
Under Review - Extended Abstract Track 1–26, 2024 Symmetry and Geometry in Neural Representations

Invariant Graphon Networks:
Approximation and Cut Distance

Editors: List of editors’ names

Abstract

Graph limit models, like graphons for limits of dense graphs, have recently been used to
study size transferability of graph neural networks (GNNs). While most existing litera-
ture focuses on message passing GNNs (MPNNs), we attend to Invariant Graph Networks
(IGNs), a powerful alternative GNN architecture (Maron et al., 2018). We generalize IGNs
to graphons, introducing Invariant Graphon Networks (IWNs) which are defined using a
subset of the IGN basis corresponding to bounded linear operators. Even with this re-
stricted basis, we show universal approximation for graphon-signals in Lp distances using
signal-weighted homomorphism densities. In contrast to the work of Cai and Wang (2022),
our results reveal stronger expressivity and better align with graphon space geometry. We
also highlight that, unlike other architectures such as MPNNs, IWNs are discontinuous
with respect to cut distance. Yet, their transferability remains comparable to MPNNs.

Keywords: Graph neural networks, invariant graph networks, universal approximation,
graph limits, graphons, transferability, homomorphism densities, machine learning theory.

1. Introduction

Graph Neural Networks (GNNs) have emerged as a powerful tool for machine learning
on complex graph-structured data, driving advances in fields like weather prediction (Lam
et al., 2023) or materials discovery (Merchant et al., 2023). Size transferability—whether
a trained GNN generalizes to larger graphs than those in the training set—has recently
gained attention for message passing GNNs (MPNNs). Here, graphs are typically assumed
to be sampled from the same random graph model (Keriven et al., 2021), topological space
(Levie et al., 2021), or graph limit model (Ruiz et al., 2020, 2023; Le and Jegelka, 2024)—
specifically graphons for dense graphs, which extend graphs to continuous node sets.

Beyond MPNNs, Invariant and Equivariant Graph Networks (IGNs/EGNs) (Maron
et al., 2018) are another powerful GNN architecture, in which adjacency matrices and node
signals are processed through tensor operations that maintain permutation equivariance.
IGNs and EGNs have been demonstrated to universally approximate any permutation in-
or equivariant graph function (Maron et al., 2019; Keriven and Peyré, 2019).

In this paper, we extend IGNs to graphon-signals (Levie, 2023), introducing Invariant
Graphon Networks (IWNs). The closest prior work by Cai and Wang (2022) examines
the convergence of IGNs using a partition norm, a vector of norms over all diagonals of a
graphon. However, these diagonals are null sets, making this approach incompatible with
the standard geometry of graphon space. They also introduce a reduced model class IGN-
small which enables convergence under edge probability estimation. In contrast, we take the
different viewpoint of restricting linear equivariant layers to be bounded operators, which
yields a subset of IGN-small. While Cai and Wang (2022) only demonstrate that spectral
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GNNs can be approximated using their restriction, we establish stronger universal approx-
imation results for graphon-signals (Levie, 2023) in Lp distances, leveraging an extension
of homomorphism densities to graphon-signals which might be of independent interest. We
also point out that unlike MPNNs, IWNs are discontinuous w.r.t. cut distance, which ren-
ders standard transferability arguments inapplicable. Yet, this discontinuity can be fixed,
and one can still obtain transferability for IWNs similar to the worst case for MPNNs.

2. Background

This section mainly draws from Lovász (2012); Janson (2013). Also refer to Appendix A.

General Background on Graphons. A kernel is a bounded symmetric measurable
function W : [0, 1]2 → R. Write W for the space of all kernels. A graphon is a kernel map-

ping to [0, 1]. We define the cut norm of a kernel as ∥W∥□ := supS,T⊆[0,1]

∣∣∣∫S×T Wdλ2
∣∣∣ . Let

S[0,1] be the set of measure preserving bijections on [0, 1], and Wφ(x, y) := W (φ(x), φ(y))
for φ ∈ S[0,1]. The cut distance between two graphons is δ□(U,W ) := infφ∈S[0,1]

∥U −Wφ∥□.
Analogously, we can define distances δp on graphons based on Lp norms; δ□ ≤ δp. Among
these, the most commonly used is δ1, which corresponds to the edit distance on graphs.
We identify weakly isomorphic graphons of distance 0 to obtain the space W̃0 of unlabeled
graphons. The usefulness of δ□ over any δp lies in the fact that (W̃0, δ□) forms a compact
space. Any labeled graph G can be identified with its induced step graphon WG, and finite
graphs are dense in the graphon space. Graphons can also be seen as random graph models:
Draw X ∼ U(0, 1)n, and let W (X) be a graph with edge weights Wij =W (Xi, Xj). If sim-
ple edges are further sampled, we obtain an unweighted graph G(W,X). Write Hn(W ) and
Gn(W ) for the respective distributions. We have a.s. δ□(Hn(W ),W ) ≤ δ1(Hn(W ),W ) → 0.
Also δ□(Gn(W ),W ) → 0, but this does not hold for δ1. Homomorphism densities are defined
as t(F,W ) :=

∫
[0,1]k

∏
{i,j}∈E(F )W (xi, xj) dλ

k(x) for a simple graph F with V (F ) = [k].

Notably, δ□(Wn,W ) → 0 if and only if t(F,Wn) → t(F,W ) for all simple graphs F .

Extension to Graphon-Signals. Most common GNNs take a graph-signal (G,f) as
inputs, i.e., a graph G with node set [n] := {1, . . . , n} and a signal f ∈ Rn×k. Levie
(2023) extends this to graphons. They fix r > 0, consider signals in L∞

r [0, 1] := {f ∈
L∞[0, 1] | ∥f∥∞ ≤ r}, and set ∥f∥□ := supS⊆[0,1]

∣∣∫
S f dλ

∣∣. They then let WLr := W0 ×
L∞
r [0, 1] and define the cut norm ∥(W, f)∥□ := ∥W∥□ + ∥f∥□. Define δ□ and δp, step

graphon-signals, and sampling from graphon-signals analogously to the standard case. E.g.,
write Gn(W, f) for (G(W,X), f(X)), X ∼ U(0, 1)n. Crucially, Levie (2023) proves com-
pactness of the graphon-signal space, which is then used for a sampling lemma.

3. Signal-Weighted Homomorphism Densities

Homomorphism densities are analogous to moments of a real random variable forW -random
graphs in the sense that they fix the distribution of Hn(W ) and Gn(W ) (Zhao, 2023).
We introduce an extension of homomorphism densities to graphon-signals: Let F be a
multigraph with nodes V (F ), edges E(F ), k := |V (F )|, d ∈ Nk0, and (W, f) ∈ WLr. We set

t(F,d, (W, f)) :=

∫
[0,1]k

( ∏
i∈V (F )

f(xi)
di

)( ∏
{i,j}∈E(F )

W (xi, xj)

)
dλk(x), (1)
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calling the functions t(F,d, ·) signal-weighted homomorphism densities.
As a first step, we show a counting lemma similar to the standard graphon case (see

Appendix B.1). The following theorem in the style of Theorem 8.10 from Janson (2013) and
corollary justify our definition, as they show that signal-weighted homomorphism densities
fix the distribution of W -random graph-signals and characterize convergence, similar as
homomorphism densities do for graphons. Refer to Appendix B for the proofs.

