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Abstract
Supervised Fine-Tuning (SFT) with trans-001
lated instruction data effectively adapts Large002
Language Models (LLMs) from English to003
non-English languages. We introduce Cross-004
Lingual Continued Instruction Tuning (X-CIT),005
which fully leverages translation-based parallel006
instruction data to enhance cross-lingual adapt-007
ability. X-CIT emulates the human process008
of second language acquisition and is guided009
by Chomsky’s Principles and Parameters The-010
ory. It first fine-tunes the LLM on English in-011
struction data to establish foundational capabil-012
ities (i.e. Principles), then continues with tar-013
get language translation and customized chat-014
instruction data to adjust "parameters" specific015
to the target language. This chat-instruction016
data captures alignment information in trans-017
lated parallel data, guiding the model to initially018
think and respond in its native language before019
transitioning to the target language. To further020
mimic human learning progression, we incor-021
porate Self-Paced Learning (SPL) during con-022
tinued training, allowing the model to advance023
from simple to complex tasks. Implemented024
on Llama-2-7B across five languages, X-CIT025
was evaluated against three objective bench-026
marks and an LLM-as-a-judge benchmark, im-027
proving the strongest baseline by an average028
of 1.97% and 8.2% in these two benchmarks,029
respectively.030

1 Introduction031

Large Language Models (LLMs) acquire strong032

language skills through extensive pre-training033

and supervised fine-tuning (SFT) on instruction-034

response pairs (Brown et al., 2020; Ouyang et al.,035

2022; Chowdhery et al., 2023; Touvron et al.,036

2023). However, due to the predominantly English037

datasets, LLMs often struggle with non-English038

languages. Training from scratch or continuing pre-039

training with non-English data (Ji et al., 2024; Ming040

et al., 2024) requires substantial data and computa-041

tional resources, making it impractical. While SFT042

needs much less data than pre-training, finding non- 043

English instruction data that matches the quality 044

and diversity of English data is still difficult. Thus, 045

a promising strategy is to boost LLM performance 046

in specific non-English languages by transferring 047

English capabilities during the SFT phase (Zhu 048

et al., 2023; Ranaldi et al., 2023). 049

One approach is to use translation pairs during 050

SFT, which is simple and effective (Zhu et al., 2023; 051

Li et al., 2023a; She et al., 2024; Zhu et al., 2024). 052

However, relying too heavily on translation data 053

can reduce the diversity of SFT data, potentially 054

limiting the model’s task generalizability. Alterna- 055

tively, translating English SFT data into the target 056

language for training (Zhu et al., 2023; Ranaldi 057

et al., 2023; Muennighoff et al., 2023) offers a 058

promising solution that preserves task diversity. 059

Even a small amount of translated SFT data mixed 060

with English data has shown promising results (Sha- 061

ham et al., 2024; Chirkova and Nikoulina, 2024). 062

However, this "mixed translate-train" approach re- 063

quires careful tuning of hyperparameters, such as 064

the ratio between English and translated data, to 065

optimize performance and uses less explicit lan- 066

guage alignment signals from parallel data. In con- 067

trast, PLUG uses English as a pivot language to ef- 068

fectively integrate parallel instruction data, signifi- 069

cantly improving instruction-following tasks. How- 070

ever, models trained with PLUG cannot directly 071

respond in the target language, limiting their ability 072

to improve directly non-English performance and 073

posing challenges for end-to-end systems. 074

LLMs fine-tuned on English data exhibit sig- 075

nificant cross-lingual capabilities (Chirkova and 076

Nikoulina, 2024). Inspired by Chomsky’s Prin- 077

ciples and Parameters Theory (Chomsky, 1981), 078

which posits that all languages share universal prin- 079

ciples with differences managed by specific param- 080

eters, this suggests that the model has internalized 081

these universal principles, facilitating parameter 082

adjustments for other languages. This process of 083
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parameter adjustment is analogous to how humans084

