
PLMFit: Benchmarking Transfer Learning with
Protein Language Models for Protein Engineering

Thomas Bikias
Dep. of Biosystems Science and Engineering

ETH Zurich
Basel, CH 4056

tbikias@ethz.ch

Evangelos Stamkopoulos
Dep. of Biosystems Science and Engineering

ETH Zurich
Basel, CH 4056

estamkopoulo@ethz.ch

Sai T. Reddy
Dep. of Biosystems Science and Engineering

ETH Zurich
Basel, CH 4056

sai.reddy@ethz.ch

Abstract

Protein language models (PLMs) have emerged as a useful resource for protein
engineering applications. Transfer learning (TL) leverages pre-trained parameters
to extract features to train machine learning models or adjust the weights of PLMs
for novel tasks via fine-tuning through back-propagation. TL methods have shown
potential for enhancing protein predictions performance when paired with PLMs,
however there is a notable lack of comparative analyses that benchmark TL meth-
ods applied to state-of-the-art PLMs, identify optimal strategies for transferring
knowledge and determine the most suitable approach for specific tasks. Here,
we report PLMFit, a benchmarking study that combines, three state-of-the-art
PLMs (ESM2, ProGen2, ProteinBert), with three TL methods (feature extraction,
low-rank adaptation, bottleneck adapters) for five protein engineering datasets. We
conducted over 2900 experiments, altering PLM sizes and layers, TL hyperparame-
ters and different training procedures. Our experiments reveal three key findings:
(i) utilizing a fraction of PLM for transfer learning does not detrimentally impact
performance, (ii) the choice between feature extraction and fine-tuning is primarily
dictated by the amount and diversity of data and (iii) fine-tuning is most effective
when generalization is necessary and only limited data is available. We provide
PLMFit as an open-source software package, serving as a valuable resource for the
scientific community to facilitate the feature extraction and fine-tuning of PLMs
for various applications.

1 Introduction

Protein language models (PLMs) are becoming a valuable tool in computational biology with
applications such as protein structure and function prediction, design and engineering. Similarly
to large language models (e.g., ChatGPT [1], Llama [2]) that generate plausible sentences using
human language, PLMs (e.g., ESM [3], ProGen [4], ProteinBert [5], Ankh [6], ProtTrans [7]) produce
sequences of amino acids that are likely to exist in nature. Empowered by the transformers [8]
architecture, they are trained on a large corpora of unlabeled natural proteins to produce sequences
of amino acids with high likelihood of folding, expression and biological function. During this
process, known as pre-training, multi-layered PLMs capture evolutionary [9] and structural [10]

AI for New Drug Modalities at NeurIPS 2024.



dependencies between amino acids by attempting to either reconstruct a corrupted sequence (i.e.,
masked language modeling [11]) or predict the next residue (i.e., token) given the previous as context
(i.e., causal language modeling [12]). Acquired knowledge is stored in the weights of the different
layers of PLMs and can transform the input sequence in an information rich representation (i.e.,
embeddings). Embeddings can be used as input features to train, typically shallow, ML models like
artificial neural networks (ANNs) or convolutional neural networks (CNNs) to solve a wide variety
of protein engineering tasks [13, 14, 15, 16, 17] as an alternative to encoding only the amino acid
sequence information (e.g., one hot or categorical encoding) or including evolutionary information
extracted from multiple sequence alignments (MSAs) [18].

Transfer learning (TL) leverages pre-trained parameters to train or adjust a different model to a novel
task; TL can broadly be divided into two categories as the most prevalent techniques [19], feature
extraction (FE) and fine-tuning (FT). In the context of PLMs, FE employs the retrieval of pre-trained
weights from a PLM’s layer which converts proteins’ residues into evolutionary informed features
[20] that can be used for arbitrary re-training of a model. On the contrary, FT includes the joint
optimization of a PLM’s (or PLM’s fraction) weights with an untrained network (i.e., downstream
head) using labeled data. As the size of foundational models scales pursuing an increase in generative
and downstream performance (e.g., ESM-3 [21]), FT approaches face technical challenges. Arbitrary
re-training of the architecture can be computationally infeasible because of their enormous size and
can cause catastrophic forgetting of previously acquired knowledge [22]. Adopted from natural
language processing (NLP), endeavors to mitigate these issues include parameter-efficient fine-tuning
techniques (PEFT). PEFT aims to adapt pre-trained models to a new domain with minimal adjustments
to the original parameters. These techniques focus on optimizing only a small subset of newly added
parameters, rather than re-training the entire network, allowing lower resource consumption and
maintaining or improving performance on the specific task. Prevalent practices include low-rank
adaptation [23] (i.e., LoRA) and bottleneck adapter modules injection [19]. The former involves
adding low-rank trainable matrices in parallel with the transformer layers, while the latter suggests
the injection of small neural network modules in between each layer of the pre-trained model.

Several studies propose pairing of TL techniques with PLMs to extract meaningful representations of
proteins [24, 25], mainly using the embeddings extracted from the last layer, while others investigate
the effect of PEFT in protein engineering tasks [26, 27]. However, it is still unclear in which
setups the exploitation of PLMs has a guaranteed benefit, as baseline models trained with one
hot encoded (OHE) protein sequences can overperform PLM-based methods in relevant biology
tasks [28]. Moreover, choosing the most appropriate TL method is not straightforward. Multiple
factors require calibration to optimally retrieve the stored information (e.g., extraction layer, FT
hyperparameters, etc.). Additionally, the amount, diversity, and quality of training data but, also,
the access to hardware resources (i.e., memory and no. of GPUs) are crucial considerations that
can dictate the TL approach. Recent publications either evaluate the effectiveness of PEFT methods
applied to PLMs for addressing biology-related tasks [29], or attempt to identify which specific layers
might be most beneficial for embeddings extraction [30]. However, layer-specific analysis of PLMs
comparing simultaneously FE and PEFT methods, along with comparisons to baseline models and
larger PLMs (> 5B parameters) is still missing.

Here, we report PLMFit, a comparative analysis that benchmarks TL methods applied on state-of-the-
art PLMs for seven protein fitness and function prediction and classification tasks. Using publicly
available datasets, we evaluate >2,900 TL setups by varying the following: (i) PLM architectures and
sizes, (ii) layers of PLMs, (iii) FT hyperparameters and (iv) different training scenarios. We envision
PLMFit to offer a practical guide of the optimal parameters to the scientific community to leverage
pre-trained foundational models based on the nature of the task and the available resources. Finally,
as an output from this study we provide an easy-to-use tool to seamlessly apply TL on proprietary
data. All codes and datasets are available at https://github.com/LSSI-ETH/plmfit.

2 Results

2.1 Datasets used represent a broad range of protein engineering tasks

To establish benchmarks of TL techniques on different tasks, we utilized publicly available repositories
including datasets corresponding to different types and level of complexity. Attempting to cover
the most common use cases in protein engineering, we consider each task to be a different split

2

https://github.com/LSSI-ETH/plmfit


Table 1: Summary of the datasets, task types and splits used in the study. Er: Enrichment ratio; To:
Thermostability temperature; RBD: Receptor binding domain

Dataset name Sequence length Mutated region Task type Split Training samples Testing samples

sampled 66,066 16,517
AAV 734-749 561-588 Regression (Er)

one vs rest 1,170 81,413

three vs rest 2,968 5,765
GB1 265 V39, D40, G41, V54 Regression (Er)

one vs rest 29 8,704

Meltome 20-750 - Regression (To) mixed 24,817 3,134

RBD 201 2-201 Classification (bind/escape) one vs rest 875 217,484

Trastuzumab 449 99-108 Classification (bind/escape) one vs rest 174 36,386

within a dataset (i.e., how the training and test data are being separated) and we refer to a setup as
the combination of a specific set of TL method’s hyperparameters applied on a specific task. We
classified datasets into two types: (i) those consisting of proteins within a number of mutations, i.e.,
edit distance (ED), relative to a wild-type (WT) sequence, where the distribution of residues remains
relatively consistent, and (ii) datasets of diverse protein families with sequences exhibit a low degree
of similarity. For the first category, we utilized four fitness regression (i.e., AAV-sampled, AAV-one vs
rest, GB1-three vs rest and GB1-one vs rest) tasks parsed from the widely adopted FLIP repository
[17] and two binding classification tasks (RBD-one vs rest, Trastuzumab-one vs rest) generated in
antibody engineering studies [31, 32]. For the second category (i.e. diverse datasets), we used the
Meltome-mixed split from the FLIP repository, which includes stability temperatures for a diverse
range of protein sequences. We suggest that the complexity of each task is determined by both the
quantity and diversity of the data available for training, as well as the nature of the testing data on
which the prediction efficiency is evaluated. Throughout the manuscript, we refer to tasks such as
AAV-sampled and GB1-three vs rest as simple due to the similarity in the distribution of the training
and evaluation sets, consisting of protein sequences with varying edit distances from a wild type.
In contrast, -one vs rest splits are described as more complex, as they involve limited training data
-due to the single mutation nature of the dataset (i.e., ED = 1) - and their prediction capability is
evaluated on variants with higher ED from the WT (i.e., ED >= 2). We consider the Meltome-mixed
split to be a complex task due to the high variability in the sequences included. Details about the
datasets and tasks used in this study can be found in chapter 3.3 and Table 1.

2.2 PLM layer used significantly impacts the effectiveness of transfer learning methods

We evaluated the performance of three TL approaches, FE, LoRA and adapters, across three different
tasks (i.e., AAV-sampled, GB1-three vs rest, Meltome-mixed) considering five levels of layer depth
(first layer only, 25%, 50%, 75%, full model) for different sizes of PLMs from three families (ESM2,
ProGen2 and ProteinBERT) (Figure 1A-C). For the tasks AAV-sampled and GB1-three vs rest, we
observed that performance plateaued when 25% of layers are used for all three TL setups, after which
there are minimal gains or even drops in performance, suggesting that pre-trained parameters stored
in the first quarter of a foundational model could be more suitable when used for tasks that include
protein sequences with similar distribution (i.e. variants of a wild type) (Figure 1Ai-ii, Figure 1Bi-ii,
Figure 1Ci-ii). As validated by earlier studies[25, 30], the last layer may not provide the optimal
training features and in several setups even lead to substantial decrease in performance (Figure 1Ai,ii).
This pattern is consistent across most TL configurations, with the exception of ProGen2-small and
ProGen2-medium versions when adapters are applied for the AAV-sampled task (Figure 1Ci). In
these instances, the last layers exhibited superior performance with a Spearman’s rank correlation
(ρ) that equals 0.86 for ProGen2-small and 0.82 for ProGen2-medium compared to using 25% of
the full model (ρ = 0.59 and ρ = 0.60 respectively). For tasks involving diverse protein sequences
like Meltome-mixed, incremental performance benefits are exhibited when deeper layers are targeted
for TL (Figure 1Aiii-Ciii), indicating that the task’s complexity and sequence variability benefits
from richer and more comprehensive representations from the deeper layers of PLMs. Performance
variance among PLMs, are relatively marginal, despite different architecture, model size and pre-
training strategy. While larger models like ProGen2-xlarge and ESM2-15B perform slightly better in
most setups, shallower models such as ProteinBERT and ProGen2-small achieve comparable results
even in complex tasks.

3



Figure 1: Performance analysis across, AAV-sampled, GB1-three vs rest, and Meltome-mixed tasks
(columns i-iii) using different depth of PLMs’ layers paired with TL methods, FE, LoRA and adapters
(rows A-C). PLMs are differentiated by color, and performance curves are displayed for each task.
For each subplot, x-axis shows the percentage of layers used - 0 (corresponds to using only the first
layer of the model), 25%,50%,75%,100% (full model), and y-axis shows Spearman’s correlation
between predicted and ground truth values. The red dashed line represents a baseline model trained
with the optimal hyperparameters using OHE sequences, (see chapter 3.5). PLM: Protein language
models; TL: Transfer learning; OHE: One hot encoding, FE: Feature extraction; LoRA: Low rank
adaptation.

2.3 Fine-tuning yields substantial performance gain in complex tasks

To evaluate the effectiveness of TL for five fitness prediction tasks (i.e., AAV-sampled, AAV-one vs
rest, GB1-three vs rest, GB1-one vs rest, Meltome-mixed), we compared the performances of the
best TL configurations for each PLM (Figure 2A). Configurations vary in regards to the fraction of
PLM used (i.e., layer), training hyperparameters and downstream head (linear or single-layer neural
network). In addition to FE, LoRA and adapters methods, we investigated the effect of FT only
the last layer of the PLM, namely LoRA and adapters, as a computationally lighter alternative to
the standard FT methods (see chapter 3.2). Overall, most TL techniques yielded superior results
compared to baselines models trained with OHE of sequences. However, for the AAV-sampled and
GB1-three vs rest tasks, the performance improvements were marginal, raising questions about the
utility of PLMs and TL for these specific setups (Figure 2Ai, 3Aiii). These tasks are relatively simple
because they involve sequences emerging from similar distributions (i.e., mutational variants of a
starting protein sequence WT) for training and are validated on similarly structured data. Detailed
results for each training setup can be found in the Supplementary materials’ chapter Extended data.