Theorem 1 Fix r > 1 and let (W, f), (V, g) ∈ WLr. Then, the following are equivalent:

(1) δp((W, f), (V, g)) = 0 for any p ∈ [1,∞).
(2) δ□((W, f), (V, g)) = 0.

(3) t(F,d, (W, f)) = t(F,d, (V, g)) for all simple graphs F , d ∈ Nv(F )
0 .

(4) Gk(W, f)
D
= Gk(V, g) for all k ∈ N.

Corollary 2 For (Wn, fn)n, (W, f) ∈ WLr and r > 1, δ□((Wn, fn), (W, f)) → 0 as n→ ∞
if and only if t(F,d, (Wn, fn)) → t(F,d, (W, f)) for all simple graphs F and d ∈ N|V (F )|

0 .

4. Invariant Graphon Networks

Linear Equivariant Layers. We start by defining the building blocks of IWNs, linear
equivariant layers, generalizing Maron et al. (2018). Let (X ,A, µ) be a measure space,
simply denoted by X , and let SX be the set of measure-preserving functions φ : X → X .
Let k, l ∈ N0. Write X k for (X k,A⊗k, µ⊗k) and note that L2 (X )⊗k ∼= L2(X k). Define

LEX
k→l :=

{
L ∈ B(L2(X k),L2(X l)) | ∀φ ∈ SX : L(Wφ) = L(W )φ a.e.

}
, (2)

where Wφ(x1, . . . , xk) :=W (φ(x1), . . . , φ(xk)) and B(·, ·) denote bounded linear operators.

For X := [n], we obtain L2([n]) ∼= Rn and LE
[n]
k→l can be identified with the space of linear

permutation equivariant functions Rnk → Rnl
, which was studied by Maron et al. (2018).

One of their main results is that dimLE
[n]
k→l = bell(k+ l), with bell(m) denoting the number

of partitions of [m], and there is a canonical basis in which every basis element corresponds

to one partition. We prove the following about our space of interest LEk→l := LE
[0,1]
k→l:

Theorem 3 Let k, l ∈ N0. Then, LEk→l is a finite-dimensional vector space of dimension

dim LEk→l =
∑min{k,l}

s=0 s!
(
k
s

)(
l
s

)
≤ bell(k + l).

The proof (see Appendix C.2) builds on the basis characterization from Cai and Wang
(2022) as sequences of basic operations like selection, reduction, alignment, and replication
(see Appendix C.1), nesting subspaces of step kernels and selecting extensible basis elements.

An analysis of the dimensions of LEk→l and LE
[n]
k→l can be found in Appendix G.

Invariant Graphon Networks. Using LEk→l as building blocks, we extend the defini-
tions of IGNs from Keriven and Peyré (2019) to graphons. Let ϱ : R → R be continuous
and non-polynomial. An Invariant Graphon Network (IWN) is a function

N : WLr → R, (W, f) 7→
S∑
s=1

L(2)
s

(
ϱ(L(1)

s (W ) + L̃(1)
s (f) + b(1)s )

)
+ b(2), (3)
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where S ∈ N0, L
(1)
s ∈ LE2→ks , L̃

(1)
s ∈ LE1→ks , L

(2)
s ∈ LEks→0, b

(1)
s , b(2) ∈ R for ks ∈ N and

s ∈ {1, . . . , S}. Application of ϱ and addition of the bias terms are understood elementwise.
Note that any IWN is invariant w.r.t. all φ ∈ S[0,1]. We observe that any IWN can be
represented as an instance of IGN-small (Cai and Wang, 2022); refer to Appendix E.

Properties of Invariant Graphon Networks. First, any IWN is Lipschitz continuous
w.r.t. all Lp norms, but not w.r.t. cut norm (see Appendix D.1 for the proof):

Theorem 4 (Continuity of IWNs)
(1) Let N : WLr → R be an IWN as defined in Equation (3). Then, N is Lipschitz

continuous w.r.t. δp for each p ∈ [1,∞].
(2) Let ϱ : [0, 1] → R. Then, the assignment W0 ∋ W 7→ ϱ(W ) ∈ W, where ϱ is applied

pointwise, is continuous w.r.t. ∥·∥□ if and only if ϱ is linear.

While discontinuity w.r.t. ∥·∥□ is a severe drawback compared to other universal GNN
models, one can still use the Stone-Weierstrass theorem to show that IWNs are universal
approximators of continuous functions on compact subsets of (W̃Lr, δp):
Theorem 5 (δp-Universality of IWNs) Let r > 1, p ∈ [1,∞), ϱ : R → R continuous
and non-polynomial, and let IWNϱ be the set of IWNs as defined in Equation (3). For any

compact K ⊂ (W̃Lr, δp), IWNϱ is dense in the continuous functions C(K,R) w.r.t. ∥·∥∞.

See Appendix D.2 for a proof. Furthermore, it turns out that the δ□-discontinuity (cf.
Theorem 4), which causes the non-convergence observed by Cai and Wang (2022), can be
“fixed” and IWNs are indeed transferable:

Theorem 6 (Transferability of IWNs) Let ε > 0 and r > 1. Let ϱ : R → R be
continuous. Let N ∈ IWNϱ. Then, there exists a constant Cε,N > 0 such that for any
(W, f) ∈ WLr and (Gn,fn), (Gm,fm) ∼ Gn(W, f),Gm(W, f),

E
∣∣N (Gn,fn)−N (Gm,fm)

∣∣ ≤ Cε,N

(
1√
log n

+
1√

logm

)
+ ε. (4)

See Appendix D.4 for a proof. While the asymptotics are weak, they agree with the worst
case for MPNNs (Levie, 2023), which is expected as we do not impose additional assumptions
on the graphon-signal or model.

5. Discussion

In this work, we introduce Invariant Graphon Networks (IWNs) as an extension of Invariant
Graph Networks (IGNs) to the graphon-signal space (Levie, 2023). By framing IWNs
through bounded linear equivariant layers, we conduct an analysis of expressivity, continuity,
and transferability through Lp and cut distances on graphons. Significantly extending
Cai and Wang (2022), we demonstrate that IWNs, as a subset of their class IGN-small,
retain the same expressive power as their discrete counterparts. We also introduce signal-
weighted homomorphism densities, an extension of the concept of homomorphism densities
to graphon-signals, as a key tool. We highlight that unlike MPNNs, IWNs are discontinuous
with respect to cut distance, and therefore, standard size transferability arguments like Ruiz
et al. (2023); Levie (2023); Le and Jegelka (2024) do not generalize. We demonstrate that,
nevertheless, cut distance discontinuity can be overcome for transferability purposes, and
IWNs are provably just as transferable as MPNNs in the worst case.
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Appendix A. More Background on Graphon Theory

In this section, we will provide more comprehensive background on graphon theory com-
pared to Section 2. Contents of Appendix A.1 are mostly drawn from Lovász (2012) and
Janson (2013), and in Appendix A.2 we summarize key results of Levie (2023).