learn a second language.085

We propose Cross-lingual Continued Instruc-086

tion Tuning (X-CIT) to enhance LLM cross-lingual087

adaptability by simulating the full process of sec-088

ond language acquisition through parallel SFT data.089

As shown in Figure 1, we first fine-tune the base090

LLM on English instruction data to establish foun-091

dational capabilities (i.e., Principles), then continue092

fine-tuning on translated samples to adjust param-093

eters for the target language. In step 2⃝ of Fig-094

ure 1, we employ a two-round dialogue format to095

simulate the early stages of second language learn-096

ing—where learners first process and respond in097

their native language before transitioning to the tar-098

get language. To facilitate direct communication099

in the target language, we also include translated100

target language instruction data. Additionally, to101

reflect the natural progression from simple to com-102

plex tasks, we apply the SPL (Jiang et al., 2015)103

strategy during continued training, resulting in the104

X-CIT+spl model.105

We used the Llama-2-7B model (Touvron et al.,106

2023) with Stanford Alpaca (Peng et al., 2023) and107

its translated versions for instruction fine-tuning.108

We evaluated our approach on five languages using109

objective benchmarks and LLM-as-a-judge evalua-110

tion (AlpacaEval (Li et al., 2023c)). Our contribu-111

tions can be summarized as follows:112

• We introduce X-CIT and X-CIT+spl, a cross-113

lingual SFT method that enhances language adap-114

tation by simulating human learning patterns in115

second language acquisition.116

• We develop cross-lingual chat-instruction data117

that mimics human cognitive patterns in lan-118

guage learning, boosting the model’s instruction-119

following performance in specific languages.120

• We explore performance with varying target lan-121

guage data proportions and experiment on dif-122

ferent LLMs, showing our method achieves sig-123

nificant gains with minimal data and generalizes124

well to different model architectures or sizes.125

2 Related Work126

2.1 Cross-lingual SFT with Translated127

Instruction Data128

Models fine-tuned on English SFT data can fol-129

low multilingual instructions but often require care-130

ful learning rate adjustments for non-English lan-131

guages and may not perform well across all lan-132

guages (Chirkova and Nikoulina, 2024; Muen-133

nighoff et al., 2023; Kew et al., 2023; Lai et al., 134

2024). Translation is a widely used and accessible 135

method for obtaining instruction data for cross- 136

lingual SFT (Chen et al., 2023a; Weber et al., 2024; 137

Li et al., 2023b). While it can introduce errors, 138

especially in low-resource languages, its effective- 139

ness depends on whether the benefits outweigh 140

the errors (Liu et al., 2024). Using translated data 141

for cross-lingual SFT has become popular for the 142

language adaptation of LLMs. However, directly 143

mixing English instruction data with translations is 144

insufficient for effective knowledge transfer (Gao 145

et al., 2024; Li et al., 2024). 146

In multilingual settings, Lin et al. (2024) and 147

Chai et al. (2024) utilized code-switching between 148

English instruction and translation languages data 149

for cross-lingual SFT, enhancing multilingual per- 150

formance. Our focus is on fine-tuning in a specific 151

target language. Some methods rely solely on tar- 152

get language data, offering consistent and reliable 153

results, albeit not always optimal (Ye et al., 2023). 154

Zhu et al. (2023) combined English and translated 155

data for SFT, enhancing language alignment with 156

additional translation tasks. Meanwhile, Ranaldi 157

et al. (2023) used only specific-language translated 158

instruction data and translation tasks. However, 159

both approaches did not fully leverage the align- 160

ment signals present in parallel SFT data. 161

2.2 Cross-lingual SFT by Pivot Guidance 162

PLUG (Zhang et al., 2024) uses parallel SFT data 163

with English as a pivot language, guiding the model 164

to understand and respond to queries in English, 165

while providing answers in both English and the 166

target language. This approach mainly relies on 167

English capabilities, rather than directly improv- 168

ing non-English performance. Consequently, its 169

inference stage requires English input first, which 170

is impractical for tasks with consistent input-output 171

language, especially with long texts due to high 172

computational costs. In contrast to PLUG’s single- 173

turn Q&A format, our method employs a two-turn 174

dialogue format with pivot English. Additionally, 175

our approach comprehensively simulates the pro- 176

cess of second language acquisition throughout the 177

continual instruction tuning. By applying PLUG’s 178

data within our framework, we overcome the limi- 179

tations of PLUG’s method. However, by using our 180

own data within this framework (i.e. our method), 181

we achieve an 8.2% improvement in instruction- 182

following performance across five languages, com- 183

pared to using PLUG’s data. 184
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Please respond to the user's instruction in English.
Instruction:
Categorize the given input as either an animal or a vegetab
le: Mushroom. 

Mushroom is a vegetable. 

English Instruction Data

Target Language Instruction Data

Please respond to the user's instruction in their language.
Instruction:
列举五个富含维生素c的食物。
(Translate: List five foods that contain vitamin C.) 

橙子、草莓、猕猴桃、彩椒和西兰花。
(Translate: Oranges, Strawberries, Kiwi, Bell peppers, and 
Broccoli.)

prompt to Identify the language 

You are a multilingual expert, and your role is to assist users in 
their native language. But your native language is English, so 
you'll need to use English for your initial response first. Each user 
interaction consists of a two-turn conversation.
At first, please interpret the instruction in English, and then 
respond in English .
Instruction: 将给定的输入分类为动物或植物：蘑菇。 
(Translate:Categorize the given input as either an animal or a vegetable: 
Mushroom.)

English instruction:
Categorize the given input as either an animal or a 
vegetable: Mushroom.
English Response:
Mushroom is a vegetable. 

Now, please respond to the user's instruction in their language.

蘑菇是一种植物。(Translate: Mushroom is a vegetable. )

Cross-lingual Chat-Instruction Data

Scenario description

Base LLM

SFT

en_SFT LLM

ABC

SFT / SFT with SPL

X-CIT LLM

ABC
中文

① ②

Figure 1: The pipeline of our Cross-lingual Continued Instruction Tuning (X-CIT) method. Guided by Chomsky’s
Principles: 1⃝ SFT the base LLM with English instruction data to establish foundational capabilities; 2⃝ continue
training with the target language and customized chat-instruction data to adjust language-specific parameters.
Self-paced learning (SPL) is introduced to further mimic the human learning process, moving from simple to
complex tasks. For clarity, the method using SPL is referred to as X-CIT+spl.

3 Method185

Drawing on Chomsky’s principles and parameters186

theory, we recognize that while languages share187

universal principles, they differ in their parameters.188

Universal principles are innate, whereas the lan-189

guage environment determines the parameters that190

shape one’s native language. In second language191

acquisition, learners start with the parameters of192

their native language, which are adjusted during the193

learning process. The universal principles remain194

active, encourage for positive transfer of native195

parameters to the second language. To simulate196

this process, we propose a two-stage cross-lingual197

continued instruction tuning (X-CIT) method.198

Firstly, we perform instruction fine-tuning on the199

LLM using English data. Post this English SFT, the200

LLM demonstrates strong cross-lingual capabilities201

(Chirkova and Nikoulina, 2024),which allows the202

model to internalize universal principles. Then, we203

continue instruction fine-tuning to adapt other lan-204

guages. Alongside target language instruction data,205

we construct cross-lingual chat-instruction data for206

continued learning. This method guides the model207

to first understand and answer questions by English,208

then respond directly in the target language, mim-209

icking the cognitive pattern of individuals learning210

a second language. Moreover, to simulate the learn-211

ing process from easy to difficult, we employ a212

self-paced learning (SPL) approach during contin-213

ued training, as detailed in Algorithm 1.214

3.1 The Instruction-tuning Paradigm 215

In monolingual instruction tuning, the LLM back- 216

bone is fine-tuned on data pairs (X,Y ), where X 217

is the concatenation of the instruction describing 218

the task’s requirements and the input, and Y is the 219

output corresponding to the given task. The loss 220

function Lmono of monolingual instruction-tuning 221

is given by: 222

Lmono = −logPθ(Y |X) (1) 223

where θ represents the model’s learnable param- 224

eters. Our method first performs instruction fine- 225

tuning on English monolingual data, followed by 226

continued learning in the target language. The sec- 227

ond stage involves both monolingual fine-tuning in 228

the target language and cross-lingual chat instruc- 229

tion fine-tuning. 230

3.2 Cross-lingual Chat-Instruction Dataset 231

The cross-lingual chat-instruction dataset we pro- 232

posed is a two-turn chat format, as shown in Fig- 233

ure 1, formalized as: 234

(X l, [Xen;Y en], Y l), (2) 235

where l denotes the target language and en denotes 236

English. In the first dialogue round, the scenario 237

description with the first-round prompt I1 is con- 238

catenated with target language instruction to con- 239

struct X l, and the parallel English instruction in- 240

stance (Xen, Y en) is provided as the answer. Both 241
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Algorithm 1 The algorithm of our X-CIT with
Self-Paced Learning
Input: English Instruction-tuning LLM:Men;

