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ABSTRACT

Sketches offer a simple yet powerful way to represent object configurations, mak-
ing them ideal for local image structure manipulation. Traditional methods of-
ten treat sketch-based editing as an image inpainting task, requiring both user-
provided strokes and masks, which hinders the user experience. Although recent
mask-free stroke-based editing methods are more convenient, they often produce
significant artifacts or unintentionally modify irrelevant regions. To overcome
these challenges, we propose DiffStroke, a mask-free method for high-quality im-
age editing using only partial sketches. Trainable plug-and-play Image-Stroke Fu-
sion (ISF) modules and an effective mask estimator are developed to address the
limitations of previous conditional control diffusion models in preserving style
consistency and protecting irrelevant areas. The ISF modules fuse stroke encod-
ings with source image features as input conditions, enabling DiffStroke to con-
trol local shapes while preserving overall style consistency. The mask estimator
automatically predicts masks to preserve irrelevant regions without the need for
manual input. Specifically, DiffStroke blends the estimated clean latent image
with the encoded source image using the predicted mask, with the mask estima-
tor trained to minimize the error between the blended result and the latent target
image. Experimental results on natural and facial images demonstrate that Diff-
Stroke outperforms previous methods in both simple and complex stroke-based
image editing tasks.

1 INTRODUCTION

Sketching is a widely used, convenient method to convey messages. In particular, it has the advan-
tage of conveying abstract geometric concepts. For example, it is challenging to accurately convey
the contours of an item by words, but a sketch can effectively represent contours according to the
shape of an object with a minimal number of strokes. Consequently, it is frequently employed as
a control condition to direct image generation (Isola et al., 2017} |[Koley et al.| 2023). Thanks to
the powerful generative capabilities of the advanced modeling paradigm (Goodfellow et al., 2014;
Sohl-Dickstein et al.,[2015; |Ho et al.,|2020)), recent work has succeeded in synthesizing realistic im-
ages while maintaining the corresponding reference structures (Chen & Hays| |2018; Voynov et al.,
2023)). However, in some cases, users may not need to generate an entirely new image. Instead, they
might be satisfied with making local structural changes to an existing image using partial sketches
or simple strokes, e.g., sketch-based image manipulation.

Sketch-based image editing methods can be broadly divided into two categories: mask-based and
mask-free approaches. Mask-based methods typically treat the task from an image inpainting per-
spective, where the user provides not only a mask to define the region for editing, but also several
strokes to guide the inpainting process (Yu et al| 2019} [Liu et al 2021} 2024). These strokes,
or their features, are often embedded as additional inputs into the network. However, requiring
users to manually draw the mask adds extra efforts and may be impractical in certain scenarios.
On the other hand, mask-free methods (Zeng et al., |2022) simplify the process by requiring only
user-provided strokes for editing, with a mask predictor automatically identifying the region to be
modified. Despite the promising results, the aforementioned methods are all based on generative
adversarial networks (GANs), which limits their performances. They edit images only from specific
domains and often produce artifacts, as shown in the penultimate column of Fig.
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Figure 1: The proposed method enables users to achieve high-quality image manipulation through
some strokes without user-provided masks. ‘M & S’ is short for ‘mask and sketch’.

In recent years, diffusion models (Ho et al, 2020} [Song et all, 2021b; Rombach et all, 2022) have

dominated the field of image generation, achieving the state-of-the-art performance in both image
quality and mode coverage. Their powerful generative capabilities have inspired researchers to uti-
lize pre-trained diffusion models for controllable image synthesis. Existing methods have success-
fully enabled image generation guided by various global conditions (Zhang & Agrawala,[2023}[Moul
2024), such as line drawings, semantic maps, and poses. With the involvement of masks and
strokes, these conditional control models can modify specific areas of the image to achieve stroke-
based editing. However, these methods primarily focus on generating content that aligns with the
given conditions without considering consistency with the original image, as the shoes in Fig[I]
Furthermore, they require user-provided masks, see Fig[T] which places an additional burden on the
user. Therefore, an ideal stroke-based editing technique should simultaneously satisfy the following
requirements: 1) The newly generated content needs to align with the stroke while the remaining is
consistent with the original image in terms of both content and style. 2) The non-edited regions must
remain intact. Due to these factors, stroke-based editing remains a challenging task. Although the
DDIM (Song et al} [2021a) technique can preserve the structural information of the original image
during editing without a mask, it often leads to significant changes in the image’s style and details

(Mokady et al.| [2023), when classifier-free guidance (CFG) (Ho & Salimans} [2022)) is involved.

In this paper, we propose DiffStroke for high-quality, mask-free image editing based on partial
sketches. DiffStroke is built upon a conditional control diffusion model, such as ControlNet
& Agrawala, [2023)) and T2I-adapter [2024), to leverage their strong capability in edge
control. We develop a trainable plug-and-play image-stroke fusion (ISF) module and a mask estima-
tion module to address the limitations of previous methods (Zhang & Agrawala, 2023} [Mou et all}
in maintaining style consistency and preserving irrelevant areas. As a result, our method en-
sures that the edited content maintains the same style as the original image, leaves unrelated areas
untouched, and achieves high visual quality.

Unlike previous methods (Zhang & Agrawala, [2023; Mou et al.| [2024)) that only encode the stroke
image as input condition embeddings, the proposed ISF module enhances these embeddings by in-
tegrating information from the source image using Transformer layers (Vaswani et al,[2017). The
stroke and image features are extracted from the sketch adapter (Mou et al.l [2024) and the noise
predictor of Stable Diffusion (SD) (Rombach et al.,[2022)), respectively. Leveraging the strong rep-
resentational capabilities of these pre-trained models, the ISF module achieves effective conditional
embeddings without requiring extensive training. With the ISF module, DiffStroke ensures that the
newly generated content is structurally aligned with the strokes while maintaining a consistent style
with the source image.




