z) := Z +

H∑
h=1

W
(O)
hl W

(V )
hl ZσS

[(
W

(K)
hl Z

)⊤ (
W

(Q)
hl Z

)]
∈ Rm×n, (2)

where W
(V )
hl , W

(K)
hl , W

(Q)
hl ∈ Rs×m and W

(O)
hl ∈ Rm×s are value, key, query and projection

matrices at head h ∈ [H] with head size s, respectively.

Feed-forward layer: The output H ∈ Rm×n of the self-attention layer at block l is then passed to
the feed-forward layer, which performs the following token-wise operation:

F (FF)
l (H):,k := H:,k +W

(2)
l σR

[
W

(1)
l H:,k + b

(1)
l

]
+ b

(2)
l ∈ Rm (k ∈ [n]), (3)

where W
(1)
l ∈ Rq×m and W

(2)
l ∈ Rm×q are weight matrices with hidden dimension q, and b

(1)
l ∈

Rq and b
(2)
l ∈ Rm are bias terms.

Using the self-attention layer and the feed-forward layer, the Transformer block Fl : Rm×n →
Rm×n at block l ∈ [L] is defined as a composition of these two layers, that is, Fl := F (FF)

l ◦F (SA)
l ,

and the whole architecture of the Transformer N : Rd×n → R1×n is expressed by

N := Eout ◦ FL ◦ · · · ◦ F1 ◦ Ein, (4)

where Ein : Rd×n → Rm×n and Eout : Rm×n → R1×n are token-wise linear mappings.

In a Transformer, the width is determined by the combination of self-attention layers and feed-
forward layers. According to the definition proposed by Kim et al. (2023), the width of the Trans-
former model is defined as max(m, sH, q). We define the depth of a Transformer by the number of
blocks L.
Remark 3.1. The use of in/out token-wise linear mappings comes from the fact that Transformer
blocks by definition have the same input and output dimensions. The token-wise linear mappings
can be removed at the cost of a linear dependence of the number of parameters required for memo-
rization on the embedding dimension d.

4
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3.3 BIT COMPLEXITY

In this paper, we consider not only the number of parameters but also the number of bits required
to represent the model. Specifically, we adopt the definition of bit complexity proposed by Vardi
et al. (2022). According to this definition, the bit complexity of a parameter is defined as the number
of bits needed to represent that parameter. The bit complexity of a model is then defined as the
maximum bit complexity among its individual parameters. It is important to note that by multiplying
the bit complexity of the model by the number of parameters, we can estimate the total number of
bits required to represent the entire model.

4 MEMORIZATION CAPACITY OF TRANSFORMERS

In this section, we state the main theorems of this paper regarding the optimal memorization capacity
of Transformers. Section 4.1 defines the memorization capacity of Transformers and discuss the
main challenge behind this concept. In Sections 4.2 and 4.3, we provide upper and lower bounds
on the number of parameters required for Transformers to achieve memorization in the next-token
prediction setting and the sequence-to-sequence prediction setting, respectively.

4.1 PROBLEM SETTING

The aim of this study is to analyze the memorization capacity of Transformers. Informally, mem-
orization capacity refers to the minimum size of a model that can memorize a specific number of
arbitrary data points. To be more precise, let X and Y be input space and output space, respectively.
Then, given N input-label pairs (X(1), y(1)), . . . , (X(N), y(N)) ∈ X × Y , we are interested in the
model complexity of a model f : X → Y such that f(X(i)) = y(i) holds for any i ∈ [N ]. In the
case of Transformers, the input space X consists of input sequences made up of n tokens, each of
which is a d-dimensional vector. Hence, we define the input space X as X := Rd×n.

Without any assumptions on the input data, it has been shown by Sontag (1997), that a linear order
of parameters is required to memorize arbitraryN data points. To achieve a sub-linear memorization
capacity, in this paper, we assume that the data points are well separated, a common assumption in
prior work (Park et al., 2021; Vardi et al., 2022; Kim et al., 2023; Kajitsuka & Sato, 2023; Siegel,
2024). In the case of Transformers, this concept is formalized as token-wise (r, δ)-separatedness
(Kim et al., 2023; Kajitsuka & Sato, 2023).

Assumption 4.1 (Token-wise separatedness). Let X(1), . . . ,X(N) ∈ Rd×n be N input sequences,
each of which consists of n word vectors with its dimension d. Then, we say that X(1), . . . ,X(N)

are token-wise (r, δ)-separated for some r, δ > 0 if the following two conditions are satisfied:

1. for every i ∈ [N ] and k ∈ [n], ∥X(i)
:,k∥2 ≤ r holds.

2. for every i, j ∈ [N ] and k, l ∈ [n], either X(i)
:,k = X

(j)
:,l or ∥X(i)

:,k −X
(j)
:,l ∥2 ≥ δ holds.

The notion of token-wise (r, δ)-separatedness ensures that the word vectors appearing in the input
sequences have an L2 norm of at most r, and are separated by at least δ in L2 norm from each other.

The main difficulty of memorization with Transformers, compared with feed-forward networks, lies
in the fact that tokens with identical values do not necessarily correspond to the same label. Instead,
it is crucial to capture the context in which each token appears within the entire input sequence. In
Transformers, while feed-forward layers operate on individual tokens, self-attention layers are the
only place that enables interactions between tokens within the input sequence. Therefore, the central
question we consider in this paper is:

how efficiently can self-attention layers capture the context of tokens?

To explore this issue, we analyze both upper and lower bounds on the number of parameters re-
quired for memorization with Transformers in two settings: next-token prediction and sequence-to-
sequence prediction.

5
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4.2 NEXT-TOKEN PREDICTION SETTING

4.2.1 UPPER BOUND

First, given N input sequences of length n, consider the problem setting in which a Transformer
memorizes labels corresponding to the n-th token of all input sequences. We call this task next-
token prediction setting. In this problem setting, how many parameters does a Transformer archi-
tecture require? Surprisingly, Õ(

√
N) is sufficient, that is, the input length n has almost no effect

on the number of parameters required for memorization, as the following theorem states.

In the next theorem, F (FF)
1 and F (FF)

2 represent feed-forward networks of arbitrary depth, unlike
eq. (3), which is limited to two layers. Note that deep feed-forward networks can also be imple-
mented with standard Transformers, by setting the projection matrix of the self-attention layer in
each block to zero. Furthermore, the assumption of consistency on labels in Theorem 4.1 is a neces-
sary requirement to perform memorization with a Transformer, due to its permutation equivariance.

Theorem 4.1 (Next-token prediction). Let (X(1), y(1)), . . . , (X(N), y(N)) ∈ Rd×n × [C] be a
sequence of input-label pairs such that

1. (X(1), y(1)), . . . , (X(N), y(N)) are consistently labeled, in the sense that for any i, j ∈
[N ], we have y(i) = y(j) if

X(i)
:,n = X(j)

:,n and X(i) = X(j) up to permutations. (5)

2. X(1), . . . ,X(N) are token-wise (r, δ)-separated for some r ≥ 1 and 0 < δ ≤ 1.

Then, there exists a Transformer N : Rd×n → Rn with width 14 and depth Õ(
√
N) that memorizes

the dataset, that is,

N
(
X(i)

)
n
= Eout ◦ F (FF)

2 ◦ F (SA) ◦ F (FF)
1 ◦ Ein

(
X(i)

)
n
= y(i) (6)

holds for every i ∈ [N ], as long as n,C, rδ−1 = NO(1) as N → ∞.

The formal statement of Theorem 4.1 and its proof can be found in Appendix B.1.1.
Remark 4.1 (Deep sets). In fact, Theorem 4.1 can be extended to deep sets (Zaheer et al., 2017),
which is a popular architecture to model a mapping from sets to labels. For details on this result,
see Appendix D.
Remark 4.2 (Embedding layer). A similar result holds for a Transformer with an embedding layer.
However, in this case, the presence of an embedding layer introduces a dependency on the size of
the vocabulary, which may result in a non-optimal order of parameters in the worst-case scenario.
Details regarding this discussion can be found in Appendix E.
Remark 4.3 (Dependence on d). The Transformer architecture defined by eq. (4) includes token-
wise linear mappings Ein : Rd → Rm and Eout : Rm → Rd, leading to Õ(d +

√
N) parameters

for a Transformer with depth Õ(
√
N) and width 14. As noted by Vardi et al. (2022) and Kim et al.

(2023), this dependence on the dimension d is unavoidable to preserve the information of the input
tokens.

Theorem 4.1 demonstrates that as long as the dimension d is of the order d = Õ(
√
N), the Trans-

former with a single self-attention layer can memorize N input sequences and their labels for next-
token prediction with Õ(

√
N) parameters, showing negligible dependence on the input length n.

In contrast, to accomplish the same task with a feed-forward network, it is necessary to use d × n
parameters to retain the information of the input sequence in Rd×n. This illustrates a significant
efficiency advantage of Transformers over feed-forward networks, thanks to parameter sharing.

4.2.2 PROOF OUTLINE OF THEOREM 4.1

Here we provide an outline of the proof of Theorem 4.1. See Appendix B.1.1 for its full proof.

The proof strategy is to construct a contextual mapping as in Yun et al. (2019), Kim et al. (2023)
and Kajitsuka & Sato (2023), and then construct a mapping from the context id to the label. Here, a

6
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contextual mapping is a function used to distinguish tokens in each input sequence with the following
properties:

Definition 4.1 (Contextual mapping). Let X(1), . . . ,X(N) ∈ Rd×n be input sequences. Then, a
map CM : Rd×n → Rn is called an (r, δ)-contextual mapping if the following two conditions
hold:

1. For any i ∈ [N ] and k ∈ [n],
∣∣CM(X(i))k

∣∣ ≤ r holds.

2. For any i, j ∈ [N ] and k, l ∈ [n] such that X(i)
:,k ̸= X

(j)
:,l or X(i) ̸= X(j) up to permuta-

tions,
∣∣CM(X(i))k − CM(X(j))l

∣∣ ≥ δ holds.

In particular, CM(X(i))k is called a context id of the k-th token in X(i).

Intuitively, the two conditions above ensure that the contextual mapping is injective from “distinct”
data points to scalars. If such a mapping can be constructed, then a mapping from context ids to
labels can be realized using a feed-forward network with Õ(

√
N) parameters, as shown by Vardi

et al. (2022). In particular, if we can associate each distinct input sequence with a unique value,
referred to as a sequence id, then the context id of, for example, the k-th token in X(i) can be
constructed from the sequence id of X(i) and the token vector X(i)

:,k . Therefore, the primary focus
of our proof is on how to construct a mapping from each input sequence to its sequence id using a
feed-forward network and a single self-attention layer.

From a high-level perspective, our goal is to construct a feed-forward network ϕ : Rd → R with
Õ(

√
N) parameters such that the sums

n∑
k=1

ϕ(X
(1)
:,k ), . . . ,

n∑
k=1

ϕ(X
(N)
:,k ) (7)

are well-separated 1. The sum
∑n

k=1 ϕ(X
(i)
:,k ) (i ∈ [N ]) is then used as the sequence id of X(i).

Crucial observations for constructing ϕ with Õ(
√
N) parameters are as follows.

1. To distinguish N input sequences, it is sufficient to focus on at most N distinct word
vectors. More precisely, givenN input sequences, there are at mostN distinct word vectors
such that the input sequences can be identified by counting occurrences of these N words
A = {v1, . . . ,vN} ⊂ Rd (Lemma B.1).

2. Although a feed-forward network requires Ω(
√
N) parameters to memorize N data points

and their labels (Goldberg & Jerrum, 1995), a network that outputs zero for additional data
points not amongN data points can be constructed without significantly affecting the order
of the parameter count (Lemma C.1). Together with the first observation, all we need is to
construct a feed-forward network ϕ : Rd → R such that

n∑
k=1,X

(1)
:,k ∈A

ϕ(X
(1)
:,k ), . . . ,

n∑
k=1,X

(N)
:,k ∈A

ϕ(X
(N)
:,k ) (8)

are well-separated.
3. The final key observation is that rather than directly constructing ϕ, we first consider the

high-dimensional representation. Concretely, given arbitrary bijection g : A → [N ], we
can map each input sequence X(i) to a high-dimensional vector X̃(i) ∈ RN as follows:

X̃(i) :=

n∑
k=1,X

(i)
:,k∈A

e
g(X

(i)
:,k )
, (9)

where e
g(X

(i)
:,k )

∈ {0, 1}N is a one-hot vector with 1 only in the g(X(i)
:,k )-th position. While

X̃(1), . . . , X̃(N) are distinct from the first observation and suitable candidates for sequence
1For simplicity, here we assume that the input sequences X(1), . . . ,X(N) are distinct up to permutations.
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ids, it requires Ω(N) parameters to express theseN -dimensional vectors with feed-forward
networks. This problem can be circumvented by compressing the high-dimensional vectors
into scalars using an adequate vector v, and we define ϕ by ϕ(x) := v⊤eg(x).

To ensure that a feed-forward network with Õ(
√
N) parameters can indeed implement the function

ϕ, we need to carefully analyze how separated the compressed versions of the high-dimensional rep-
resentations X̃(1), . . . , X̃(N) are. Detailed proof of this implementation is provided in Lemma B.3.

4.2.3 LOWER BOUND

In this subsection, we evaluate the minimal model complexity required for memorization with Trans-
formers in the next-token prediction setting to determine how close to optimal Theorem 4.1 is.

First, notice that the model obtained in Theorem 4.1 is optimal, in terms of bit counts.
Remark 4.4 (Optimality in terms of bit counts). As previously discussed in Remark 4.3, the Trans-
former model obtained in Theorem 4.1 has Õ(

√
N) parameters as long as d = Õ(

√
N). On the

other hand, the bit complexity of the model is Õ(log d +
√
N) (see the formal statement in Ap-

pendix B.1.1). Therefore, if d = Õ(
√
N), the total number of bits required to represent the model

is Õ(N). Given that there are 2N possible label assignments for N distinct data points with binary
labels, Õ(N) bits are optimal up to logarithmic factors for this setting. The more general case where
bit complexity is restricted to Õ(N ϵ) for some ϵ ∈ [0, 1/2] is discussed in Appendix F.