Target language l Instruction Dataset: Dl;
Cross-lingual Chat-Instruction Dataset: D;
Batch size: B;
Epoch number: N

Output: Fine-tuned LLM:Ml

1: n← 0
2: while n < N do
3: for Sample Batch B in (Dl,D) do
4: # Automatic initial the Loss Threshold for SPL λ,
5: # and the iteration coefficient k
6: if n == 0 then
7: Linit = L(B) calculated by eq.1 or eq.3
8: Lavg ← mean(Linit)
9: Lstd ← std(Linit)

10: λ← Lavg/N
11: if Lstd < 1.0 then
12: if Lstd > 2× λ then
13: λ← Lavg

N × N+1
N

14: end if
15: k ← ( 1

2
N )1/N

16: else
17: k ← N 1/N

18: end if
19: end if
20: Sample choice list S ← [ ]
21: for b in B do
22: Loss L = L(b) calculated by eq.1 or eq.3
23: if L < λ then
24: Instance b add to S
25: end if
26: end for
27: OptimizeMen with S
28: end for
29: λ← λ× k, n← n+ 1
30: end while
31: returnMl

Xen and Y en begin with specific indicator tokens:242

English instruction and English Response, respec-243

tively, denoted as [Xen;Y en], where ; indicates244

concatenation. In the second dialogue round, the245

instruction I2 prompts the model to identify the tar-246

get language (by "in their language") and respond,247

resulting in Y l. The loss function Lchat for cross-248

lingual chat instruction tuning is:249

Lchat =

− logPθ([X
en;Y en]|I1;Xl)Pθ(Y

l|I1;Xl; [X∗;Y ∗]; I2))
(3)250

where the [X∗;Y ∗] is generation result of LLM in251

first dialogue round.252

So, the total loss of step 2 is:253

L = Lmono + Lchat (4)254

3.3 Self-Paced Learning for X-ICL255

When learning a second language, humans often256

start with simple words and sentences and gradu-257

ally progress to more complex structures. To sim- 258

ulate this transition from simplicity to complexity, 259

we introduce a self-paced learning algorithm in the 260

second stage of continued training, as illustrated 261

in Algorithm 1. This algorithm determines which 262

samples will be used for the next learning step. 263

Simpler samples are associated with smaller losses, 264

so we set a loss threshold λ, to select samples for 265

training. After a certain number of steps, we update 266

λ to enable the model to select more challenging 267

samples. In our experiments, we set each epoch to 268

update the λ. The loss function during the contin- 269

ued learning stage is defined as follows: 270

L =
m∑
i=1

viLmono +
m∑
j=1

vjLchat (5) 271

where vi and vj are either 0 or 1, determining 272

whether the samples are used for learning. And the 273

definition of v is: 274{
Li < λ, v = 1

other, v = 0.
(6) 275

Li is the loss of i-th instance. 276

Automatic Initialization of λ and k The Al- 277

gorithm 1 includes an automatic parameter setting 278

component for these two parameters in lines 6 to 279

19. They are indomianted by the model’s initial 280

loss Linit and total training steps. The mean initial 281

batch loss, Lavg, typically represents the highest 282

point in training, indicating the model’s starting ca- 283

pability. We aim for the initial threshold λ to reach 284

Lavg after N epochs, and the fastest way to achieve 285

this is by linear increase: λ×N = Lavg. Thus, λ 286

is set to Lavg

N . However, to prevent premature fo- 287

cus on difficult samples, we opt for an exponential 288

increase, ensuring a solid foundational learning be- 289

fore refinement, with the target threshold still being 290

Lavg: λ× kN = Lavg. If the initial loss’s standard 291

deviation is small, indicating low sensitivity to sam- 292

ple difficulty, we can increase the initial threshold, 293

allowing more samples to be learned early on and 294

slowing the threshold rise, as shown in lines 11 to 295

15 of Algorithm 1. 296

4 Experiment 297

4.1 Data Setup 298

We used Llama-2-7B (Touvron et al., 2023) as our 299

base model, focusing on five target languages: Chi- 300

nese, Spanish, Italian, Korean, and Arabic. The 301
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first four languages are included in the language dis-302