Under review as a conference paper at ICLR 2025

To preserve irrelevant areas without requiring user-provided masks, we introduce a mask estimator
that automatically determines the regions to be edited based on the image and stroke information.
Traditional methods, such as (Zeng et al., [2022), typically train the mask estimator by minimizing
the reconstruction error between the target image and the fused result, which is obtained by combin-
ing the generated image and the source image using the predicted mask. However, this approach is
not suitable for diffusion-based methods, as SD (Rombach et al., [2022) predicts noise in the train-
ing stage rather than directly generating the target image. To address this limitation, we leverage
Tweedie’s formula (Kim & Ye} 2021} |[Koley et al., 2024a) to estimate a clean latent image during
training, which we assume is closer to the target image in the edited regions than the source image.
In this way, we can adapt the traditional training method to DiffStroke. Note that the mask estimator
is designed to be simple and efficient, requiring only an additional projection layer and a lightweight
learnable vector in the shallowest ISF block.

The proposed modules are all plug-and-play, allowing DiffStroke to fully leverage the learned
knowledge of the pre-trained conditional control models. Our contributions can be summarized
as follows: (i) We propose a mask-free method for high-quality image manipulation with partial
sketches. (ii) We develop an image-stroke fusion module to ensure precise control over local shapes
while preserving overall style consistency, and an effective training method for mask estimation. (iii)
The experimental results on both natural and facial images demonstrate that our method significantly
outperforms previous methods.

2 RELATED WORK

Sketch-based visual content generation. The generation of sketches from images that evoke hu-
man abstract concepts is a recurring theme in this field of study. The initial deployment of GANs
(Goodfellow et al.,[2014) to effect transformations from the domain of real images to that of sketches
is a common practice (Isola et al.|[2017;|Y1 et al.,|2020; |Seo et al., 2023)). However, this often neces-
sitates the availability of paired data for training, which can be challenging to collect. Recent work,
exemplified by CLIPasso (Vinker et al.,2022), leverages the prior knowledge of pre-trained models
(Xing et al., 2023} [Vinker et al., 2023)), e.g., CLIP (Radford et al.| |2021) and SD (Rombach et al.,
2022), to facilitate sketch generation at varying degrees of abstraction through the optimization of
Bezier curve parameters. However, this approach necessitates a prolonged inference time and dis-
regards the nuances of human drawing style and order in the sketches. Consequently, some studies
(Ha & Eckl 2018; [Wang et al.| 2023 L1 et al., [2024)) investigate the replication of human draw-
ing habits and the generation of imaginative sketches. The creation of images through the use of
sketches has also become a prevalent topic, particularly in conjunction with the advent of diffusion
models. In addition to methods based on line drawings (Voynov et al., [2023} Zhang & Agrawalal
2023; Mou et al.| [2024)), some methods have been investigated about hand-drawn sketches (Koley
et al., [2024b)) or for target instance editing (Xiao & Ful|2024). Furthermore, there are also sketch-
based video generation tasks, including the synthesis of real video from sketches (Guo et al., [2023))
and the animation of sketches (Gal et al.| [2024).

Diffusion model-based image editing. Along with the recent rapid development of Artificial In-
telligence Generated Content (AIGC), numerous image manipulation methods based on diffusion
models have emerged (Yang et al., 2023} [Huang et al., [2024). One category is the training-based
approach, with training subjects that may vary. An example would be the generation of a personal-
ized concept, achieved by optimizing a learnable word embedding (Gal et al., [2023)) or fine-tuning
the UNet of the diffusion model (Ruiz et al., 2023). Another example is that some additional net-
work layers are trained to achieve style transfer (Ye et al.l [2023). Another popular category is the
training-free method, which does not require extensive resources. DiffEdit (Couairon et al.}[2022) is
a straightforward yet productive methodology for approximating the mask of a concept that requires
editing for object replacement or removal. This is achieved through the utilization of the attention
map that is in alignment with the selected word. Subsequent approaches have also been put forth
to achieve image editing by manipulating attention maps (Hertz et al.| 2023} |Huang et al.| [2023).
Furthermore, a category of compromises exists that can optimize the Null-text embedding (Mokady
et al.,2023)) or latent representation (Nam et al.,[2024) during the inference process, thereby improv-
ing the quality of generation with a little additional time consumption. Note that DiffEdit’s method
of estimating masks is not suitable for our tasks, because the regions undergoing editing are often
localized and difficult to describe in words precisely.
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Figure 2: The Overall training pipeline and inference pipeline of DiffStroke. (a) The components of
the T2I-adapter are frozen and the image-stroke fusing (ISF) blocks are trained.
The shallowest of ISFs is also trained for estimating the mask. (b) In the inference phase, the
conditional embeddings and the estimated mask are used to generate editing results through the

DDIM Inversion (Song et al, [2021a)) technique with the inpainting (Lugmayr et al.} [2022) method.
For the sake of brevity, the ISF blocks are not displayed in Step 1.

3 METHODOLOGY

Overview. The fundamental objective of DiffStroke is to automatically identify the region to be
edited based on the user-supplied image I, and sketch S.4;:, and to generate a conditional em-
bedding to direct the model in the generation of the final editing result I.4;;. The pipeline of the
DiffStroke is shown in Fig. 2] The following section presents the particulars of implementing our
approach, including the acquisition of paired training data (Section [3.I), the design and training
(Section 3:4) of the ISF blocks (Section[3:2]) and the mask estimator (Section [3.3)), and the detailed
flow of the inference phase (Section [3.3). To conserve computational resources, DiffStroke is built

on the T2I-adapter (Mou et al.,[2024) rather than ControlNet (Zhang & Agrawala,[2023).

3.1 DATA PREPARATION

Typically, the paired training data of the source image I, the sketch Se4;¢, and the editing result
I, are difficult to obtain. Therefore, we adopt a similar strategy to that used in previous methods
Zeng et all, [2022} [Xu et al 2023) to obtain the training data using free-form deformation (FFD)
Sederberg & Parry, [1986), as shown in Fig. [3[a).