Having established the optimality in terms of bit counts, we now turn to evaluating how efficient the
number of parameters of the Transformer model considered in Theorem 4.1 is. The next theorem
provides a lower bound on the number of parameters required for memorization in the next-token
prediction setting.
Theorem 4.2 (Lower bound). Suppose a Transformer N : Rd×n → Rn defined by eq. (4) can
shatter a set of N distinct input sequences X(1), . . . ,X(N) ∈ Rd×n with X(i)

:,k = X
(i)
:,1 for any

i ∈ [N ] and k ∈ [n], in the sense that for any label assignments y(1), . . . , y(N) ∈ {0, 1}, there are
parameters with which N (X(i))n = y(i) holds for any i ∈ [N ]. Then, the Transformer N has at
least Ω(

√
N) parameters.

The proof of this theorem can be found in Appendix B.1.2. This result indicates that the Transformer
model described in Theorem 4.1 is also optimal in terms of the number of parameters. Specifically,
since memorization in the next-token prediction setting requires the ability to distinguish N input
sequences, this result provides the following crucial insight.

A Transformer with a single layer of self-attention already possesses necessary and sufficient
expressive capacity to identify input sequences.

In fact, as indicated in the proof outline in Section 4.2.2, we only employ the self-attention layer as
an averaging operation in the model obtained by Theorem 4.1. The observation that simple averag-
ing provides sufficient representational power has been confirmed experimentally by Yu et al. (2022)
with their PoolFormer architecture. In this paper, we provide theoretical support by demonstrating
that a Transformer with just a simple averaging operation already has optimal memorization capac-
ity. We also conducted experiments on two real-world datasets and a randomly generated dataset,
confirming that even a single layer of self-attention, as averaging, possesses sufficient representa-
tional capacity for memorization. For further details, please refer to Appendix H.

4.3 SEQUENCE-TO-SEQUENCE PREDICTION SETTING

Next, we consider the problem setting in which each token in an input sequence is assigned some
label and a Transformer memorizes them all. We call this task a sequence-to-sequence prediction
setting, or seq-to-seq prediction for short.

It is readily apparent that the seq-to-seq prediction can be regarded as rearranging the input sequence
so that each token is placed at the end of the sequence, and then performing next-token prediction
on nN input sequences obtained in this way. From this observation, we have the following corollary
from Theorem 4.1.
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Corollary 4.1 (Seq-to-seq prediction). Let (X(1),y(1)), . . . , (X(N),y(N)) ∈ Rd×n × [C]n be a
sequence of input-label pairs such that

1. (X(1),y(1)), . . . , (X(N),y(N)) are consistently labeled, in the sense that for any i, j ∈
[N ] and k, l ∈ [n], we have y(i)k = y

(j)
l if

X
(i)
:,k = X

(j)
:,l and X(i) = X(j) up to permutations. (10)

2. X(1), . . . ,X(N) are token-wise (r, δ)-separated for some r ≥ 1 and 0 < δ ≤ 1.

Then, there exists a Transformer N : Rd×n → Rn with width 14 and depth Õ(
√
nN) that memo-

rizes the dataset, that is,

N
(
X(i)

)
k
= Eout ◦ F (FF)

2 ◦ F (SA) ◦ F (FF)
1 ◦ Ein

(
X(i)

)
k
= y

(i)
k (11)

holds for every i ∈ [N ] and k ∈ [n], as long as C, rδ−1 = (nN)O(1) as nN → ∞.
Remark 4.5 (Sparse Transformers). While Corollary 4.1 demonstrates that a Transformer with a
single-layer self-attention can achieve memorization in the seq-to-seq prediction setting, it inevitably
requires O(n2) computational complexity due to the self-attention mechanism. In line with recent
efforts to improve the scalability of Transformers by making attention maps sparse (Zaheer et al.,
2020; Yun et al., 2020), using two self-attention layers and appending an additional token to the
input sequence allows us to achieve the same behavior with an O(n) connections without affecting
the order of parameter counts. This idea of aggregating global information into the additional token
has gained interest in recent studies (Darcet et al., 2023; Wang et al., 2024a).

This corollary shows that at least Õ(
√
nN) parameters with bit complexity Õ(

√
nN) are enough to

memorize N input sequences of input length n. The next question is: is this order optimal for the
seq-to-seq prediction setting? As in the case of next-token prediction setting (Remark 4.4), we can
leverage a similar argument to show that this is optimal, at least in terms of bit counts.

Remark 4.6 (Optimality in terms of bit counts). If d = Õ(
√
nN), the construction by Corollary 4.1

uses Õ(
√
nN) parameters with bit complexity Õ(

√
nN) to memorize N input sequences of input

length n, which amounts to Õ(nN) bits. If all word vectors in input sequences are different, there
are 2nN binary label patterns. Therefore, to memorize such patterns, the number of states of the
model must be at least 2nN , which means that log 2nN = nN bits are required.

Unlike the next-token prediction setting, it is challenging to analyze the optimal lower bound on the
number of parameters necessary to memorize N input sequences with input length n for the seq-to-
seq prediction setting, mainly due to the presence of the softmax function. However, we partially
answer this question by considering a Transformer that uses not the softmax function, but instead
the hardmax function, often viewed as an approximation of the softmax.

More rigorously, we introduce the following self-attention layer with the hardmax function, which
we call the hard attention layer. For each block l ∈ [L] and its input Z ∈ Rm×n, the hard attention
layer at block l calculates

F (HA)
l (Z) := Z +

H∑
h=1

W
(O)
hl W

(V )
hl ZσH

[(
W

(K)
hl Z

)⊤ (
W

(Q)
hl Z

)]
∈ Rm×n, (12)

where σH : Rn×n → [0, 1]n×n is the column-wise hardmax function (see eq. (1) for its definition),
and W

(V )
hl , W

(K)
hl , W

(Q)
hl ∈ Rs×m and W

(O)
hl ∈ Rm×s are value, key, query and projection

matrices at head h ∈ [H] with head size s, respectively. It is worth noting that a simple averaging
operation can also be implemented using a hard attention layer by setting key and query matrices to
zero.

With this definition, we demonstrate that the number of parameters by Corollary 4.1 is actually
optimal up to logarithmic factors, at least for Transformers with the hardmax function. To state
the theorem, let W be the number of parameters and θ ∈ RW be a vector of all parameters of the
Transformer. We also denote by Nθ the Transformer to emphasize the presence of the parameter
vector θ.

9
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Theorem 4.3 (Lower bound). Let Nθ : Rd×n → Rn be a Transformer defined by eq. (4) with self-
attention layers replaced with hard attention layers (eq. (12)). In addition, suppose Nθ can shatter
a set of N input sequences X(1), . . . ,X(N) ∈ Rd×n with X(i)

:,k ̸= X
(j)
:,l for any i, j ∈ [N ] and

k, l ∈ [n] (i ̸= j or k ̸= l), in the sense that for any label assignments y(1), . . . ,y(N) ∈ {0, 1}n,
there is a parameter vector θ ∈ RW such that

Nθ(X
(i)) = y(i) (13)

for any i ∈ [N ]. Then, the Transformer has at least W = Ω
(√

nN
log(nN)

)
parameters.

The proof of Theorem 4.3 builds on the approach used by Bartlett et al. (2019) to evaluate a lower
bound on the VC dimension of feed-forward networks. Specifically, considering a Transformer as
a function in variable its parameter vector, we partition the parameter space of the Transformer in
such a way that, within each cell of this partition, the function can be expressed as a polynomial in
terms of its parameters, and then evaluate the number of cells and the properties of the polynomials
within those cells.

The key novelty of the proof lies in the analysis of how parameter sharing and the hardmax function
affect the memorization capacity of Transformers. Parameter sharing in Transformers allows the
model to effectively behave like a network with its width scaled by the number of tokens, without
actually increasing the number of parameters. However, the proof shows that merely increasing the
width by a factor of n does not lead to a fundamental improvement in the memorization capacity of
the Transformer. The full proof of Theorem 4.3 can be found in Appendix B.2.

Theorem 4.3 demonstrates that the number of parameters in the model from Corollary 4.1 is within
logarithmic factors of the optimal lower bound. In addition, it provides another crucial insight.
As shown in the next-token prediction setting, Transformers can identify N input sequences with
Õ(

√
N) parameters and single self-attention layer, which implies that they are capable of capturing

the context of each token. In contrast, the memorization capacity in the seq-to-seq setting is prov-
ably lower-bounded by Ω̃(

√
nN), which includes an additional

√
n factor compared to the Õ(

√
N)

bound in the next-token prediction setting. Therefore, in the seq-to-seq prediction setting, the pri-
mary bottleneck is not the contextual mapping of tokens, but rather the feed-forward layers’ capacity
to map this token-level contextual information to labels.

We conclude this section by leaving an open problem. Based on Theorem 4.3, for a Transformer to
memorize N sequences of length n with o(

√
nN) parameters, it is necessary to exploit the unique

characteristics of the softmax function, rather than using it as an approximation of hardmax.

Open Problem. Does a Transformer using the softmax function require Ω(
√
nN) parameters to

memorize N input-label pairs (X(1),y(1)), . . . , (X(N),y(N)) ∈ Rd×n × [C]n? Alternatively, is it
possible to construct a Transformer with o(

√
nN) parameters that can shatter arbitrary N token-

wise (r, δ)-separated input sequences in the seq-to-seq setting?

5 CONCLUSIONS

In this paper, we showed that in the next-token prediction setting, a Transformer with Õ(
√
N)

parameters can memorize N input sequences of length n and their labels, which we showed to be
optimal up to logarithmic factors. This result indicates that Transformers can perform next-token
prediction with almost no impact from the length of the input sequence. Notably, its proof indicates
that even a single self-attention layer used as an averaging operation possesses sufficient expressive
power to distinguish between input sequences efficiently. Furthermore, we demonstrated that in the
seq-to-seq prediction setting, Õ(

√
nN) parameters are also sufficient, and we proved that this is

optimal up to logarithmic factors, at least for Transformers using hardmax. These findings highlight
that the main bottleneck in seq-to-seq prediction tasks lies in the feed-forward layers’ capacity to
map each token to the corresponding label.

Given that a single layer of self-attention as an averaging operation suffices for distinguishing input
sequences from a memorization perspective, our results suggest that the advantages of using self-
attention might rather lie in the perspectives of optimization and generalization.
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NOTATION TABLE

Numbers and Arrays
a A scalar

a A vector

A A matrix

n The length of an input sequence

N The number of input sequences

C The number of output classes

d Embedding dimension

X(i) i-th input sequence, consisting of n tokens of embedding dimension d

Sets
{{. . . }} Multiset (see Definition A.1)

R Set of real numbers

NX Set of all multisets over the domain X
[m] Set of all integers from 1 to m

Indexing
ai Element i of vector a, with indexing starting at 1

Ai,j Element i, j of matrix A

A:,i Column i of matrix A
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Ai,: Row i of matrix A

Functions
∥x∥2 L2 norm of x

supp(m) Support of m (see Definition A.2)

BINi:j(x) The sequence of bits from the i-th bit to the j-th bit (counting from the left) of x

σS Softmax function

σH Hardmax function

σR ReLU activation function

F (HA) Hardmax-based self-attention mechanism with a skip-connection

F (SA) Softmax-based self-attention mechanism with a skip-connection

F (FF ) Feed-forward neural network with a skip-connection

Nθ Transformer with a parameter vector θ

Asymptotics
f(n) = O(g(n)) f grows at most as fast as g for sufficiently large n

f(n) = Õ(g(n)) f grows at most as fast as g for sufficiently large n, up to logarithmic factors

f(n) = Ω(g(n)) f grows at least as fast as g for sufficiently large n

f ≲ g There exists a positive constant c such that f ≤ cg holds

A DEFINITION OF MULTISETS

A multiset is a generalization of a set whose elements are allowed to be duplicated.

Definition A.1 (Multiset). A multiset over the domain X is identified by a function m : X → N,
which indicates the multiplicitym(x) of each element x ∈ X in the multiset. The set of all multisets
over the domain X is denoted by NX .

Definition A.2. The support of a multisetm ∈ NX is defined by supp(m) = {x ∈ X | m(x) > 0}.

In addition, the cardinality of a multiset m ∈ NX is defined by

|m| :=

{∑
x∈supp(m)m(x) if | supp(m)| <∞,

∞ otherwise,
(14)

and the multiset m is called finite if |m| <∞.

In this paper, we only consider finite multisets, and in an abuse of notation we sometimes denote a
fintie multiset m ∈ NX by {{x1, . . . , x|m|}} ∈ NX , where x1, . . . , x|m| ∈ X are possibly dupli-
cated elements.

The following assumption guarantees that each value of the multiset is separated by a certain amount,
and the token-wise separatedness in the analysis of Transformer’s memorization can be translated
into this assumption.

Assumption A.1 (Element-wise separatedness). Let X := Rd and m(1), . . . ,m(N) ∈ NX be a
sequence of finite multisets with m(i) = {{x(i)

1 , . . . ,x
(i)

|m(i)|}} for each i ∈ [N ]. Then, we say that

m(1), . . . ,m(N) are element-wise (r, δ)-separated for some r, δ > 0 if the following two conditions
are satisfied:

1. for every i ∈ [N ] and k ∈ [|m(i)|], ∥x(i)
k ∥2 ≤ r holds.

2. for every i, j ∈ [N ] and k ∈ [|m(i)|], l ∈ [|m(j)|], either x(i)
k = x

(j)
l or ∥x(i)

k −x
(j)
l ∥2 ≥ δ

holds.
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B PROOF OF MAIN RESULTS

In the following, we will extensively use the concept of multisets. For the definition of multisets
and the notation used in this paper, refer to Appendix A. We also use the operator ≲ frequently. See
Section 3.1 for its definition.

To prove Theorem 4.1, we present several lemmas. Lemma B.1 shows that to distinguish between
N distinct multisets, it suffices to focus on the occurrence counts of at most N values. Lemma B.2
establishes the existence of a function that computes sequence ids used to distinguish between N
different multisets. Finally, Lemma B.3 states that the function obtained from Lemma B.2 with
Lemma B.1 can be implemented using a feed-forward network with Õ(

√
N) parameters.