tribution of Llama-2’s pretraining data, while Ara-303

bic is minimally represented. For English instruc-304

tions, we employed Stanford Alpaca (Peng et al.,305

2023), comprising 52k instruction-output pairs.306

Translations for other languages were sourced from307

the community: Chinese, Spanish, Italian, and Ko-308

rean data from PLUG (Zhang et al., 2024), and309

Arabic data from MultilingualSIFT (Chen et al.,310

2023b). To mimic low-resource conditions, we311

trained using only 10% of the target language data,312

conducting three samples for each language with313

seeds 64, 32, and 81 to ensure robust results.314

4.2 Models Setup315

The models were trained in FP16 with a maximum316

sequence length of 4096 and a global batch size of317

128 for 4 epochs. We used a linear decay learning318

rate, peaking at 5e-6, with a 3% warm-up phase.319

The first-stage training took about 20 hours on 8 ×320

V100 GPUs, utilizing the DeepSpeed library and321

ZeRO optimizer stage 3. The first-stage model was322

trained once, while each target language model in323

the second stage took around 4 hours. For infer-324

ence, we utilized greedy decoding to ensure de-325

terministic outputs.The training prompt setting is326

shown in Appendix A.327

For X-CIT+spl, the only difference is that the328

warm-up step involves learning from all data in the329

batch without sample selection, set to 8% of the330

total steps. The training time was similar to X-CIT,331

with the only added step being the comparison and332

optimization of selected losses.333

4.3 Benchmarks and Metrics334

We evaluated the performance of X-CIT and X-335

CIT+spl both objective and LLM-as-a-judge bench-336

marks. Objective Evaluation Benchmarks:337

• MRC: Lacking a Machine Reading Comprehen-338

sion (MRC) dataset covering all languages, we339

selected: Chinese and Spanish data from XQuAD340

(Artetxe et al., 2020), Arabic and Korean data341

from TyDiQA-GoldP (Clark et al., 2020), the first342

1,000 examples from SQuAD-IT (Croce et al.,343

2018) for Italian.344

• Factual QA Datasets from CLiKA (Jiang et al.,345

2020; Gao et al., 2024): We used xGeo (cities346

and administrative divisions) and xPeo (notable347

individuals and birth/death years) for Chinese,348

Italian, and Arabic. For Spanish and Korean, we349

translated English questions and answers using350

GPT-4o1. For both tasks, we employed a zero- 351

shot setting for evaluation, using regular expres- 352

sion matching for answer extraction and exact 353

match for assessment. 354

• Flores-200 (Costa-jussà et al., 2022): This bench- 355

mark features parallel text from Wikipedia across 356

204 languages. We assessed bidirectional transla- 357

tion results between our five target languages and 358

English, using a one-shot setting and reporting 359

scores with BLEU-4 (Papineni et al., 2002). 360

The prompt we utilized for these three bench- 361

marks reported in Appendix B. 362

For the LLM-as-a-judge benchmark, we used 363

AlpacaEval (Li et al., 2023c). Since it only sup- 364

ports English, we used X-AlpacaEval (Zhang et al., 365

2024) for the test of Chinese, Spanish, Italian, and 366

Korean, and Arabic-AlpacaEval2 for Arabic. Fol- 367

lowing Zhang et al. (2024), GPT-4 was used to com- 368

pare pair-wise responses from two models. More 369

details of the evaluation process are in Appendix C. 370

4.4 Baseline 371

Except for the base model Llama-2-7B, we report 372

several baselines as below: 373

• en_SFT. Instruction-Tuned on English 374

instruction-output pairs D(xen, yen). 375

• x_SFT. Instruction-tuned on target language l 376

with the whole translated data D(xl, yl). 377

• Mix_SFT. Instruction-tuned on the whole En- 378

glish data and sampled 10% target language data, 379

i.e., D(xen, yen)
⋃
Dsub(x

l, yl). 380

• CL_SFT. Continue instruction-tuned the 381

en_SFT on parallel sampled 10% English and 382

target language instruction-output pairs, i.e., 383

Dsub(x
en, yen)

⋃
Dsub(x

l, yl). 384

• X-CIT w/ PLUG. Conversion of our chat- 385

instruction data to PLUG (Zhang et al., 2024) 386

format data while keeping all model and hyper- 387

parameters settings unchanged. 388

4.5 Results 389

The main results on objective evaluation and LLM- 390

as-a-judge benchmark are shown in Table 1 and 391

Figure 2, respectively. On the Objective Evalua- 392

tion, X-CIT and X-CIT+spl, surpass the strongest 393

baseline by an average of 0.94% and 1.97% across 394

five languages and tasks, respectively. Notably, 395

our approaches consistently deliver superior results 396

1https://gpt4o.ai/zh/blog/gpt4o-intro
2https://huggingface.co/datasets/FreedomIntelligence/Arabic-

AlpacaEval
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Model
Language AVG.

AVG. all
Task AVG.

chinese spanish italian korean arabic MRC Flores-200 x -> en Flores-200 en -> x xGeo xPeo

Llama-2-7B 23.53 24.34 29.99 18.24 5.65 20.35 46.06 24.52 15.15 10.80 5.22
en_SFT 21.88 39.83 45.85 22.03 10.60 28.04 28.35 24.01 16.52 13.30 58.00*
x_SFT 29.67 50.78 52.55 28.81 15.00 35.36 65.09 19.32 18.10 27.30 47.00

Training with only 10% target language data

mix_SFT 32.26±0.50 52.82±0.19 53.50±0.18 28.37±0.55 14.46±0.30 36.28±0.05 64.85±0.54 25.67±0.37 16.63±0.32 28.37±0.47 45.89±0.56
CL_SFT 31.06±0.50 51.76±1.09 50.61±0.41 28.36±0.73 15.19±0.12 35.39±0.19 66.08±0.38 20.64±1.40 16.83±0.15 28.57±0.78 44.85±1.48
X-CIT w/ PLUG 32.76±1.17 51.90±0.49 52.90±0.46 27.94±0.50 14.09±0.49 35.92±0.41 65.05±0.54 24.28±0.57 18.39±0.41 26.53±0.50 45.33±0.51
X-CIT 32.73±0.65 53.41±0.12 53.81±0.46 29.95±0.23 16.22±0.20 37.22±0.22 66.92±0.61 25.55±0.45 19.28±0.16 28.30±0.82 46.07±0.50
X-CIT+spl 33.92±0.37 54.88±0.40 55.57±0.09 30.28±0.29 16.58±0.70 38.25±0.17 67.36±0.03 25.82±0.73 19.75±0.1 30.97±0.49 47.33±0.09

Table 1: The average performance (%) of each language (left part) and each task (right part). For the 10% data
training setup, the mean and standard deviation are reported. The best results are indicated in bold, the second-best
results are underlined. Results marked with an asterisk (*) are responses in English and are not compared.

Figure 2: Pair-wise comparison between X-CIT and X-CIT+spl and each baseline on X-AlpacaEval task.

Model
MRC

AVG.chinese spanish italian korean arabic

Llama-2-7B 57.39 60.00 54.70 40.94 17.26 46.06
en_SFT 13.95 41.18 49.30 25.72 11.62 28.35
x_SFT 63.53 73.78 72.90 73.55 41.69 65.09

Training with only 10% data

mix_SFT 66.08±1.62 73.95±0.83 74.9±1.07 71.74±2.05 37.6±1.27 64.85±0.54
CL_SFT 68.15±0.79 73.92±1.31 73.93±0.45 73.19±2.63 41.19±0.9 66.08±0.38
X-CIT w/ PLUG 65.94±1.49 73.39±0.84 73.77±0.52 71.26±0.74 40.89±1.26 65.05±0.54
X-CIT 68.29±1.6 73.92±0.56 74.00±0.43 75.24±2.26 43.14±0.31 66.92±0.61
X-CIT+spl 68.26±0.67 74.68±0.46 74.77±0.38 75.48±1.04 43.61±0.05 67.36±0.03

Model
xGeo

AVG.chinese spanish italian korean arabic

Llama-2-7B 11.00 4.50 31.00 7.50 0.00 10.80
en_SFT 3.00* 27.50* 30.50* 5.50* 0.00* 13.30*
x_SFT 21.50 44.00 47.00 9.00 15.00 27.30

Training with only 10% data

mix_SFT 24.5±1.47 48.83±1.25 50±0.41 10±0.71 8.5±1.41 28.37±0.47
CL_SFT 24.83±1.25 47.17±3.47 50.67±0.62 10.83±0.85 9.33±1.43 28.57±0.78
X-CIT w/ PLUG 24.67±1.70 42.83±0.85 47.83±0.24 9.00±0.41 8.33±0.62 26.53±0.50
X-CIT 23.83±1.7 47.33±1.25 49.5±1.78 11.00±0.41 9.83±0.47 28.3±0.82
X-CIT+spl 26.17±0.94 51.83±1.25 54.00±0.41 11.17±0.85 11.67±0.62 30.97±0.49