For n ∈ N, write [n] := {1, . . . , n}. Unless stated otherwise, a graph always refers to a
simple graph, meaning an undirected graph G = (V,E) with a finite node set V (G) = V
and edge set E(G) = E ⊆

(
V
2

)
. Define also v(G) := |V (G)|, e(G) := |E(G)|. We will also

consider multigraphs, for which the edges are a multiset. We consider graphs as a special
case of multigraphs. Write λk for the k-dimensional Lebesgue measure; λ := λ1.

A.1. General Background on Graphons

Graphons. Informally, a graphon can be seen as a graph with a continuous node set [0, 1],
and the adjacency matrix being represented by a function on the unit square. Intuitively,
such graphons can be obtained by taking the limit of adjacency matrices of sequences of
dense graphs as the number of nodes grows. Formally, we first define a kernel to be a
bounded symmetric measurable function W : [0, 1]2 → R. We write W for the space of all
kernels and Wr := {W ∈ W | ∥W∥∞ ≤ r}, W+

r := {W ∈ Wr |W ≥ 0}. A graphon W is
defined as an element of W0 := W+

1 .
The most important way to measure distance on the space of graphons is the cut

norm/metric. This generalizes the cut norm for finite graphs which in some sense mea-
sures how far a given graph is from being bipartite. For W ∈ W, we define its cut norm

∥W∥□ := sup
S,T⊆[0,1]

∣∣∣∣∫
S×T

Wdλ2
∣∣∣∣ , (5)

considering measurable S, T , and set d□(U,W ) := ∥U −W∥□ to be the cut metric. Just as
in the finite case where the node ordering is arbitrary, we want to identify graphons up to

7

https://ieeexplore.ieee.org/abstract/document/10190182
https://ieeexplore.ieee.org/abstract/document/10190182
https://mathworld.wolfram.com/
http://arxiv.org/abs/2401.08514
https://www.cambridge.org/core/books/graph-theory-and-additive-combinatorics/90A4FA3C584FA93E984517D80C7D34CA
https://www.cambridge.org/core/books/graph-theory-and-additive-combinatorics/90A4FA3C584FA93E984517D80C7D34CA


reorderings of [0, 1], which is formalized by measure preserving functions, i.e., φ : [0, 1] →
[0, 1] such that λ(φ−1(A)) = λ(A) for all measurable A ⊆ [0, 1]. Write S[0,1] for the set
of measure preserving functions, S[0,1] for the set of measure preserving bijections on [0, 1],

and Wφ(x, y) := W (φ(x), φ(y)) for φ ∈ S[0,1]. The cut distance between two graphons
U,W ∈ W0 is defined as

δ□(U,W ) := inf
φ∈S[0,1]

d□(U,W
φ) = min

φ,ψ∈S[0,1]

d□(U
φ,Wψ). (6)

In Equation (6), the infimum is only guaranteed to be attained in the last expression.
Analogously, we can define distances on graphons based on Lp norms, which we call dp
and δp for p ∈ [1,∞]. Clearly, δ□ ≤ δp. Also, δ□(U,W ) = 0 if and only if δp(U,W ) = 0,
but the induced topologies differ. δ1, which is most commonly used, corresponds to the
edit distance on graphs. δ□ and δp only define pseudometrics on W0, hence we identify

weakly isomorphic graphons of cut distance 0 to obtain the space W̃0 of unlabeled graphons.
The important distinguishing property of the cut distance δ□ compared to any δp is that

(W̃0, δ□) is a compact space.

Homomorphism Densities. Another closely related concept are homomorphism densi-
ties

t(F,W ) :=

∫
[0,1]k

∏
{i,j}∈E(F )

W (xi, xj) dλ
k(x) (7)

forW ∈ W0 and a simple graph F (i.e., an undirected, unweighted graph without self loops)
with V (F ) = [k]. Notably, homomorphism densities are closely related to cut distance as
δ□(Wn,W ) → 0 if and only if t(F,Wn) → t(F,W ) for all simple graphs F (the latter being
called left convergence).

Step Graphons. Any (potentially, but not necessarily weighted) graph G with n vertices
labeled [n] and adjacency matrix A ∈ [0, 1]n×n can be regarded as a graphon by identifying
it with its induced step graphon WG: Let Ij := [ j−1

n , jn) for j ∈ [n− 1] and In := [n−1
n , 1] be

a partition of [0, 1] into regular intervals, and set

WG :=

n∑
j=1

n∑
k=1

Ajk1Ij×Ik ∈ W0. (8)

Finite graphs are dense in the graphon space in the sense that for any W ∈ W0, there
exists a sequence of labeled graphs (Gn)n such that ∥WGn −W∥□ → 0 for n → ∞. Note
that, however, graphons are only a suitable limit model for dense graphs, as for (Gn)n with
e(Gn) = o(n2), ∥WGn∥ → 0.

W -random graphs. Graphons can also be seen as generative models for random graphs
in the sense that we sample a random graph of size n from W by drawing n i.i.d. random
variables X = (X1, . . . , Xn) ∼ U(0, 1) from the uniform distribution on the unit interval,
and letting W (X) be the random weighted graph with edge weights Wij =W (Xi, Xj). We
write Hn(W ) for the distribution of W (X). Further sample Aij ∼ Bernoulli(W (Xi, Xj))
and take A as the adjacency matrix of the resulting unweighted graph G(W,X). Write
Gn(W ) for its distribution.

8
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For Hn ∼ Hn(W ), we have δ□(WHn ,W ) ≤ δ1(WHn ,W ) → 0 almost surely. If Gn ∼
Gn(W ), then also δ□(WGn ,W ) → 0, but this does not hold for δ1.

A.2. Extension to Graphon-Signals

Most common graph neural networks take a graph-signal (G,f) as inputs, i.e., a graph G
with node set [n] and a signal f ∈ Rn×k, meaning that each node is equipped with a feature
in Rk. Levie (2023) extends this definition to graphons and introduces a graphon-signal
theory that shows many parallels to classical graphon theory.