Definition B.1. Let A ⊂ X and m ∈ NX be a multiset. Then, we define the restriction of m to A
by

m|A(x) :=
{
m(x) if x ∈ A,

0 otherwise.
(15)

Lemma B.1. Let m(1), . . . ,m(N) ∈ NX be a sequence of distinct multisets. Then, there exists a
subset A ⊂ X with its cardinality at most N such that m(1)|A, . . . ,m(N)|A are distinct.

Proof. We prove the lemma by induction. The base case of N = 1 is obvious.

Suppose that the lemma is correct for the case N = k, and we prove the case for N = k + 1.

Let m(1), . . . ,m(k+1) ∈ NX be a sequence of distinct multisets. Then, by applying the assumption
to the first k multisets m(1), . . . ,m(k) ∈ NX , we have a subset A ⊂ X with its cardinality at most
k such that m(1)|A, . . . ,m(k)|A are distinct. If m(1)|A, . . . ,m(k+1)|A are distinct, there is nothing
to prove. So we assume that m(k+1)|A coincides with m(i)|A for some i ∈ [k]. Notice that for any
j ∈ [k] with j ̸= i, m(j)|A and m(k+1)|A are distinct by the assumption.

Since m(i) and m(k+1) are distinct, there is an element x ∈ X \A such that m(i)(x) ̸= m(k+1)(x).
Then, the subset A′ ⊂ X defined by A′ := A ∪ {x} is the desired set for the case N = k + 1.

In the next lemma, we say that scalars a1, . . . , am are (r, δ)-separated if |ai| ≤ r for all i ∈ [m] and
|ai − aj | ≥ δ for all i, j ∈ [m] with ai ̸= aj .

Lemma B.2. Let m(1), . . . ,m(N) ∈ NX be a sequence of finite and distinct multisets with
|m(i)| ≤ M for every i ∈ [N ]. Furthermore, let S ⊂ X be the union of all supports; that is,
S :=

⋃N
i=1 supp(m

(i)).

Then, there exists a function f : S → [⌈4N2|S|
√
π⌉] such that∑

x∈supp(m(1))

m(1)(x)f(x), . . . ,
∑

x∈supp(m(N))

m(N)(x)f(x) ∈ R (16)

are (4MN2|S|
√
π,
√
|S|)-separated.

Proof. Let g : S → [|S|] = {1, . . . , |S|} be an arbitrary bijective function. For each multiset m(i)

with i = 1, . . . , N , we define its high-dimensional representation by

m̃(i) :=
∑

x∈supp(m(i))

m(i)(x)eg(x) ∈ N|S|, (17)

where eg(x) ∈ {0, 1}|S| is a one-hot vector with 1 in the g(x)-th position. Since m(1), . . . ,m(N) are
distinct with |m(i)| ≤M for every i ∈ [N ], we have∥∥∥m̃(i) − m̃(j)

∥∥∥2
2
=
∑
x∈S

(
m(i)(x)−m(j)(x)

)2
≥ 1, (18)
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for any i, j ∈ [N ] with i ̸= j. , and the norm of each m̃(i) is upper-bounded by∥∥∥m̃(i)
∥∥∥
2
≤

∑
x∈supp(m(i))

m(i)(x)
∥∥eg(x)∥∥2 = |m(i)| ≤M. (19)

By applying Lemma G.1 to m̃(1), . . . , m̃(N), there is a unit vector v ∈ R|S| such that

1

N2

√
8

π|S|

∥∥∥m̃(i) − m̃(j)
∥∥∥
2
≤
∣∣∣v⊤

(
m̃(i) − m̃(j)

)∣∣∣ ≤ ∥∥∥m̃(i) − m̃(j)
∥∥∥
2

(20)

holds for any i, j ∈ [N ]. Let h be the function h : S → Z, x 7→ ⌈N2|S|
√
πvg(x)⌉. Hereafter, we

see that this function has the desired properties.

Let v := (⌈N2|S|
√
πv1⌉, . . . , ⌈N2|S|

√
πvN⌉)⊤ ∈ Z|S|, i.e., the vector approximating N2|S|

√
πv

with integers. The approximation error is estimated as follows:

∥∥N2|S|
√
πv − v

∥∥2
2
≤

|S|∑
i=1

(
N2|S|

√
πvi − ⌈N2|S|

√
πvi⌉

)2 ≤ |S|, (21)

which means that
∥∥N2|S|

√
πv − v

∥∥
2
≤
√
|S|. Notice that∑

x∈supp(m(i))

m(i)(x)h(x) =
∑

x∈supp(m(i))

m(i)(x) · ⌈N2|S|
√
πvg(x)⌉

=
∑

x∈supp(m(i))

m(i)(x) · v⊤eg(x)

= v⊤m̃(i) (22)

holds for every i ∈ [N ]. Then, the absolute value of the left-hand side is upper-bounded by∣∣∣∣∣∣
∑

x∈supp(m(i))

m(i)(x)h(x)

∣∣∣∣∣∣ =
∣∣∣v⊤m̃(i)

∣∣∣
≤ ∥v∥2∥m̃(i)∥2
≤ 2N2|S|

√
π ·M (23)

since the norm of v is upper-bounded by

∥v∥2 ≤
∥∥N2|S|

√
πv
∥∥
2
+
∥∥N2|S|

√
πv − v

∥∥
2

≤ N2|S|
√
π +

√
|S|

≤ 2N2|S|
√
π. (24)

On the other hand, for any i, j ∈ [N ] with i ̸= j, we have∣∣∣∣∣∣
∑

x∈supp(m(i))

m(i)(x)h(x)−
∑

x∈supp(m(j))

m(j)(x)h(x)

∣∣∣∣∣∣
=
∣∣∣v⊤

(
m̃(i) − m̃(j)

)∣∣∣
≥
∣∣∣N2|S|

√
πv⊤

(
m̃(i) − m̃(j)

)∣∣∣− ∣∣∣(N2|S|
√
πv − v

)⊤ (
m̃(i) − m̃(j)

)∣∣∣
≥
∣∣∣N2|S|

√
πv⊤

(
m̃(i) − m̃(j)

)∣∣∣− ∥∥N2|S|
√
πv − v

∥∥
2
·
∥∥∥m̃(i) − m̃(j)

∥∥∥
2

> 2
√
|S|
∥∥∥m̃(i) − m̃(j)

∥∥∥
2
−
√
|S|
∥∥∥m̃(i) − m̃(j)

∥∥∥
2

≥
√
|S|, (25)
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since eq. (20) implies∣∣∣N2|S|
√
πv⊤

(
m̃(i) − m̃(j)

)∣∣∣ = N2|S|
√
π
∣∣∣v⊤

(
m̃(i) − m̃(j)

)∣∣∣
≥ N2|S|

√
π · 1

N2

√
8

π|S|

∥∥∥m̃(i) − m̃(j)
∥∥∥
2

> 2
√
|S|
∥∥∥m̃(i) − m̃(j)

∥∥∥
2
. (26)

Finally, the output of the function h is always bounded by
|h(x)| = |⌈N2|S|

√
πvg(x)⌉| ≤ N2|S|

√
π + 1 (∀x ∈ S). (27)

Thus, by setting f(x) := h(x) + ⌊2N2|S|
√
π⌋, we have a desired function.

Lemma B.3 (Separation of multisets). Let X := Rd and m(1), . . . ,m(N) ∈ NX be a sequence of
multisets with m(i) = {{x(i)

1 , . . . ,x
(i)

|m(i)|}} for each i ∈ [N ]. Suppose that m(1), . . . ,m(N) satisfy
the following three conditions:

1. m(1), . . . ,m(N) are finite multisets whose cardinalities are at most M .

2. m(1), . . . ,m(N) are distinct.

3. m(1), . . . ,m(N) are element-wise (r, δ)-separated for some r ≥ 1, 0 < δ ≤ 1.

Let Cϕ := ⌈4N3
√
π⌉ and Rϕ := 20r(NM)2δ−1

√
πd. Then, there exists a neural network ϕ̃ :

Rd → R with width 12, depth

≲
√
N logN +

√
N

logN
·max{logRϕ, logCϕ}, (28)

(for the definition of ≲, see Section 3.1) and bit complexity bounded by

≲ log d+

√
N

logN
·max{logRϕ, logCϕ} (29)

such that ϕ̃(x) ∈ [⌈4N3
√
π⌉] ∪ {0} holds for any x ∈

⋃N
i=1 supp(m

(i)), and

|m(1)|∑
k=1

ϕ̃(x
(1)
k ), . . . ,

|m(N)|∑
k=1

ϕ̃(x
(N)
k ) (30)

are (4MN3
√
π, 1)-separated.

Proof. By applying Lemma B.1 to the sequence of distinct multisets m(1), . . . ,m(N), we have a
finite subset A ⊂ Rd with |A| ≤ N such that m(1)|A, . . . ,m(N)|A are distinct. Then, according to
Lemma B.2, there exists a function f : A→ [⌈4N2|A|

√
π⌉] such that∑

x∈supp(m(1)|A)

m(1)|A(x)f(x), . . . ,
∑

x∈supp(m(N)|A)

m(N)|A(x)f(x) (31)

are (4MN2|A|
√
π,
√
|A|)-separated, and in particular (4MN3

√
π, 1)-separated.

Hereafter, we consider a function ϕ : Rd → R such that

ϕ(x) :=

{
f(x) if x ∈ A,

0 otherwise,
(32)

and simulate ϕ by a neural network. Notice that the possible number of inputs for the function ϕ is
at most MN , and all outputs are natural numbers equal to or less than ⌈4N2|A|

√
π⌉ ≤ ⌈4N3

√
π⌉.

We define constants Rϕ and Cϕ by

Cϕ := ⌈4N3
√
π⌉, (33)

Rϕ := 20r(NM)2δ−1
√
πd. (34)
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Then, Lemma C.1 guarantees the existence of the feed-forward network ϕ̃ with width 12, depth

≲
√
N logN +

√
N

logN
·max{logRϕ, logCϕ}, (35)

and bit complexity bounded by

≲ log d+

√
N

logN
·max{logRϕ, logCϕ} (36)

such that for any i ∈ [N ] with m(i) = {{x(i)
1 , . . . ,x

(i)

|m(i)|}} and any k ∈ [|m(i)|], we have

ϕ̃(x
(i)
k ) =

{
f(x

(i)
k ) if x(i)

k ∈ A,

0 otherwise.
(37)

Thus, the outputs of ϕ̃ coincide with those of ϕ for all inputs x(i)
k with i ∈ [N ] and k ∈ [|m(i)|].

Finally, we verify that the neural network ϕ̃ actually satisfies the desired property. For any i ∈ [N ],
we have

|m(i)|∑
k=1

ϕ̃(x
(i)
k ) =

∑
x∈supp(m(i))

m(i)(x)ϕ(x)

=
∑

x∈supp(m(i))∩A

m(i)(x)f(x)

=
∑

x∈supp(m(i)|A)

m(i)|A(x)f(x). (38)

Thus, eq. (31) implies that
∑|m(1)|

k=1 ϕ̃(x
(1)
k ), . . . ,

∑|m(N)|
k=1 ϕ̃(x

(N)
k ) are (4MN3

√
π, 1)-separated.

B.1 NEXT-TOKEN PREDICTION SETTING

B.1.1 UPPER BOUND

Here we state the complete statement of Theorem 4.1 with its bit complexity. 2 Before moving
on to the theorem, we introduce a uniform attention layer; that is, a self-attention layer with the
softmax function replaced by simple averaging. For an input Z ∈ Rm×n, the uniform attention
layer calculates

F (UA)(Z) := Z +W (O)W (V ) 1

n

n∑
k=1

Z:.k (1, . . . , 1)︸ ︷︷ ︸
∈R1×n

∈ Rm×n, (39)

where W (V ) ∈ Rs×m and W (O) ∈ Rm×s are value and projection matrices with head size s,
respectively. A uniform attention layer is a subset of a self-attention layer as it can be implemented
using a self-attention layer by setting key or query matrices to zero.

In the next theorem, F (FF)
1 and F (FF)

2 represent feed-forward networks of arbitrary depth, unlike
eq. (3), which is limited to two layers.

Theorem B.1 (Next-token prediction). Let (X(1), y(1)), . . . , (X(N), y(N)) ∈ Rd×n × [C] be a
sequence of input-label pairs such that

1. (X(1), y(1)), . . . , (X(N), y(N)) are consistently labeled, in the sense that for any i, j ∈
[N ], we have y(i) = y(j) if

X(i)
:,n = X(j)

:,n and X(i) = X(j) up to permutations. (40)
2While the upper bounds provided in Theorem B.1 is in the form O(

√
N logN · logn), these upper bounds

can actually be reduced to O(
√

N log(nN)).
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2. X(1), . . . ,X(N) are token-wise (r, δ)-separated for some r ≥ 1 and 0 < δ ≤ 1.

Let R := 400
√
3dn3rN5δ−1π. Then, there exists a Transformer N : Rd×n → Rn with width 14,

depth

≲
√
N logN +

√
N

logN
·max{logR, logC}, (41)

(for the definition of ≲, see Section 3.1) and bit complexity bounded by

≲ log d+

√
N

logN
·max{logR, logC} (42)

that memorizes the dataset, i.e.,

N
(
X(i)

)
n
= Eout ◦ F (FF)

2 ◦ F (UA) ◦ F (FF)
1 ◦ Ein

(
X(i)

)
n
= y(i) (43)

holds for every i ∈ [N ].

Proof. For simplicity, we assume in this proof that there is no skip-connection in feed-forward
layers, as the modification for networks with skip-connections is straightforward. For details on
implementing the memorization results for feed-forward networks in Transformers, refer to Kim
et al. (2023).