Firstly, we initialize the control point grid for FFD. Then, the length and width of the source image
I, are normalized, and the control points are distributed uniformly in the range [0, 1] in both the x
and y directions. In this context, g5 represents the grid size, e.g., the number of points in a row or a
column. Let the grid of control points be G (i, j), where 4, j are the grid indices. The initialization

i J

T g ) To simulate the free deformation of

expression for the control points is G(i,j) =
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Figure 3: (a) The pipeline for obtaining deformed images and conditional sketches for training
purposes. (b) Structure of the ISF blocks. The shallowest one is also applied to estimate the mask,
i.e., using the path indicated by the dashed arrows.

the image, we randomly shift some of the control points. Let the shifted control point be G’ (i, j),
which is updated by: G'(i,5) = G(i,7) + dd(i, j), where dd(i, j) is a random offset vector. We
use bi-linear interpolation to implement the deformation. Specifically, given the deformed control
point G'(i, 7) and the original control point G (i, ), a new pixel coordinate mapping is generated
by interpolation. We denote the width and height of the image I;,. be W and H respectively, and
then the coordinate mapping after interpolation in the image is:

gs—1lgs—1 9s—1lgs—1
=D D Bilw)B;(v)Gy(i. ), =3 Y BB )G, i.5), (1)
=0 j=0 =0 j5=0

where B;(u) and B;(v) are the basis functions for bi-linear interpolation, (2, y") represents the new
coordinate of each pixel, (u, v) are the normalized coordinates of the source image, and G, (i, j) and
G’y (i, 7) are the coordinates of the control point after changes in the = and y directions, respectively.
At last, the ‘grid_sample’ function in PyTorch (Paszke et al.,|2019) is employed to implement the
new coordinate mapping on the original image, thereby generating the deformed image I;,,.. Please
refer to our submitted code for more details.

To get the conditional sketch S¢q:¢, we initially calculate the moved distance of the control points:
AG(z,y) = |G (z,y) — G'(z,y)l|. 2)

Subsequently, the deformation field AG is extended to the resolution of the entire image by bi-linear
interpolation to get AG(z, y), thereby generating a mask M:
. 1 if AG(z,y) > 0.05
M = ’ ’ 3
() {0 otherwise. ®)

The mask M determines whether each pixel location is in a deformation region or not. We then
leverage PidiNet (Su et al.,[2021) to extract edge map S, and Sy, from I,.. and I, respectively.

Finally, the conditional sketch S.4;; is obtained by Mo (Star — Ssre)-

3.2 AGGREGATING THE IMAGE AND SKETCH INFORMATION

In this study, we employ the sketch-controlled diffusion model T2I-adapter (Mou et al.l [2024) as
the base, for the sketch-based image editing task. In the generation of image I,4, (or I.g;), the
T2I-adapter extracts the features h® = [h], h3, h3, hj] from the sketch Si,, at four distinct layers.
These are then summed with the hidden layer features hf?)’" = [ht Y htZ%:)’ hg%:)’ hf&:)] of the
noise predictor €. The embeddings h*® serve to guide the generation process at the time step ¢. To
mitigate the potential loss of stylistic content resulting from the exclusive utilization of sketches as
conditioning variables, we augment the conditional control embeddings and introduce the ISF block.
The structure of the ISF block is illustrated in Fig. [3[b). Given the powerful representations afforded
by SD’s UNet, we leverage this model to extract the features h*"¢ = [h{"°, h5™, h5™°, hi¢] of the
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latent source image z°"¢ from the same layers as hf‘g)r , thereby capturing the style content conditions.
Subsequently, the source image embedding h{"¢ and the sketch feature h; are added and fed into
three transformer layers (Vaswani et al.l2017)). This enables the interaction within different tokens
through the self-attention mechanism and the feed-forward networks. The transformer block then
output the control embedding, h™ = [h7¥® RJViT hIV® R7i] Ultimately, instead of the sketch
embeddings h?, the augmented one h™** will be employed for model training and image generation
through a summation with hf‘;)r )

3.3 ESTIMATING THE EDITING REGIONS

To equip the DiffStroke with the functionality of an estimation mask, additional designs are created
for the first ISF block. The selection of this particular ISF block is based on two considerations.
Firstly, shallow features reflect more specific local details rather than global semantics. Secondly,
the height and width of the feature h;"¢ are consistent with the latent source image z°"¢. The
method is implemented by introducing a learnable vector v* € R(64x64)x16 a5 additional channels
for hi¢ € RO4*64x320 ~ We utilize the information interaction capabilities of the ISF block to
enable v* to recognize the specific editing regions. A multi-layer perceptron (MLP), followed by
transformer layers, produces the final output mask M € R%4*%4  as illustrated in Fig. [2a). The
process can be formalized as:

hi"® = feon(frs(hi™),v"), (AT, 9") = f1sr(hi™),

M = faurp(frs(0%)), R = fog(R]), €]
Rire ¢ R(G4X04)X336 fmiz CR(64X64)x320 g ¢ R(64x64)x16

where feon(+) and f5(-) respectively denote the vectors concatenated process and the reshape oper-
ation, frgp(-) is the first ISF block, and fy;7,p(-) represents the MLP for producing mask M. To
reduce the number of parameters, we apply a one-layer convolutional neural network with a kernel
size of 3 x 3 and a stride of 1 to implement fa;rp(-).