Graphon-Signal Space. Formally, Levie (2023) fixes r > 0 and considers signals in
L∞
r [0, 1] := {f ∈ L∞[0, 1] | ∥f∥∞ ≤ r}. They then define the graphon-signal space as

WLr := W0 × L∞
r [0, 1]. The cut norm of a signal f is

∥f∥□ := sup
S⊆[0,1]

∣∣∣∣∫
S
f dλ

∣∣∣∣ , (9)

where S is measurable. The graphon-signal cut norm for (W, f) ∈ WLr is ∥(W, f)∥□ :=
∥W∥□ + ∥f∥□ and the cut metric is d□((W, f), (V, g) := ∥(W, f)− (V, g)∥□. As a technical
detail for the cut distance, write S′

[0,1] := {φ : A → B |A,B co-null in [0, 1]}, where φ is a

measure preserving bijection and A,B, S ⊆ [0, 1] measurable. For (W, f), (V, g) ∈ WLr set

δ□ ((W, f), (V, g)) := inf
φ∈S′

[0,1]

d□ ((W, f), (V, g)φ) , (10)

where (V, g)φ = (V φ, gφ). Just as in the standard graphon case, identify graphon-signals

with cut distance zero and write W̃Lr for the resulting quotient space.
Define step graphon-signals and sampling from graphon signals analogously to the stan-

dard case, i.e., writeHn(W, f) for the distribution of the random graph-signal (W (X), f(X))
and Gn(W, f) for the distribution of (G(W,X), f(X)), where X ∼ U(0, 1)n and (W, f) ∈
WLr.

Properties of Graphon-Signal Space. Levie (2023) proceeds by showing a regular-
ity lemma for graphon-signals similar to the classical case. This is further used to prove
compactness of the graphon-signal space:

Theorem 7 (Levie, 2023, Theorem 3.6) The metric space (W̃Lr, δ□) is compact. More-

over, given r > 0 and c > 1, for every sufficiently small ε > 0, the space W̃Lr can be

covered by κ(ε) = 2k
2
balls of radius ε, where k = ⌈2

9c
4ε2 ⌉.

Having established the compactness, Levie (2023) proves the following sampling lemma:

Theorem 8 (Levie, 2023, Theorem 3.7, Sampling lemma for graphon-signals) Let r > 1.
There exists a constant K0 > 0 that depends on r, such that for every k ≥ K0, (W, f) ∈
WLr, we have

E
[
δ□((W, f),Hk(W, f))

]
<

15√
log(k)

, E
[
δ□((W, f),Gk(W, f))

]
<

15√
log(k)

. (11)

As MPNNs are Lipschitz continuous w.r.t. δ□, these theorems are then used by Levie
(2023) for stability of MPNNs w.r.t. graph-signal subsampling and to show transferability
and generalization theorems for MPNNs.

9



Appendix B. Details on Signal-Weighted Homomorphism Densities

In this section, we provide further background and explanations regarding our extension
of homomorphism densities to graphon-signal space. We also state the counting lemma
mentioned in the main body, and prove Theorem 1 and Corollary 2.

Homomorphism densities are of great importance when analyzing graphon space, as con-
vergence in the cut distance is equivalent to left convergence (convergence of all t(F, ·)), i.e.,
in other words, the topology induced by cut distance is the initial topology of {t(F, ·)}F ,
with F ranging over all simple graphs. Hence, also δ□(W,V ) = 0 iff t(F,W ) = t(F, V )
for all F . Homomorphism densities can also be seen as a counterpart of moments of a
real random variable for W -random graphs, as they fix the distribution of Gn(W ) sim-
ilarly as the moments would for a sufficiently well-behaved real random variable (Zhao,
2023). Further, expressive power of a GNN model can also be judged by its homomorphism
expressivity, i.e., its ability to calculate homomorphism densities. For example, standard
MPNNs can precisely distinguish graphs for which the values of t(F, ·) differ if F are trees
(Böker et al., 2023) or multigraphs of bounded treewidth for higher-order GNNs (Böker,
2023). Homomorphism densities are the continuous analogue to homomorphism counts for
finite graphs, which are related to subgraph counts that also play a major role in GNN
expressivity analyses (Zhang et al., 2024).

At first, we restate our definition of the extended homomorphism densities. Let F be
a multigraph with k := v(F ), d = (d1, . . . , dk) ∈ Nk0, and (W, f) ∈ WLr. We define the
corresponding signal-weighted homomorphism density as

t(F,d, (W, f)) :=

∫
[0,1]k

 ∏
i∈V (F )

f(xi)
di

 ∏
{i,j}∈E(F )

W (xi, xj)

 dλk(x). (12)

Similarly to the probablistic interpretation of t(F,W ) = PG∼Gk(W ) (E(G) ⊇ E(F )) (where
F and G are seen as labeled graphs), we can rewrite the definition to

t(F,d, (W, f)) = E(G,f)∼Gk(W,f)

 ∏
i∈V (F )

fdii · 1
{
E(G) ⊇ E(F )

} . (13)

B.1. Counting Lemma for Signal-Weighted Homomorphism Densities

We proceed by proving Lipschitz continuity of t(F,d, ·) w.r.t. δ□, i.e., a statement similar
to the counting lemma:

Lemma 9 (Counting Lemma for Graphon-Signals) Let (W, f), (V, g) ∈ WLr and F
be a simple graph, d ∈ Nv(F )

0 . Then, writing D :=
∑

i∈V (F ) di,

∣∣t(F,d, (W, f))− t(F,d, (V, g))
∣∣ ≤ 2rD−1

(
2r · e(F ) ∥W − V ∥□ +D ∥f − g∥□

)
. (14)

10
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Proof We split the l.h.s. into two parts, bounding the difference of the graphons and the
signals seperately:∣∣t(F,d, (W, f))− t(F,d, (V, g))

∣∣ ≤∣∣∣∣∣∣
∫
[0,1]k

 ∏
i∈V (F )

f(xi)
di

 ∏
{i,j}∈E(F )

W (xi, xj)−
∏

{i,j}∈E(F )

V (xi, xj)

 dλk(x)

∣∣∣∣∣∣ (15)

+

∣∣∣∣∣∣
∫
[0,1]k

 ∏
{i,j}∈E(F )

V (xi, xj)

 ∏
i∈V (F )

f(xi)
di −

∏
i∈V (F )

g(xi)
di

 dλk(x)

∣∣∣∣∣∣ . (16)

For Equation (15), we set D :=
∑

i di and observe that for all x ∈ [0, 1]k

1

rD

∏
i∈V (F )

f(xi)
di ∈ [−1, 1], (17)

and hence similarly to the standard proof of the classical counting lemma (see, e.g., Zhao
(2023)) we can bound Equation (15) by rDe(F ) ∥W − V ∥□,2 ≤ 4rDe(F ) ∥W − V ∥□. In
comparison to the standard proof, the usage of ∥·∥□,2, an alternative definition of the cut
norm, stems from the fact that function values appearing in the integral in Equation (15)
(renormalizing by rD) are not necessarily in [0, 1], but [−1, 1]. See also Equations (4.3),
(4.4) in Janson (2013). For Equation (16), we bound the L1 difference of the terms involving
f and g:∣∣∣∣∣∣

∫
[0,1]k

 ∏
{i,j}∈E(F )

V (xi, xj)

 ∏
i∈V (F )

f(xi)
di −

∏
i∈V (F )

g(xi)
di

 dλk(x)

∣∣∣∣∣∣ (18)

≤
∫
[0,1]k

∣∣∣∣∣∣
∏

{i,j}∈E(F )

V (xi, xj)