For each input sequence X(i) with i ∈ [N ], we define its multiset expression m(i) ∈ N(Rd) by

m(i) : Rd → N,x 7→
∣∣∣{k ∈ [n]

∣∣∣X(i)
:,k = x

}∣∣∣ . (44)

The cardinality of m(i) for each i ∈ [N ] is at most n, and the token-wise (r, δ)-separatedness of
X(1), . . . ,X(N) implies that m(1), . . . ,m(N) are element-wise (r, δ)-separated. In addition, the
consistency on the labels are rephrased as follows: for any i, j ∈ [N ], we have y(i) = y(j) if
X

(i)
:,n = X

(j)
:,n and m(i) = m(j) hold.

Construction of F (FF)
1 : Applying Lemma B.3 to a sequence of all distinct multisets which appear

in {m(1), . . . ,m(N)}, we have a feed-forward network ϕ̃ : Rd → R with width 12, depth

≲
√
N logN +

√
N

logN
·max{logR1, logC1} (45)

with C1 := ⌈4N3
√
π⌉ and R1 := 20r(nN)2δ−1

√
πd, and bit complexity bounded by

≲ log d+

√
N

logN
·max{logR1, logC1} (46)

such that ϕ̃(X(i)
:,k ) ∈ [⌈4N3

√
π⌉] holds for any i ∈ [N ] and k ∈ [n], and∣∣∣∣∣∣

∑
x∈supp(m(i))

ϕ̃(x)−
∑

x∈supp(m(j))

ϕ̃(x)

∣∣∣∣∣∣ =
∣∣∣∣∣

n∑
k=1

ϕ̃(X
(i)
:,k )−

n∑
k=1

ϕ̃(X
(j)
:,k )

∣∣∣∣∣ ≥ 1 (47)

holds for any i, j ∈ [N ] such that m(i) ̸= m(j).

We extend the feed-forward network ϕ̃ to retain the information of the input token. Let V be a set of
all input tokens, that is, V = {X(i)

:,k | i ∈ [N ], k ∈ [n]}. Since the input sequences are token-wise
(r, δ)-separated, by applying Lemma C.2 to V , we have a feed-forward network F : Rd → R with
width 1, depth 2 and bit complexity log(3dr(nN)2

√
πδ−1) such that

0 ≤ F (X
(i)
:,k ) ≤ 10r(nN)2δ−1

√
πd (48)
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for every i ∈ [N ] and k ∈ [n], and ∣∣∣F (X(i)
:,k )− F (X

(j)
:,l )
∣∣∣ ≥ 2 (49)

for every i, j ∈ [N ] and k, l ∈ [n] with X
(i)
:,k ̸= X

(j)
:,l . Notice that the depth of the feed-forward

network ϕ̃ is at least 2. Thus, it is possible to parallelly attach the above 2-layer network F to the
first 2-layer of ϕ̃, and extend the hidden dimension of the remaining layers of ϕ̃ by one to propagate
the value of F to the last layer. Furthermore, we augment the output dimension by one more and pad
by 0, which is used to store the average value of ϕ̃. Let f (FF)1 : Rd → R3 be the network obtained
by the above procedure, that is, for any x ∈ Rd, the output of f (FF)1 is

f
(FF)
1 (x) = (ϕ̃(x), F (x), 0)⊤. (50)

Then, the width of f (FF)1 is that of ϕ̃ plus two, which is 14. The depth and the bit complexity of
f
(FF)
1 , on the other hand, remain the same, because the depth and the bit complexity of F is smaller

than those of ϕ̃. We also define a token-wise operation F (FF)
1 : Rd×n → R3×n by

F (FF)
1 (X):,k := f

(FF)
1 (X:,k) (k = 1, . . . , n). (51)

Construction of the self-attention layer: Let W (V ) ∈ R3×3 and W (O) ∈ R3×3 be any value
matrix and projection matrix such that their multiplication is

W (O)W (V ) =

(
0 0 0
0 0 0
1 0 0

)
. (52)

The output, which we denote by s
(i)
k ∈ R3, of the self-attention layer with the value matrix W (V )

and projection matrix W (O) for the input X(i) at index k ∈ [n] is calculated as

s
(i)
k := F (UA) ◦ F (FF)

1

(
X(i)

)
:,k

=
1

n

n∑
l=1

W (O)W (V )f
(FF)
1

(
X

(i)
:,l

)
+ f

(FF)
1

(
X

(i)
:,k

)

=
1

n

n∑
l=1

(
0 0 0
0 0 0
1 0 0

) ϕ̃(X
(i)
:,l )

F (X
(i)
:,l )

0

+

 ϕ̃(X
(i)
:,k )

F (X
(i)
:,k )

0


=

 ϕ̃(X
(i)
:,k )

F (X
(i)
:,k )

1
n

∑n
l=1 ϕ̃(X

(i)
:,l )

 . (53)

We verify that the right-hand side is a context id, in the sense of Definition 4.1. Fix any i, j ∈ [N ].
If X(i)

:,n ̸= X
(j)
:,n , then according to eq. (49), we have

∣∣∣F (X(i)
:,n)− F (X

(j)
:,n )
∣∣∣ ≥ 2. On the other hand,

if X(i) are not permutation of X(j), i.e., m(i) ̸= m(j), then eq. (47) implies that∣∣∣∣∣ 1n
n∑

k=1

ϕ̃(X
(i)
:,k )−

1

n

n∑
k=1

ϕ̃(X
(j)
:,k )

∣∣∣∣∣ ≥ 1

n
. (54)

Therefore, the difference of any two n-th outputs of the self-attention layer is lower-bounded by∥∥∥s(i)n − s(j)n

∥∥∥
2
=

∥∥∥∥∥∥∥
 ϕ̃(X

(i)
:,n)

F (X
(i)
:,n)

1
n

∑n
k=1 ϕ̃(X

(i)
:,k )

−

 ϕ̃(X
(j)
:,n )

F (X
(j)
:,n )

1
n

∑n
k=1 ϕ̃(X

(j)
:,k )


∥∥∥∥∥∥∥
2

≥ min

{∣∣∣F (X(i)
:,n)− F (X(j)

:,n )
∣∣∣ , ∣∣∣∣∣ 1n

n∑
k=1

ϕ̃(X
(i)
:,k )−

1

n

n∑
k=1

ϕ̃(X
(j)
:,k )

∣∣∣∣∣
}

≥ 1

n
(55)
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for any i, j ∈ [N ] such that either X(i)
:,n ̸= X

(j)
:,n or m(i) ̸= m(j) holds. As for the magnitude of each

output of the self-attention layer, it is upper-bounded by

∥∥∥s(i)n

∥∥∥
2
=

∥∥∥∥∥∥∥
 ϕ̃(X

(i)
:,n)

F (X
(i)
:,n)

1
n

∑n
k=1 ϕ̃(X

(i)
:,k )


∥∥∥∥∥∥∥
2

≤
∣∣∣ϕ̃(X(i)

:,n)
∣∣∣+ ∣∣∣F (X(i)

:,n)
∣∣∣+ ∣∣∣∣∣ 1n

n∑
k=1

ϕ̃(X
(i)
:,k )

∣∣∣∣∣
≤ ⌈4N3

√
π⌉+ 10r(nN)2δ−1

√
πd+ ⌈4N3

√
π⌉

≤ 20rn2N3δ−1
√
πd, (56)

where we used the assumption r ≥ 1 and δ ≤ 1 in the last line.

Construction of F (FF)
2 : What remains to do is construct a network f

(FF)
2 : R3 → R which

associates outputs of the self-attention layer with their corresponding labels. Specifically, since
we know from eqs. (55) and (56) that the sequence of unique elements in s

(1)
n , . . . , s

(N)
n are

(20rn2N3δ−1
√
πd, 1/n)-separated, by applying Lemma C.1 to N inputs s

(1)
n , . . . , s

(N)
n and their

labels y(1), . . . , y(N), we have a feed-forward network f (FF)2 : R3 → R with width 12, depth

≲
√
N logN +

√
N

logN
·max{logR2, logC} (57)

with R2 := 20 · 20rn2N3δ−1
√
πd · N2 · n ·

√
3π = 400

√
3dn3rN5δ−1π, and bit complexity

bounded by

≲

√
N

logN
·max{logR2, logC} (58)

such that f (FF)2 (s
(i)
n ) = y(i) for every i ∈ [N ]. In particular, this means that by defining a token-wise

operation F (FF)
2 : R3×n → Rn as

F (FF)
2 (X)k := f

(FF)
2 (X:,k) (k = 1, . . . , n), (59)

we have

F (FF)
2 ◦ F (UA) ◦ F (FF)

1

(
X(i)

)
:,n

= y(i) (60)

for every i ∈ [N ].

Model complexity: The width of the Transformer F (FF)
2 ◦ F (UA) ◦ F (FF)

1 is the maximum of
widths of F (FF)

1 , F (UA) and F (FF)
2 , which is max(14, 3, 12) = 14. The depth is upper-bounded by

the addition of depths of F (FF)
1 and F (FF)

2 plus one, which implies that the depth is

≲
√
N logN +

√
N

logN
·max{logR1, logC1}

+
√
N logN +

√
N

logN
·max{logR2, logC}

≲
√
N logN +

√
N

logN
·max{logR, logC} (61)
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with R := R2 = 400
√
3dn3rN5δ−1π ≥ max{logR1, logC1, logR2}. Likewise, the bit complex-

ity is

≲ log d+

√
N

logN
·max{logR1, logC1, logR2, logC}

≲ log d+

√
N

logN
·max{logR, logC}. (62)

B.1.2 LOWER BOUND

For convenience, we restate the statement of Theorem 4.2 below.
Theorem B.2. Suppose a Transformer N : Rd×n → Rn defined by eq. (4) can shatter a set of N
distinct input sequences X(1), . . . ,X(N) ∈ Rd×n with X(i)

:,k = X
(i)
:,1 for any i ∈ [N ] and k ∈ [n], in

the sense that for any label assignments y(1), . . . , y(N) ∈ {0, 1}, there are parameters with which
N (X(i))n = y(i) holds for any i ∈ [N ]. Then, the Transformer N has at least Ω(

√
N) parameters.

Proof. We denote by L the depth of the Transformer F , and a feature matrix at block l = 1, . . . , L
by

hl(X) := F (FF)
l ◦ F (SA)

l ◦ · · · ◦ F (FF)
1 ◦ F (SA)

1 ◦ Ein(X) ∈ Rm×n, (63)

with h0(X) = Ein(X) and N (X) = Eout◦hL(X) for any input X ∈ Rd×n. Then, the permutation
equivariance of Transformers implies that the feature matrix hl at block l = 1, . . . , L satisfies

hl(X
(i)):,1 = · · · = hl(X

(i)):,n (64)

for each i ∈ [N ]. Thus, the self-attention layer at block l = 1, . . . , L can be calculated by

F (SA)
l

(
hl−1(X

(i))
)
:,k

= hl−1(X
(i)):,k +

H∑
h=1

W
(O)
h,l W

(V )
h,l hl−1(x

(i))σS

[(
W

(K)
h,l hl−1(X

(i))
)⊤ (

W
(Q)
h,l hl−1(X

(i))
)]

= hl−1(X
(i)):,k +

H∑
h=1

W
(O)
h,l W

(V )
h,l hl−1(X

(i)):,k

=

(
I +

H∑
h=1

W
(O)
h,l W

(V )
h,l

)
hl−1(X

(i)):,k, (65)

where W
(O)
h,l , W

(V )
h,l , W

(K)
h,l and W

(Q)
h,l with h ∈ H are weight matrices for the self-attention

at block l, and I ∈ Rm×m is the identity matrix. This observation indicates that calculations of
self-attention layers for inputs X(1), . . . ,X(N) reduces to linear transformations, which in turn
implies that the behavior of the Transformer N at inputs X(1), . . . ,X(N) can be simulated by a
feed-forward network with equal or fewer parameters, and with inputs X(1)

:,1 , . . . , X
(N)
:,1 . Since it is

known that the VC dimension of ReLU-based feed-forward networks with W parameters is at most
O(W 2) (Goldberg & Jerrum, 1995), the Transformer N must have at least Ω(

√
N) parameters.

B.2 SEQUENCE-TO-SEQUENCE SETTING - LOWER BOUND

Before proceeding to the proof of Theorem 4.3, we cite the following lemma. Here sgn is the sign
function:

sgn(x) :=


1 if x > 0,

0 if x = 0,

−1 if x < 0.

(66)
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Lemma B.4 (Goldberg & Jerrum (1995)). Suppose W ≤M and let P1, . . . , PM be polynomials of
degree at most D in W variables. Define

K :=
∣∣{(sgn(P1(a)), . . . , sgn(PM (a)))

∣∣ a ∈ RW
}∣∣ , (67)

i.e., K is the number of possible sign vectors attained by the polynomials. Then we have K ≤
(8eMD/W )W .

Hereafter, let W be the nubmer of parameters and θ ∈ RW be a vector of all parameters of a
Transformer. We also denote by Nθ the Transformer to emphasize the presence of the parameter
vector θ. For convenience, we present the statement of Theorem 4.3 below.
Theorem B.3 (Lower bound). Let Nθ : Rd×n → Rn be a Transformer defined by eq. (4) with self-
attention layers replaced with hard attention layers (eq. (12)). In addition, suppose Nθ can shatter
a set of N input sequences X(1), . . . ,X(N) ∈ Rd×n with X(i)

:,k ̸= X
(j)
:,l for any i, j ∈ [N ] and

k, l ∈ [n] (i ̸= j or k ̸= l), in the sense that for any label assignments y(1), . . . ,y(N) ∈ {0, 1}n,
there is a parameter vector θ ∈ RW such that

Nθ(X
(i)) = y(i) (68)

for any i ∈ [N ]. Then, the Transformer has at least W = Ω
(√

nN
log(nN)

)
parameters.

Proof. Recall that the Transformer Nθ : Rd×n → Rn is defined as

Nθ := Eout ◦ FL ◦ · · · ◦ F1 ◦ Ein, (69)

where the l-th block Fl : Rm×n → Rm×n is composed of a self-attention layer and a feed-forward
layer. For the Transformer Nθ to memorize all label assignments for given N input sequences with
length n, the number of possible sign assignments for outputs of the Transformer must be at least
equal to or more than 2nN , that is,

2nN ≤ K :=

∣∣∣∣∣
{(

sgn
(
Nθ(X

(i))k

))
i∈[N ]
k∈[n]

∣∣∣∣∣ θ ∈ RW

}∣∣∣∣∣ (70)

must hold. We estimate the upper-bound on the right-hand of the above inequality.