3.4 TRAINING THE COMPONENTS OF DIFFSTROKE

In the training phase, the parameters of the ISF blocks including the mask prediction network are
optimized. We first encode the source image Ig,.. and the deformed image I, into the latent
representations z°"¢ and 2'*" (i.e., 2{°"), while leveraging the sketch adapter to get the features
h® = A(S.4it). The vectors z°7 and h* are used to calculate the conditional embeddings A",

In each training step, the noise € ~ N(0, I') and the time step ¢ are randomly sampled to introduce

noise into z%":
21 = Jazh + V1 — age, (5)

where a; denotes the compound of the noise schedule a;. DiffStroke injects the conditional embed-
dings h™** to noise predictor and adopts the same strategy as commonly used conditional control
networks (Zhang & Agrawalal 2023} [Mou et al., 2024)) to train the ISF blocks:

Laisr = ||€ — €o(z*", 2°7, Seai, t, ¢)||3, (6)

where ¢ denotes the text prompt. To train the mask estimator, the Tweedie’s formula (Kim & Ye
2021} |[Koley et al.| 20244a) is initially employed:

t / = t
Star _ ztar —Vv1- ate@(ztarv 2°7¢, Sedit, t, C)

ot — T @)
This yielded the requisite estimated clean latent image zé‘llt’". Subsequently, zé“lg" and z°7¢ are com-
bined to get the output 2" = Mz(t)‘fg" + (1 — M)(M2z" 4 (1 — M)z'"). The mask generated

by Eq. [3is employed to circumvent the confounding influence of the deformation in the irrele-
vant region induced by the FFD on the training process. The mask estimator can be optimized by
minimizing the errors between z{*" and 2'*":

5 2
Linask = 12" = 26" |[3- ®)
To strengthen the control of the edge conditions, we introduce an additional regular term:
i 2
Leage = |[R™" — A(Star)|[3; )
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where Sy, is the edge map of the target image I;,,.. The overall loss function of DiffStroke is:
L= Cdiff + 2.5L ask + 0-25£edge- (10)

In practical, we add noise to z°"¢ (¢ = 273) when extracting the image features, which more accu-
rately reflect the edge features, as recommended by existing literature (Koley et al., 2024a)).

3.5 EDITING IMAGES BY DIFFSTROKE

In the inference stage, users provide the source image I,.. and the stroke S.4;; that are encoded to
the latent source image z§" ¢ and the embedding h°"¢. Subsequently, DiffStroke employs the DDIM

reverse step (Song et al., 2021a) to generate the noise vectors 23", 2{"¢, ..., 27 ¢ for distinct time

steps, produces the conditional embeddings A", and estimates the mask mask M. We take 257 as
the initial noise 25% for the DDIM denoising process. The process in the time step ¢ is as follows:

it me
ztedzlt _ /thl( t

~€dzt edit sre
Zi0) =Mz +( — M)z"q,

)+ ].—Ciktflegt)7

(1)

where 6((9) denotes e (Z¢%t, 2°7¢ So4it,t, ). Ultimately, the latent image Z is obtained and

subsequently decoded to generate the edited image I.4;+ as depicted in Fig. lb) To maintain the
integrity of the unedited regions, the mask M is up-sampled and employed to fuse I.4;+ and I,..

edzt

4 EXPERIMENTS

Datasets. We test model performance on natural and facial image datasets like previous sketch-
based image manipulation methods (Liu et al., 2021} [Zeng et al. 2022)). For training on generic
scenes, we opted for the smaller Sketchy dataset (11,250 images for training) (Sangkloy et al., 2016)
due to its ease of training, rather than the larger Places2 dataset (1.8 million images) (Zhou et al.,
2017). However, to ensure fairness compared to methods trained on Places2, we conducted quanti-
tative experiments using 2,000 randomly selected images from the Places2 validation set. For facial
image manipulation, we used the CelebA-HQ dataset (Karras},[2017), training on 28,000 images and
testing on other 2,000 images. To better capture face deformation, we followed a strategy similar to
SketchEdit (Zeng et al.,2022), replacing grid control points with face landmarks detected via ‘dlib’
in 80% of the training cases. We swapped source and target images with a 50% probability, adjust-
ing the conditional sketches accordingly. For quantitative analysis, we adhered to the SketchEdit
scheme: 1) Deforming the source image I, to obtain the deformed image I ¢, producing a sketch
Sges of the deformed region. 2) Each model generates a new image I.4;; conditional on Iz, and
Sqes - 3) Calculating metrics between the ground truth I, and the model output I.q;:. We leverage
blip2 (Li et al.l 2023)) to generate captions corresponding to the images automatically.

Implementation details. The dimension of the Transformers’ feed-forward network in DiffStroke’s
ISF blocks is 1024. We trained DiffStroke using the AdamW optimizer (Loshchilov et al., [2017)
with 51 = 0.9 and B = 0.999. The learning rate was set to 0.0001 and the batch size is 4. A total of
170,000 steps were trained on the natural image dataset, which was then used to train an additional
30,000 steps on the CelebA-HQ dataset for face manipulation. The version of SD (Rombach et al.,
2022) is v1.5. We set the DDIM step (Song et al} 2021a) to 50 by default. All experiments are
conducted on a single Nvidia A100 40G.

Competitors. In addition to the mask-free SketchEdit (Zeng et al.l 2022)), we also conducted a
comparative analysis of the state-of-the-art models that require mask participation. These include
GAN-based DeepFill-v2 (Yu et al.,|2019), DeFLOCNet (Liu et al., 2021), and SketchRefiner (Liu
et al.| 2024), as well as diffusion model-based ControlNet (Zhang & Agrawalal [2023) and T2I-
adapter (Mou et al.| 2024). Two approaches are employed to provide masks for these methods:
computation using Eq. [3|and estimation via DiffStroke (followed by *, e.g., SketchRefiner*).

4.1 QUALITATIVE ANALYSIS

Fig. @] presents the manipulation results of natural images. The proposed DiffStroke model exhibits
favorable outcomes for both shape control and style retention. DiffStroke, T2I-adapter (Mou et al.,
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Figure 4: Examples of edits on natural images. Our method and SketchEdit (Zeng et al., 2022) are
not required for user-provided masks. ‘M & S’ is short for ‘mask and sketch’.