∣∣∣∣∣∣
∣∣∣∣∣∣
∏

i∈V (F )

f(xi)
di −

∏
i∈V (F )

g(xi)
di

∣∣∣∣∣∣ dλk(x) (19)

≤
∑

i∈V (F )

∫
[0,1]k

∣∣∣f(xi)di − g(xi)
di
∣∣∣∣∣∣∏
j<i

f(xi)
di
∏
j>i

g(xi)
di
∣∣∣ dλk(x) (20)

≤
∑

i∈V (F )

r
∑

j ̸=i di

∫
[0,1]

∣∣∣f(xi)di − g(xi)
di
∣∣∣ dλ(x) (21)

(∗)
≤

∑
i∈V (F )

r
∑

j ̸=i di · dirdi−1 ∥f − g∥1 = DrD−1 ∥f − g∥1 ≤ 2DrD−1 ∥f − g∥□ , (22)

where (∗) uses ∥f∥∞, ∥g∥∞ ≤ r and hence the Lipschitz constant of x 7→ xdi is bounded
by the maximum of its derivative dir

di−1, and the last inequality uses ∥·∥1 ≤ 2 ∥·∥□ in one
dimension. Combining the two bounds, we obtain∣∣t(F,d, (W, f))− t(F,d, (V, g))

∣∣ ≤ 4rDe(F ) ∥W − V ∥□ + 2DrD−1 ∥f − g∥□ , (23)

which yields the claim.
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B.2. Proof of Theorem 1

To begin, we extend the characterization of δ□ from Equation (6) to graphon-signals, i.e., in
the definition of the unlabeled distance, a minimum is attained when rearrangements over
all measure-preserving maps are taken into account for both involved graphons. We state
this in greater generality, particularly also for δp, extending Lovász (2012, Theorem 8.13).

Two norms N = (N1, N2) on L∞[0, 1] and W are called smooth if fn → f ∈ L∞[0, 1],
Wn → W ∈ W almost everywhere implies N1(fn) → N1(f) and N2(Wn) → N2(W ). They
are invariant if N1(f

φ) = N1(f), N2(W
φ) = N2(W ) for all φ ∈ S[0,1], W ∈ W, f ∈

L∞[0, 1]. Both conditions clearly apply to ∥·∥□ (with the one-dimensional definition from
Equation (9)) and ∥·∥p for p ∈ [1,∞), but not for p = ∞ (take for example Wn = 1[0,1/n]2 ,
fn = 1[0,1/n]). We set

δN ((W, f), (V, g)) := inf
φ∈S[0,1]

(
N2(W − V φ) +N1(f − gφ)

)
. (24)

Lemma 10 (Minima vs. Infima for Invariant Norms) Let N be a smooth invariant
norm on W and L∞[0, 1]. Then, we have the following alternate expressions for δN :

δN ((W, f), (V, g)) = inf
φ∈S[0,1]

(
N2(W − V φ) +N1(f − gφ)

)
(25)

= min
φ,ψ∈S[0,1]

(
N2(W

φ − V ψ) +N1(f
φ − gψ)

)
. (26)

Proof We follow the proof of Theorem 8.13 by Lovász (2012), briefly highlighting the
necessary adjustments to the argument.

To establish the first equality, approximations by step graphons that converge a.e. are
considered, and the crucial point is that any φ ∈ S[0,1] can be realized by a suitable φ̃ ∈
S[0,1] for such step graphons. For graphon-signals, the argument can be transferred if one
simply considers partitions respecting each step graphon and step signal simultaneously
when constructing the corresponding φ̃ ∈ S[0,1].

For the second equality, which is proven in greater generality with coupling measures
over [0, 1]2 by Lovász (2012), note that the lower semicontinuity in (8.24) is just shown for
kernels (i.e., L∞[0, 1]2), but the argument extends verbatim to L∞[0, 1], and the sum of
two lower semicontinuous functions is still lower semicontinuous. The rest of the argument
applies without modification.

Note that Lemma 10 justifies our definition in Equation (24), as δ□ on the graphon-
signal space was defined differently as the infimum over all measure preserving bijections
of co-null sets in [0, 1] (with the function being set to zero otherwise) by Levie (2023),
see Equation (10). As S[0,1] ⊆ S′

[0,1] ⊆ S[0,1], this coincides with the definition of δ□ in

Equation (24) by the first equality of Lemma 10.

Proof [Proof of Theorem 1] For (1) ⇔ (2), Lemma 10 implies that for any p ∈ [1,∞)

δ□((W, f), (V, g)) = 0 ⇔ ∃φ,ψ ∈ S[0,1] : (W, f)
φ = (V, g)ψ ⇔ δp((W, f), (V, g)) = 0, (27)

where equality in the middle holds in an λ2-a.s. sense. (2) ⇒ (3) follows immediately from
Lemma 9. For (3) ⇒ (4), let (W, f), (V, g) ∈ WLr such that t(F,d, (W, f)) = t(F,d, (V, g))

12
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for all simple graphs F , d ∈ Nv(F )
0 . Fix some k ∈ N. Clearly, the distribution of Gk(W, f)

is uniquely determined by

P(G,f)∼Gk(W,f)(G
∼= F ), (28)

P(G,f)∼Gk(W,f)(f ∈ ·|G ∼= F ), (29)

i.e., the discrete distribution of the (labeled) random graph G and the conditional distri-
bution of the node features given the graph structure, for every simple graph F of size k.
For Equation (28), we remark that the standard homomorphism densities w.r.t. just the
graphons W,V can be recovered by taking d = 0. Thus, the inclusion-exclusion argument
from the proof of Theorem 4.9.1 in Zhao (2023) can be used verbatim to reconstruct the
probabilities from Equation (28). With a similar inclusion-exclusion argument, we see that
for any F

1{Gk(W ) ∼= F} =
∑
F ′⊇F

(−1)e(F
′)−e(F )1{Gk(W ) ⊇ F ′} (30)

and therefore

E(G,f)∼Gk(W,f)

 ∏
i∈V (F )

fdii

∣∣∣∣∣∣G ∼= F

 =

∑
F ′⊇F (−1)e(F

′)−e(F ) t(F ′,d, (W, f))

P(G,f)∼Gk(W,f)(G
∼= F )

(31)

as long as the denominator is positive (otherwise, the corresponding conditional distribution
is arbitrary). Since (f |G ∼= F ) is a bounded random vector (∥f∥∞ ≤ r a.s.), its distribution
is uniquely determined by its multidimensional moments, i.e., precisely the expressions
from Equation (31) (in the case of more general random variables/vectors, this is known
as the moment problem, but under boundedness it is trivial and can, e.g., be proven via

characteristic functions). Thus, we can conclude Gk(W, f)
D
= Gk(V, g) for all k ∈ N. Finally,

(4) ⇒ (2) is a straightforward application of Theorem 8: If (4) holds, we can bound

δ□((W, f), (V, g)) ≤ E
[
δ□((W, f),Gk(W, f))

]
+ E

[
δ□((V, g),Gk(W, f))

]
(32)

= E
[
δ□((W, f),Gk(W, f))

]
+ E

[
δ□((V, g),Gk(V, g))

]
→ 0 (33)

as k → ∞.