Conversely, TL methods demonstrated the highest performance gains in diverse protein tasks (i.e.,
Meltome-mixed). This shows that PLMs excel in capturing distinct features across different protein
families to accurately represent their amino acid sequences (Figure 2Av). Similarly, TL methods
also significantly overperfromed in tasks where only single mutation variants were available during
training, such as AAV-one vs rest and GB1-one vs rest, while sequences with higher ED were used
for testing (Figure 2Aii, 3Aiv). Interestingly, for the same task, most FE models did not surpass the
baseline model (Figure 2Aii), however, all FT methods appeared to recover and enhance performance,
underscoring the importance of co-optimizing pre-trained PLM weights while incorporating task-
specific knowledge. This effect is particularly evident in the AAV-one vs rest setup, where FE

4



Figure 2: TL techniques performance (Spearman’s correlation) comparison across five different tasks.
(A) Spearman’s correlation of the best performing PLM configuration in regards to layer, downstream
head and pooling method used for each TL technique (x-axis), is being compared across each column
(i-v): (i) AAV-sampled, (ii) AAV-one vs rest, (iii) GB1-three vs rest, (iv) GB1-one vs rest, and (v)
Meltome-mixed. Different PLMs are used: ProteinBERT, ProGen2 (small, medium, xlarge), ESM2
(650M, 3B, 15B), with TL strategies including FE, LoRA, LoRA-, adapters, and adapters-. The
red dashed line represents a baseline model trained with the optimal hyperparameters using OHE
sequences, see Methods. (B) Percentage difference in performance relative to OHE baseline for
FT (green) and FE (blue). Box plots display variability in performance gains across tasks and TL
methods collectively for all PLMs and training configurations. PLM: Protein language models; TL:
Transfer learning; OHE: One hot encoding; FE: Feature extraction; FT: Fine-tuning; LoRA: Low
rank adaptation

techniques averaged a Spearman’s rank correlation of 0.44, which is 21.5% below the baseline (ρ =
0.565), whereas FT models outperformed the baseline by an average 34% (average ρ = 0.75).

Figure 2B shows the distribution of FE and FT performance percentage changes compared to baseline
models across the five tasks. Distribution in each box is calculated collectively for all PLMs and
configurations for FE or FT methods and highlights the relationship between performance changes
and TL category within different tasks. For the AAV-sampled and GB1-three vs rest tasks, both FE/FT
approaches perform similarly and close to the baseline with median performance difference -3.2% /
3.95% and -5.64% / 2.89% respectively (Table S11). However, as task complexity increases, such as
in the Meltome-mixed, FT yields substantial performance gains compared to FE. Specifically, FT can
achieve an improvement of up to 117.82% over the baseline methods (Table S11). This is anticipated,
as the increased number of parameters enhances the model’s capacity to represent the diversity of
proteins in this task. The TL configuration that performed best for each task is presented in Table 2.

2.4 Fine-tuning can generalize better to higher mutation variants when only labels for single
mutations are available

Driven by the observation that fine-tuning PLMs can be particularly beneficial for -one vs rest splits,
our investigation extended to examining the performance of the best configuration from each TL
technique Table 2 across varying degrees of ED when trained only with single mutation variants.
Figure 3 illustrates that TL-based models maintain more consistent performance levels as the ED
increases compared to the respective baseline model which rapidly loses efficacy. Specifically, for
the AAV and RBD datasets, performance slowly deteriorates at higher mutational levels, while the
baseline models decline rapidly for the AAV-one vs rest (Figure 3A - red area) and no training was
achievable for any OHE baseline model configuration for the RBD-one vs rest task (Figure 3B),
likely due to the high sparsity introduced by OHE or the lack of capacity in logistic regression and
single-layer neural networks architectures. Models fine-tuned with LoRA and adapters outperformed

5



Table 2: Scoreboard of the best transfer learning configuration results for each task.

Task Score Metric
Best configuration

PLM TL-method Layers used Pooling Downstream head

AAV - sampled 0.932 Spearman’s correlation ESM2-15B Adapters 100% Mean Linear

AAV - one-vs-rest 0.831 Spearman’s correlation ProGen2-xlarge LoRA 75% CLS Linear

GB1 - three-vs-rest 0.879 Spearman’s correlation ProGen2-medium Adapters 50% CLS Linear

GB1 - one-vs-rest 0.457 Spearman’s correlation ProGen2-small FE 75% Mean Linear

Meltome - mixed 0.723 Spearman’s correlation ProGen2-xlarge LoRA 100% Mean Linear

RBD one-vs-rest 0.554 MCC ProGen2-small LoRA 50% Mean Linear

Trastuzumab one-vs-rest 0.390 MCC ProGen2-small LoRA- 50% Mean Linear

Figure 3: Performance trends relative to different edit distances for four different tasks: (A) AAV-one
vs rest, (B) RBD-one vs rest, (C) GB1-one vs rest, and (D) Trastuzumab-one vs rest. The y-axis
shows model performance (Spearman’s correlation for GB1 and AAV dataset and MCC for RBD
and Trastuzumab dataset), while the x-axis represents the ED from the reference sequence. Each line
represents a different transfer learning strategy: FE (blue), LoRA (green), adapters (orange), and the
OHE baseline (red). ED: Edit distance; FE: Feature extraction; LoRA: Low rank adaptation; MCC:
Matthew’s correlation coefficient; OHE: one hot encoding

both FE and baselines across all edit distances for the GB1- one vs rest and Trastuzumab-one vs rest
tasks. Only exception was observed at ED = 4 for the GB1 dataset (Figure 3C, Figure 3D) where
the FE model showed superior performance in higher edit distance; however, this deviation for the
previous observation can likely be attributed to the relatively smaller training data size in the GB1
dataset (n = 29) (Table 1), raising concerns regarding the reliability of any trends. Similarly, for the
Trastuzumab dataset, the limited number of sequences at lower edit distances Table 1)) compromises
the reliability of predictions at higher edit distances, rendering the results less conclusive.

2.5 Practical guidelines for applying PLMFit

We compiled practical guidelines for the research community to effectively apply feature extraction
and fine-tuning on PLMs, using the PLMFit platform. First, following the splitting of the dataset
on training, validation, and testing sets, redundant (i.e., duplicates) and arbitrarily labeled (i.e.,

6



Table 3: Summary of protein language models used in this study

PLM Type No. of parameters No. of layers Embeddings Dim.

ProteinBERT Masked LM 92 million 12 768
ProGen2-small Causal LM 151 million 12 1024

ProGen2-medium Causal LM 764 million 27 1536
ProGen2-xlarge Causal LM 6.4 billion 32 4096

ESM2-650M Masked LM 650 million 33 1280
ESM2-3B Masked LM 3 billion 36 2560

ESM2-15B Masked LM 15 billion 48 5120

same amino acid sequence with different label) sequences must be removed to prevent ambiguity
during training. Depending on the amount of diversity required for the task of interest, data can be
further clustered by sequence identity with protein clustering tools like MMSeq2[33] or kClust[34].
The main drivers of choosing TL approach and PLM are the diversity of training data, the level
of accuracy required for the task and amount of accessible resources. Generally, tasks with small
sequence variation between the training and testing sets, can be benefited by training a custom model
ab initio. However, choosing the optimal architecture and tuning the hyperparameters may not be
straightforward, despite theoretically being able to bring higher results. In that case, feature extraction
e.g. ESM2-3B, ProGen-medium) using the 25% of a PLM with a linear downstream head could
be sufficient and resource-efficient. Although fine-tuning a PLM can improve performance in this
scenarios, the performance gains are often marginal.

For datasets characterized by single mutation variants, such as DMS experiments, custom models
typically struggle to generalize to variants with higher edit distances. In these instances, using LoRA
to fine-tune a fraction (e.g. 25-75%) of larger PLM (ESM2-15B, ProGen2-xlarge) is recommended to
achieve better performance. Depending on the availability of GPUs, LoRA- technique (i.e. fine-tuning
only the last layer) can serve as an effective compromise, offering adequate performance yield while
mitigating the computational burden for this task.

In more complex tasks involving diverse protein sequences (e.g., Meltome-mixed), model performance
tends to scale with size and amount of trainable parameters. Consequently, employing TL on PLMs
for this type of tasks can improve performance, as the extensive knowledge embedded in these models
from large datasets of natural proteins can be effectively leveraged. Particularly, applying LoRA
on large-scale PLMs, like ESM2-15B or ProGen2-xlarge, is likely to be the most effective method.
However, when GPU availability or inference speed is a limiting factor, fine-tuning smaller PLMs,
such as ESM-3B or ProGen2-medium, offers a practical alternative that can provide satisfactory
performance.

Deepspeed package with CPU offloading and mixed precision training is utilized in PLMFit to
manage computational resources (Table S9). Stage 3 of Deepspeed is applied, with smaller reduce
and all-gather bucket sizes for resource-constrained setups. These values can be adjusted for faster
processing. PyTorch Lightning is used for easier integration with Deepspeed, providing a streamlined
setup and cleaner code. Fine-tuning a PLM on a specific dataset using PLMFit is a streamlined
process that can be executed with a single command.

3 Methods

3.1 Protein language models

TL techniques are applied to three state-of-the-art PLM families, two BERT-based (ESM2 and Pro-
teinBERT) and one GPT-based (ProGen2), pre-trained with MLM and CLM objectives respectively.
Different versions of these models are evaluated, covering a broad range of architecture size with
their layers number spanning from 12 to 48, and their pre-trained parameters ranging from 92M to
15B respectively. Analytic overview of the PLMs assessed in this study is shown in Table 3.

3.2 Transfer Learning methods

As part of this study, both feature extraction and fine-tuning TL methods are investigated. We
employ a layer pruning analysis assessing multiple fractions of the foundational models by extracting

7



embeddings from the first, the last and three intermediate layers corresponding to 25%, 50%, and
75% of the models’ size. Two PEFT approaches were assessed to establish benchmarks, adapters and
LoRA. Adapters are small architectures injected between the layers of a pre-trained PLM. For this
study, adapters’ architecture proposed by Yang et. al[27] is employed. LoRA decomposes the weight
matrices of a pre-trained model into two low-rank matrices, significantly reducing the number of
parameters to be trained. LoRA modules are applied on the pre-trained query, key and value matrices
of the attention heads [8] in the different layers of the PLMs. Similarly to FE, the effect of adding
FT-modules in different depths (first, last, intermediate; 25%, 50%, 75%) of PLMs is investigated.
Additionally, to further decrease trainable parameters, we propose the addition of the respective
modules only in the last layer of the foundational PLMs, namely LoRA- and adapters-.

3.3 Datasets and downstream tasks

Fitness prediction data were obtained from the widely used Fitness Landscape Inference for Proteins
(FLIP) repository [17], which includes curated datasets mapping protein sequences to experimentally
measured properties. Two datasets were used: Adeno-associated virus capsid (AAV) and GB1 domain
of protein G (GB1), where each variant’s fitness corresponds to its enrichment ratio [35, 36]. For
AAV, we used the -sampled split, with random training/testing sequences, and the -one vs rest split,
training on single mutation variants and testing on sequences with up to 39 mutations. For GB1,
the -one vs rest and -three vs rest splits trained models with variants having up to three mutations,
testing on sequences with up to four. For the thermostability prediction task, we used the Meltome
dataset which includes diverse proteins clustered at 50% sequence similarity using MMSeq2 [33],
and measures the maximum functional temperature (To). The -mixed split was used, with sequences
from 13 species randomly selected for training. Binding classification tasks utilized two datasets
[31, 32], one featuring the SARS-CoV-2 Omicron receptor-binding domain (RBD) screened for
binding/escape interactions with human ACE2, and the other exploring mutations in the CDRH3
region of Trastuzumab for assessing HER2 binding or escape. Both used a -one vs rest split, training
on single mutants (ED = 1) and testing on higher edit distances (ED >= 2). A summary of all
datasets and splits is provided in Table 1.