Prompt Source Images Input: M&S  DeepFill-v2 DeFLOCNet SketchRefiner T2l-adapter ~ ControlNet Input: Sketches SketchEdit Ours
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Figure 5: Examples of edits on facial images. Our method and SketchEdit 2022) are
not required for user-provided masks. ‘M & S’ is short for ‘mask and sketch’.

[2024), and ControlNet (Zhang & Agrawala, 2023) are capable of producing more high-quality than
GANs. This is attributable to the potent generative capabilities inherent in SD
[2022). Although SketchRefiner produces superior results to other GAN-based
methods, its performance is still inadequate, producing artifacts, when confronted with complex
scenes such as ‘cat’s head’. The advantage of DiffStroke over T2I-adapter and ControlNet, in addi-
tion to being mask-free, is in the effectiveness of ISF blocks for feature fusion to enhance control
embedding. To illustrate, the edited result of the T2I-adapter contains two cat mouths (the second
row of Fig. E[), the wall added to the church is too dark in color, and there is no connection between
the edited and non-edited areas (the latest row of Fig. E) Furthermore, ControlNet is not effective
in modifying the cat’s ears or the shape of the pizza.

For face manipulation, the discrepancy between GANs and diffusion models is decreasing, as shown
in Fig. 5] When executing simple editing operations, e.g., modifying a hairstyle (the first row of Fig.
[), the majority of techniques demonstrate remarkable efficacy. Conversely, for more intricate tasks,
such as adding a beard (the second row of Fig. [5) or wearing eyeglasses (the fourth row of Fig. [3)),
only our method is capable of striking a satisfactory balance between the quality of the generated
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Method Mask Plces2 CelebA-HQ
FID(]) PSNR(T) SSIM(T) LPIPS(])) [ FID(]) PSNR () SSIM(T) LPIPS(])

Ly g - 6.51 29.14 0.9192 0.0383 3.21 29.60 0.9448 0.0201
DeepFill-v2 v 10.42 27.82 0.9065 0.0806 6.37 30.00 0.9334 0.0441
DeepFill-v2* v 8.50 29.91 0.9257 0.0704 545 30.97 0.9452 0.0362

"7 " DeFLOCNet v~ 8727~ 2767 09073 ~ 00739 | 545 3037 = 009381 00345
DeFLOCNet* v 6.25 29.99 0.9290 0.0652 4.53 32.71 0.9624 0.0281

" SketchRefiner v 536 2951 09220 ~ 0.0361 | 295 3035 09437  0.0253
SketchRefiner* v 4.88 30.05 0.9249 0.0311 2.16 31.46 0.9547 0.0188
ControlNet v 5.39 27.94 0.9165 0.0417 3.25 29.56 0.9406 0.0256
ControlNet* v 535 29.11 0.9208 0.0384 3.07 30.52 0.9507 0.0214

T2I-adapter v 6.88 28.58 0.9202 0.0437 4.01 30.21 0.9495 0.0237
T2I-adapter* v 5.30 29.54 0.9240 0.0327 3.03 30.79 0.9547 0.0200
SketchEdit X 6.27 29.28 0.9148 0.0437 45.36 19.09 0.6741 0.2734
SketchEdit* v 5.75 29.73 0.9222 0.0407 16.55 28.54 0.9421 0.0378
DiffStroke (ours) X 4.78 30.09 0.9256 0.0304 1.99 32.04 0.9571 0.0156

Table 1: Quantitative comparison on synthetic samples from CelebA-HQ (Karras| |2017) and Places2
validation sets (Zhou et al.,[2017). The image resolution used to calculate the metrics is 256 x 256.
The first line of results is the discrepancy between the deformed images and the source images.

Method Mask Plces2 CelebA-HQ
FID(]) PSNR(T) SSIM(f) LPIPS(])) [ FID(]) PSNR(f) SSIM(T) LPIPS(])
Ty s - 5.54 28.96 0.9165 0.0409 2.52 29.33 0.9468 0.0278
ControlNet v 541 28.50 0.9235 0.0508 371 30.00 0.9486 0.0379
ControlNet* v 5.40 29.81 0.9281 0.0471 3.60 30.99 0.9560 0.0305
"7 T2l-adapter v 583 2939 T 09297 0.0459 [ 392 3073 09569  0.0312
T2I-adapter* v 5.32 30.26 0.9313 0.0408 3.46 31.25 0.9597 0.0274
DiffStroke (ours) X 4.80 30.86 0.9330 0.0392 2.24 32.56 0.9623 0.0238

Table 2: Quantitative comparison on synthetic samples from CelebA-HQ (Karras||2017) and Places2
validation sets (Zhou et al.,|2017). The image resolution used to calculate the metrics is 512 x 512.

output and control conditions provided by the users. We observed that SketchEdit produces lots of
artifacts in irrelevant regions. This can be attributed to inaccurate mask predictions and insufficient
generation capabilities. More editing results produced by DiffStroke are provided in Appendix [D]

4.2 QUANTITATIVE ANALYSIS

As the GAN-based methods utilize an image resolution of 256x256, while the diffusion models have
a resolution of 512x512, we present the metrics of the metrics at both resolutions, as illustrated in
Tables [I] and Table 2] We deflate the image by bi-linear interpolation. The weight of CFG (Ho
& Salimans|, [2022) for diffusion models is set to 3.0 which is a compromise between generation
quality and style consistency. Overall, DiffStroke exhibits superior performance compared to the
other methods in terms of the natural scene and face datasets. We also find that mask-required
methods with masks estimated using DiffStroke (method names ending in ‘*’) demonstrate superior
performance compared to masks generated by Eq. [3| This observation implies that, through training,
the mask estimator is capable of accurately identifying the regions that require editing, rather than
merely fitting the masks produced by Eq. [3] Meanwhile, SketchEdit (Zeng et al., 2022) can obtain
better metrics with the estimated masks by DiffStroke instead of their predictions. This implies the
superiority of our mask estimator.