Model
xPeo

AVG.chinese spanish italian korean arabic

Llama-2-7B 12.22 0.56 5.00 8.33 0.00 5.22
en_SFT 54.44* 75.00* 91.67* 48.89* 20.00* 58.00*
x_SFT 30.56 86.11 85.00 31.67 1.67 47.00

Training with only 10% data

mix_SFT 30.93±0.94 85.74±0.69 83.31±2 26.85±1.84 2.59±0.26 45.89±0.56
CL_SFT 27.04±4.63 85.74±0.26 83.52±1.72 26.66±1.2 1.3±0.52 44.85±1.48
X-CIT w/ PLUG 31.85±2.66 85.56±0.91 82.78±0.78 25.37±0.26 1.11±0.45 45.33±0.51
X-CIT 29.44±0.45 87.59±0.69 83.52±1.38 27.04±1.71 2.78±0.45 46.07±0.50
X-CIT+spl 31.30±0.69 88.33±0.78 85.93±0.69 28.70±0.69 2.41±0.69 47.33±0.09

Table 2: The performance of individual language in
MRC task, and xGeo and xPeo in CLiKA data.

across all languages. Even for the under-trained lan-397

guage Arabic, X-CIT+spl outperforms the strongest398

baseline by an average of 1.39%. X-CIT with-399

out SPL fully learns from each instruction sample,400

making it better suited for solving open-ended in-401

struction tasks. On the LLM-as-a-judge Bench-402

mark, X-CIT significantly outperformed the base-403

lines CL_SFT and Mix_SFT by an average win-404

loss difference of 35.2% and 37.4%, respectively.405

Notably, X-CIT had only a 7% loss rate compared406

to CL_SFT in Arabic. Compared to the method407

that converted chat-instruction data to the PLUG408

format, X-CIT improved it by an average of 8.2% 409

and achieved a 17% win-loss difference in Italian. 410

The further analysis of results on these two 411

benchmarks is in the following: 412

Objective Evaluation Benchmark Our method 413

consistently surpasses the baseline across all tasks, 414

with detailed results in Tables 2 and 3. In read- 415

ing comprehension, X-CIT+spl excels in four lan- 416

guages, particularly improving performance by 417

2.29% for Korean and 2.42% for Arabic, both 418

lower-resource languages. For factual QA tasks 419

(xGeo and xPeo), where facts are sourced from 420

Wikidata and heavily trained in English, the 421

en_SFT model performs strongly. The model fre- 422

quently responds in English. However, xGeo’s 423

performance is lower due to language-specific an- 424

swers, while xPeo’s consistent year-based answers 425

across languages result in higher scores. Outside 426

of en_SFT, our method achieves the best average 427

performance using only 10% of the target data. For 428

en-x translation tasks, it achieves an average im- 429

provement of 2.92% over the robust CL_SFT base- 430

line, highlighting its effectiveness in transferring 431

knowledge from English to other languages. X-CIT 432

also outperforms the PLUG format data by 0.89%, 433

demonstrating the superiority of chat-instruction 434

data for language alignment. 435

LLM-as-a-judge Evaluation Benchmark The 436

X-CIT+spl did not show significant superiority in 437

these evaluations. This might be because, with 438

the same epoch settings, SPL gradually increases 439

the number of instructions learned, whereas X-CIT 440

6



Model
Flores-200(BLEU-4,1-shot)

AVG.
Flores-200(BLEU-4,1-shot)

AVG.zh -> en es -> en it -> en ko -> en ar -> en en -> zh en -> es en -> it en -> ko en -> ar

Llama-2-7B 23.83 31.43 34.61 23.43 9.28 24.52 13.21 25.22 24.66 10.98 1.70 15.15
en_SFT 17.87 23.47 30.84 17.51 6.93 19.32 14.91 26.56 27.03 12.30 9.70 18.10
x_SFT 22.32 29.30 31.41 19.08 17.95 24.01 15.68 26.17 26.37 10.95 3.41 16.52

Training with only 10% data

mix_SFT 24.73±0.3 30.31±0.16 33.16±0.13 22.23±0.52 17.92±0.91 25.67±0.37 15.09±0.53 25.28±0.92 26.12±0.24 11.01±0.61 5.67±0.26 16.63±0.32
CL_SFT 19.87±1.99 26.09±2.31 18.78±3.22 20.06±0.94 18.41±0.77 20.64±1.4 15.43±0.22 25.87±0.2 26.13±0.25 11.04±0.54 5.7±0.1 16.83±0.15
X-CIT w/ PLUG 24.59±0.94 30.46±0.68 32.86±0.84 21.35±1.54 12.11±0.79 24.28±0.57 16.74±0.94 27.27±0.34 27.26±0.83 12.71±0.94 8.00±0.66 18.39±0.41
X-CIT 24.63±0.87 31.15±0.33 33.98±0.72 22.72±0.29 15.27±1.19 25.55±0.45 17.48±0.1 27.04±0.56 28.05±0.24 13.74±0.33 10.08±0.2 19.28±0.16
X-CIT+spl 25.55±0.16 31.77±0.11 34.62±0.33 22.12±0.49 15.06±3.03 25.82±0.73 18.31±0.54 27.78±0.17 28.55±0.55 13.94±0.11 10.15±0.75 19.75±0.1

Table 3: The performance of individual language in Flores.

Epoch=1; 100%

Epoch=1; 11.2%

Epoch=2; 48.3%

Epoch=3; 71.9%

Epoch=4; 89.5%

Figure 3: The size of the training data used for parameter
updates as the training steps evolve.