3.4 Training and hyperparameter tuning

A large number of training setups (>2,900) was assessed in this study. For every training procedure
Adam[37] optimizer is used with early stopping on best validation loss. All OHE baselines and
FE-based models have been tuned for optimal hyperparameters (i.e. learning rate, batch size, weight
decay) using bayesian optimization[38]. For LoRA, ranks of 4, 8, 16 and batch sizes of 2, 4, 6, 16, 32
were evaluated during hyperparameter tuning. Adapters modules parameter search space comprised
of bottleneck dimensions of 16, 32, 64 and batch sizes of 4, 8, 16, 32. All methods implemented
using PyTorch[39] coupled with the DeepSpeed (Table S9) package. Multiple hyperparameters have
been assessed based on trial and error and existing literature. Pre-trained PLMs downloaded either
from HuggingFace[40] or from their original repository and adjusted to allow high-throughput TL.
Final training hyperparameters used for each TL setup are shown in Table S10. All codes and datasets
are available at [Github will be shared after review for anonymization purposes].

3.5 Evaluation metrics and baselines

Performance of each TL-based model was compared to hyperparameter-tuned (Table S10) logistic
regression and multi-layer perceptron (MLP) neural networks with one hidden layer (i.e., baselines),
using one hot encoded (OHE) protein sequences as input. OHE is a method that represents each
amino acid in a protein sequence as a binary vector, with all elements set to zero except for the
position corresponding to that amino acid, which is set to one, capturing no biochemical properties
or evolutionary relationships. Evaluation metrics used in this study vary, based on the nature of
the task.; for models trained on regression tasks (i.e., enrichment ratio), we utilized Spearman’s
Rank correlation coefficient (ρ)[41] to assess the strength and direction of the monotonic relationship
between predicted and actual values and for binary classification tasks (i.e, binding classification), we
employed Matthew’s Correlation Coefficient (MCC) as a metric [42], providing a balanced measure
of the quality of binary classifications, taking into account true and false positives and negatives.

8



4 Discussion

In this study, we evaluated three TL approaches across five datasets, utilizing three families of PLMs.
Each TL-based model was trained with varying parameters, including the number of layers used,
pooling methods, downstream architecture, and training hyperparameters. Performance was compared
against task-specific baselines trained with OHE sequences. The results indicate that TL can offer
significant benefits in protein engineering tasks when an optimized configuration is being applied. FT,
while improving performance across almost every task compared to FE, may not always be the optimal
choice due to marginal performance gains relative to the computational cost it incurs. Nevertheless,
FT proves particularly advantageous in limited training data scenarios and more challenging tasks,
enabling models to generalize to unseen data by leveraging pre-training information. Conversely,
when a sufficient amount of data is available, and the predictive task involves variants with mutations
at positions similar to those in the training data (i.e. the distribution between the training and test sets
remains relatively similar), the use of PLMs may be unnecessary, as a model trained ab-initio on the
task-specific data could potentially offer comparable or even superior performance. Ultimately, the
optimal use of pre-trained PLMs depends on the diversity and volume of training data, the specific
nature of the task, and the computational resources available. Targeting specific layers within the
foundational model not only enhances computational efficiency but can also boost performance, as
embeddings from the final layer may not provide the most suitable representations for downstream
tasks. Leveraging limited data or data including only single mutations to guide PLMs via TL can yield
models that combine general knowledge acquired during pre-training (i.e. fitness and evolution) with
task-specific data (e.g. experimental), making them capable of effectively generalizing to previously
unseen protein sequences, typically in higher EDs. Such capabilities could be particularly valuable
in leveraging Deep Mutational Scanning (DMS) experiments, which generate labeled libraries of
single mutations across the entire or partial length of proteins. Fine-tuning pre-trained PLMs using
these limited data can enable accurate predictions on novel combinatorial (i.e., ED > 1) libraries,
without requiring extensive experimental workflows. We anticipate that PLMFit will serve as a
valuable resource for the research community by offering a practical starting point for those seeking
to leverage PLMs for various protein engineering tasks. Whether users aim to fine-tune pre-trained
PLMs or extract embeddings from different layers, PLMFit can act as a tool to streamline these
processes. Additionally, the platform can guide researchers in selecting appropriate parameters and
configurations, enabling the practical application of PLMs in a range of biological tasks.

5 Limitations

While our evaluation provides insights at a great scale and depth, a more robust evaluation scheme,
such as k-fold cross-validation, could offer a more comprehensive assessment of each transfer learning
technique’s performance. Additionally, we did not explore an extensive space of ranks for LoRA and
more complex architectures for adapters, due to the high computational and time costs associated with
these approaches. In the future, a broader hyperparameter space should be investigated to effectively
determine the impact of each parameter. The datasets and tasks used in this study can carry inherent
biases, which could influence the results. To validate the initial observations from this study, it is
essential to include a more diverse range of data taking into consideration a broad range of protein
families and tasks. Ultimately, TL-based models will need to transition from computational validation
to real-world lab experiments to truly demonstrate their potential. We also encourage the community
to contribute by uploading new datasets, tasks, transfer learning techniques, and additional pre-trained
PLMs to help establish new benchmarks. Lastly, we intend to continuously update Table 2 with the
highest performing combination of TL and PLM for different tasks to keep it relevant for ongoing
research.

Acknowledgments and Disclosure of Funding

We would like to gratefully acknowledge ETH Zurich (Euler cluster) for providing computing
resources and GPUS.
Funding: This research received no external funding.
Author contributions: Conceptualization, T.B., E.S., and S.T.R.; investigation, T.B., E.S.; software,
T.B., E.S.; supervision, S.T.R.; writing- original draft T.B., E.S., and S.T.R.; Writing - review and
editing: T.B., E.S., and S.T.R.

9



Competing Interests: The authors declare no competing interests.
Data and materials availability: All codes and datasets are available at https://github.com/LSSI-
ETH/plmfit. All datasets can also be found in their original repo: AAV/GB1/Meltome (https://
github.com/J-SNACKKB/FLIP), Trastuzumab (https://github.com/dahjan/DMS_opt) and
RBD (https://github.com/LSSI-ETH/Omicron_DML)

References
[1] Partha Pratim Ray. ChatGPT: A comprehensive review on background, applications, key

challenges, bias, ethics, limitations and future scope. Internet of Things and Cyber-Physical
Systems, 3:121–154, January 2023.

[2] Hugo Touvron, Louis Martin, Kevin R Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, D Bikel, Lukas Blecher,
Cristian Cantón Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, A Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel M Kloumann, A Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril,
Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, R Subramanian, Xia Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zhengxu Yan, Iliyan Zarov,
Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert
Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat
models. arXiv.org, 2023.

[3] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, Allan dos Santos Costa, Maryam Fazel-Zarandi,
Tom Sercu, Salvatore Candido, and Alexander Rives. Evolutionary-scale prediction of atomic-
level protein structure with a language model. Science, 379(6637):1123–1130, 2023.

[4] Erik Nijkamp, Jeffrey A Ruffolo, Eli N Weinstein, Nikhil Naik, and Ali Madani. ProGen2:
Exploring the boundaries of protein language models. cels, 14(11):968–978.e3, November
2023.

[5] Nadav Brandes, Dan Ofer, Yam Peleg, Nadav Rappoport, and Michal Linial. ProteinBERT: a
universal deep-learning model of protein sequence and function. Bioinformatics, 38(8):2102–
2110, April 2022.

[6] Ahmed Elnaggar, Hazem Essam, Wafaa Salah-Eldin, Walid Moustafa, Mohamed Elkerdawy,
Charlotte Rochereau, and Burkhard Rost. Ankh : Optimized protein language model unlocks
general-purpose modelling. bioRxiv, page 2023.01.16.524265, January 2023.

[7] Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rehawi, Yu Wang, Llion Jones,
Tom Gibbs, Tamas Feher, Christoph Angerer, Martin Steinegger, Debsindhu Bhowmik, and
Burkhard Rost. ProtTrans: Toward understanding the language of life through self-supervised
learning. IEEE Trans. Pattern Anal. Mach. Intell., 44(10):7112–7127, October 2022.

[8] Ashish Vaswani, Noam M Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Adv. Neural Inf. Process. Syst.,
pages 5998–6008, June 2017.

[9] Brian L Hie, Varun R Shanker, Duo Xu, Theodora U J Bruun, Payton A Weidenbacher, Shaogeng
Tang, Wesley Wu, John E Pak, and Peter S Kim. Efficient evolution of human antibodies from
general protein language models. Nat. Biotechnol., 42(2):275–283, April 2023.

[10] Orly Avraham, Tomer Tsaban, Ziv Ben-Aharon, Linoy Tsaban, and Ora Schueler-Furman.
Protein language models can capture protein quaternary state. BMC Bioinformatics, 24(1):433,
November 2023.

[11] Lucas Torroba Hennigen and Yoon Kim. Deriving language models from masked language
models. arXiv preprint arXiv:2305.15501, 2023.

10

https://github.com/LSSI-ETH/plmfit
https://github.com/LSSI-ETH/plmfit
https://github.com/J-SNACKKB/FLIP
https://github.com/J-SNACKKB/FLIP
https://github.com/dahjan/DMS_opt
https://github.com/LSSI-ETH/Omicron_DML


[12] Chu-Cheng Lin, Aaron Jaech, Xin Li, Matthew R Gormley, and Jason Eisner. Limitations of
autoregressive models and their alternatives. arXiv preprint arXiv:2010.11939, 2020.

[13] Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu, and Alexander Rives.
Language models enable zero-shot prediction of the effects of mutations on protein function.
bioRxiv, page 2021.07.09.450648, November 2021.

[14] Karen Sargsyan and Carmay Lim. Using protein language models for protein interaction hot
spot prediction with limited data. BMC Bioinformatics, 25(1):115, March 2024.

[15] Jeffrey A Ruffolo and Ali Madani. Designing proteins with language models. Nat. Biotechnol.,
42(2):200–202, February 2024.

[16] Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Xi Chen, John Canny, Pieter
Abbeel, and Yun S Song. Evaluating protein transfer learning with TAPE. Adv. Neural Inf.
Process. Syst., 32:9689–9701, December 2019.

[17] Christian Dallago, Jody Mou, Kadina E Johnston, Bruce J Wittmann, Nicholas Bhattacharya,
Samuel Goldman, Ali Madani, and Kevin K Yang. FLIP: Benchmark tasks in fitness landscape
inference for proteins. bioRxiv, page 2021.11.09.467890, November 2021.

[18] B Rost and C Sander. Prediction of protein secondary structure at better than 70% accuracy. J.
Mol. Biol., 232(2):584–599, July 1993.

[19] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for NLP. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pages 2790–2799. PMLR, 2019.

[20] Chau Tran, Siddharth Khadkikar, and Aleksey Porollo. Survey of protein sequence embedding
models. Int. J. Mol. Sci., 24(4), February 2023.

[21] Thomas Hayes, Roshan Rao, Halil Akin, Nicholas James Sofroniew, Deniz Oktay, Zeming Lin,
Robert Verkuil, Marius Wiggert, Rohil Badkundri, Irhum Shafkat, Jun Gong, Alexander Derry,
Raul Santiago Molina, Neil Thomas, Yousuf Khan, Chetan Mishra, Carolyn Kim, Liam J Bartie,
Salvatore Candido, and Alexander Rives. Simulating 500 million years of evolution with a
language model.

[22] Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study of
catastrophic forgetting in large language models during continual fine-tuning. arXiv [cs.CL],
August 2023.

[23] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. arXiv
[cs.CL], June 2021.

[24] Chloe Hsu, Hunter Nisonoff, Clara Fannjiang, and Jennifer Listgarten. Combining evolutionary
and assay-labelled data for protein fitness prediction. bioRxiv, page 2021.03.28.437402, March
2021.

[25] Francesca-Zhoufan Li, Ava P Amini, Yisong Yue, Kevin K Yang, and Alex X Lu. Feature
reuse and scaling: Understanding transfer learning with protein language models. bioRxiv, page
2024.02.05.578959, February 2024.

[26] Samuel Sledzieski, Meghana Kshirsagar, Minkyung Baek, Rahul Dodhia, Juan Lavista Ferres,
and Bonnie Berger. Democratizing protein language models with parameter-efficient fine-tuning.
Proceedings of the National Academy of Sciences, 121(26):e2405840121, 2024.

[27] Wei Yang, Chun Liu, and Zheng Li. Lightweight fine-tuning a pretrained protein language model
for protein secondary structure prediction. https://papers.ssrn.com › ...https://papers.ssrn.com ›
..., April 2023.

11



[28] Bruce J Wittmann, Yisong Yue, and Frances H Arnold. Informed training set design enables
efficient machine learning-assisted directed protein evolution. Cell Syst, 12(11):1026–1045.e7,
November 2021.

[29] Robert Schmirler, Michael Heinzinger, and Burkhard Rost. Fine-tuning protein language models
boosts predictions across diverse tasks. Nat. Commun., 15(1):7407, August 2024.