Although DeFLOCNet (Liu et al. [2021) shows marginally higher PSNR and SSIM values than
DiffStroke at the resolution of 256x256, FID (Heusel et al.l [2017) and LPIPS (Zhang et al.l [2018)
exhibit a notable weakness compared to DiffStroke which indicates our method still significantly
outperforms DeFLOCNet. Among all the methods, one GAN-based model that is metrically similar
to ours and outperforms other diffusion models is SketchRefiner (Liu et al., [2024)). This is because
SketchRefiner has been trained specifically on these two datasets, whereas ControlNet (Zhang &
Agrawala, [2023)) with T2I-adapter (Mou et al., 2024)) represents a relatively more general approach.
Furthermore, the quantitative experiments are conducted at a relatively small deformation scale to
ensure the realism of the deformed images Ic; (as shown in Appendix [C), resulting in smaller
regions that need to be edited. This allows SketchRefiner to perform the task effectively. It is
noteworthy that SketchEdit displays considerably inferior performance on the CelebA-HQ dataset
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Method Plces2 CelebA-HQ
FID(]) PSNR () SSIM(T) LPIPS(}) | FID({) PSNR(T) SSIM(T) LPIPS(])
w/o ISF & Mask  38.65 18.78 0.6545 0.3977 44.28 20.55 0.7617 0.2736

w/o Mask 30.86 21.61 0.7550 0.2799 29.22 23.53 0.8272 0.1863
w/o ISF 5.32 30.26 0.9313 0.0408 3.46 31.25 0.9597 0.0274
~ Oursfull 480 3086 09330  0.0392 [ 224 3256 09623  0.0238

Table 3: Ablation on design.

Prompt Source Images Sketches w/o ISF & Mask w/o Mask w/o ISF Qurs-full

a snail with
gr%ﬁ‘tﬁ painted
onitis walking

on the gvound

pep guardio[a is

smi[ing

Figure 6: Visual ablation of different settings.

in comparison to the Places2 dataset. This may be attributed to the sensitivity of SketchEdit to facial
images, which is discussed in Appendix [A]

4.3 ABLATION STUDY

This section will examine the role of ISF blocks to enhance stroke embeddings and the advantages of
using masks over the pure DDIM Inversion (Song et al.}[2021a)). 1) Importance of mask estimator.
The numerical results in Table[3]show that the utilization of masks exerts a considerable influence on
the metrics. Despite the generation of high-quality images through the CFG (Ho & Salimans}, [2022))
in the absence of masks, as illustrated in Fig. [6] the style and structure have resulted in notable dis-
crepancies. Qualitative and quantitative results demonstrate the difficulty of ensuring the invariance
of non-edited regions by relying only on DDIM Inversion (Song et al.| 2021a). 2) The effective-
ness of ISF blocks. As shown in Table 3} the introduction of ISF blocks has been demonstrated to
markedly enhance the pertinent quantitative metrics, particularly for the face dataset. From a visual
performance perspective, the ISF blocks preserve the structure of the source image effectively in the
absence of mask cooperation. When masks are involved, in addition to maintaining style, the ISF
blocks facilitate the generation of higher-quality local content, such as Pep’s neat teeth. In addition
to these, we also provide a discussion on the regular term, please refer to the appendix [B]

5 CONCLUSIONS AND LIMITATIONS

The paper investigates the potential of implementing high-quality mask-free image manipulation
with partial sketches based on a conditional control diffusion model. We propose a plug-and-play
model named DiffStroke. To achieve the preservation of style and the creation of controllable struc-
tures for the editing results, we introduce the ISF module for the fusion of image-sketch information
and a training method for the estimation of masks. Both qualitative and quantitative results demon-
strate the effectiveness of our approach. We also provide further experimental results and analyses
in the Appendix, which readers may find beneficial in gaining more insight. Meanwhile, there are
still some limitations to our approach that warrant further exploration. One challenge is guiding the
model to generate results that align with human expectations based on strokes, rather than merely
producing textures that fit the sketch structure in some cases. Another challenge is mask-free object
replacement by text and strokes. This task requires a more powerful model capacity to achieve more
flexible controllable editing such as replacing a specific bush in a garden with a wooden fence.

10
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APPENDIX

A THE SENSITIVITY OF SKETCHEDIT TO FACIAL IMAGES

SketchEdit (Zeng et all[2022)) for face manipulation is trained and tested on the CelebA-HQ
2017) dataset with 256x256 pixels. The default size of the images in CelebA-HQ is 1024x1024,

which means we need to down-sample it using interpolation. In this paper, we use the official test
code and pre-trained weights provided by SketchEdit to evaluate its performance. When we edit
with the facial images provided by the official SketchEdit GitHub repository, we can produce clear
results. However, when we find the same image from the CelebA-HQ dataset as provided in the
official demo and downsize it, it fails to produce results of similar quality. As illustrated in Fig.
[7] a variety of interpolation techniques were employed, including nearest neighbor, bi-linear, area,
bi-cubic, and Lanczos interpolation. However, these approaches yielded only blurred results.

Original Image

Sketch

SketchEdit Nearest

Demo Neighbor Bi-linear Area Bi-cubic Lanczos

Down-sampled
Images

Results

Figure 7: The results of facial image manipulation of SketchEdit(Zeng et all,[2022). Various meth-
ods are used to downsample an image from CelebA-HQ (Karras, [2017) with 1024x1024 pixels to
256x256 pixels. ‘Original Image’ denotes the image from the CelebA-HQ dataset with a resolu-
tion of 1024x1024. The ‘Sketch’ image and the ‘SketchEdit Demo’ image are from the official
SketchEdit GitHub repository.