73%

57% 54%

21%

36%

21%

6% 7%

25%

X-CIT+spl(epoch8) VS. mix_IT X-CIT+spl(epoch8) VS. CL_IT X-CIT+spl(epoch8) VS. X-CIT w/ PLUG

win tie loss

Figure 4: Results of LLM-as-a-judge evaluation be-
tween X-CIT+spl trained on Arabic for 8 epochs and
baselines.

learns all instructions in each epoch, as illustrated441

in Figure 3. As a result, X-CIT+spl may not ade-442

quately learn more challenging samples to enhance443

instruction-following ability. We conducted a vali-444

dation experiment to further support our findings.445

We trained X-CIT+spl on Arabic for 4 more epochs,446

totaling 8 epochs. During the last 4 epochs, the447

loss threshold was not updated, allowing us to as-448

sess whether performance on the LLM-as-a-judge449

evaluation improves after extended training. The450

results are shown in Figure 4. It indicates that, with451

adequate training, X-CIT+SPL can significantly en-452

hance the model’s performance in LLM-as-a-judge453

evaluations, achieving a 29% win-loss difference454

compared to the PLUG data format.455

5 Analysis456

5.1 Ablation Experiments457

In this section, we will discuss the effectiveness of458

other components in our method: (1) the role of459

continued instruction tuning; (2) the necessity of460

both cross-lingual chat instruction data and mono-461

Model MRC Flores-200
x-en

Flores-200
en-x

xGeo xPeo AVG.

X-CIT 66.60 25.64 19.48 29.30 46.67 37.54
X-CIT_Mix 64.63 23.64 15.28 29.10 46.22 35.77

Table 4: The performance of our method under mixed
training.

Model chinese spanish italian korean arabic AVG

X-CIT 33.56 53.51 54.35 29.98 16.28 37.54
w/ PLUG 33.83 51.23 52.41 27.48 13.43 35.68
w/o mono 26.70 52.06 48.40 25.63 13.44 33.25

w/o chat 30.14 49.15 48.87 26.43 12.33 33.38

Table 5: Ablation results of the data used in the contin-
ued learning process.

lingual instruction data. More ablation about our 462

SPL training strategy can be seen in Appendix D. 463

CL method VS. Mix method. Our cross-lingual 464

Chat-Instruction tuning method is based on con- 465

tinued learning (CL) from an English SFT model, 466

using target language and chat-instruction data. For 467

mixed training, we combined the entire English 468

dataset with a sampled 10% (seed 64) of the tar- 469

get language and chat-instruction data, creating the 470

X-CIT_Mix model. The results (Table 4) show 471

that CL outperforms mixed training across all tasks. 472

While performances in xGeo and xPeo are simi- 473

lar, mixed training takes significantly longer (about 474

120 hours for 5 languages) compared to CL (about 475

40 hours for 5 languages). 476

The necessity of cross-lingual chat instruction & 477

monolingual instruction. The cross-lingual chat 478

instruction data (chat) is designed to mimic human 479

cognitive and learning patterns in second language 480

acquisition. Since the ultimate goal is to understand 481

and develop the habit of expressing oneself in the 482

target language, we included target language data 483

(mono) in the training. Ablation results in Table 5 484

show that both data types are essential. Mono data 485

is crucial for all languages, while chat data is partic- 486

ularly important for Arabic, which has limited train- 487

ing data in Llama 2. The PLUG format consists of 488

one-turn instruction data similar to our chat data, 489

7



Figure 5: Performance trend graph of model average
performance in objective-evaluation tasks with varying
data volumes.

but it only slightly outperforms ours in Chinese.490

Our model’s superior performance over PLUG in491

four languages on objective evaluation tasks, along492

with alpacaEval results in Figure 2, underscores493

the necessity of two-round chat instruction data for494

enhancing cross-lingual transfer.495

5.2 Different scales of Cross-lingual496

Instruction Data497

To simulate the challenges of obtaining high-498

quality translation data in low-resource language499

environments, we sampled only 10% of the tar-500

get language data for the experiment. We also501

explored additional settings—1%, 30%, 50%, and502

100%—using a uniform sampling seed of 64 to503

examine the impact of varying data proportions on504

performance. Figure 5 shows the average perfor-505

mance in objective evaluation tasks as data propor-506

tions change. CL_SFT achieved the best average507

performance with just 1% of the data, highlight-508

ing that the continued learning approach can yield509

significant benefits with limited data.510

Our method performs well with just 1% of the511

data and continues to improve as the data volume512

increases to 100%. Ablation studies show that the513

gains mainly come from monolingual data, while514

the continuous improvement over CL_SFT is due515

to our chat-instruction data. The Mix_SFT method516

shows no further improvement with more data. The517

PLUG format benefits from increased data quantity.518

Thus, in scenarios with limited target language data,519

our X-CIT method achieves greater gains.520

5.3 Exploration of Method Generalization521

As the capabilities of LLMs continue to improve,522

recent models have developed strong proficiency in523

English, allowing us to apply our method to these524

models without the 1⃝ step in Figure 1. We con-525

28
30
32
34
36
38
40
42
44
46
48

Llama3-8B Llama3.2-3B qwen2.5-7b

base CL_IT X-CIT w/ PLUG X-CIT X-CIT_spl

Figure 6: Performance Comparison of Different Models
in Arabic. The lines above each bar indicate the standard
deviation.

ducted experiments in Arabic using the more pow- 526

erful Llama3-8B and Qwen2.5-7B models, which 527

have the similar parameter scale, as well as the 528

smaller Llama3.2-3B model. The results, shown in 529

Figure 6, demonstrate that our approach is adapt- 530

able to models of varying capabilities and sizes. 531

Notably, on the 3B model with fewer parame- 532

ters, our method outperforms the PLUG data for- 533

mat, likely because it relies heavily on the base 534

model’s capabilities. Additionally, on the multilin- 535

gual Qwen2.5, our method still shows significant 536

improvement. This result highlights the strong gen- 537

eralization ability of our method. 538

6 Conclusion 539

In this work, we propose Cross-Lingual Continued 540

Instruction Tuning (X-CIT and X-CIT+spl), which 541

continues the instruction tuning of an English SFT 542

model using specially designed chat-instruction 543

data and an SPL training strategy. This process 544

is guided by Chomsky’s Principles and Parame- 545

ters Theory to mimic the human second language 546

learning process. Extensive experiments across five 547

target languages, evaluated through three objective 548

tasks and the AlpacaEval task, demonstrate our 549

method’s effectiveness. X-CIT+spl improves the 550

average performance on three objective tasks in 551

five languages by 17.9% compared to Llama2-7B 552

and surpasses the strongest baseline by 1.97%. No- 553

tably, using only 10% of the target language data 554

compared to English data, our method achieves 555

excellent results, especially in Arabic, a language 556

with limited training data in Llama2. This approach 557

shows significant promise for low-resource lan- 558

guages. Furthermore, our method can easily gener- 559

alize to various LLM constructions and scales. 560
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Limitations561