[30] Lucrezia Valeriani, Diego Doimo, Francesca Cuturello, Alessandro Laio, Alessio Ansuini, and
Alberto Cazzaniga. The geometry of hidden representations of large transformer models. arXiv
[cs.LG], February 2023.

[31] Lester Frei, Beichen Gao, Jiami Han, Joseph Michael Taft, Edward B Irvine, Cedric R Weber,
Rachita Kumar, Benedikt Eisinger, and Sai T Reddy. Deep learning-guided selection of antibody
therapies with enhanced resistance to current and prospective SARS-CoV-2 omicron variants.
bioRxiv, pages 2023–2010, 2023.

[32] Derek M Mason, Simon Friedensohn, Cédric R Weber, Christian Jordi, Bastian Wagner, Si-
mon M Meng, Roy A Ehling, Lucia Bonati, Jan Dahinden, Pablo Gainza, et al. Optimization
of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep
learning. Nature Biomedical Engineering, 5(6):600–612, 2021.

[33] Martin Steinegger and Johannes Söding. MMseqs2 enables sensitive protein sequence searching
for the analysis of massive data sets. Nat. Biotechnol., 35(11):1026–1028, November 2017.

[34] Maria Hauser, Christian E Mayer, and Johannes Söding. kclust: fast and sensitive clustering of
large protein sequence databases. BMC bioinformatics, 14:1–12, 2013.

[35] Drew H Bryant, Ali Bashir, Sam Sinai, Nina K Jain, Pierce J Ogden, Patrick F Riley, George M
Church, Lucy J Colwell, and Eric D Kelsic. Deep diversification of an AAV capsid protein by
machine learning. Nat. Biotechnol., 39(6):691–696, June 2021.

[36] Zachary Wu, S B Jennifer Kan, Russell D Lewis, Bruce J Wittmann, and Frances H Arnold.
Machine learning-assisted directed protein evolution with combinatorial libraries. Proc. Natl.
Acad. Sci. U. S. A., 116(18):8852–8858, April 2019.

[37] Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[38] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[40] T Wolf. Huggingface’s transformers: State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771, 2019.

[41] F Reading. Spearman rank correlation coefficient. Concise Encycl Stat, page 502, 2008.

[42] Davide Chicco and Giuseppe Jurman. The advantages of the matthews correlation coefficient
(mcc) over f1 score and accuracy in binary classification evaluation. BMC Genomics, 21:1–13,
1 2020.

12



Figure S1: Performance and memory trade-off between LoRA/LoRA- and adapters/adapters- across
three tasks. The orange bars (dark for LoRA and light for LoRA-) and the green bars (dark for
adapters and light for adapters-) show the performance (Spearman’s correlation) of the models on
three tasks: AAV-sampled, GB1-three vs rest, and Meltome-mixed. The y-axis represents performance
on a scale from 0 to 1, where LoRA consistently outperforms LoRA- across all datasets. The gray
part of the bars (dark for default and light for - version) represents the GPU memory requirements in
gigabytes (GB) for each approach. LoRA requires significantly more memory compared to LoRA-,
illustrating a trade-off between performance and memory efficiency. LoRA: Low rank adaptation

A Supplementary Material

Memory requirements and performance trade-off when fine-tuning only the final layer

Our analysis demonstrated that fine-tuning techniques can yield superior results when adapting pre-
trained PLMs for protein engineering tasks. Despite adopting PEFT methods, even when fine-tuning
a small fraction of the model, the number of trainable parameters can still be large. This is due to
the sheer size of models like ESM2-15B and ProGen2-xlarge, with 98 and 6.4 billion parameters
respectively. In such models, updating even a very small subset requires significant computational
resources. Motivated by these challenges, we investigated the performance of FT modules added only
to the final layer of the entire PLM, namely, LoRA- and adapters-. Adopting this strategy, we reduced
the number of trainable parameters by a fraction of the total layers number. Figure S1 illustrates a
comparative analysis of performance (upper section) and memory usage (lower section) between
LoRA, LoRA-, adapters, and adapters- across three tasks: AAV-sampled, GB1-three vs rest, and
Meltome-mixed. However, both LoRA and adapters outperform their reduced counterparts, LoRA-
and adapters-, the performance drops for AAV-sampled and GB1-three vs rest are marginal. Only
Meltome-mixed exhibits a more notable decline when adapters- method is applied. Importantly, both
LoRA- and adapters- have significantly lower memory requirements, without a drastic performance
loss. GPU RAM memory ranges from 6.5-12.8 gigabytes (GB), compared to the standard application
of these methods which require 28-52 GB Table S1. By reducing the memory requirements without
significantly sacrificing performance, LoRA- and adapters- provide accessibility to larger PLMs
democratizing advanced model FT and allowing a broader range of institutions and researchers to
fine tune PLMs without the need for expensive cloud computing services or specialized infrastructure.
PLMs, training parameters and hardware resources used for LoRA- and adapters- for the comparative
analysis and for the entirety of setups are shown in Table S1 and Tables S3, S5 and S6 respectively.

13



Table S1: Comparative analysis demonstrating the performance and memory trade-off between
LoRA/LoRA- and adapters/adapters- across three tasks. Best performing setups are selected for each
of the three largest pre-trained PLMs assessed in this study, where each PLM is assigned one of the
three tasks; AAV-sampled, GB1-three vs rest, and Meltome-mixed. Performance is measured using

Spearman’s rank correlation coefficient. PLM: Protein Language Model; LoRA: Low rank adaptation

Tasks PLM Method Performance GPU RAM requirements (GB) GPU Used

AAV - sampled ESM-3B

LoRA 0.911 28 NVIDIA A100 40GB (x4)

LoRA- 0.891 6.4 NVIDIA Quadro RTX 6000 24G (x4)

Adapters 0.917 29 NVIDIA A100 80GB (x4)

Adapters- 0.599 6.5 NVIDIA Quadro RTX 6000 24G (x4)

GB1 - three vs rest ESM2-15B

LoRA 0.876 48 NVIDIA A100 80GB (x4)

LoRA- 0.858 6.5 NVIDIA Quadro RTX 6000 24G (x2)

Adapters 0.868 52 NVIDIA A100 80GB (x4)

Adapters- 0.825* 7.2 NVIDIA Quadro RTX 6000 24G (x2)

Meltome - mixed ProGen2-xlarge

LoRA 0.723 40 NVIDIA A100 80GB (x4)

LoRA- 0.698 12 NVIDIA Quadro RTX 6000 24G (x4)

Adapters 0.708 47 NVIDIA A100 80GB (x4)

Adapters- 0.279 12.8 NVIDIA Quadro RTX 6000 24G (x4)

Downstream heads architectures

Outputs from different PLMs’ encoder layers are used as representations of protein sequence. The
original decoder has been discarded and replaced with the task specific downstream head using
these embeddings as input features for training. Transformer-based encoder outputs are 2-d matrices
(Vlocal ϵRsequence length×embedding dimension) where each residue (i.e, token) is described by a 1-d
numerical vector (Vglobal ϵRembedding dimension). Prior to inputting these representations into the
downstream architecture, it is necessary to transition from local (i.e. token-wise) to global (i.e.
sequence-wise) representations, thereby transforming the entire sequence into a feature vector. To
achieve this, multiple reduction approaches can be applied. Within the scope of this study, two
reduction techniques were assessed, mean- and classification token- pooling. Specifically, for BERT-
based PLMs (ESM2, ProteinBERT), classification token-pooling involves gathering the embeddings
from the first token prepended in every sequence, also called CLS token, and for GPT-based PLMs
(ProGen2), this token involves selecting the embeddings of the last token, a special token appended in
the end of each sequence called EOS. By respectively averaging the elements towards the sequence
length dimension for each position through the embedding dimension or selecting the embeddings
of a token that holds information about the whole sequence, 2-d matrices (Vlocal) are transformed
to a 1-d vector (Vglobal). Leveraging global representations of protein sequences, deep learning-
based architectures are trained to address specific tasks. We evaluated two shallow architectures,
logistic regression and a two-layer multi-layer perceptron (MLP). Our focus was on highlighting the
information encapsulated in the PLMs’ embeddings, thus we utilized architectures that do not require
extensive optimization as downstream models.

Hardware resources

High-performance computing clusters were used for all experiments, with hardware configurations
varying based on dataset size and transfer learning techniques. Multiple Nvidia GPUs (GeForce RTX
2080 Ti, RTX 3090, RTX 4090, TITAN RTX, Quadro RTX 6000, Tesla A100) were utilized for
inference and backpropagation, with 1 to 4 GPUs used in parallel to accelerate training. Tables S2
to S8 list the detailed resources used for each setup. Different pooling techniques require the same
amount of resources and are therefore combined.

Extended data

We present an extended representation of the results, including Table S11 which provides statistical
summaries of the box plots in Figure 1B and heatmaps in figs. S2 to S8, displaying the result metrics
for all 2,940 TL setups evaluated.

14



Table S2: Resources used for each TL setup on AAV-one vs rest task.

PLM + Layer
Embeddings Extraction Feature Extraction LoRA LoRA- Adapters Adapters-

GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM

ProteinBERT - 1st 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB

ProGen2-small - 1st 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB

ESM2-650M - 1st 1 x RTX 4090 12GB 1 x RTX 4090 14GB 1 x RTX 3090 18GB 1 x RTX 3090 18GB 1 x RTX 3090 18GB 1 x RTX 3090 18GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 1 x RTX 3090 18GB 1 x RTX 3090 18GB 1 x RTX 3090 18GB 1 x RTX 3090 18GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x RTX 3090 18GB 2 x RTX 4090 18GB 2 x RTX 4090 18GB 2 x RTX 4090 18GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x TITAN RTX 18GB 2 x Quadro RTX 6000 18GB 2 x Quadro RTX 6000 18GB 2 x Quadro RTX 6000 18GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x TITAN RTX 18GB 2 x Quadro RTX 6000 18GB 2 x RTX 4090 18GB 2 x Quadro RTX 6000 18GB

ProGen2-medium - 1st 1 x RTX 4090 12GB 1 x RTX 4090 14GB 1 x RTX 3090 18GB 1 x RTX 2080 Ti 18GB 1 x RTX 3090 18GB 1 x RTX 2080 Ti 18GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 1 x RTX 3090 18GB 1 x RTX 2080 Ti 18GB 1 x RTX 3090 18GB 1 x RTX 2080 Ti 18GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x RTX 3090 18GB 2 x RTX 2080 Ti 18GB 2 x RTX 3090 18GB 2 x RTX 2080 Ti 18GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x TITAN RTX 18GB 2 x RTX 4090 18GB 2 x TITAN RTX 18GB 2 x RTX 4090 18GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x TITAN RTX 18GB 2 x RTX 4090 18GB 2 x TITAN RTX 18GB 2 x RTX 4090 18GB

ESM2-3B - 1st 1 x RTX 4090 30GB 1 x RTX 4090 14GB 1 x RTX 3090 18GB 1 x RTX 3090 18GB 1 x RTX 2080 Ti 18GB 1 x RTX 3090 18GB

25% 1 x RTX 4090 30GB 1 x RTX 4090 14GB 1 x RTX 3090 18GB 1 x RTX 4090 18GB 1 x RTX 3090 18GB 1 x RTX 4090 18GB

50% 1 x RTX 4090 30GB 1 x RTX 4090 14GB 2 x RTX 3090 18GB 1 x Quadro RTX 6000 18GB 1 x RTX 3090 18GB 1 x Quadro RTX 6000 18GB

75% 1 x RTX 4090 30GB 1 x RTX 4090 14GB 2 x TITAN RTX 18GB 1 x Quadro RTX 6000 18GB 2 x A100 (40 GiB) 18GB 1 x Quadro RTX 6000 18GB

All/Last 1 x RTX 4090 30GB 1 x RTX 4090 14GB 2 x TITAN RTX 18GB 1 x A100 (40 GiB) 18GB 3 x A100 (40 GiB) 18GB 1 x A100 (40 GiB) 18GB

ProGen2-xlarge - 1st 1 x RTX 4090 60GB 1 x RTX 4090 14GB 1 x RTX 2080 Ti 40GB 1 x RTX 2080 Ti 40GB 1 x RTX 2080 Ti 40GB 1 x RTX 2080 Ti 40GB