Our strategy is to partition the set of parameters inductively with respect to the layers, so that on each
cell the output of the Transformer can be expressed by some polynomial function on the parameters.
To be more precise, we construct a sequence of partitions S0,S1, . . . ,SL ∈ P(RW ) such that

1. for each l = 0, 1, . . . , L, Sl is a partition of the set of parameters, that is,

Si ∩ Sj = ∅ (∀Si, Sj ∈ Sl with Si ̸= Sj) and
⋃

S∈Sl

S = RW , (71)

and is also a refinement of Sl−1 when l ≥ 1, in the sense that for every cell S ∈ Sl, there
is a cell S′ ∈ Sl−1 with S ⊂ S′.

2. for each l ∈ [L], the number of cells in Sl satisfies

|Sl|
|Sl−1|

≤
(
8e · n3HN · (8l − 4)

Wl−1 + 2msH

)Wl−1+2msH

·
(

8e · nqN · 4l
Wl−1 + 2msH + (m+ 1)q

)Wl−1+2msH+(m+1)q

, (72)

where Wl−1 is the number of parameters up to the (l − 1)-th block, with W0 := dm, the
number of parameters in Ein.

3. for each l = 0, 1, . . . , L, outputs of the l-th block for input X(i) on each cell S ∈ Sl

p
(i)
l,u,k,S(θl) := Fl ◦ · · · ◦ F1 ◦ Ein(X(i))u,k (u ∈ [m], k ∈ [n]) (73)

are polynomial functions in variable θl of degree at most 4l+ 1, as long as θ varies within
the cell S. Here θl ∈ RWl is a part of θ corresponding to parameters up to the l-th block,
with θ0 defined by a parameter vector of Ein.
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First, we set S0 := {RW }. Notice that outputs Ein(X(i))u,k for all u ∈ [m], k ∈ [n] and i ∈ [N ]
are polynomial functions in variable θ0 of degree 1, because Ein : Rd×n → Rm×n is a token-wise
linear mapping.

Next, suppose a sequence of partitions S0, . . . ,Sl−1 for l ∈ [L−1] is already given, and we construct
a partition Sl from them. Specifically, we subdivide each cell S ∈ Sl−1 to create a new partition Sl.
By assumption, on each cell S ∈ Sl−1 the inputs of the (l − 1)-th block Fl−1 for the input X(i)

p
(i)
l−1,u,k,S(θl−1) := Fl−1 ◦ · · · ◦ F1 ◦ Ein(X(i))u,k (u ∈ [m], k ∈ [n]), (74)

are polynomial functions in variable a parameter vector θl−1 of degree no more than 4(l − 1) + 1,
as long as θ varies in the cell S.

Self-attention subblock: Recall that the self-attention layer with the hardmax function in the l-the
block for the input sequence X(i) is calculated as follows.

F (HA)
l (Z(i)) := Z(i) +

H∑
h=1

W
(O)
hl W

(V )
hl Z(i)σH

[(
W

(K)
hl Z(i)

)⊤ (
W

(Q)
hl Z(i)

)]
, (75)

where Z(i) ∈ Rm×n is the input of the self-attention layer for input X(i). In particular, when θ

varies in a cell S ∈ Sl−1, Z(i)
u,k for each u ∈ [m], k ∈ [n] can be expressed by the polynomial

function p(i)l−1,u,k,S(θl−1) of degree 4(l − 1) + 1.

Hereafter, we subdivide each cell S ∈ Sl−1 to construct a refinement S(SA)
l of Sl−1 so that the

hardmax patterns

σH

[(
W

(K)
hl Z(i)

)⊤ (
W

(Q)
hl Z(i)

)]
∈ Rn×n (∀h ∈ H) (76)

remain the same on each cell S′ ∈ S(SA)
l . The (k, k′)-th element of the attention matrix at head

h ∈ [H] can be written by

a
(i)
l,h,k,k′,S(θl−1,W

(K)
hl ,W

(Q)
hl ) :=

(
W

(K)
hl Z(i)

)⊤
:.k

(
W

(Q)
hl Z(i)

)
:,k′

=

m∑
u,u′=1

(
W

(K)
hl

⊤
W

(Q)
hl

)
u,u′

p
(i)
l−1,u,k,S(θl−1)p

(i)
l−1,u′,k′,S(θl−1),

(77)

from which we see that each element of the attention matrix is a polynomial function in variables
W

(K)
hl ,W

(Q)
hl and θl−1, of degree at most 8(l − 1) + 4, as long as θ varies in the cell S ∈ Sl−1.

We define a partition P(SA)
l,S of S based on the hardmax patterns, that is, the minimal partition of S

such that on each cell, all outputs of the hardmax function remain the same. To estimate the size of
P(SA)
l,S , we instead consider sign patterns of polynomials{

a
(i)
l,h,k,k′,S − a

(i)
l,h,k′′,k′,S

∣∣∣ i ∈ [N ], h ∈ [H], k, k′, k′′ ∈ [n]
}
, (78)

because whenever sign patterns of the above set of polynomials do not change on some subset of
the parameter space, the hardmax patterns must also remain the same. Applying Lemma B.4 to the
above collection of polynomials, the size of the partition P(SA)

l,S is upper-bounded by(
8e · n3HN · (8l − 4)

Wl−1 + 2msH

)Wl−1+2msH

. (79)

We define a refinement S(SA)
l of Sl−1 by subdividing each cell S ∈ Sl−1 in this way, and its size is

upper-bounded by ∣∣∣S(SA)
l

∣∣∣ ≤ |Sl−1| ·
(
8e · n3HN · (8l − 4)

Wl−1 + 2msH

)Wl−1+2msH

. (80)
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On each cell S′ ∈ S(SA)
l , the hardmax patterns remain unchanged, which implies that(

Z(i)σH

[(
W

(K)
hl Z(i)

)⊤ (
W

(Q)
hl Z(i)

)])
u,k

(u ∈ [m], k ∈ [n], h ∈ [H]) (81)

are polynomial functions in variable θl−1 of degree at most 4(l − 1) + 1, as long as θ moves in the
cell S′ ∈ S(SA)

l . This further means that each element of the output F (HA)
l (Z(i)) is a polynomial

function in variables W (O)
hl ,W

(V )
hl with h ∈ [H] and θl−1, of degree at most 4(l − 1) + 3 on each

cell S′ ∈ S(SA)
l .

Feed-forward subblock: As for feed-forward layers, we follow the analysis given by Bartlett et al.
(2019). On each cell S′ ∈ S(SA)

l , the hidden layer at the k-th token for input X(i) is

W
(1)
l F (HA)

l (Z(i)):,k + b
(1)
l ∈ Rq, (82)

whose v-th element is a polynomial function in variables W
(O)
hl ,W

(V )
hl with h ∈ [H], W (1)

l , b
(1)
l

and θl−1 of degree at most 4(l − 1) + 4. Notice that sign patterns of polynomials{
W

(1)
l,v,:F

(HA)
l (Z(i)):,k + b

(1)
l,v

∣∣∣ i ∈ [N ], v ∈ [q], k ∈ [n]
}

(83)

completely determine whether or not the ReLU activation function in the middle layer fires. There-
fore, by defining P(FF)

l,S′ as the minimal partition of S′ such that the activation pattern remains the

same on each cell, the size of P(FF)
l,S′ is upper-bounded by Lemma B.4 as

∣∣∣P(FF)
l,S′

∣∣∣ ≤ ( 8e · nqN · 4l
Wl−1 + 2msH + (m+ 1)q

)Wl−1+2msH+(m+1)q

. (84)

We define a refinement S(FF)
l of S(SA)

l by subdividing each cell S′ ∈ S(SA)
l into P(FF)

l,S′ . Then,
outputs of the feed-forward layer

p
(i)
l,u,k,S′′(θl) = F (HA)

l (Z(i))u,k +W
(2)
l,u,;σR

[
W

(1)
l F (HA)

l (Z(i)):,k + b
(1)
l

]
+ b

(2)
l,u (85)

for any u ∈ [m], k ∈ [n] and i ∈ [N ] are polynomial functions in variable θl of degree at most
4(l − 1) + 5 = 4l + 1, as long as the parameter vector θ varies in the cell S′′ ∈ S(FF)

l .

Finally, we set Sl as Sl := S(FF)
l . Then, from the above observations we know that outputs of the

l-th block are polynomial functions in variables Wl of degree at most 4l + 1 as long as θ moves
within each cell S′′ ∈ Sl, as desired. In addition, we have

|Sl|
|Sl−1|

≤
(
8e · n3HN · (8l − 4)

Wl−1 + 2msH

)Wl−1+2msH

·
(

8e · nqN · 4l
Wl−1 + 2msH + (m+ 1)q

)Wl−1+2msH+(m+1)q

, (86)

which satisfies the second property. In this way, we have a desired sequence of partitions S0, . . . ,SL.

Outputs of the L-th block for input X(i) (i ∈ [N ])

FL ◦ · · · ◦ F1 ◦ Ein(X(i))u,k (u ∈ [m], k ∈ [n]) (87)

are polynomial functions in variable θL of degree at most 4L+ 1 as long as θ varies in each cell of
SL, which in turn implies that final outputs of the Transformer

p
(i)
k,S(θ) := Nθ(X

(i))k = Eout ◦ FL ◦ · · · ◦ F1 ◦ Ein(X(i))k (k ∈ [n]) (88)

are polynomial functions in variable θ of degree at most 4L + 2 if the parameter vector θ moves
within each cell S ∈ SL.
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Applying Lemma B.4 to the set of polynomials {p(i)k,S(θ)}i∈[N ],k∈[n] on each cell of SL allows us to
upper-bound K as follows.

K =

∣∣∣∣∣
{(

sgn
(
Nθ(X

(i))k

))
i∈[N ]
k∈[n]

∣∣∣∣∣ θ ∈ RW

}∣∣∣∣∣
≤
∑
S∈SL

∣∣∣∣∣
{(

sgn
(
Nθ(X

(i))k

))
i∈[N ]
k∈[n]

∣∣∣∣∣ θ ∈ S

}∣∣∣∣∣
≤ |SL| ·

(
8e · nN · (4L+ 2)

W

)W

. (89)

Since |SL| = |S0| ·
∏L

l=1 |Sl|/|Sl−1| and |S0| = 1, the right-hand side is further expanded as

K ≤
(
8e · nN · (4L+ 2)

W

)W

·
L∏

l=1

|Sl|
|Sl−1|

≤
(
8e · nN · (4L+ 2)

W

)W

·
L∏

l=1

(
8e · n3HN · (8l − 4)

Wl−1 + 2msH

)Wl−1+2msH (
8e · nqN · 4l

Wl−1 + 2msH + (m+ 1)q

)Wl−1+2msH+(m+1)q

≤

(
8e · nN · (4L+ 2) +

∑L
l=1

[
8e · n3HN · (8l − 4) + 8e · nqN · 4l

]
W

)W

, (90)

where we used the weighted arithmetic-geometric inequality in the last line, with W defined by

W :=W +

L∑
l=1

[Wl−1 + 2msH +Wl−1 + 2msH + (m+ 1)q] . (91)

Notice that Wl for each l ∈ [L] is the number of parameters up to the l-th block, which indicates

Wl = md+

l∑
l′=1

[4msH + 2(m+ 1)q]

= md+ l [4msH + 2(m+ 1)q]

≥ 4lH + 2lq (92)

with W = WL + md. With this observation, the numerator on the right-hand side of eq. (90) is
upper-bounded by

8e · nN · (4L+ 2) +

L∑
l=1

[
8e · n3HN · (8l − 4) + 8e · nqN · 4l

]
≤ 8e · nN · (4L+ 2) + 8e · n3N ·

L∑
l=1

(8lH + 4lq)

≤ 8e · nN · (4L+ 2) + 8e · n3N ·
L∑

l=1

2Wl

≤ 48e · n3N ·W, (93)

where we used 4L + 2 ≤ 4W and
∑L

l=1 2Wl ≤ 2W +
∑L

l=1 2Wl−1 ≤ 2W in the last line. Thus,
the right-hand side of eq. (90) is upper-bounded by

K ≤
(
48en3N ·W

W

)W

=
(
48en3N

)W
. (94)
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Recall that in order to memorize all label assignments for N input sequences with length n, K is at
least equal to or more than 2nN , which gives us an upper-bound of nN :

nN ≤ log2

[(
48en3N

)W]
=W log2

(
48en3N

)
≤ 3W log2 (48enN) . (95)

Here we evaluate a crude upper-bound ofW with respect to the numberW of parameters as follows.

W =W +

L∑
l=1

[2Wl−1 + 4msH + (m+ 1)q]

≤W + 2

L∑
l=1

Wl

≤W + 2LW ≤ 3W 2, (96)

which implies nN ≤ 3W log2 (48enN) ≤ 9W 2 log2 (48enN). Therefore, the Transformer has at

least W = Ω
(√

nN
log(nN)

)
parameters.

C MEMORIZATION OF FEED-FORWARD NETWORKS

In this section, we extend the result on the optimal memorization of feed-forward networks proved
by Vardi et al. (2022). Specifically, the following lemma states that we can freely add data points
without severely affecting the memorization capacity of feed-forward networks, as long as their
labels are zero. We would like to note that Vardi et al. (2022) implicitly used this result to show the
memorization capacity of feed-forward networks with a bounded depth. Thus, our aim here is to
explicitly state the result and provide a rigorous proof.