Unfortunately, only four facial images (‘.png’) are provided in their official open-source repository,
which is not enough for quantitative testing. Although the authors of SketchEdit have indicated in
the ‘README.md’ file of their official repository, which was updated on 1 June 2022, that training
data and training-related code will be made available, this has not been done to date. Without the
extensive training data processing specific code and training details mentioned in their paper, it is
difficult to retrain it according to our deflation method. A similar situation where SketchEdit has
a large gap between the face dataset and the natural image dataset on the metrics is also present in

SketchRefiner’s paper (Liu et al.|[2024).

B EFFECTIVENESS OF THE REGULAR TERM

In this section, we discuss the impact of the regular term L4 in eq. El Table@reports the metrics
obtained with and without the use of the regular term. It has been demonstrated that the metrics
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exhibit slightly superior performance when the embedding h™* is not constrained, as opposed to
introducing the regular term L.44. during the training process. This is because the model may be
capable of focusing more on the color and texture information of the conditional image, thereby
guiding the generated results to a greater extent in maintaining the style. However, this can result in
a loss of edge control, as shown in Fig. @ In the event of L4 non-participation in the training, the
edited result may not accurately reflect the intended deformation, as illustrated by the spoon in Fig.
[ Furthermore, additional content may emerge in the edited region that is not strictly aligned with
the sketch, such as the feathers at the swan’s tail and the lines at the banana stalk.

Method Plces2 CelebA-HQ
FID({) PSNR(}) SSIM(f) LPIPS(]) [ FID(}]) PSNR(f) SSIM () LPIPS ()
w/lo Legge 4.77 30.78 0.9326 0.0395 1.98 32.69 0.9622 0.0237

W Ledge 4.80 30.86 0.9330 0.0392 2.24 32.56 0.9623 0.0238

Table 4: Quantitative results on the effective of Lcgge.

Source Images Sketches W\o L,qge

aswan is
swimming in a
pond

a colovﬁ,d hot

air balloon

ﬂying over a
lush green field

apiginapen
with hay and
straw

awooden spoon
with a fish
design on it

a banana with a

sticker on it

Figure 8: Example of the edited images by the models trained with/without L.qge.
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C VISUALIZATION OF THE EDITED IMAGES IN QUANTITATIVE ANALYSIS

To provide a more illustrative representation of the recreated results obtained from the deformed

images in the quantitative analysis, we present some examples from the Places2
and CelebA-HQ 2017) datasets in Fig. [9and [I0} respectively. Meanwhile, we provide the
masks estimated by DiffStroke during the editing process.

Liey Sketches Estimated Masks M Results Ground Truth

apanel of men
sitting at a table
with

the bui[ding is
located on the
corner of a

street

the inside of a
boat with a sink

and a couch

aman in a suit
and tie
standing in

ﬁont of
bookshelves

a casserole dish
with cheese and

meat on top

a large building
with many
arches and ,

windows

a library with
many books

and chairs

two sailboats
sailing in the
ocean near the

shore

T ,I,L""

Figure 9: Recreate natural images from deformed images. Masks are estimated by DiffStroke.
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Laef Sketches Estimated Masks M Results Ground Truth

a beautiful
blond woman

with blue eyes

amodel with
d.ark eyes and
black makeup

awoman with
long brown hair
and large hoop

earrings

amodel with

[ong hair and
purple eyes

amanwith a

smile on his

face

aman with
short hair

smiling

aman with

blonde hair and
a black jacket

aman with

short brown
hair and a
black shirt
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Figure 10: Recreate facial images from deformed images with sketches by our model. Masks are
estimated by DiffStroke.

Limited by the file size that can be uploaded, we are currently only able to provide the code of
DiffStroke. The data pertinent to the quantitative experiments, including the deformation images,
sketches, masks derived from both acquisition methods, and the captions, will be made available to
researchers upon acceptance of this paper. Also, we will open-source the pre-trained weights files
for DiffStroke.
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D MORE EDITING RESULTS

We provide some additional, high-resolution facial and natural image manipulation results as shown
in Fig. [TT]and Fig. [T2] respectively.

Images Sketches Results Images Sketches Results

arock formation in the desert with a tree and a blue sky the mountains are in the distance

a lone treeina ﬁe[d with a dirt road ared and white motorcyc[e parked ina parking lot

Figure 11: More examples of natural image manipulation by StrokeDiff.
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Images Sketches Results Images Sketches Results

awoman with long brown hair and blue eyes

betty white's 'betty white's game night' to premiere on hulu awoman with brown hair and blue eyes smiling

ﬂ

aman with glasses and a suit is standing ayoung asian woman with a star-like sunglasses

L

a woman with blonde hair and red lipstick awoman with a ponytai[ and earrings

Figure 12: More examples of facial image manipulation by StrokeDiff.

E FAILURE CASES

Although our method has shown effectiveness in image editing, DiffStroke is still limited in some
scenarios. Fig. [I3|provides some failure cases. We observe that sketches with the same semantics
as the objects to be edited but far away may not produce accurate masks, e.g., the second row in
Fig. 3] In certain instances, although DiffStroke is capable of producing results that correspond
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to the specified line control conditions, they do not meet the expectations typically associated with
human performance. To illustrate, in the case of the facial image situated on the left side of the third
line in Fig. [T3] our objective is to reveal the left side of her forehead. However, the resulting image
exhibits alterations in the details of the bangs, which are modified to align with the shape of the
sketch. Sometimes the color of local details may be difficult to control accurately, such as the eyes
of a seagull. To make the results of mask-free image editing using sketches consistent with human
behavior, subsequent research might try to introduce information about human habits to guide the
process of generation.

Images Sketches Results Images Sketches Results

aman with a mustache and a suit is smiling awoman with long hair and blue eyes

Figure 13: Failure cases of image manipulation by StrokeDiff.

F PRELIMINARY

In this section, we provide preliminary knowledge about the Denoising Diffusion Probabilistic Mod-

els (DDPM) 12020) and Denoising Diffusion Implicit Models (DDIM) 202Ta)).