25% 1 x RTX 4090 60GB 1 x RTX 4090 14GB 1 x RTX 3090 40GB 1 x RTX 3090 40GB 1 x RTX 3090 40GB 1 x RTX 3090 40GB

50% 1 x RTX 4090 60GB 1 x RTX 4090 14GB 2 x RTX 3090 40GB 2 x RTX 4090 40GB 1 x RTX 3090 40GB 2 x RTX 4090 40GB

75% 1 x RTX 4090 60GB 1 x RTX 4090 14GB 2 x A100 (40 GiB) 40GB 2 x RTX 4090 40GB 2 x A100 (40 GiB) 40GB 2 x RTX 4090 40GB

All/Last 1 x A100 (80 GiB) 60GB 1 x RTX 4090 14GB 2 x A100 (80 GiB) 40GB 3 x TITAN RTX 40GB 3 x A100 (40 GiB) 40GB 3 x TITAN RTX 40GB

ESM2-15B - 1st 1 x RTX 4090 80GB 1 x RTX 4090 14GB 1 x RTX 2080 Ti 70GB 1 x RTX 3090 70GB 1 x RTX 2080 Ti 75GB 1 x RTX 3090 75GB

25% 1 x RTX 4090 80GB 1 x RTX 4090 14GB 1 x RTX 3090 70GB 1 x RTX 4090 70GB 2 x RTX 3090 75GB 2 x RTX 4090 75GB

50% 1 x RTX 4090 80GB 1 x RTX 4090 14GB 2 x A100 (40 GiB) 70GB 2 x Quadro RTX 6000 70GB 3 x A100 (40 GiB) 75GB 2 x Quadro RTX 6000 75GB

75% 1 x A100 (80 GiB) 80GB 1 x RTX 4090 14GB 3 x A100 (80 GiB) 70GB 2 x Quadro RTX 6000 70GB 3 x A100 (80 GiB) 75GB 2 x Quadro RTX 6000 75GB

All/Last 1 x A100 (80 GiB) 80GB 1 x RTX 4090 14GB 3 x A100 (80 GiB) 70GB 2 x A100 (40 GiB) 70GB 4 x A100 (80 GiB) 75GB 2 x A100 (80 GiB) 75GB

Table S3: Resources used for each TL setup on AAV-sampled task.

PLM + Layer
Embeddings Extraction Feature Extraction LoRA LoRA- Adapters Adapters-

GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM

ProteinBERT - 1st 1 x RTX 4090 12GB 1 x RTX 4090 10GB 2 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 2 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 2 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 2 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 3 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 3 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 3 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 3 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 10GB 3 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 3 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB

ProGen2-small - 1st 1 x RTX 4090 12GB 1 x RTX 4090 10GB 2 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 2 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 2 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 2 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 3 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 3 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 3 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 3 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 10GB 3 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 3 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB

ESM2-650M - 1st 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x RTX 4090 12GB 1 x RTX 3090 12GB 2 x RTX 4090 18GB 1 x RTX 3090 18GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x RTX 4090 12GB 1 x RTX 3090 12GB 2 x RTX 4090 18GB 1 x RTX 3090 18GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 3 x RTX 4090 12GB 2 x RTX 4090 12GB 3 x RTX 4090 18GB 2 x RTX 4090 18GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 4 x RTX 4090 12GB 2 x Quadro RTX 6000 12GB 4 x RTX 4090 18GB 2 x Quadro RTX 6000 18GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 14GB 4 x Quadro RTX 6000 12GB 2 x Quadro RTX 6000 12GB 4 x Quadro RTX 6000 18GB 2 x Quadro RTX 6000 18GB

ProGen2-medium - 1st 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x RTX 4090 12GB 1 x RTX 3090 12GB 2 x RTX 4090 18GB 1 x RTX 3090 18GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x RTX 4090 12GB 1 x RTX 3090 12GB 2 x RTX 4090 18GB 1 x RTX 3090 18GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 3 x RTX 4090 12GB 2 x RTX 4090 12GB 3 x RTX 4090 18GB 2 x RTX 4090 18GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 4 x RTX 4090 12GB 2 x RTX 4090 12GB 4 x RTX 4090 18GB 2 x RTX 4090 18GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 14GB 4 x Quadro RTX 6000 12GB 2 x RTX 4090 12GB 4 x Quadro RTX 6000 18GB 2 x RTX 4090 18GB

ESM2-3B - 1st 1 x RTX 4090 30GB 1 x RTX 4090 14GB 2 x TITAN RTX 40GB 2 x RTX 3090 40GB 2 x TITAN RTX 18GB 2 x RTX 3090 18GB

25% 1 x RTX 4090 30GB 1 x RTX 4090 14GB 2 x TITAN RTX 40GB 3 x RTX 4090 40GB 2 x TITAN RTX 18GB 3 x RTX 4090 18GB

50% 1 x RTX 4090 30GB 1 x RTX 4090 14GB 3 x RTX 4090 40GB 4 x TITAN RTX 40GB 4 x RTX 4090 18GB 4 x TITAN RTX 18GB

75% 1 x RTX 4090 30GB 1 x RTX 4090 14GB 3 x A100 (40 GiB) 40GB 4 x TITAN RTX 40GB 3 x A100 (40 GiB) 18GB 4 x TITAN RTX 18GB

All/Last 1 x RTX 4090 30GB 1 x RTX 4090 14GB 4 x A100 (40 GiB) 40GB 4 x Quadro RTX 6000 40GB 4 x A100 (80 GiB) 18GB 4 x Quadro RTX 6000 18GB

ProGen2-xlarge - 1st 1 x RTX 4090 60GB 1 x RTX 4090 14GB 2 x TITAN RTX 40GB 2 x RTX 3090 40GB 2 x TITAN RTX 40GB 2 x RTX 3090 40GB

25% 1 x RTX 4090 60GB 1 x RTX 4090 14GB 2 x TITAN RTX 40GB 3 x RTX 4090 40GB 2 x TITAN RTX 40GB 3 x RTX 4090 40GB

50% 1 x RTX 4090 60GB 1 x RTX 4090 14GB 4 x RTX 4090 40GB 4 x TITAN RTX 40GB 4 x RTX 4090 40GB 4 x TITAN RTX 40GB

75% 1 x RTX 4090 60GB 1 x RTX 4090 14GB 4 x A100 (40 GiB) 40GB 4 x TITAN RTX 40GB 4 x A100 (40 GiB) 40GB 4 x TITAN RTX 40GB

All/Last 1 x A100 (80 GiB) 60GB 1 x RTX 4090 14GB 4 x A100 (40 GiB) 40GB 4 x Quadro RTX 6000 40GB 4 x A100 (40 GiB) 40GB 4 x Quadro RTX 6000 40GB

ESM2-15B - 1st 1 x RTX 4090 80GB 1 x RTX 4090 14GB 2 x TITAN RTX 70GB 1 x RTX 3090 70GB 2 x TITAN RTX 75GB 2 x RTX 3090 75GB

25% 1 x RTX 4090 80GB 1 x RTX 4090 14GB 3 x TITAN RTX 70GB 2 x Quadro RTX 6000 70GB 3 x TITAN RTX 75GB 2 x TITAN RTX 75GB

50% 1 x RTX 4090 80GB 1 x RTX 4090 14GB 3 x A100 (40 GiB) 70GB 3 x Quadro RTX 6000 70GB 3 x A100 (40 GiB) 75GB 3 x TITAN RTX 75GB

75% 1 x A100 (80 GiB) 80GB 1 x RTX 4090 14GB 3 x A100 (80 GiB) 70GB 4 x Quadro RTX 6000 70GB 4 x A100 (80 GiB) 75GB 4 x A100 (80 GiB) 75GB

All/Last 1 x A100 (80 GiB) 80GB 1 x RTX 4090 14GB 4 x A100 (80 GiB) 70GB 4 x A100 (80 GiB) 70GB 4 x A100 (80 GiB) 75GB 4 x Quadro RTX 6000 75GB

15



Table S4: Resources used for each TL setup on GB1-one vs rest task.

PLM + Layer
Embeddings Extraction Feature Extraction LoRA LoRA- Adapters Adapters-

GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM

ProteinBERT - 1st 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 4090 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 4090 8GB 1 x RTX 2080 Ti 8GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 4090 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 4090 8GB 1 x RTX 2080 Ti 8GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 4090 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 4090 8GB 1 x RTX 2080 Ti 8GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 4090 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 4090 8GB 1 x RTX 2080 Ti 8GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 4090 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 4090 8GB 1 x RTX 2080 Ti 8GB

ProGen2-small - 1st 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 4090 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 4090 12GB 1 x RTX 2080 Ti 12GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 4090 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 4090 12GB 1 x RTX 2080 Ti 12GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 4090 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 4090 12GB 1 x RTX 2080 Ti 12GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 4090 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 4090 12GB 1 x RTX 2080 Ti 12GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 4090 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 4090 12GB 1 x RTX 2080 Ti 12GB

ESM2-650M - 1st 1 x RTX 4090 12GB 1 x RTX 4090 14GB 1 x RTX 3090 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 4090 18GB 1 x RTX 2080 Ti 18GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 1 x RTX 3090 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 4090 18GB 1 x RTX 2080 Ti 18GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x RTX 4090 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 4090 18GB 1 x RTX 2080 Ti 18GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x Quadro RTX 6000 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 4090 18GB 1 x RTX 2080 Ti 18GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x Quadro RTX 6000 12GB 2 x RTX 3090 12GB 2 x RTX 3090 18GB 2 x RTX 3090 18GB

ProGen2-medium - 1st 1 x RTX 4090 12GB 1 x RTX 4090 14GB 1 x RTX 4090 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 4090 18GB 1 x RTX 2080 Ti 18GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 1 x RTX 4090 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 4090 18GB 1 x RTX 2080 Ti 18GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 4090 18GB 1 x RTX 2080 Ti 18GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x TITAN RTX 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 4090 18GB 1 x RTX 2080 Ti 18GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x TITAN RTX 12GB 2 x RTX 3090 12GB 2 x RTX 3090 18GB 2 x RTX 3090 18GB

ESM2-3B - 1st 1 x RTX 4090 30GB 1 x RTX 4090 14GB 1 x RTX 3090 40GB 1 x RTX 2080 Ti 40GB 1 x RTX 4090 18GB 1 x RTX 2080 Ti 18GB

25% 1 x RTX 4090 30GB 1 x RTX 4090 14GB 1 x RTX 4090 40GB 1 x RTX 2080 Ti 40GB 1 x RTX 4090 18GB 1 x RTX 2080 Ti 18GB

50% 1 x RTX 4090 30GB 1 x RTX 4090 14GB 1 x Quadro RTX 6000 40GB 1 x RTX 2080 Ti 40GB 1 x RTX 4090 18GB 1 x RTX 2080 Ti 18GB

75% 1 x RTX 4090 30GB 1 x RTX 4090 14GB 1 x Quadro RTX 6000 40GB 2 x RTX 3090 40GB 2 x TITAN RTX 18GB 2 x RTX 3090 18GB

All/Last 1 x RTX 4090 30GB 1 x RTX 4090 14GB 1 x A100 (40 GiB) 40GB 2 x TITAN RTX 40GB 2 x RTX 3090 18GB 2 x TITAN RTX 18GB

ProGen2-xlarge - 1st 1 x RTX 4090 60GB 1 x RTX 4090 14GB 1 x RTX 2080 Ti 40GB 1 x RTX 2080 Ti 40GB 1 x RTX 2080 Ti 40GB 1 x RTX 2080 Ti 40GB

25% 1 x RTX 4090 60GB 1 x RTX 4090 14GB 1 x RTX 2080 Ti 40GB 1 x RTX 2080 Ti 40GB 1 x RTX 2080 Ti 40GB 1 x RTX 2080 Ti 40GB

50% 1 x RTX 4090 60GB 1 x RTX 4090 14GB 1 x RTX 2080 Ti 40GB 1 x RTX 2080 Ti 40GB 1 x RTX 3090 40GB 1 x RTX 2080 Ti 40GB

75% 1 x RTX 4090 60GB 1 x RTX 4090 14GB 1 x RTX 2080 Ti 40GB 2 x RTX 3090 40GB 2 x TITAN RTX 40GB 2 x RTX 3090 40GB

All/Last 1 x A100 (80 GiB) 60GB 1 x RTX 4090 14GB 2 x TITAN RTX 40GB 2 x TITAN RTX 40GB 2 x RTX 3090 40GB 2 x TITAN RTX 40GB

ESM2-15B - 1st 1 x RTX 4090 80GB 1 x RTX 4090 14GB 1 x RTX 3090 70GB 1 x RTX 2080 Ti 70GB 1 x RTX 2080 Ti 75GB 1 x RTX 2080 Ti 75GB

25% 1 x RTX 4090 80GB 1 x RTX 4090 14GB 1 x RTX 4090 70GB 1 x RTX 2080 Ti 70GB 1 x RTX 2080 Ti 75GB 1 x RTX 2080 Ti 75GB

50% 1 x RTX 4090 80GB 1 x RTX 4090 14GB 1 x Quadro RTX 6000 70GB 1 x RTX 4090 70GB 1 x RTX 3090 75GB 2 x RTX 4090 75GB

75% 1 x A100 (80 GiB) 80GB 1 x RTX 4090 14GB 1 x Quadro RTX 6000 70GB 2 x TITAN RTX 70GB 2 x A100 (40 GiB) 75GB 2 x TITAN RTX 75GB

All/Last 1 x A100 (80 GiB) 80GB 1 x RTX 4090 14GB 1 x A100 (40 GiB) 70GB 2 x A100 (40 GiB) 70GB 2 x A100 (80 GiB) 75GB 2 x A100 (80 GiB) 75GB

Table S5: Resources used for each TL setup on GB1-three vs rest task.