B.3. Proof of Corollary 2

Proof The proof idea is essentially the same as in the classical graphon case (for example,
see Section 4.9 in Zhao (2023)): An application of Theorem 1 that uses compactness of the
graphon-signal space. For the sake of completeness, we restate the argument.

“⇒” follows immediately from the counting lemma (Lemma 9). For “⇐”, let (Wn, fn)n
be a sequence of graphon-signals that left-converges to (W, f) ∈ WLr. By compactness
(Theorem 7), there exists a subsequence (Wni , fni)i converging to some limit (V, g) in cut
distance. But then also all signal-weighted homomorphism densities of the subsequence
converge, and hence

t(F,d, (W, f)) = t(F,d, (V, g)) ∀F,d ∈ Nv(F )
0 . (34)

Theorem 1 yields δ□((W, f), (V, g)) = 0, i.e., also (Wn, fn) → (W, f) in cut distance.
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B.4. Related Definitions in the Literature

In the discrete setting, homomorphisms between graphs with signals are typically defined
as follows: For (F,f) and (G, g), h : V (F ) → V (G) is a homomorphism if fi = gh(i) for
all i ∈ V (F ) and {h(i), h(j)} ∈ E(G) for all {i, j} ∈ E(F ). This concept does not extend
to graphon-signals, as for a signal f ∈ L∞[0, 1], its level sets {f = α} for α ∈ R might all
be sets of Lebesgue measure zero. In contrast to other common approaches in the GNN
literature, only considering d = 1 does not suffice in our case, as this only distinguishes
graphs under twin reduction. Restricting the exponents to be the same across all nodes as in
Nguyen and Maehara (2020) results in {t(F,d, ·)}F,d not being closed under multiplication,
which would later pose challenges when proving universality.

Appendix C. Details on Linear Equivariant Layers

C.1. Characterization of the IGN Basis

In this section, we restate the characterization of the IGN basis introduced by Cai and

Wang (2022). As described in the original IGN paper by Maron et al. (2018), dimLE
[n]
k→l =

bell(k+ l), i.e., the number of partitions Γk+l of the set [k+ l]. In the basis of Cai and Wang

(2022), each basis element L
(n)
γ associated with a partition γ ∈ Γk+l can be characterized

as a sequence of basic operations. First, divide γ into 3 subsets γ1 := {A ∈ γ |A ⊆ [k]},
γ2 := {A ∈ γ |A ⊆ k + [l]}, γ3 := γ \ (γ1 ∪ γ2). Here, the numbers 1, . . . , k are associated
with the input axes and k + 1, . . . , k + l with the output axes respectively.

1 (Selection: W 7→ Wγ). In a first step, we specify which part of the input tensor

W ∈ Rnk
is under consideration. Take γ

∣∣
[k]

:= {A ∩ [k] |A ∈ γ,A ∩ [k] ̸= 0} and

construct a new |γ1|+ |γ2| = |γ
∣∣
[k]
|-tensorWγ by selecting the diagonal of the k-tensor

W corresponding with the partition γ
∣∣
[k]
.

2 (Reduction: Wγ 7→ Wγ,red). We average Wγ over the axes γ1 ⊆ γ
∣∣
[k]
, resulting in a

tensor Wγ,red of order |γ2|, indexed by γ2
∣∣
[k]
.

3 (Alignment: Wγ,red 7→ Wγ,align). We align Wγ,red with a |γ2|-tensor Wγ,align in-
dexed by γl

∣∣
k+[l]

, sending for A ∈ γ2 the axis A ∩ [k] to A ∩ [l].

4 (Replication: Wγ,align 7→ Wγ,rep). Replicate the |γ2|-tensor Wγ,align indexed by
γ2
∣∣
k+[l]

along the axes in γ3. Note that if γ2
∣∣
k+[l]

∪ γ3 contains non-singleton sets, the

output tensor is supported on some diagonal.

The basis element L
(n)
γ : Rnk → Rnl

can now be described by the assignment L
(n)
γ (W ) :=

Wγ,rep.

C.2. Proof of Theorem 3

We will need some more preparations for the proof, in which we consider any L ∈ LEk→l

only on step functions using regular intervals first, which will allow us to use the existing
results for the discrete case.
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Lemma 11 (Fixed Points of Measure Preserving Functions) If k ∈ N0 and W ∈
L2[0, 1]k such that Wφ = W for all φ ∈ S[0,1], then W is constant. All involved equalities

are meant λk-almost everywhere.

Albeit somewhat tedious, the proof relies on basic measure theory and is rather straight-
forward. The only aspect requiring additional attention is that φ acts uniformly across all
coordinates.
Proof Let W ∈ L2[0, 1]k such that W is invariant under all measure preserving functions,
and suppose that W is not constant λk-almost everywhere. Then, there exist a < b such
that A := W−1((−∞, a]), B := W−1([b,∞)) have positive Lebesgue measure λk(A) =

λk(B) > 0. Set α := λk(A)/λk(B). For n ∈ N, let I(n)j := [ j−1
n , jn) for j ∈ {1, . . . , n − 1}

and I
(n)
n := [n−1

n , 1] be a partition of [0, 1] into regular intervals, and set P(n)
k := {I(n)j1

×
· · · × I

(n)
jk

| j1, . . . , jk ∈ {1, . . . , n}}. First, note that we have

λk(Q ∩A) ̸= αλk(Q ∩B) (35)

for some m ∈ N and Q ∈ P(m)
k . Otherwise, equality in Equation (35) would also hold

for all hyperrectangles with rational endpoints, which is a ∩-stable generator of B([0, 1]k).
Consequently, equality would hold for all sets in B([0, 1]k) and thus, 0 < λk(A) = αλk(A ∩
B) = αλk(∅) = 0, which is a contradiction. W.l.o.g. assume λk(Q ∩ A) > αλk(Q ∩ B) in
Equation (35). As∑

S∈P(m)
k

λk(S ∩A) = λk(A) = αλk(B) =
∑

S∈P(m)
k

αλk(S ∩B), (36)

there must be another R ∈ P(m)
k such that λk(R ∩A) < αλk(R ∩B). Set

∆k := {x ∈ [0, 1]k | |{x1, . . . , xk}| < k}, ∆
(n)
k := {Q ∈ P(n)

k |Q ∩∆ ̸= ∅} (37)

to be the union of all diagonals on [0, 1]k and the elements of P(n)
k overlapping with ∆k

respectively for n ∈ N. As λk(
⋃
Q∈∆(n)

k

Q) → λk(∆k) = 0 as n → ∞, there must exist

m∗ ≥ m ∈ N such that there are Q ⊇ Q∗ ∈ P(m∗)
k \ ∆

(m∗)
k , R ⊇ R∗ ∈ P(m∗)

k \ ∆
(m∗)
k

satisfying
λk(Q∗ ∩A) > αλk(Q∗ ∩B), λk(R∗ ∩A) < αλk(R∗ ∩B). (38)