To our knowledge, this work has the following562

limitations:563

• Due to limited resources, we conducted ex-564

periments using only one multilingual open-565

source parallel instruction dataset. If new data566

is introduced to replicate our method, slight567

adjustments may be needed in the way pa-568

rameters are automatically initialized in SPL.569

Based on experience, the main adjustment570

involves determining the model’s sensitivity571

to assessing the difficulty of a batch of data572

through standard deviation as shown in line573

11 to 15 in Algorithm 1.574

• When simulating low-resource scenarios by575

using different seed numbers for data sam-576

pling, we observed considerable standard vari-577

ance in some tasks or language items. Since578

the instruction data encompasses multiple579

types of tasks, it is challenging to ensure an580

even distribution of these tasks during ran-581

dom sampling, leading to substantial result582

variance. We believe this presents a future re-583

search direction: how to select more suitable584

data or tasks to improve cross-lingual instruc-585

tion fine-tuning.586
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A Training Prompts856

During instruction tuning, the prompts for monolingual and chat-instruction data are shown in Figure 1 of857

main body. The prompts for monolingual instruction differ between the first and second stages: in the first858

stage, the model is explicitly instructed to respond in English, while the second stage does not specify a859

target language, allowing the model to self-identify during training and avoid label bias.860

For Llama-2-7B, we structure the monolingual training example as follows:

<|system|>System Prompt <|user|>Instruction
<|assistant|>Response

861
Following standard approaches Touvron et al. (2023) and PLUG (Zhang et al., 2024), we only compute862

the loss on tokens after <|assistant|>.863

The training example of chat-instruction data is:864

<|system|>System Prompt 1 <|user|>Instruction
<|assistant|>Response 1
<|user|>Prompt 2
<|assistant|>Response 2

We compute the loss for chat-instruction data on tokens after two <|assistant|>, i.e. "Response 1" in865

English and "Response 2" in target languages.866

Task Prompt

System: Please response to the instruction as a reading comprehension expert.
MRC Prompt: Answer the question from the given passage. Your answer should be directly

extracted from the passage, and it should be a single entity, name, or number, not a
sentence.
Passage: {passage} \n\nQuestion:\n {question} \n\n Answer: Based on the passage, the
answer to the question is\"

xGeo System: Please answer the following question in their language with a clear and concise
response with common knowledge of geography.
Prompt:Question: {question} \nAnswer:

xPeo System: Please answer the following question in their language with a clear and concise
response with common knowledge of celebrity.
Prompt:Question:{question} \nAnswer:

Prompt: Please Translate the given sentence from [source] to [target].
Flores-200 [source]: </X>\n[target]:\n\n</Y>

[source]: </X>\n[target]:

Table 6: The prompt utilized in objective evaluation tasks.

B Prompt of Objective Evaluation Task867

We list the prompts for the objective evaluation tasks in Table 6, where the prompts for xGeo and xPeo are868

provided ’in their language’ to align with the settings of our training prompts. In the baseline, the target869

language labels are explicitly stated in these two contexts. For the MRC task, we translate the English870

prompts into the target language.871

C Evaluation for AlpacaEval872

Using GPT-43 to evaluate open-ended model generations is increasingly viewed as cost-efficient, in-873

terpretable, and generally consistent with human judgments (Zheng et al., 2023; Zhang et al., 2024).874

Following this paradigm, we employed the pair-wise comparison setting and evaluation prompts from875

(Zhang et al., 2024). We used OpenAI’s gpt-4-0613 model for all evaluations. The full evaluation prompt876

is shown in Table 7.877

3https://openai.com/index/gpt-4/
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Please act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to the user
question displayed below. You should choose the assistant that follows the user’s instructions and answers the
user’s questions better. Your evaluation should consider factors such as the helpfulness, relevance, accuracy, depth,
creativity, and level of detail of their responses. Pay special attention to whether the assistant’s response contains
any unnatural language use, sentences that are not fluent, or grammatical problems, especially when answering
in languages other than English. Begin your evaluation by comparing the two responses and provide a short
explanation. Avoid any position biases and ensure that the order in which the responses were presented does not
influence your decision. Do not allow the length of the responses to influence your evaluation. Do not favor certain
names of the assistants. Be as objective as possible. After providing your explanation, output your final verdict by
strictly following this format: "[[A]]" if assistant A is better, "[[B]]" if assistant B is better, and "[[C]]" for a tie.

[User Question]
{instruction}

[The Start of Assistant A’s Answer]
{response_from_model_a}
[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]
{response_from_model_b}
[The End of Assistant B’s Answer]

Table 7: Prompt of LLM-as-a-judge benchmark.

The results are presented in Table 1 of the main body, showing that our model (X-CIT) performs 878

exceptionally well in Arabic. To further assess its advantages, we applied six evaluation criteria from 879

Chirkova and Nikoulina (2024) (see Table 12) and conducted a model-based evaluation using GPT-4. 880

The criteria include: Language Correctness, Fluency, Helpfulness, Accuracy, Logical Coherence, and 881

Harmlessness. Since "Language Correctness" and "Harmlessness" consistently received the highest scores 882

across all tests, we only report the other four criteria. 883

To illustrate the relationship between data volume and evaluation scores, we provided trend charts for 884

five different data volumes across five languages (Figure 7). For Arabic, our model scores the highest 885

across various metrics at both the 10% data volume and with the full dataset, particularly excelling with 886

the full data. In addition, for non-Latin languages like Chinese and Korean, our method consistently 887

shows significant advantages across all metrics. For Spanish and Italian, the differences in these metrics 888

are less pronounced. Overall, our model tends to improve as the data volume increases, while Mix_SFT 889

and CL_SFT do not show a consistent trend. 890

model chinese spanish italian korean arabic AVG.

X-CIT+spl 33.92±0.37 54.88±0.40 55.57±0.09 30.28±0.29 16.58±0.70 38.25±0.17
w/o heuristic design 33.56±0.36 54.52±0.54 55.45±0.24 29.54±0.66 15.27±0.18 37.67±0.19

Table 8: Ablation results about Heuristic designs for Algorithm 1

Languages Methods MRC xGeo xPeo Flores-200 x -> en Flores-200 en -> x AVG.

Korean
X-CIT+spl 75.48±1.04 11.17±0.85 28.70±0.69 22.12±0.49 13.94±0.11 30.28±0.29

w/o 76.81±1.18 9.83±0.62 27.59±2.24 21.0±0.6 13.97±0.15 29.84±0.72

Arabic
X-CIT+spl 43.61±0.05 11.67±0.62 2.41±0.69 15.06±3.03 10.15±0.75 16.58±0.70

w/o 43.95±0.43 11.67±0.62 2.41±0.26 10.4±0.53 9.82±0.42 15.65±0.33

Table 9: Ablation results of setting for low loss standard deviation θ in Korean and Arabic.