PLM + Layer
Embeddings Extraction Feature Extraction LoRA LoRA- Adapters Adapters-

GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM

ProteinBERT - 1st 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB

ProGen2-small - 1st 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB

ESM2-650M - 1st 1 x RTX 4090 12GB 1 x RTX 4090 14GB 1 x RTX 4090 12GB 1 x RTX 3090 12GB 1 x RTX 3090 18GB 1 x RTX 3090 18GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 1 x RTX 4090 12GB 1 x RTX 3090 12GB 1 x RTX 4090 18GB 1 x RTX 3090 18GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x RTX 4090 12GB 1 x RTX 4090 12GB 2 x RTX 4090 18GB 1 x RTX 4090 18GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x Quadro RTX 6000 12GB 1 x RTX 4090 12GB 2 x Quadro RTX 6000 18GB 1 x RTX 4090 18GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x Quadro RTX 6000 12GB 1 x RTX 4090 12GB 2 x Quadro RTX 6000 18GB 1 x RTX 4090 18GB

ProGen2-medium - 1st 1 x RTX 4090 12GB 1 x RTX 4090 14GB 1 x RTX 3090 12GB 1 x RTX 3090 12GB 1 x RTX 3090 18GB 1 x RTX 3090 18GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 1 x RTX 3090 12GB 1 x RTX 3090 12GB 1 x RTX 3090 18GB 1 x RTX 3090 18GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x RTX 4090 12GB 1 x RTX 4090 12GB 2 x RTX 4090 18GB 1 x RTX 4090 18GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x Quadro RTX 6000 12GB 1 x RTX 4090 12GB 2 x Quadro RTX 6000 18GB 1 x RTX 4090 18GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x Quadro RTX 6000 12GB 1 x RTX 4090 12GB 2 x Quadro RTX 6000 18GB 1 x RTX 4090 18GB

ESM2-3B - 1st 1 x RTX 4090 30GB 1 x RTX 4090 14GB 1 x RTX 4090 40GB 1 x RTX 3090 40GB 1 x RTX 3090 18GB 1 x RTX 3090 18GB

25% 1 x RTX 4090 30GB 1 x RTX 4090 14GB 1 x RTX 4090 40GB 1 x RTX 4090 40GB 1 x RTX 4090 18GB 1 x RTX 4090 18GB

50% 1 x RTX 4090 30GB 1 x RTX 4090 14GB 1 x Quadro RTX 6000 40GB 1 x Quadro RTX 6000 40GB 4 x Quadro RTX 6000 18GB 2 x Quadro RTX 6000 18GB

75% 1 x RTX 4090 30GB 1 x RTX 4090 14GB 1 x Quadro RTX 6000 40GB 1 x Quadro RTX 6000 40GB 4 x Quadro RTX 6000 18GB 2 x Quadro RTX 6000 18GB

All/Last 1 x RTX 4090 30GB 1 x RTX 4090 14GB 1 x A100 (40 GiB) 40GB 2 x Quadro RTX 6000 40GB 4 x Quadro RTX 6000 18GB 2 x Quadro RTX 6000 18GB

ProGen2-xlarge - 1st 1 x RTX 4090 60GB 1 x RTX 4090 14GB 1 x RTX 3090 40GB 1 x RTX 3090 40GB 1 x RTX 3090 40GB 1 x RTX 3090 40GB

25% 1 x RTX 4090 60GB 1 x RTX 4090 14GB 1 x RTX 4090 40GB 1 x RTX 4090 40GB 1 x RTX 4090 40GB 1 x RTX 4090 40GB

50% 1 x RTX 4090 60GB 1 x RTX 4090 14GB 1 x Quadro RTX 6000 40GB 1 x Quadro RTX 6000 40GB 4 x Quadro RTX 6000 40GB 2 x Quadro RTX 6000 40GB

75% 1 x RTX 4090 60GB 1 x RTX 4090 14GB 1 x Quadro RTX 6000 40GB 1 x Quadro RTX 6000 40GB 4 x Quadro RTX 6000 40GB 2 x Quadro RTX 6000 40GB

All/Last 1 x A100 (80 GiB) 60GB 1 x RTX 4090 14GB 1 x Quadro RTX 6000 40GB 2 x Quadro RTX 6000 40GB 4 x Quadro RTX 6000 40GB 2 x Quadro RTX 6000 40GB

ESM2-15B - 1st 1 x RTX 4090 80GB 1 x RTX 4090 14GB 1 x RTX 3090 70GB 1 x RTX 3090 70GB 1 x RTX 3090 75GB 1 x RTX 3090 75GB

25% 1 x RTX 4090 80GB 1 x RTX 4090 14GB 2 x RTX 4090 70GB 2 x RTX 4090 70GB 2 x RTX 4090 75GB 1 x RTX 4090 75GB

50% 1 x RTX 4090 80GB 1 x RTX 4090 14GB 3 x A100 (40 GiB) 70GB 2 x RTX 4090 70GB 4 x A100 (40 GiB) 75GB 2 x RTX 4090 75GB

75% 1 x A100 (80 GiB) 80GB 1 x RTX 4090 14GB 3 x A100 (80 GiB) 70GB 2 x Quadro RTX 6000 70GB 4 x A100 (80 GiB) 75GB 2 x Quadro RTX 6000 75GB

All/Last 1 x A100 (80 GiB) 80GB 1 x RTX 4090 14GB 4 x A100 (80 GiB) 70GB 2 x Quadro RTX 6000 70GB 4 x A100 (80 GiB) 75GB 2 x Quadro RTX 6000 75GB

16



Table S6: Resources used for each TL setup on Meltome-mixed task.

PLM + Layer
Embeddings Extraction Feature Extraction LoRA LoRA- Adapters Adapters-

GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM

ProteinBERT - 1st 1 x RTX 4090 12GB 1 x RTX 4090 10GB 2 x RTX 2080 Ti 12GB 2 x RTX 3090 12GB 2 x RTX 3090 8GB 2 x RTX 3090 8GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 2 x RTX 2080 Ti 12GB 2 x RTX 3090 12GB 2 x RTX 3090 8GB 2 x RTX 3090 8GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 3 x RTX 2080 Ti 12GB 3 x RTX 2080 Ti 12GB 3 x RTX 4090 8GB 3 x RTX 2080 Ti 8GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 3 x RTX 3090 12GB 3 x RTX 3090 12GB 3 x RTX 4090 8GB 3 x RTX 3090 8GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 10GB 3 x RTX 3090 12GB 3 x RTX 3090 12GB 3 x Quadro RTX 6000 8GB 3 x RTX 3090 8GB

ProGen2-small - 1st 1 x RTX 4090 12GB 1 x RTX 4090 10GB 2 x RTX 2080 Ti 12GB 2 x RTX 2080 Ti 12GB 2 x RTX 3090 12GB 2 x RTX 2080 Ti 12GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 2 x RTX 2080 Ti 12GB 2 x RTX 2080 Ti 12GB 2 x RTX 3090 12GB 2 x RTX 2080 Ti 12GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 3 x RTX 2080 Ti 12GB 3 x RTX 2080 Ti 12GB 3 x TITAN RTX 12GB 3 x RTX 2080 Ti 12GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 3 x RTX 3090 12GB 3 x RTX 3090 12GB 3 x RTX 4090 12GB 3 x RTX 3090 12GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 10GB 3 x RTX 3090 12GB 3 x RTX 3090 12GB 3 x RTX 4090 12GB 3 x RTX 3090 12GB

ESM2-650M - 1st 1 x RTX 4090 12GB 1 x RTX 4090 14GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB 2 x RTX 4090 18GB 1 x RTX 4090 18GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB 2 x RTX 4090 18GB 1 x RTX 4090 18GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x RTX 4090 12GB 2 x RTX 4090 12GB 3 x RTX 4090 18GB 2 x RTX 4090 18GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x RTX 4090 12GB 2 x RTX 4090 12GB 4 x RTX 4090 18GB 2 x RTX 4090 18GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 14GB 4 x Quadro RTX 6000 12GB 2 x TITAN RTX 12GB 4 x Quadro RTX 6000 18GB 2 x TITAN RTX 18GB

ProGen2-medium - 1st 1 x RTX 4090 12GB 1 x RTX 4090 14GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB 2 x RTX 4090 18GB 1 x RTX 4090 18GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB 2 x RTX 4090 18GB 1 x RTX 4090 18GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x RTX 4090 12GB 2 x RTX 4090 12GB 3 x RTX 4090 18GB 2 x RTX 4090 18GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x RTX 4090 12GB 2 x RTX 4090 12GB 4 x RTX 4090 18GB 2 x RTX 4090 18GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 14GB 4 x Quadro RTX 6000 12GB 2 x TITAN RTX 12GB 4 x Quadro RTX 6000 18GB 2 x TITAN RTX 18GB

ESM2-3B - 1st 1 x RTX 4090 30GB 1 x RTX 4090 14GB 2 x TITAN RTX 40GB 1 x RTX 4090 40GB 2 x TITAN RTX 18GB 1 x RTX 4090 18GB

25% 1 x RTX 4090 30GB 1 x RTX 4090 14GB 2 x TITAN RTX 40GB 2 x TITAN RTX 40GB 2 x TITAN RTX 18GB 2 x TITAN RTX 18GB

50% 1 x RTX 4090 30GB 1 x RTX 4090 14GB 4 x TITAN RTX 40GB 4 x TITAN RTX 40GB 4 x TITAN RTX 18GB 4 x TITAN RTX 18GB

75% 1 x RTX 4090 30GB 1 x RTX 4090 14GB 3 x A100 (40 GiB) 40GB 4 x TITAN RTX 40GB 3 x A100 (40 GiB) 18GB 4 x TITAN RTX 18GB

All/Last 1 x RTX 4090 30GB 1 x RTX 4090 14GB 4 x A100 (80 GiB) 40GB 4 x Quadro RTX 6000 40GB 3 x A100 (40 GiB) 18GB 4 x Quadro RTX 6000 18GB

ProGen2-xlarge - 1st 1 x RTX 4090 60GB 1 x RTX 4090 14GB 1 x RTX 4090 40GB 1 x RTX 4090 40GB 2 x TITAN RTX 40GB 1 x RTX 4090 40GB

25% 1 x RTX 4090 60GB 1 x RTX 4090 14GB 2 x TITAN RTX 40GB 2 x TITAN RTX 40GB 2 x TITAN RTX 40GB 2 x TITAN RTX 40GB

50% 1 x RTX 4090 60GB 1 x RTX 4090 14GB 4 x TITAN RTX 40GB 4 x TITAN RTX 40GB 4 x TITAN RTX 40GB 4 x TITAN RTX 40GB

75% 1 x RTX 4090 60GB 1 x RTX 4090 14GB 4 x A100 (40 GiB) 40GB 4 x TITAN RTX 40GB 3 x A100 (40 GiB) 40GB 4 x TITAN RTX 40GB

All/Last 1 x A100 (80 GiB) 60GB 1 x RTX 4090 14GB 4 x A100 (80 GiB) 40GB 4 x Quadro RTX 6000 40GB 4 x A100 (80 GiB) 40GB 4 x Quadro RTX 6000 40GB

ESM2-15B - 1st 1 x RTX 4090 80GB 1 x RTX 4090 14GB 2 x TITAN RTX 70GB 1 x RTX 4090 70GB 2 x TITAN RTX 75GB 1 x RTX 4090 75GB

25% 1 x RTX 4090 80GB 1 x RTX 4090 14GB 2 x TITAN RTX 70GB 2 x TITAN RTX 70GB 3 x TITAN RTX 75GB 4 x TITAN RTX 75GB

50% 1 x RTX 4090 80GB 1 x RTX 4090 14GB 4 x A100 (40 GiB) 70GB 4 x TITAN RTX 70GB 4 x A100 (40 GiB) 75GB 4 x TITAN RTX 75GB

75% 1 x A100 (80 GiB) 80GB 1 x RTX 4090 14GB 4 x A100 (80 GiB) 70GB 4 x TITAN RTX 70GB 4 x A100 (80 GiB) 75GB 4 x TITAN RTX 75GB

All/Last 1 x A100 (80 GiB) 80GB 1 x RTX 4090 14GB 4 x A100 (80 GiB) 70GB 4 x TITAN RTX 70GB 4 x A100 (80 GiB) 75GB 4 x A100 (80 GiB) 75GB

Table S7: Resources used for each TL setup on Trastuzumab-one vs rest task.