Since Q∗ and R∗ do not overlap with any diagonal, we can now construct φ ∈ S[0,1] such

that φ⊗k, which clearly defines a measure-preserving bijection from [0, 1]k to itself, sends
Q∗ to R∗. By invariance of W under all measure-preserving functions, we get

λk(R∗ ∩A) = λk
(
(φ⊗k)−1(R∗ ∩A)

)
= λk(Q∗ ∩A), (39)

λk(R∗ ∩B) = λk
(
(φ⊗k)−1(R∗ ∩B)

)
= λk(Q∗ ∩B), (40)

which contradicts Equation (38). Hence, W must be λk-a.e. constant.
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Lemma 12 (Invariance under Discretization) Let k, l ∈ N0 and n ∈ N. Let I
(n)
j :=

[ j−1
n , jn) for j ∈ {1, . . . , n − 1} and I

(n)
n := [n−1

n , 1] be a partition of [0, 1] into regular

intervals. Let An := σ
(
{I(n)1 , . . . , I

(n)
n }

)
denote the σ-algebra generated by this partition

and let F (n)
k := {W ∈ L2[0, 1]k |W is A⊗k

n -measurable}. Then, any L ∈ LEk→l is invariant
under discretization, which means that

L(F (n)
k ) ⊆ F (n)

l , (41)

where the inclusion should be understood up to sets of measure zero.

Proof Let L ∈ LEk→l and let W ∈ F (n)
k . Then, if φ ∈ S[0,1] such that

φ(I
(n)
j ) ⊆ I

(n)
j (42)

for any j ∈ {1, . . . , n}, we have Wφ = W and hence also L(W )φ = L(W ) λl-almost

everywhere. Take any hypercube Q = I
(n)
j1

× · · · × I
(n)
jl

with j1, . . . , jl ∈ {1, . . . , n} and any
measure-preserving function φ : [0, 1/n) → [0, 1/n). We replicate φ on the unit interval as

φ∗(x) := x div 1/n + φ (xmod1/n) , (43)

which clearly satisfies Equation (42), and thus L(W )φ
∗
= L(W ) almost everywhere. Since

now

L(W )
∣∣
Q

= L(W )φ
∗
∣∣∣
Q

=
(
L(W )

∣∣
Q

)φ
, (44)

where we identify φ with φ∗∣∣
I
(n)
j

(which define measure preserving functions on I
(n)
j ), we

can use translation invariance and scale equivariance of the Lebesgue measure to conclude
by Lemma 11 that L(W )

∣∣
Q
is constant λl-almost everywhere. As Q was chosen arbitrarily,

this implies the statement of the lemma.

Proof [Proof of Theorem 3] Let n ∈ N and L ∈ LEk→l. By Lemma 12, we know that

L(F (n)
k ) ⊆ F (n)

l . Since F (n)
k

∼= (Rn)⊗k ∼= Rnk
, we can regard L

∣∣
F(n)

k

: F (n)
k → F (n)

l as a

linear operator Rnk → Rnl
. Taking for any σ ∈ Sn a measure-preserving transformation

φσ ∈ S[0,1] with φσ(Ij) = Iφ(j), we can see that L
∣∣
F(n)

k

is also permutation equivariant, and

we can use the characterization of the basis elements from Appendix C.1.

Note that for any n,m ∈ N we have F (n)
k ,F (m)

k ⊆ F (nm)
k and the canonical basis elements

{Lγ}γ∈Γk+l
under the identification F (n)

k
∼= Rnk

,F (m)
k

∼= Rmk
are compatible in the sense

that

L(nm)
γ

∣∣∣
F(n)

k

= L(n)
γ , L(nm)

γ

∣∣∣
F(m)

k

= L(m)
γ . (45)

Hence, the coefficients of L
∣∣
F(n)

k

w.r.t. the canonical basis {L(n)
γ }γ∈Γk+l

do not depend on

the specific n ∈ N. W.l.o.g. assume that L restricted to some F (n)
k is a canonical basis

function L
(n)
γ∗ (where γ∗ ∈ Γk+l does not depend on n).

16



Invariant Graphon Networks: Approximation and Cut Distance

We now take a closer look at the partition γ∗ and its induced function L
(n)
γ∗ described

by the steps Selection, Reduction, Alignment, and Replication. Partition γ∗ into the
3 subsets γ∗1 := {A ∈ γ∗ |A ⊆ [k]}, γ∗2 := {A ∈ γ∗ |A ⊆ k+[l]}, γ∗3 := γ∗ \ (γ∗1 ∪γ∗2). For the
constantW ≡ 1 ∈ F (1)

k ⊆ L2[0, 1]k, L
(n)
γ∗ (W ) ̸= 0 must also be constant a.e. by compatibility

with discretization, so the partition γ∗ cannot correspond to a basis function whose images
are supported on a diagonal. This is precisely equivalent to |A ∩ (k + [l])| ≤ 1 for all A ∈ γ∗.
Now suppose that the input only depends on a diagonal. Denoting the restriction of the

constant W ≡ 1 to the diagonal under discretization of [0, 1] into n pieces by W
(n)
γ∗ ,

L
(n)
γ∗ (W

(n)
γ∗ ) = L

(n)
γ∗ (W ) = L

(1)
γ∗ (W ) ̸= 0 (46)

is constant, but ∥W (n)
γ∗ ∥2 → 0 for n → ∞, which contradicts boundedness (i.e., continuity)

of the operator L ∈ B(L2[0, 1]k,L2[0, 1]l). Hence, γ∗ must correspond to a basis function
for which the selection step 1 is trivial, i.e., |A ∩ [k]| ≤ 1 for all A ∈ γ∗.

This leaves us with only the partitions γ ∈ Γk+l whose sets A ∈ γ contain at most
one element from [k] and k + [l] respectively. In the following Lemma 13 we will check
(and generalize) that for all of these partitions, the Reduction/Alignment/Replication-
procedure (with averaging in the sense of integration over [0, 1]) indeed yields a valid oper-

ator Lγ ∈ B(L2[0, 1]k,L2[0, 1]l) which agrees with L
(n)
γ on F (n)

k .

If we can now show that
⋃
n∈NF (n)

k ⊆ L2[0, 1]k is dense w.r.t. ∥·∥2, we can conclude
that L = Lγ∗ , as L is continuous and agrees with Lγ∗ on a dense subset. However, this
follows by a trivial application of the martingale convergence theorem: Considering [0, 1]k

with Lebesgue measure λk as a probability space and W ∈ L2[0, 1]k as a random variable,

we have E[W |A⊗k
n ] ∈ F (n)

k . Also, σ
(⋃

n∈NA⊗k
n

)
= B([0, 1]k) is the entire Borel σ-Algebra

as An contains all intervals with rational endpoints, so E[W |A⊗k
n ] → E[W |B([0, 1]k)] = W

in L2.