Lemma C.1 (Extension of Vardi et al. (2022)). Let N,V, d, C ∈ N with N ≤ V , and r ≥ 1, 0 <
δ ≤ 1. Let y(1), . . . , y(N) ∈ [C] be a set of N labels and x(1), . . . ,x(V ) ∈ Rd be a set of V inputs
such that ∥x(i)∥ ≤ r for every i ∈ [V ] and ∥x(i)−x(j)∥ ≥ δ for every i, j ∈ [V ] with i ̸= j. Denote
R := 20rV 2δ−1

√
πd. Then, there exists a neural network F : Rd → R with width 12, depth

≲
√
N logN +

√
N

logN
·max{logR, logC}, (97)

(for the definition of ≲, see Section 3.1) and bit complexity

≲ log d+

√
N

logN
·max{logR, logC} (98)

such that F (x(i)) = y(i) for every i ∈ [N ] and F (x(i)) = 0 for every i ∈ [V ] \ [N ].

Proof. The proof goes basically the same as was done in the proof of the original theorem by Vardi
et al. (2022): we construct a three sub-networks F1, F2 and F3 with width at most 12, and then
concatenate those networks to create the final network F = F3 ◦ F2 ◦ F1. The only architectural
difference lies in the construction of F1, and the rest of the proof is dedicated to verifying that the
resulting network F satisfies F (x(i)) = 0 for i ∈ [V ] \ [N ].

STAGE I: PROJECTING ONTO A ONE-DIMENSIONAL SUBSPACE

In this stage, we construct a sub-network F1 : Rd → R, which projects each input onto the line R
while approximately retaining their distance. We use the following lemma from Vardi et al. (2022).
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Lemma C.2 (Vardi et al. (2022)). Let x(1), . . . ,x(N) ∈ Rd with ∥x(i)∥ ≤ r for every i ∈ [N ]
and ∥x(i) − x(j)∥ ≥ δ for every i, j ∈ [N ] with i ̸= j. Then, there exists a neural network
F : Rd → R with width 1, depth 2 and bit complexity log(3drN2

√
πδ−1), such that 0 ≤ F (x(i)) ≤

10rN2δ−1
√
πd for every i ∈ [N ] and |F (x(i))− F (x(j))| ≥ 2 for every i, j ∈ [N ] with i ̸= j.

Instead of applying the above lemma to the set of N inputs x(1), . . . ,x(N), here we apply it to the
set of V inputs x(1), . . . ,x(V ). Then, we obtain a neural network F̃1 : Rd → R with width 1,
depth 2 and bit complexity log(3drV 2

√
πδ−1), such that 0 ≤ F̃1(x

(i)) ≤ 10rV 2δ−1
√
πd for every

i ∈ [V ] and |F̃1(x
(i))− F̃1(x

(j))| ≥ 2 for every i, j ∈ [V ] with i ̸= j.

By a slight modification to the bias term, we may construct a neural network F1 : Rd → R such that
2 ≤ F1(x

(i)) ≤ R := 20rV 2δ−1
√
πd without affecting its width, depth and bit-complexity. We

adopt F1 as the first sub-network.

STAGE II: FINDING THE RIGHT SUBSET

In this stage, we adopt the same construction strategy for the second sub-network F2 : R → R as
was done in the proof of Vardi et al. (2022). We use Lemma G.3, whose statement is the strengthened
version of the one by Vardi et al. (2022).

We denote the outputs F1(x
(1)), . . . , F1(x

(V )) of the first sub-network F1 for x(1), . . . ,x(V ) by
x1, . . . , xV . In addition, by rearranging labels, we assume without loss of generality that the first N
outputs x1, . . . , xN are in an increasing order, that is, x1 < · · · < xN .

Let m :=
√
N logN , and w1, . . . , w√

N logN and u1, . . . , u√N logN be two sets of
√

N
logN · logC-

bit sequences and
√

N
logN · logR-bit sequences, respectively, such that for every i ∈ [N ], let

j :=

⌈
i ·
√

logN
N

⌉
∈ [m], k := i mod

√
N

logN , then w1, . . . , w√
N logN and u1, . . . , u√N logN

are defined by identities

BINk·logC+1:(k+1)·logC(wj) = y(i), (99)

BINk·logR+1:(k+1)·logR(uj) = ⌊xi⌋, (100)

where we used the fact that the outputs of the first sub-network F1 are non-negative and upper-
bounded by R := 20rV 2δ−1

√
πd

Next, by applying Lemma G.3 to w1, . . . , w√
N logN and u1, . . . , u√N logN , respectively, we obtain

two networks Fw
2 : R → R and Fu

2 : R → R with width 4, depth 3
√
N logN+2 and bit complexity

at most
√

N
logN ·max{logC, logR}+ ⌈logR⌉ such that for every i ∈ [N ],

Fw
2 (xi) = wji and Fu

2 (xi) = uji (101)

hold with ji :=

⌈
i ·
√

logN
N

⌉
. By concatenating these two networks Fw

2 and Fu
2 , we construct a

second sub-network F2 : R → R3 such that for any i ∈ [N ] we have

F2(xi) =

(
xi
wji
uji

)
. (102)

As for the outputs of F2 for xN+1, . . . , xV , since the construction of the first sub-network F1 assures
that |xi − xj | ≥ 2 for every i, j ∈ [V ] with i ̸= j, Lemma G.3 indicates that for any i ∈ [V ] \ [N ],
we have

F2(xi) =

(
xi
w
u

)
, (103)

where w (resp. u) is either 0 or wj (resp. uj) for some j ∈ [m].
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STAGE III: BIT EXTRACTION FROM THE CRAFTED WEIGHTS

As in the previous stage, we follow the same construction strategy as is done in Vardi et al. (2022).
However, here we inspect the behavior of the third sub-network for xN+1, . . . , xV .

We use the function obtained by Lemma G.6 with ρ = logC, n =
√

N
logN and c = logR as the third

sub-network F3 : R3 → R with width 12, depth 3
√

N
logN ·max{logR, logC}+ 2

√
N

logN + 2 and

bit complexity
√

N
logN max{logR, logC} + 2. Then, we construct the final network F : Rd → R

by setting F := F3 ◦ F2 ◦ F1.

VERIFICATION OF BEHAVIOR AND MODEL COMPLEXITY

Hereafter, we check that the configured network F = F3 ◦ F2 ◦ F1 correctly outputs the desired
values, that is, for any i ∈ [N ] we have

F (x(i)) = y(i), (104)

and for any i ∈ [V ] \ [N ]

F (x(i)) = 0. (105)

Fix i ∈ [N ] with ji :=
⌈
i ·
√

logN
N

⌉
. The output of F2 ◦ F1 for x(i) is

F2 ◦ F1(x
(i)) =

(
xi
wji
uji

)
. (106)

Since ⌊xi⌋ = BINρ·k+1:ρ·(k+1)(uji) with k := i mod
√

N
logN by definition, Lemma G.6 implies

F3 ◦ F2 ◦ F1(x
(i)) = BINρ·k+1:ρ·(k+1)(wij ) = y(i) as desired.

On the other hand, for any i ∈ [V ] \ [N ], the output of F2 ◦ F1 for x(i) is

F2 ◦ F1(x
(i)) =

(
xi
w
u

)
, (107)

where w (resp. u) is either 0 or wj (resp. uj) for some j ∈ [m]. If u = 0, then xi satisfies

|xi − 1/2− BINρ·j+1:ρ·(j+1)(u)| = |xi − 1/2| > 1, (108)

because the construction of the first sub-network F1 guarantees that x1, . . . , xV ≥ 2. Thus,
Lemma G.6 implies that F (x(i)) = F3 ◦ F2 ◦ F1(x

(i)) = 0 as desired. On the other hand,
if u = uj for some j ∈ [m], xi should satisfy |xi − 1/2 − BINρ·k+1:ρ·(k+1)(u)| > 1 for any

k ∈ {0, . . . ,
√

N
logN − 1}. This is because for each k, BINρ·k+1:ρ·(k+1)(u) equals ⌊xl⌋ for some

l ∈ [N ] by definition, which together with the separatedness of x1, . . . , xV implies

|xi − 1/2− BINρ·k+1:ρ·(k+1)(u)| = |xi − 1/2− ⌊xl⌋|
> |xi − xl| − |xl − 1/2− ⌊xl⌋|
≥ 2− 1/2 > 1. (109)

Therefore, the output of F = F3 ◦ F2 ◦ F1 for xi in this case is again 0.

The width of F is the maximal width of its sub-networks, which corresponds to the width of F3, i.e.,
12. The depth of F is the sum of the depths of F1, F2 and F3, which is estimated as

2 + 3
√
N logN + 2 + 3

√
N

logN
·max{logR, logC}+ 2

√
N

logN
+ 2

≲
√
N logN +

√
N

logN
·max{logR, logC}. (110)
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The bit complexity of F is the maximal bit complexity of its sub-networks, which is upper-bounded
by

max

{
log(3drV 2

√
πδ−1),

√
N

logN
·max{logC, logR}+ ⌈logR⌉,√

N

logN
max{logR, logC}+ 2

}

≲ log d+

√
N

logN
·max{logC, logR}. (111)

D MEMORIZATION CAPACITY OF DEEP SETS

Refer to Appendix A for the definition of multiset and the notation in this paper.

Deep set (Zaheer et al., 2017) is a well-known architecture used for modeling functions that take a
set, or more generally a multiset as input. The architecture is stated in a very general form, and it is
known (Wagstaff et al., 2022) that any permutation invariant function for multisets over countable
domain X can be decomposed by appropriate functions ϕ and ρ as follows:

(ϕ, ρ)(m) = ρ

(
n∑

k=1

ϕ(xk)

)
with m = {{x1, . . . ,xn}} ∈ NX . (112)

In this paper, we define a deep set by a tuple (ϕ, ρ), where ϕ and ρ are feed-forward networks. In
addition, the width of the deep set (ϕ, ρ) is defined as the maximum of the widths of ϕ and ρ, and
the depth of (ϕ, ρ) as the addition of the depths of ϕ and ρ.

Theorem D.1 (Memorization of deep sets). Let X := Rd and (m(1), y(1)), . . . , (m(N), y(N)) ∈
NX × [C] be a sequence of input-label pairs such that m(1), . . . ,m(N) satisfy the following three
conditions:

1. m(1), . . . ,m(N) are finite multisets whose cardinalities are at most M .

2. m(1), . . . ,m(N) are distinct.

3. m(1), . . . ,m(N) are element-wise (r, δ)-separated for some r ≥ 1, 0 < δ ≤ 1 (Assump-
tion A.1).

Let R := 80M2N5rδ−1π
√
d. Then, there exists a deep set (ϕ̃, ρ̃) with width 12, depth

≲
√
N logN +

√
N

logN
·max{logR, logC}, (113)

(for the definition of ≲, see Section 3.1) and bit complexity bounded by

≲ log d+

√
N

logN
·max{logR, logC} (114)

which memorizes the dataset, that is,

(ϕ̃, ρ̃)(m(i)) = ρ̃

|m(i)|∑
k=1

ϕ̃(x
(i)
k )

 = y(i) (115)

holds for every i ∈ [N ] with m(i) = {{x(i)
1 , . . . ,x

(i)

|m(i)|}}.
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Proof of Theorem D.1. Let Cϕ := ⌈4N3
√
π⌉ and Rϕ := 20r(NM)2δ−1

√
πd. Then, applying

Lemma B.3 readily implies that there exists a neural network ϕ̃ : Rd → R with width 12, depth

≲
√
N logN +

√
N

logN
·max{logRϕ, logCϕ}, (116)

and bit complexity bounded by

≲ log d+

√
N

logN
·max{logRϕ, logCϕ} (117)

such that ϕ̃(x) ∈ [⌈4N3
√
π⌉] ∪ {0} holds for any x ∈

⋃N
i=1 supp(m

(i)), and
|m(1)|∑
k=1

ϕ̃(x
(1)
k ), . . . ,

|m(N)|∑
k=1

ϕ̃(x
(N)
k ) (118)

are (4MN3
√
π, 1)-separated.

Since the correspondence
∑|m(i)|

k=1 ϕ̃(x
(i)
k ) to the label y(i) is injective, we can consider the memo-

rization of N input-label pairs|m(1)|∑
k=1

ϕ̃(x
(1)
k ), y(1)

 , . . . ,

|m(N)|∑
k=1

ϕ̃(x
(N)
k ), y(N)

 ∈ R× [C] (119)

with feed-forward networks. Specifically, let Rρ be

Rρ := 20 · 4MN3
√
π ·N2 · 1−1 ·

√
π = 80MN5π. (120)

Then, according to Lemma C.1, we have a feed-forward network ρ̃ : R → R with width 12, depth

≲
√
N logN +

√
N

logN
·max{logRρ, logC}, (121)

and bit complexity bounded by

≲

√
N

logN
·max{logRρ, logC} (122)

such that for any i ∈ [N ] we have

ρ̃

|m(i)|∑
k=1

ϕ̃(x
(i)
k )

 = y(i), (123)

as desired.

Model complexity. With the configurations defined above, the deep set (ϕ̃, ρ̃) provably memorizes
the dataset. Lastly, we check its model complexities, that is, width, depth and bit complexity.

The width of both ϕ̃ and ρ̃ is 12, and thus the width of the deep set (ϕ̃, ρ̃) is also 12. As for depth
and bit complexity, we define R by

R := 80M2N5rδ−1π
√
d. (124)

Notice that Rϕ, Cϕ and Rρ are all upper-bounded by R, because of the assumption r ≥ 1 and
0 < δ ≤ 1. The depth of the deep set (ϕ̃, ρ̃) is the addition of the depth of each feed-forward
network, and thus upper-bounded by

≲
√
N logN +

√
N

logN
·max{logR, logC}. (125)

Likewise, the bit complexity of the deep set (ϕ, ρ) is the maximum of the bit complexity of each
feed-forward network, which is upper-bounded by

≲ log d+

√
N

logN
·max{logR, logC}. (126)
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E TRANSFORMERS WITH EMBEDDING LAYER

In this section, we examine the memorization capacity of Transformers equipped with an embedding
layer. When considering an embedding layer, input sequences consist of a sequence of token ids,
rather than a sequence of word vectors. Mathematically, N input sequences we consider in this
section are expressed by N vectors

x(1), . . . ,x(N) ∈ [ω]n, (127)

where ω represents the vocabulary size, i.e., the number of distinct token ids that can occur in the
input sequence. Then, the embedding layer F (EM) : [ω]n → Rm×n is defined by the token-wise
operation

F (EM)(x)k := W (EM)exk
∈ Rm (k ∈ [n]), (128)

with W (EM) ∈ Rm×ω the embedding matrix used as a lookup table, and exk
∈ {0, 1}ω one-hot

vector with 1 in the xk-th position.