PLM + Layer
Embeddings Extraction Feature Extraction LoRA LoRA- Adapters Adapters-

GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM

ProteinBERT - 1st 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB 1 x RTX 4090 8GB 1 x RTX 4090 8GB

ProGen2-small - 1st 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB

ESM2-650M - 1st 1 x RTX 4090 12GB 1 x RTX 4090 14GB 1 x RTX 3090 12GB 1 x RTX 3090 12GB 1 x RTX 3090 18GB 1 x RTX 3090 18GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 1 x RTX 3090 12GB 1 x RTX 3090 12GB 1 x RTX 3090 18GB 1 x RTX 3090 18GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x RTX 4090 12GB 2 x RTX 4090 12GB 2 x RTX 4090 18GB 2 x RTX 4090 18GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x Quadro RTX 6000 12GB 2 x Quadro RTX 6000 12GB 2 x Quadro RTX 6000 18GB 2 x Quadro RTX 6000 18GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x Quadro RTX 6000 12GB 2 x Quadro RTX 6000 12GB 2 x Quadro RTX 6000 18GB 2 x Quadro RTX 6000 18GB

ProGen2-medium - 1st 1 x RTX 4090 12GB 1 x RTX 4090 14GB 1 x RTX 3090 12GB 1 x RTX 4090 12GB 1 x RTX 3090 18GB 1 x RTX 4090 18GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 1 x RTX 3090 12GB 1 x RTX 3090 12GB 1 x RTX 3090 18GB 1 x RTX 3090 18GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x RTX 4090 12GB 2 x RTX 4090 12GB 2 x RTX 4090 18GB 2 x RTX 4090 18GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x Quadro RTX 6000 12GB 2 x Quadro RTX 6000 12GB 2 x Quadro RTX 6000 18GB 2 x Quadro RTX 6000 18GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x Quadro RTX 6000 12GB 2 x Quadro RTX 6000 12GB 2 x Quadro RTX 6000 18GB 2 x Quadro RTX 6000 18GB

ESM2-3B - 1st 1 x RTX 4090 30GB 1 x RTX 4090 14GB 1 x RTX 3090 40GB 1 x RTX 3090 40GB 1 x RTX 3090 18GB 1 x RTX 3090 18GB

25% 1 x RTX 4090 30GB 1 x RTX 4090 14GB 1 x RTX 4090 40GB 1 x RTX 4090 40GB 1 x RTX 4090 18GB 1 x RTX 4090 18GB

50% 1 x RTX 4090 30GB 1 x RTX 4090 14GB 1 x Quadro RTX 6000 40GB 1 x Quadro RTX 6000 40GB 1 x Quadro RTX 6000 18GB 1 x Quadro RTX 6000 18GB

75% 1 x RTX 4090 30GB 1 x RTX 4090 14GB 1 x Quadro RTX 6000 40GB 1 x Quadro RTX 6000 40GB 1 x Quadro RTX 6000 18GB 1 x Quadro RTX 6000 18GB

All/Last 1 x RTX 4090 30GB 1 x RTX 4090 14GB 1 x A100 (40 GiB) 40GB 1 x Quadro RTX 6000 40GB 1 x A100 (40 GiB) 18GB 1 x Quadro RTX 6000 18GB

ProGen2-xlarge - 1st 1 x RTX 4090 60GB 1 x RTX 4090 14GB 1 x RTX 2080 Ti 40GB 1 x RTX 2080 Ti 40GB 1 x RTX 2080 Ti 40GB 1 x RTX 2080 Ti 40GB

25% 1 x RTX 4090 60GB 1 x RTX 4090 14GB 1 x RTX 3090 40GB 1 x RTX 3090 40GB 1 x RTX 3090 40GB 1 x RTX 3090 40GB

50% 1 x RTX 4090 60GB 1 x RTX 4090 14GB 2 x RTX 3090 40GB 2 x RTX 3090 40GB 2 x RTX 3090 40GB 1 x RTX 3090 40GB

75% 1 x RTX 4090 60GB 1 x RTX 4090 14GB 2 x A100 (40 GiB) 40GB 2 x RTX 3090 40GB 2 x A100 (40 GiB) 40GB 1 x RTX 3090 40GB

All/Last 1 x A100 (80 GiB) 60GB 1 x RTX 4090 14GB 2 x A100 (80 GiB) 40GB 2 x Quadro RTX 6000 40GB 2 x A100 (80 GiB) 40GB 1 x Quadro RTX 6000 40GB

ESM2-15B - 1st 1 x RTX 4090 80GB 1 x RTX 4090 14GB 1 x RTX 2080 Ti 70GB 1 x RTX 2080 Ti 70GB 1 x RTX 2080 Ti 75GB 1 x RTX 2080 Ti 75GB

25% 1 x RTX 4090 80GB 1 x RTX 4090 14GB 2 x RTX 3090 70GB 2 x RTX 3090 70GB 2 x RTX 3090 75GB 2 x RTX 3090 75GB

50% 1 x RTX 4090 80GB 1 x RTX 4090 14GB 2 x A100 (40 GiB) 70GB 2 x RTX 3090 70GB 2 x A100 (40 GiB) 75GB 2 x RTX 3090 75GB

75% 1 x A100 (80 GiB) 80GB 1 x RTX 4090 14GB 3 x A100 (80 GiB) 70GB 2 x Quadro RTX 6000 70GB 3 x A100 (80 GiB) 75GB 2 x RTX 4090 75GB

All/Last 1 x A100 (80 GiB) 80GB 1 x RTX 4090 14GB 3 x A100 (80 GiB) 70GB 3 x Quadro RTX 6000 70GB 3 x A100 (80 GiB) 75GB 2 x A100 (80 GiB) 75GB

17



Figure S2: Detailed results per TL method for AAV-one vs rest task. Spearman’s rank correlation is
used as a performance metric for each setup, with x-axis showing the PLM and the head used and
the y-axis representing the layers used and the pooling method employed; mean stands for mean
pooling and CLS for pooling the classification token for BERT-based PLMs (ESM2, ProteinBERT)
and the EOS token for GPT-based PLMs (ProGen2). (A) Feature extraction detailed results using (i)
a linear downstream head and (ii) a MLP with one hidden layer as a downstream head. (B) LoRA
detailed results when (i) applying LoRA to all layers of PLMs and (ii) applying LoRA to the last
layer of PLMs. (C) Adapters detailed results when (i) applying adapters to all layers of PLMs and (ii)
applying Adapters to the last layer of PLMs. TL: Transfer Learning; PLM: Protein Language Model;
LoRA: Low Rank Adaptation

18



Figure S3: Detailed results per TL method for AAV-sampled task. Spearman’s rank correlation is
used as a performance metric for each setup, with x-axis showing the PLM and the head used and
the y-axis representing the layers used and the pooling method employed; mean stands for mean
pooling and CLS for pooling the classification token for BERT-based PLMs (ESM2, ProteinBERT)
and the EOS token for GPT-based PLMs (ProGen2). (A) Feature extraction detailed results using (i)
a linear downstream head and (ii) a MLP with one hidden layer as a downstream head. (B) LoRA
detailed results when (i) applying LoRA to all layers of PLMs and (ii) applying LoRA to the last
layer of PLMs. (C) Adapters detailed results when (i) applying adapters to all layers of PLMs and
(ii) applying adapters to the last layer of PLMs. Empty cells represent work in progress, due to the
computational burden these setups bear. TL: Transfer Learning; PLM: Protein Language Model;
LoRA: Low Rank Adaptation

19



Figure S4: Detailed results per TL method for GB1-one vs rest task. Spearman’s rank correlation is
used as a performance metric for each setup, with x-axis showing the PLM and the head used and
the y-axis representing the layers used and the pooling method employed; mean stands for mean
pooling and CLS for pooling the classification token for BERT-based PLMs (ESM2, ProteinBERT)
and the EOS token for GPT-based PLMs (ProGen2). (A) Feature extraction detailed results using (i)
a linear downstream head and (ii) a MLP with one hidden layer as a downstream head. (B) LoRA
detailed results when (i) applying LoRA to all layers of PLMs and (ii) applying LoRA to the last
layer of PLMs. (C) Adapters detailed results when (i) applying adapters to all layers of PLMs and
(ii) applying adapters to the last layer of PLMs. Empty cells represent work in progress, due to the
computational burden these setups bear. TL: Transfer Learning; PLM: Protein Language Model;
LoRA: Low Rank Adaptation

20



Figure S5: Detailed results per TL method for GB1-three vs rest task. Spearman’s rank correlation is
used as a performance metric for each setup, with x-axis showing the PLM and the head used and
the y-axis representing the layers used and the pooling method employed; mean stands for mean
pooling and CLS for pooling the classification token for BERT-based PLMs (ESM2, ProteinBERT)
and the EOS token for GPT-based PLMs (ProGen2). (A) Feature extraction detailed results using (i)
a linear downstream head and (ii) a MLP with one hidden layer as a downstream head. (B) LoRA
detailed results when (i) applying LoRA to all layers of PLMs and (ii) applying LoRA to the last
layer of PLMs. (C) Adapters detailed results when (i) applying adapters to all layers of PLMs and
(ii) applying adapters to the last layer of PLMs. Empty cells represent work in progress, due to the
computational burden these setups bear. TL: Transfer Learning; PLM: Protein Language Model;
LoRA: Low Rank Adaptation

21



Figure S6: Detailed results per TL method for Meltome-mixed task. Spearman’s rank correlation is
used as a performance metric for each setup, with x-axis showing the PLM and the head used and
the y-axis representing the layers used and the pooling method employed; mean stands for mean
pooling and CLS for pooling the classification token for BERT-based PLMs (ESM2, ProteinBERT)
and the EOS token for GPT-based PLMs (ProGen2). (A) Feature extraction detailed results using (i)
a linear downstream head and (ii) a MLP with one hidden layer as a downstream head. (B) LoRA
detailed results when (i) applying LoRA to all layers of PLMs and (ii) applying LoRA to the last
layer of PLMs. (C) Adapters detailed results when (i) applying adapters to all layers of PLMs and
(ii) applying adapters to the last layer of PLMs. Empty cells represent work in progress, due to the
computational burden these setups bear. TL: Transfer Learning; PLM: Protein Language Model;
LoRA: Low Rank Adaptation

22



Figure S7: Detailed results per TL method for RBD-one vs rest task. MCC is used as a performance
metric for each setup, with x-axis showing the PLM and the head used and the y-axis representing the
layers used and the pooling method employed; mean stands for mean pooling and CLS for pooling the
classification token for BERT-based PLMs (ESM2, ProteinBERT) and the EOS token for GPT-based
PLMs (ProGen2). (A) Feature extraction detailed results using (i) a linear downstream head and (ii)
a MLP with one hidden layer as a downstream head. (B) LoRA detailed results when (i) applying
LoRA to all layers of PLMs and (ii) applying LoRA to the last layer of PLMs. (C) Adapters detailed
results when (i) applying adapters to all layers of PLMs and (ii) applying adapters to the last layer
of PLMs. Empty cells represent work in progress, due to the computational burden these setups
bear. TL: Transfer Learning; PLM: Protein Language Model; LoRA: Low Rank Adaptation; MCC:
Matthew’s correlation coefficient

23



Figure S8: Detailed results per TL method for Trastuzumab (HER2)-one vs rest task. MCC is used
as a performance metric for each setup, with x-axis showing the PLM and the head used and the
y-axis representing the layers used and the pooling method employed; mean stands for mean pooling
and CLS for pooling the classification token for BERT-based PLMs (ESM2, ProteinBERT) and
the EOS token for GPT-based PLMs (ProGen2). (A) Feature extraction detailed results using (i) a
linear downstream head and (ii) a MLP with one hidden layer as a downstream head. (B) LoRA
detailed results when (i) applying LoRA to all layers of PLMs and (ii) applying LoRA to the last
layer of PLMs. (C) Adapters detailed results when (i) applying adapters to all layers of PLMs and (ii)
applying adapters to the last layer of PLMs. TL: Transfer Learning; PLM: Protein Language Model;
LoRA: Low Rank Adaptation; MCC: Matthew’s correlation coefficient

24



Table S8: Resources used for each TL setup on RBD-one vs rest task.