D Ablation of the SPL Training Strategy 891

Ablation experiment about Heuristic designs for Algorithm 1 The heuristic design about automatic 892

initialization of λ and k address the challenge of difficult parameter adjustment of SPL. The parameters of 893

the method without heuristic design are λ = 0.4 and k = 1.3. The results of X-CIT+spl with or without 894

heuristic design are shown in Table 8. This indicates that heuristic design is important, especially for the 895

low-resource Korean and Arabic. 896
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Figure 7: Performance trend graph of model score in five languages AlpacaEval task with varying data volumes.

The setting for low loss standard deviation θ is designed primarily for low-resource languages like897

Korean and Arabic, as they are quite challenging for Llama2-7B, generally resulting in higher losses898

and thus smaller loss variance. In such cases, we increase the initial threshold of SPL and slow down899

its iterative increase. This ablation results of setting for low loss standard deviation θ, in Korean and900

Arabic, are shown in Table 9. The results show that the setting may lead to some degradation in MRC,901

but it shows improvements in other tasks, especially in translation. The overall improvement in average902

performance also indicates that our heuristic design of the SPL algorithm is necessary.903

E Detailed results of Generalization Experiments904

The detailed results of Generalization experiments are shown in Table 10. On the Llama3 series models,905

our method X-CIT+spl achieved improvement by 5.15%, and 8.21% in Arabic compared with 8B and 3B906

base models, respectively. On Qwen2.5, which has undergone multilingual fine-tuning, our method still907

yielded a slight performance improvement, although the gain decreased as the model size increased.908

Methods Llama-3.1-8B Llama-3.2-3B Qwen2.5-7B Qwen2.5-1.5B Qwen2.5-14B

ar ko ar ko ar ko ar ar

base 40.95 38.68 29.13 29.65 39.38 38.67 24.75 45.94
CL_IT 39.86±2.33 40.69±0.07 35.38±0.22 30.51±0.25 38.31±0.98 37.10±0.39 24.89±0.54 44.10±0.25

X-CIT w/ PLUG 44.03±0.65 42.17±0.71 31.94±2.19 33.93±0.66 38.20±1.30 37.60±0.48 24.87±0.24 43.60±0.95
X-CIT 45.64±0.83 43.52±0.69 36.63±0.35 35.07±0.29 40.36±0.59 38.86±0.35 26.29±0.13 45.71±0.87
X-CIT+spl 46.10±0.32 44.31±0.28 37.34±0.50 36.10±0.29 40.52±0.32 39.69±0.41 26.60±0.44 46.20±0.33

Table 10: The results in vary scaling LLMs for Arabic and Korean.

F The Setting of Low-resource Scenarios909

In this work, we define low-resource languages as those with minimal or no exposure to the model. For910

instance, Korean (approximately 0.06%) and Arabic (<0.05% or unseen) are considered low-resource911

languages for LLaMA2-7B. We also experimented with Hindi, which is not explicitly included in the912

pre-training data of LLaMA2-7B. The Hindi Alpaca-translated data was sourced from the community4,913

and the evaluation benchmark was obtained using the same method as for Arabic. For training, only 10%914

4https://huggingface.co/datasets/FreedomIntelligence/alpaca-gpt4-hindi
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of the target language data was used, with a seed value of 32. The results, shown in Table 11, demonstrate 915

that our method outperforms the baselines for low-resource language Hindi in Llama2-7B. 916

model MRC Flores-200 x-en Flores-200 en-x xGeo xPeo AVG.

Mix_IT 11.76 6.3 18.08 0.5 3.89 8.11
CL_IT 22.61 6.07 18.48 1.5 2.22 10.18
X-CIT w/ PLUG 17.98 9.5 17.47 2 1.67 9.72
X-CIT 23.11 10.14 19.01 2 3.33 11.52
X-CIT+SPL 23.36 10.03 20.93 2.5 2.78 11.92

Table 11: The average performance of objective evaluation benchmarks in Hindi.

You are evaluating a response that has been submitted for a particular task, using a specific set of standards. Below is the
data:
[BEGIN DATA]
***
[Task]: {TASK}
***
[Submission]: {MODEL RESPONSE}
***
[Aspects to evaluate and their criteria]:
Language:
1 star means the Submission language is different from the Task language.
2 stars means Submission language is the same as the Task language but with occasional code-switching.
3 starts means Submission language is the same as the Task language.
Fluency:
1 star means Many grammar errors.
2 stars means Generally fluent but with some grammar errors or presence of non-existing words.
3 stars means Language is fluent and in accordance with human conventions.
Helpfulness:
1 star means Lack of necessary information or off-topic response.
2 stars means Insufficient information to provide a complete answer.
3 stars means Information is correct and sufficient. Short answers with minimal sufficient information should also be
evaluated as 3.
Accuracy:
1 star means A lot of factual errors or inconsistencies with the context.
2 stars means Some amount of factual errors, or inconsistencies with the context.
3 stars means Completely correct, without factual errors or inconsistencies with the context.
Logical coherence:
1 star means Confused and full of logical flaws. 2 stars means Some logical issues present.
3 stars means Logically sound.
Harmlessness:
1 star means Violates ethics or is objectionable.
2 stars means Mostly compliant but with a few flaws.
3 stars means Fully compliant with public morality. ***
[END DATA]
Output a json dictionary with scores for 6 specified criteria.

Table 12: Evaluation prompt when using GPT-4 as the evaluator on AlpacaEval from Chirkova and Nikoulina
(2024).

15


	Introduction
	Related Work
	Cross-lingual SFT with Translated Instruction Data
	Cross-lingual SFT by Pivot Guidance

	Method
	The Instruction-tuning Paradigm
	Cross-lingual Chat-Instruction Dataset
	Self-Paced Learning for X-ICL

	Experiment
	Data Setup
	Models Setup
	Benchmarks and Metrics
	Baseline
	Results

	Analysis
	Ablation Experiments
	Different scales of Cross-lingual Instruction Data
	Exploration of Method Generalization

	Conclusion
	Training Prompts
	Prompt of Objective Evaluation Task 
	Evaluation for AlpacaEval
	Ablation of the SPL Training Strategy
	Detailed results of Generalization Experiments
	The Setting of Low-resource Scenarios