Given the input sequences and the embedding layer defined in this way, we now state the theorem on
the memorization capacity of Transformers with the embedding layer. As in Theorem B.1, F (FF) in
the next theorem represents a token-wise feed-forward network of arbitrary depth, and F (UA) is a
uniform attention layer (see eq. (39) for its definition). Remarkably, the number of parameters now
depends on ω, which is unavoidable due to the use of the embedding layer.

Theorem E.1. Let (x(1), y(1)), . . . , (x(N), y(N)) ∈ [ω]n × [C] be a sequence of input-label pairs
that are consistently labeled, in the sense that for any i, j ∈ [N ], we have y(i) = y(j) if

x(i)n = x(j)n and x(i) = x(j) up to permutations. (129)

Let R := 200
√
3n2rN5δ−1ωπ. Then, there exists a Transformer with the embedding layer N (EM) :

[ω]n → Rn with the number of parameters

≲ ω +
√
N logN +

√
N

logN
·max{logR, logC}, (130)

and the bit complexity

≲ logω +

√
N

logN
·max{logR, logC} (131)

that memorizes the dataset, i.e.,

N (EM)(x(i))n = Eout ◦ F (FF) ◦ F (UA) ◦ F (EM)(x(i))n (132)

holds for every i ∈ [N ].

Proof. The only difference in the proof from Theorem B.1 is that the role previously performed by
the feed-forward network F (FF)

1 is now implemented by the embedding layer F (EM). Specifically,
for each input sequence x(i) with i ∈ [N ], we define its multiset expression m(i) ∈ N[ω] by

m(i) : [ω] → N, x 7→ |{k | x(i)k = x}|. (133)

The cardinality ofm(i) for each i ∈ [N ] is at most n, and the consistency on the labels are rephrased
as follows: for any i, j ∈ [N ], we have y(i) = y(j) if x(i)n = x

(j)
n and m(i) = m(j) hold.

According to Lemma B.1, there exists a subsetA ⊂ [ω] with its cardinality at most min{ω,N} such
that m(1)|A, . . . ,m(N)

A are distinct. Then, by applying Lemma B.2 to m(1)|A, . . . ,m(N)
A , we have a

function f : A→ [⌈4N2
√
π ·min{ω,N}⌉] such that∑

x∈supp(m(1)|A)

m(1)(x)f(x), . . . ,
∑

x∈supp(m(N)|A)

m(N)(x)f(x) (134)
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are (4nN2
√
π ·min{ω,N}, 1)-separated. We directly implement the function f in the embedding

layer. Namely, we define the embedding matrix W (EM) ∈ R3×ω in the embedding layer F (EM)

with m = 3 by

W (EM)
:,x :=

{
(f(x), x, 0)⊤ if x ∈ A,

(0, x, 0)⊤ otherwise,
(135)

for each x ∈ [ω]. The bit complexity of the embedding layer is at most log[⌈4N2
√
π·min{ω,N}⌉]+

logω, and since the construction of the remaining parts of the Transformer can be carried out simi-
larly to Theorem B.1, we omit those details here.

F MEMORIZATION CAPACITY WITH LIMITED BIT COMPLEXITY

In this section, we consider how the memorization capacity of networks changes when the number of
bits available for each parameter of the network is bounded. The following lemma extends Theorem
6.2 from Vardi et al. (2022), with the only difference that it also explicitly supports additional data
points with zero labels.
Lemma F.1 (Extension of Vardi et al. (2022)). Let N,V, d, C ∈ N with N ≤ V , and r ≥ 1, 0 <
δ ≤ 1. Let y(1), . . . , y(N) ∈ [C] be a set of N labels and x(1), . . . ,x(V ) ∈ Rd be a set of V inputs
such that ∥x(i)∥ ≤ r for every i ∈ [V ] and ∥x(i) − x(j)∥ ≥ δ for every i, j ∈ [V ] with i ̸= j.
Denote R := 20rV 2δ−1

√
πd and let B ∈ [

√
N ]. Then, there exists a neural network F : Rd → R

with width 13, depth

≲
N
√
logB

B
+

N

B
√
logB

·max{logR, logC}, (136)

(for the definition of ≲, see Section 3.1) and bit complexity

≲ log d+
B√
logB

·max{logR, logC} (137)

such that F (x(i)) = y(i) for every i ∈ [N ] and F (x(i)) = 0 for every i ∈ [V ] \ [N ].

Proof. The proof idea is the same as the one for Theorem 6.2 from Vardi et al. (2022): we con-
struct a N

B2 + 1 sub-networks F1, . . . , FN/B2+1 with width at most 13, and then concatenate
those networks to create the final network F . For the first sub-network F1, we use the same net-
work as in the proof of Lemma C.1, which projects the inputs x(1), . . . ,x(N),x(N+1), . . . ,x(V )

into scalars x1, . . . , xN , xN+1, . . . , xV while approximately keeping a distance between them.
Next, we partition x1, . . . , xN into N

B2 subsets each containing B2 data points. For each sub-
set x(i−1)·B2+1, . . . , xi·B2 (i ∈ [ NB2 ]), we use Lemma C.1 with zero labels at other data points
x1, . . . , x(i−1)·B2 and xi·B2+1, . . . , xV to obtain a sub-networks F̃2, . . . , F̃N/B2+1 with width 12,
depth

≲ B
√
logB +

B√
logB

·max{logR, logC}, (138)

and bit complexity

≲
B√
logB

·max{logR, logC}. (139)

Finally, we extend the widths of F̃2, . . . , F̃N/B2 by one to create sub-networks F2, . . . , FN/B2 such
that

Fi

(
x
r

)
=

(
x

r + F̃i(x)

)
(i = 2, . . . , N/B2). (140)

By concatenating all sub-networks and one projection layer ϕ(x, y) := y to obtain the final network
F = ϕ ◦ FN/B2+1 ◦ · · · ◦ F2 ◦ F1, whose depth is upper-bounded by

≲
N

B2

(
B
√
logB +

B√
logB

·max{logR, logC}
)

=
N
√
logB

B
+

N

B
√
logB

·max{logR, logC}. (141)
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For each i = [N ], there is a unique index j ∈ {2, . . . , N/B2} such that F̃j(xi) = y(i) holds and at
the same time we have F̃k(xi) = 0 for any k ∈ {2, . . . , N/B2} with k ̸= j. Thus, the output of F
for x(i) is calculated as

F (x(i)) = ϕ

(
xi

F̃j(xi)

)
= y(i). (142)

On the other hand, for any i ∈ {N + 1, . . . , V } and j ∈ {2, . . . , N/B2}, the output of F̃j(xi) is
always zero, which implies F (x(i)) = 0 as desired.

By replacing feed-forward networks used in the proof of Theorem 4.1 with Lemma F.1, we obtain
the upper bound on the memorization capacity of Transformers with limited bit complexity. Notably,
the following theorem shows that a Transformer with Õ(N1−ϵ) parameters can memorize N data
points in the next-token prediction setting when each parameter is restricted to Õ(N ϵ) bits for some
ϵ ∈ [0, 1/2], under the condition that n,C, rδ−1 = NO(1) and d = Õ(N1−ϵ) as N → ∞.

Theorem F.1 (Next-token prediction with limited bits). Let (X(1), y(1)), . . . , (X(N), y(N)) ∈
Rd×n × [C] be a sequence of input-label pairs such that

1. (X(1), y(1)), . . . , (X(N), y(N)) are consistently labeled, in the sense that for any i, j ∈
[N ], we have y(i) = y(j) if

X(i)
:,n = X(j)

:,n and X(i) = X(j) up to permutations. (143)

2. X(1), . . . ,X(N) are token-wise (r, δ)-separated for some r ≥ 1 and 0 < δ ≤ 1.

Let R := 400
√
3dn3rN5δ−1π and B ∈ [

√
N ]. Then, there exists a Transformer N : Rd×n → Rn

with width 15, depth

≲
N
√
logB

B
+

N

B
√
logB

·max{logR, logC}, (144)

(for the definition of ≲, see Section 3.1) and bit complexity bounded by

≲ log d+
B√
logB

·max{logR, logC} (145)

that memorizes the dataset, i.e.,

N
(
X(i)

)
n
= Eout ◦ F

(FF)

2 ◦ F (UA) ◦ F (FF)

1 ◦ Ein
(
X(i)

)
n
= y(i) (146)

holds for every i ∈ [N ].

Proof. The proof goes basically the same as is done in the proof of Theorem 4.1, but this time feed-
forward networks with limited bit complexity (Lemma F.1) replace two token-wise feed-forward
networks in the proof of Theorem 4.1, namely, F (FF)

1 and F (FF)
2 .

The first token-wise feed-forward network F (FF)
1 defined by eq. (51) is essentially composed of

ϕ̃ : Rd → R obtained from Lemma B.3, which in turn is constructed from ϕ : Rd → R defined by
eq. (32) using Lemma C.1. Therefore, let us consider representing ϕ with a feed-forward network
with limited bit complexity using Lemma F.1, and the resulting network ϕ̃ : Rd → R has width 13,
depth

≲
N
√
logB

B
+

N

B
√
logB

·max{logRϕ, logCϕ}, (147)

where Cϕ := ⌈4N3
√
π⌉ and Rϕ := 20r(NM)2δ−1

√
πd, and bit complexity

≲ log d+
B√
logB

·max{logRϕ, logCϕ}. (148)
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Then, the first token-wise feed-forward network F (FF)

1 : Rd×n → R3×n with limited bit complexity
is defined using ϕ in the same manner as in eq. (51).

Similarly, the second token-wise feed-forward network F (FF)
2 is defined using Lemma C.1 to asso-

ciate s(1)n , . . . , s
(N)
n defined by eq. (53) with labels y(1), . . . , y(N). Thus, this time we use Lemma F.1

to construct a feed-forward network f
(FF)

2 : R3 → R with width 13, depth

≲
N
√
logB

B
+

N

B
√
logB

·max{logR2, logC}, (149)

with R2 := 20 · 20rn2N3δ−1
√
πd · N2 · n ·

√
3π = 400

√
3dn3rN5δ−1π, and bit complexity

bounded by

≲
B√
logB

·max{logR2, logC} (150)

such that f
(FF)

2 (s
(i)
n ) = y(i) for every i ∈ [N ], which induces the second token-wise feed-forward

network F (FF)

2 : R3×n → Rn with limited bit complexity.

G TECHNICAL LEMMAS

This section summarizes various technical lemmas. In this section, LEN(n) ∈ N for any n ∈ N
represents the number of bits in its binary representation.
Lemma G.1 (Park et al. (2021)). Let d ∈ N. Then, for any finite subset X ⊂ Rd, there exists a unit
vector v ∈ Rd such that

1

|X |2

√
8

πd
∥x− x′∥2 ≤

∣∣v⊤ (x− x′)
∣∣ ≤ ∥x− x′∥2 (151)

holds for any x,x′ ∈ X .
Lemma G.2 (Vardi et al. (2022)). Let a, b ∈ N with a < b. Then, there exists a neural network F
with depth 2, width 2 and bit complexity LEN(b) such that F (x) = 1 for x ∈ [a, b] and F (x) = 0
for x > b+ 1

2 or x < a− 1
2 .

Lemma G.3. Let x1 < · · · < xN < R with R > 0 and |xi − xj | ≥ 2 for every i, j ∈ [N ] with
i ̸= j. Let m ∈ N with m < N and let w1, . . . , wm ∈ N where LEN(wj) ≤ b for every j ∈ [m].
Let k := ⌈N

m⌉. Then, there exists a neural network F : R → R with width 4, depth 3m + 2 and bit
complexity b+ ⌈logR⌉ such that F satisfies

1. for every i ∈ [N ], F (xi) = w⌈ i
k ⌉,

2. for every x ∈ R with |x − xi| ≥ 2 for all i ∈ [N ], the output F (x) is either 0 or wj for
some j ∈ [m].

Proof of Lemma G.3. Most of the proof is the same as in Lemma A.4. from Vardi et al. (2022), and
the only difference is that we now examine how the function behaves outside of x1, . . . , xN .

For any j ∈ [m], we use Lemma G.2 with a = ⌊xj·k−k+1⌋ and b = ⌊xj·k + 1⌋ to construct a
feed-forward network F̃j : R → R such that F̃j(x) = 1 for any x ∈ [⌊xj·k−k+1⌋, ⌊xj·k + 1⌋], and
F̃j(x) = 0 for any x > ⌊xj·k + 1⌋ + 1

2 or x < ⌊xj·k−k+1⌋ − 1
2 . In particular, this means that

F̃j(xi) = 1 for any i ∈ [j · k − k + 1, j · k]. Here j · k may become bigger than N , and in such a
case j · k is replaced with N . Then, we define a feed-forward network Fj : R → R by

Fj

((
x
y

))
:=

(
x

y + wj · F̃j(x)

)
, (152)

and the whole network F : R → R by F (x) =

(
0
1

)⊤

Fm ◦ · · · ◦ F1

((
x
0

))
. For the

verification of the correct behavior of the function F for inputs x1, . . . , xN , and the analysis of its
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model complexity, we refer the reader to the proof by Vardi et al. (2022). Instead, we check the
output of F for inputs outside of xi with i = 1, . . . , N . For any input x ∈ R such that |x− xi| ≥ 2
for all i ∈ [N ], there are two situations.

1. x ∈ [⌊xj·k−k+1⌋, ⌊xj·k + 1⌋] for some j ∈ [m]: in this case, only F̃j(x) outputs 1, and
other sub-network F̃j′(x) with j′ ̸= j output 0, which results in F (x) = wj .

2. for any j ∈ [m], x > ⌊xj·k +1⌋+ 1
2 or x < ⌊xj·k−k+1⌋− 1

2 holds: in this case, F̃j(x) = 0
for j ∈ [m] and thus F (x) = 0.