PLM + Layer
Embeddings Extraction Feature Extraction LoRA LoRA- Adapters Adapters-

GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM GPUs CPU RAM

ProteinBERT - 1st 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 2080 Ti 8GB 1 x RTX 2080 Ti 8GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 4090 12GB 1 x RTX 2080 Ti 12GB 1 x RTX 4090 8GB 1 x RTX 2080 Ti 8GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB 1 x RTX 4090 8GB 1 x RTX 4090 8GB

ProGen2-small - 1st 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 10GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB 1 x RTX 4090 12GB

ESM2-650M - 1st 1 x RTX 4090 12GB 1 x RTX 4090 14GB 1 x RTX 3090 12GB 1 x RTX 3090 12GB 1 x RTX 3090 18GB 1 x RTX 3090 18GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 1 x RTX 3090 12GB 1 x RTX 3090 12GB 1 x RTX 3090 18GB 1 x RTX 3090 18GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x RTX 4090 12GB 2 x RTX 4090 12GB 2 x RTX 4090 18GB 2 x RTX 4090 18GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x Quadro RTX 6000 12GB 2 x Quadro RTX 6000 12GB 2 x Quadro RTX 6000 18GB 2 x Quadro RTX 6000 18GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x Quadro RTX 6000 12GB 2 x Quadro RTX 6000 12GB 2 x Quadro RTX 6000 18GB 2 x Quadro RTX 6000 18GB

ProGen2-medium - 1st 1 x RTX 4090 12GB 1 x RTX 4090 14GB 1 x RTX 3090 12GB 1 x RTX 3090 12GB 1 x RTX 3090 18GB 1 x RTX 3090 18GB

25% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 1 x RTX 3090 12GB 1 x RTX 3090 12GB 1 x RTX 3090 18GB 1 x RTX 3090 18GB

50% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x RTX 4090 12GB 2 x RTX 4090 12GB 2 x RTX 4090 18GB 2 x RTX 4090 18GB

75% 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x Quadro RTX 6000 12GB 2 x RTX 4090 12GB 2 x Quadro RTX 6000 18GB 2 x RTX 4090 18GB

All/Last 1 x RTX 4090 12GB 1 x RTX 4090 14GB 2 x Quadro RTX 6000 12GB 2 x Quadro RTX 6000 12GB 2 x Quadro RTX 6000 18GB 2 x Quadro RTX 6000 18GB

ESM2-3B - 1st 1 x RTX 4090 30GB 1 x RTX 4090 14GB 1 x RTX 3090 40GB 1 x RTX 3090 40GB 1 x RTX 3090 18GB 1 x RTX 3090 18GB

25% 1 x RTX 4090 30GB 1 x RTX 4090 14GB 2 x RTX 4090 40GB 2 x RTX 4090 40GB 2 x RTX 4090 18GB 2 x RTX 4090 18GB

50% 1 x RTX 4090 30GB 1 x RTX 4090 14GB 2 x Quadro RTX 6000 40GB 2 x Quadro RTX 6000 40GB 2 x Quadro RTX 6000 18GB 2 x Quadro RTX 6000 18GB

75% 1 x RTX 4090 30GB 1 x RTX 4090 14GB 3 x Quadro RTX 6000 40GB 3 x Quadro RTX 6000 40GB 3 x Quadro RTX 6000 18GB 2 x Quadro RTX 6000 18GB

All/Last 1 x RTX 4090 30GB 1 x RTX 4090 14GB 3 x A100 (40 GiB) 40GB 3 x Quadro RTX 6000 40GB 3 x A100 (40 GiB) 18GB 2 x Quadro RTX 6000 18GB

ProGen2-xlarge - 1st 1 x RTX 4090 60GB 1 x RTX 4090 14GB 1 x RTX 2080 Ti 40GB 1 x RTX 2080 Ti 40GB 1 x RTX 2080 Ti 40GB 1 x RTX 2080 Ti 40GB

25% 1 x RTX 4090 60GB 1 x RTX 4090 14GB 2 x RTX 3090 40GB 2 x RTX 3090 40GB 2 x RTX 3090 40GB 2 x RTX 3090 40GB

50% 1 x RTX 4090 60GB 1 x RTX 4090 14GB 2 x RTX 3090 40GB 2 x RTX 3090 40GB 2 x RTX 3090 40GB 2 x RTX 3090 40GB

75% 1 x RTX 4090 60GB 1 x RTX 4090 14GB 2 x A100 (40 GiB) 40GB 2 x RTX 3090 40GB 2 x Quadro RTX 6000 40GB 2 x RTX 3090 40GB

All/Last 1 x A100 (80 GiB) 60GB 1 x RTX 4090 14GB 3 x A100 (80 GiB) 40GB 3 x Quadro RTX 6000 40GB 3 x Quadro RTX 6000 40GB 2 x Quadro RTX 6000 40GB

ESM2-15B - 1st 1 x RTX 4090 80GB 1 x RTX 4090 14GB 1 x RTX 2080 Ti 70GB 1 x RTX 2080 Ti 70GB 1 x RTX 2080 Ti 75GB 1 x RTX 2080 Ti 75GB

25% 1 x RTX 4090 80GB 1 x RTX 4090 14GB 2 x RTX 3090 70GB 2 x RTX 3090 70GB 3 x RTX 3090 75GB 1 x RTX 3090 75GB

50% 1 x RTX 4090 80GB 1 x RTX 4090 14GB 2 x A100 (40 GiB) 70GB 2 x Quadro RTX 6000 70GB 3 x Quadro RTX 6000 75GB 2 x Quadro RTX 6000 75GB

75% 1 x A100 (80 GiB) 80GB 1 x RTX 4090 14GB 3 x A100 (80 GiB) 70GB 2 x Quadro RTX 6000 70GB 3 x A100 (80 GiB) 75GB 2 x Quadro RTX 6000 75GB

All/Last 1 x A100 (80 GiB) 80GB 1 x RTX 4090 14GB 4 x A100 (80 GiB) 70GB 2 x A100 (40 GiB) 70GB 3 x A100 (80 GiB) 75GB 2 x A100 (80 GiB) 75GB

Table S9: Parameters used for the DeepSpeed package.

Parameter Value

Stage 3
Parameter Offload Yes
Optimizer Offload Yes
Offload Device CPU
Sub Group Size 1e12
Overlap Comms. Yes
Allgather Bucket Size 2e8
Reduce Bucket Size 2e8

25



Table S10: Hyperparameters used for all setups and for each task examined in the PLMFit study.

GB1 one-vs-rest GB1 - three vs rest AAV - one vs rest AAV - sampled Meltome - mixed RBD - one-vs-rest HER2 - one-vs-rest

Feature extraction / One hot encoding

Hyperparameters Tuned Learning rate, weight decay, batch size, hidden dimension (MLP)

Learning rate space 1e-2 - 1e-6

Weight decay space 1e-1 - 1e-6

Batch size space 8 - 128

Hidden dimension space (MLP) 64 - 2048

Total trials Linear/MLP 100/500

Initial random points 20

Loss function MSE BCE

Optimizer Adam

Epochs 200

Patience (early stopping) 30

LoRA

Modules Applied Q, K, V

LoRA rank 8

LoRA alpha 16

LoRA dropout 0.1

Loss function MSE BCE

Optimizer Adam (DeepSpeedCPU)

Batch size 4

Epochs 200 30 30 3 10 150 150

Patience (early stopping) 100 5 - 1 5 - -

Learning rate 1e-4

Weight decay 1e-2

LoRA-

Modules Applied Q, K, V

LoRA rank 8

LoRA alpha 16

LoRA dropout 0.1

Loss function MSE BCE

Optimizer Adam (DeepSpeedCPU)

Batch size 4

Epochs 200 30 30 10 15 150 150

Patience (early stopping) 100 5 - 5 5 - -

Learning rate 1e-4

Weight decay 1e-2

Adapters

Modules Applied After FFN

Bottleneck dimension 32

Scaling Learned

Adapter dropout 0.1

Loss function MSE BCE

Optimizer Adam (DeepSpeedCPU)

Batch size 4

Epochs 200 30 30 3 10 150 150

Patience (early stopping) 100 5 - 1 5 - -

Learning rate 1e-4

Weight decay 1e-4

Adapters-

Modules Applied After FFN

Bottleneck dimension 32

Scaling Learned

Adapter dropout 0.1

Loss function MSE BCE

Optimizer Adam (DeepSpeedCPU)

Batch size 4

Epochs 200 30 30 10 15 150 150

Patience (early stopping) 100 5 - 5 5 - -

Learning rate 1e-4

Weight decay 1e-4

26



Table S11: Statistical summaries (quarter1, quarter3, median and max) of the box plots depicted in
Figure 2B.

Task Box plot stats FE FT

AAV - sampled

Q1 -5.62% -0.39%

Q3 -1.48% 7.45%

Median -3.2% 3.95%

Max 2.32% 7.45%

AAV - one_vs_rest

Q1 -38.61% 8.38%

Q3 8.45% 47.17%

Median -30.54% 38.03%

Max 8.45% 47.17%

GB1 - three_vs_rest

Q1 -14.05% -8.56%

Q3 -4% 4.9%

Median -5.65% 2.89%

Max -4% 4.9%

GB1 - one_vs_rest

Q1 -6.41% -34.65%

Q3 37.67% 30.98%

Median 31.46% 0.74%

Max 37.67% 30.98%

Meltome - mixed

Q1 58.12% 31.47%

Q3 71.27% 117.83%

Median 68.71% 70.79%

Max 102.22% 117.83%

27



NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Both "Abstract" and "Introduction" sections are organized by paragraphs
rationally ordered presenting in an easy to follow way the scope of the paper. Both sections
end by referring the overall contribution of the results of this study to the scientific fields
of machine learning and protein engineering. Observed results and future goals are clearly
separated in the "Introduction" and "Discussion" sections.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: A "Limitations" section is provided to address the limitations of this paper.

Guidelines:

28



• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The presented work is a benchmarking analysis that draws conclusion based
on the observations of computational experiments. Theoretical results are not provided as
part of this study.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed experimental setups (alongside with the datasets
and code) to reproduce all the experiments. Detailed tables with parameters of packages and
architectures are provided in the supplementary material section to ensure reproducibility.

Guidelines:

29



• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] ,

Justification: All codes and datasets are provided in a github repository as stated in sections
"Introduction" and "Acknowledgements and Discoluse of Funding"

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

30

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer:[Yes]
Justification: Training and validation splits, along with extensive tables with all hyperparam-
eters, modules, optimizer and hardware used for each experiment in this study are clearly
explained and presented with tables in the "Supplementary Material" section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: To address the core question of when and how to apply fine-tuning, feature
extraction, or neither, we present an ensemble of results as bar plots (Figure 2b). Error plots
for statistical significance for every experiment conducted are not included in this study
due to the scale and computational cost of evaluating over 2,900 experimental setups, some
involving models with billions of parameters. Running each experiment multiple times to
estimate variance would be computationally infeasible considering that some experiments
(e.g. fine-tuning ESM2 with 15 billion parameters) could require 1 week to complete.
Instead, detailed heatmaps for all experiments, including variations with different pooling
methods, are provided in the extended data section of the supplementary materials, offering
a comprehensive sanity check of the validity of our comparative analysis.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

31



8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Detailed tables with the computational resources used in this study are provided
in the "Supplementary Materials" section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Paper was written considering all the aspects of NeurIPS Code of Ethics. This
study does not involve human subjects.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

32

https://neurips.cc/public/EthicsGuidelines


• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Publicly available datasets are used for this benchmarking study. All references
and citations are provided via GitHub in in the "Introduction" and "Acknowledgments and
Disclosure of Funding".
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: An open source platform has been developed as part of this study. Proper docu-
mentation and implementation details are provided at https://github.com/LSSI-ETH/
plmfit.

33

paperswithcode.com/datasets
https://github.com/LSSI-ETH/plmfit
https://github.com/LSSI-ETH/plmfit


Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:[NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:[NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

34


	Introduction
	Results
	Datasets used represent a broad range of protein engineering tasks
	PLM layer used significantly impacts the effectiveness of transfer learning methods
	Fine-tuning yields substantial performance gain in complex tasks
	Fine-tuning can generalize better to higher mutation variants when only labels for single mutations are available
	Practical guidelines for applying PLMFit 

	Methods
	Protein language models
	Transfer Learning methods
	Datasets and downstream tasks
	Training and hyperparameter tuning
	Evaluation metrics and baselines

	Discussion
	Limitations
	Supplementary Material