F.1 DDPM

DDPM is a generative model that aims to approximate the real data distribution ggatq (o) and
sample data from it. The DDPM consists of a forward process and a backward process. In the
forward process, noise is gradually injected into the data g ~ ¢4atq (o), Which generates a series
of the middle states x1, xo, ..., T, to transform the data distribution into a simple distribution (i.e.,
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Gaussian distribution). The process can be formalized as a Markov chain with Gaussian transitions:
T

q(@1.7|z0) = g(mo) [ [ g(ai|zi 1),
t=1

q(@i|ei—1) = N(2; /1 — Brace—1, B d),

where (; € (0, 1) represents the noise schedule at time ¢.

(12)

The objective of the backward process is to reconstruct the data from a Gaussian noise xp ~
N (0, I) by sampling from q(x;_1|x;) step by step. Since it’s difficult to estimate the distribution
q(x1—1|x;) which is depended on the intractable distribution ¢ (), a neural network pg(x;—_1|x;)
is trained to approximate the distribution q(@;:_1|x+, ) (a Gaussian distribution). This can be
formalized as follows:

po(Ti—1|xe) = N(p—1; po (e, 1), Xo (@4, 1)), (13)

where pg(x:,t) and Xp(x4,t)) are the predicted mean and variance, respectively. The learning
objective for diffusion model is derived by considering the variational lower bound,

[ pa($0:T) }
E |- logps(zo)] < E, | — log 20T
[—logpo(xo)] < Eq i g a(zrr|zo)
[ po (i 19%)]
=E,| —logp(x log
q I gp T ; 33t|$17t 1)
r (14)
=Eq| Dxu(q(zr|xo0) || p(2T))

Lt

+ 3 Duslatsfom) | polenifen) ~ospolanfen) |

t>1

Ly Lo

Instead of estimating g (¢, t) directly, DDPM utilize an approximator €y(x¢, t) to predict the noise
€ that was introduced to x( obtain ;. The training objective is as follows:

min By D (¢(2i1 @1, o) [po (Ti-1]:1))
. (15)
= meln Ewo,ENN(OJ),tNUnifOTm(l,T) | |€ - 69(1:25; t) | |%

Then pg(x:,t) can be derived using Bayes’ theorem,

He(wtyt) — i(wt _ L
(6% AV 1-— @t
where where oy = 1 — 3, and &y = 1 . In the inference stage, the sampled noise x ~

N(0,I) is repeatedly denoised by eq. |13 untll t = 0. More details can be accessed in (Ho et al.}
2020; Song et al., 2021b).

€9(x,t,t)), (16)

F.2 DDIM

To improve the sampling efficiency of DDPM (Ho et al., [2020), DDIM (Song et al.,|2021a) breaks
the Markov property of the DDPM reverse process. The researchers found that the forward process,
if it can be in the following form:

4o (x4|20) = N (45 VAo, (1 — @) I),

d (7
4o (@1.7]T0) = go(Tr|m0) | [ 60 (1|21, 20),
t=2

the constraint of Markov property can be eliminated. Then they derive that

Vo
Qo (xi—1|Tt, 20) = N (Var—120 + /1 — @41 — 07 - \/ﬁo 2I>a (18)
—Qy
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where ¢ > 2 and ¢, (zr|z0) = N(2T; /W20, (1 — &) I). With the utilization of Bayes’ rule, the
forward process in DDIM can be expressed as

Go (Ti—1 |1, T0)qo (T4|T0)
o (T1—1|m0)
that x; is no longer dependent on x;_; but also (. Finally, the denoising step is derived as follows:
= (t)
Ty — 1-— Q€y ($t) _ 2 (t)
T 1 = /oy _ +/1l—a_1—07 € (xs) + Oorer
t—1 t—1 ( Jar t—1 tep (1) t€t

“predicted xo”

(Ia(IBt‘Cthth) = ) (19)

(20)

random noise

“direction pointing to a,”

where the variance o7 is defined as o7 = 7 - 3, = /(1 — ar—1)/(1 — @)\/1 — @;/a;_;. In the
case where 7 = 1, the denoising process is consistent with that of DDPM. Conversely, when 7 = 0,
the sampling process becomes deterministic, thereby resulting in the DDIM step

— (1)
x: — 1 — ey’ (T
Ti1 = /a1 ( : \/d»t o t)> /T = ar - € (). 1)
t

F.3 DDIM INVERSION (REVERSE DDIM STEP)

To generate images in a controllable manner by GANs (Goodfellow et al.l 2014), a manipulable
encoding z is frequently obtained by utilizing the inverse mapping z = G~ 1(x) of the generative
process = G(z). For the diffusion model, intuitively we can correspond the forward process to
z = G~ !(x) and the reverse process to * = G(z). However, in DDPM (Ho et al., 2020), the
two processes are not reversible due to the introduction of random noise at each sampling step,
which results in 7 not being in a one-to-one correspondence with x(. Fortunately, DDIM (Song
et al.,2021a) eliminates the ambiguity associated with the sampling process, thereby facilitating the
implementation of image manipulation techniques based on diffusion models. Given the data x,
we can derive the equation from the eq. [21]

[ @ /1 [ 1
Ty = 70% Ti_1 —+ \/O_ét ( _— — 1 — — — 1) Eg(mt,t), (22)
Q1 Ot Q1

which is applied to obtain the state @1, xs, ..., 7. Nevertheless, the term €(x;, ) is not able to
be calculated directly, eg(x;—1,t — 1) is considered for approximating it. In the case of sufficiently
small time step intervals, eg(x¢,t) & €g(a1—1,t — 1) is believed to hold. Finally, the reverse DDIM
step is as follows:

[ a /1 /1
Ty = ,at Ti1 + VO ( — —1—4/= —1) eg(xy — 1,6 —1). (23)
Qg1 Qi a1
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