Putting the above two cases together, we see that the output F (x) for every x ∈ R with |x−xi| ≥ 2
(∀i = 1, . . . , N) is 0 or wj for some j ∈ [m].

Lemma G.4 (Vardi et al. (2022)). Let n ∈ N and let i, j ∈ N with i < j ≤ n. Denote Tel-
garsky’s triangle function by ψ(z) := σR(σR(2z) − σR(4z − 2)). Then, there exists a neural
network F : R2 → R3 with width 5, depth 3(j − i + 1), and bit complexity n + 2, such that

for any x ∈ N with LEN(x) ≤ n, if the input of F is
(
ψ(i−1)

(
x
2n + 1

2n+1

)
ψ(i−1)

(
x
2n + 1

2n+2

) ), then it outputs: ψ(j)
(

x
2n + 1

2n+1

)
ψ(j)

(
x
2n + 1

2n+2

)
BINi:j(x)

.

Lemma G.5 (Vardi et al. (2022)). There exists a network F : R2 → R with width 2, depth 2 and bit

complexity 2 such that F
((

x
y

))
= 1 if x ∈ [y, y + 1] and F

((
x
y

))
= 0 if x > y + 3

2 or

x < y − 1
2 .

The following lemma is an extension of the lemma by Vardi et al. (2022), in that the outputs for
unexpected inputs are also considered.
Lemma G.6. Let ρ, n, c ∈ N. Let u ∈ N with LEN(u) = ρ ·n and let w ∈ N with LEN(w) = c ·n.
Assume that for any ℓ, k ∈ {0, 1, . . . , n − 1} with ℓ ̸= k we have that |BINρ·ℓ+1:ρ·(ℓ+1)(u) −
BINρ·k+1:ρ·(k+1)(u)| ≥ 2. Then, there exists a network F : R3 → R with width 12, depth 3n ·
max{ρ, c}+ 2n+ 2 and bit complexity n ·max{ρ, c}+ 2, such that for every x > 0, if there exist
j ∈ {0, 1, . . . , n− 1} where ⌊x⌋ = BINρ·j+1:ρ·(j+1)(u), then:

F

((
x
w
u

))
= BINρ·j+1:ρ·(j+1)(w). (153)

In addition, if x satisfies |x− 1/2− BINρ·j+1:ρ·(j+1)(u)| > 1 for any j ∈ {0, . . . , n− 1}, then

F

((
x
w
u

))
= 0. (154)

Proof. We follow exactly the same construction of a neural network by Vardi et al. (2022). As such,
for a detailed analysis of the depth and bit complexity of each network defined here, we refer the
reader to the original paper and omit it here.

For each i = 0, . . . , n − 1, we construct a network Fi as follows. First, we use Lemma G.4 for u
and w, respectively to obtain two networks Fw

i and Fu
i with width 5, depth at most 3 · max{ρ, c}

and bit complexity at most nmax{ρ, c}+ 2 such that

Fu
i

(
ψ(i·ρ) ( u

2n·ρ + 1
2n·ρ+1

)
ψ(i·ρ) ( u

2n·ρ + 1
2n·ρ+2

) ) =

 ψ((i+1)·ρ) ( u
2n·ρ + 1

2n·ρ+1

)
ψ((i+1)·ρ) ( u

2n·ρ + 1
2n·ρ+2

)
BINi·ρ+1:(i+1)·ρ(u)

 , (155)

Fw
i

(
ψ(i·c) ( w

2n·c + 1
2n·c+1

)
ψ(i·c) ( w

2n·c + 1
2n·c+2

) ) =

 ψ((i+1)·c) ( w
2n·c + 1

2n·c+1

)
ψ((i+1)·c) ( w

2n·c + 1
2n·c+2

)
BINi·c+1:(i+1)·c(w)

 . (156)
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Next, we use Lemma G.5 with inputs x and y = BINi·ρ+1:(i+1)·ρ(u) to obtain the neural network
F ỹ
i : R → R with width 2, depth 2 and bit complexity at most ρ such that

F ỹ
i

((
x

BINi·ρ+1:(i+1)·ρ(u)

))
=

{
1 if BINi·ρ+1:(i+1)·ρ(u) ≤ x ≤ BINi·ρ+1:(i+1)·ρ(u) + 1,

0 if |x− 1/2− BINi·ρ+1:(i+1)·ρ(u)| > 1.

(157)

In addition, we construct a 1-layer feed-forward network F y
i by

F y
i

(
x
y

)
:= σR(x · 2c+1 − 2c+1 + y). (158)

Putting the networks defined above and trivial modifications together, we define a neural network Fi

such that Fi satisfies

Fi :


x

ψ(i·ρ) ( u
2n·ρ + 1

2n·ρ+1

)
ψ(i·ρ) ( u

2n·ρ + 1
2n·ρ+2

)
ψ(i·c) ( w

2n·c + 1
2n·c+1

)
ψ(i·c) ( w

2n·c + 1
2n·c+2

)
y



7→



x
ψ((i+1)·ρ) ( u

2n·ρ + 1
2n·ρ+1

)
ψ((i+1)·ρ) ( u

2n·ρ + 1
2n·ρ+2

)
ψ((i+1)·c) ( w

2n·c + 1
2n·c+1

)
ψ((i+1)·c) ( w

2n·c + 1
2n·c+2

)
y + σR

(
F ỹ
i

((
x

BINi·ρ+1:(i+1)·ρ(u)

))
· 2c+1 − 2c+1 +BINi·c+1:(i+1)·c(w)

)


.

(159)

Finally, we concatenate Fi for each i = 0, . . . , n− 1 to construct a network F : R3 → R by
F := G ◦ Fn−1 ◦ · · · ◦ F0 ◦H (160)

where G and H are additional 1-layer feed-forward networks such that

H : R3 → R5,

(
x
w
u

)
7→


x

u
2n·ρ + 1

2n·ρ+1

u
2n·ρ + 1

2n·ρ+2

w
2n·c + 1

2n·c+1

w
2n·c + 1

2n·c+2

0

 , (161)

and G : R5 → R outputs the fifth coordinate of the input. Note that with these configurations, it can
be proved by induction that inputs of Fi for each i = 0, . . . , n− 1 are always of the form eq. (159).

Hereafter, we verify that the network F actually satisfies the desired behavior. Notice that the output
of F is expressed as

F

((
x
w
u

))
=

n−1∑
i=0

σR

(
F ỹ
i

((
x

BINi·ρ+1:(i+1)·ρ(u)

))
· 2c+1 − 2c+1 +BINi·c+1:(i+1)·c(w)

)
.

(162)

If there exist j ∈ {0, 1, . . . , n− 1} with ⌊x⌋ = BINρ·j+1:ρ·(j+1)(u), the right-hand side becomes

F

((
x
w
u

))
= σR

(
1 · 2c+1 − 2c+1 +BINj·c+1:(j+1)·c(w)

)
+

n−1∑
i=0
i̸=j

σR
(
0 · 2c+1 − 2c+1 +BINi·c+1:(i+1)·c(w)

)
= BINj·c+1:(j+1)·c(w), (163)
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because BINi·c+1:(i+1)·c(w) ≤ 2c+1 holds for any i = 0, . . . , n− 1.

On the other hand, if x satisfies |x − 1/2 − BINρ·j+1:ρ·(j+1)(u)| > 1 for any j ∈ {0, . . . , n − 1},
the output of F becomes

F

((
x
w
u

))
=

n−1∑
i=0

σR
(
0 · 2c+1 − 2c+1 +BINi·c+1:(i+1)·c(w)

)
= 0, (164)

as desired.

H EXPERIMENTS

In this section, we empirically investigate whether the memorization capacity of real-world Trans-
formers aligns with the behavior predicted by our theoretical analysis when varying the size of the
dataset and the length of input sequences.

H.1 SETUP

We trained Transformers in the next-token prediction setting on two real-world datasets and one
randomly generated dataset of various sizes and evaluated the minimum network size required to
memorize each dataset, plotting the results to examine the correlation between dataset size and
network size. To validate our theoretical analysis, the architecture of the Transformer used in our
experiments followed the same structure as the model described in Theorem B.1. To be more precise,
we consider the following architecture:

N
(
X(i)

)
n
= Eout ◦ F (FF)

2 ◦ F (UA) ◦ F (FF)
1 ◦ Ein

(
X(i)

)
n
, (165)

where F (FF)
1 and F (FF)

2 are token-wise feed-forward layers (eq. (3)) stacked for #blocks blocks
with the hidden dimension q = 4m and embedding dimension m = 2 3. Since the number of
parameters in the model is approximately proportional to #blocks, we use #blocks as a proxy for
memorization capacity in our experiments by varying it to evaluate the minimum network size re-
quired for memorization. The model was trained using the AdamW optimizer (Loshchilov & Hutter,
2019) with full-batch updates. To focus on the representational capacity of models and minimize
the influence of optimization, we tuned hyperparameters such as a learning rate and warmup interval
using Optuna (Akiba et al., 2019).

H.2 RESULTS

Validation of memorization with Transformers using single uniform-attention: We first validate
that a single layer of uniform attention actually suffices for memorization. Specifically, we trained a
simplified Transformer defined in eq. (165), consisting of one uniform attention layer and two token-
wise feed-forward networks, on two real-world datasets: MultiNLI dataset (Williams et al., 2018)
from GLUE benchmark (Wang et al., 2018) and IMDb dataset (Maas et al., 2011). For both datasets,
the length of input sequences was truncated to 8, and outputs at the 0-th token were compared with
labels using cross-entropy loss. While this setup does not correspond to next-token prediction in the
traditional sense, it aligns with the next-token prediction setting considered in this paper.

The results are summarized in figure 1 for MultiNLI dataset and figure 2 for IMDb dataset. Overall,
our experiments confirmed that as the number of blocks increases, the training loss can be reduced
to nearly zero, and the accuracy tends to approach one. This outcome aligns with the predictions
of Theorem B.1, demonstrating that even a single layer of uniform attention, when paired with an
appropriate number of feed-forward networks, is sufficient for memorization.

Varying the dataset size while the sequence length is fixed: We next examined how the memo-
rization capacity of Transformers changes when varying the dataset size while keeping the sequence

3The embedding dimension was set to 2 so that it becomes difficult for models to memorize even small
datasets.
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(a) Training loss on MultiNLI dataset
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(b) Accuracy on MultiNLI dataset

Figure 1: Training losses and accuracies of Transformers with #blocks = 1, 10, 20, 30, 40, 50 on a dataset
of size N = 2000 with input sequence length n = 8 sampled from MultiNLI dataset. Each model
was trained using full-batch gradient descent for 1000 epochs, and the best-performing model was
selected after running two trials of hyperparameter tuning with Optuna.
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(a) Training loss on IMDb dataset
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Figure 2: Training losses and accuracies of Transformers with #blocks = 1, 10, 20, 30, 40 on a dataset of size
N = 3000 with input sequence length n = 8 sampled from IMDb dataset. Each model was trained
using full-batch gradient descent for 1000 epochs, and the best-performing model was selected after
running two trials of hyperparameter tuning with Optuna.

length fixed. Specifically, we trained Transformers on datasets sampled from the MultiNLI dataset,
where the sequence length was fixed at n = 8 and the dataset size N ranged from 600 to 1700 in
increments of 100. For each dataset, we determined the minimum number of #blocks required for
the network to memorize the data. Here, a network was considered to have successfully memorized
the dataset when the training error fell below a threshold of ϵ = 0.01.

Figure 3 summarizes the evaluation of the memorization capacity of Transformers on MultiNLI
datasets of varying sizes. From this figure, we can observe the following two points.

1. Square-root scaling for small datasets: For smaller dataset sizes, particularly in the range
of N = 600 to N = 1400, the memorization capacity of the Transformer scales approx-
imately as

√
N . This behavior aligns well with the theoretical prediction of Theorem 4.1

and Theorem 4.2, which suggests that the memorization capacity of Transformers in the
next-token prediction setting scales as Θ

√
N .

2. Rapid increase for larger datasets: Beyond N = 1400, the memorization capacity ex-
hibits a sharp increase, deviating from the earlier

√
N scaling. This phenomenon has also

been observed in the experiments conducted by Kim et al. (2023). A plausible explana-
tion is that the bit-length of each parameter in the network is fixed during the experiments.
As the dataset size grows, the precision of the parameters becomes insufficient for optimal
memorization. Under this regime, the analysis of Transformers with limited bit complexity,
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as discussed in Appendix F, becomes applicable, predicting that the memorization capacity
scales linearly with the dataset size N .
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Figure 3: Memorization capacity, that is, the minimum size of Transformers required for memorizing
MultiNLI dataset with size N = 600, . . . , 1700 in increments of 100. In this figure, the depth
#blocks of the two token-wise feed-forward networks F (FF)

1 and F (FF)
2 in eq. (165) is used as the

variable on the vertical axis to control the size of the network. Each model was trained using full-
batch gradient descent for 1000 epochs, and the best-performing model was selected after running
ten trials of hyperparameter tuning with Optuna.

Varying the sequence length while the dataset size is fixed: We also investigated how the mem-
orization capacity changes when the size of a randomly generated dataset is fixed at N = 500 and
the input sequence length n is varied across 10, 100, 1000 and 10000. In this experiment, each word
token is a 6-dimensional vector, with each element sampled independently from the uniform dis-
tribution over the interval [0, 1). Similarly, each label is either +1 or −1, sampled independently
from the Rademacher distribution. Using the mean squared error as the loss function, a network was
considered to have successfully memorized the dataset when the training error fell below a thresh-
old of ϵ = 0.01. Surprisingly, the results showed that, for all sequence lengths, a Transformer with
#blocks = 4 was the smallest model capable of achieving memorization. An insight from this ex-
perimental result is that, while the upper bound of the memorization capacity given by Theorem 4.1
has a gap ofO(log n) compared to the lower bound in Theorem 4.2, real-world Transformers appear
to align more closely with the lower bound of Theorem 4.2, that is, the memorization capacity might
be nearly independent of the input sequence length n.
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