It is now straightforward to show that

∣∣∣ {γ ∈ Γk+l | ∀A ∈ γ : |A ∩ [k]| ≤ 1, |A ∩ k + [l]| ≤ 1}
∣∣∣ =

min{k,l}∑
s=0

s!

(
k

s

)(
l

s

)
, (47)

which can be seen as follows: Any partition on the l.h.s. can contain s ∈ {0, . . . ,min{k, l}}
sets of size 2. Fixing some s, any of these sets can only contain one element from [k] and
one from k + [l]. For the elements occuring in sets of size 2, there are

(
k
s

)(
l
s

)
options, and

there are s! ways to match the s selected elements in [k] with the s elements in k + [l],
leaving us with the formula on the right. This concludes the proof.

C.3. Continuity of Linear Equivariant Layers

Lemma 13 (Continuity of Linear Equivariant Layers w.r.t. ∥·∥p) Fix k, l ∈ N0.
Let L ∈ LEk→l and p ∈ [1,∞]. Then, L can also be regarded as a bounded linear oper-
ator Lp[0, 1]k → Lp[0, 1]l. Furthermore, all of the canonical basis elements from the proof
of Theorem 3 have operator norm ∥L∥p→p = 1.
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Proof If suffices to show boundedness of all canonical basis elements. Let γ ∈ Γk+l be a
partition corresponding to a basis element in LEk→l, and suppose that γ contains r sets of
size 2 {i1, j1}, . . . , {ir, jr} with i1, . . . , ir ∈ [k], j1, . . . , jr ∈ k + [l], and set A = (i1, . . . , ir),
B = (j1, . . . , jr). Then, we can write L as

L(W ) :=

[0, 1]l ∋ y 7→
∫
[0,1]k−r

W (xA,x[k]\A) dλ
k−r(x[k]\A)

∣∣∣∣∣
xA=yB

 . (48)

Consider at first p <∞. Clearly, Equation (48) is also well-defined for W ∈ Lp[0, 1]k and

∥L(W )∥pp =

∫
[0,1]l

∣∣∣∣∣∣
∫
[0,1]k−r

W (xA,x[k]\A) dλ
k−r(x[k]\A)

∣∣∣∣∣
xA=yB

∣∣∣∣∣∣
p

dλl(y) (49)

≤
∫
[0,1]l

∫
[0,1]k−r

∣∣W (xA,x[k]\A)
∣∣p dλk−r(x[k]\A)

∣∣∣∣∣
xA=yB

dλl(y) (50)

=

∫
[0,1]r

∫
[0,1]k−r

∣∣W (xA,x[k]\A)
∣∣p dλk−r(x[k]\A) dλ

l(xA) = ∥W∥pp, (51)

with Jensen’s inequality being applied in the second step. Note that equality holds, e.g.,
for W ≡ 1, so ∥L∥p→p = 1. For p = ∞, we also see

∥L(W )∥∞ = ess sup
y∈[0,1]l

∣∣∣∣∣∣
∫
[0,1]k−r

W (xA,x[k]\A) dλ
k−r(x[k]\A)

∣∣∣∣∣
xA=yB

∣∣∣∣∣∣ (52)

≤ ess sup
y∈[0,1]l

∫
[0,1]k−r

∣∣W (xA,x[k]\A)
∣∣︸ ︷︷ ︸

≤∥W∥∞ a.e.

dλk−r(x[k]\A)

∣∣∣∣∣∣∣
xA=yB

(53)

≤ ∥W∥∞, (54)

again with equality for W ≡ 1.

Appendix D. Details on Invariant Graphon Networks

D.1. Proof of Theorem 4

Proof [Proof of Theorem 4] First show statement (1), i.e., continuity w.r.t. ∥·∥p. By

Lemma 13, L
(1)
s , L̃

(1)
s , and L

(2)
s for s ∈ {1, . . . , S} are clearly Lipschitz continuous w.r.t.

∥·∥p on the respective input and output spaces. Hence, it suffices to check that Lp[0, 1]k ∋
W 7→ ϱ(W ) is Lipschitz continuous for every k ∈ N0, where ϱ is applied elementwise (which
can later be applied to the graphon and the signal of (W, f) ∈ WLr individually). For
p <∞, we have

∥ϱ(U)− ϱ(W )∥pp =
∫
[0,1]k

|ϱ(U)− ϱ(W )|p dλk ≤
∫
[0,1]k

Cpϱ |U −W |p dλk = Cpϱ∥U −W∥pp,

(55)
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and a similar argument shows the claim for ∥·∥∞.
Now we focus on statement (2), i.e., discontinuity of IWNs w.r.t. the cut norm. Specif-

ically, we show that the assignment

W0 ∋W 7→ ϱ(W ) ∈ W, (56)

where ϱ is applied pointwise, is continuous if and only if ϱ is linear. First, note that
W ∈W 7→

∫
[0,1]2 W dλ2 is linear and continuous w.r.t. ∥·∥□, since∣∣∣∣∣

∫
[0,1]2

W dλ2

∣∣∣∣∣ ≤ sup
S,T⊆[0,1]

∣∣∣∣∫
S×T

W dλ2
∣∣∣∣ = ∥W∥□. (57)

Let ϱ : [0, 1] → R such that W 7→ ϱ(W ) is continuous and let p ∈ [0, 1]. Then, also
W 7→

∫
[0,1]2 ϱ(W ) dλ2 is continuous. Let p ∈ (0, 1) and setWp := p to be a constant graphon.

If we sample G
(n)
p ∼ Gn(Wp), i.e., from an Erdős–Rényi model with edge probability p,

G
(n)
p →Wp in the cut metric. But∫

[0,1]2
ϱ(W

G
(n)
p

) dλ2 → p · ϱ(1) + (1− p) · ϱ(0) (58)

almost surely, while
∫
[0,1]2 ϱ(Wp) dλ

2 = ϱ(p). This implies

∀p ∈ (0, 1) : ϱ(p) = p · ϱ(1) + (1− p) · ϱ(0), (59)

i.e., ϱ is a linear function. It is trivial to check that if ϱ(x) = ax + b is a linear function,
W 7→ ϱ(W ) is indeed continuous.

D.2. Proof of Theorem 5

The core idea of the proof is that we can approximate signal-weighted homomorphism
densities (Equation (1)) with arbitrary precision, which we discuss in the following lemmas.

Lemma 14 (Approximation of Homomorphism Densities with cos) Let F be a sim-
ple graph with v(F ) = k, and let d ∈ Nk0. Then, for any ε > 0 there exists an IWN NF,d,ε

with nonlinearity ϱ = cos such that

sup
(W,f)∈WLr

|t(F,d, (W, f))−NF,d,ε(W, f)| ≤ ε, (60)

i.e., NF,d,ε uniformly approximates the signal-weighted homomorphism density t(F,d, ·).

In the proof, we model the homomorphism densities explicitly while keeping track of which
linear equivariant layers are being used.

Proof Fix a simple graph F with v(F ) = k, d ∈ Nk0, and δ > 0. Fix an arbitrary graphon-
signal (W, f) ∈ WLr. Let x = (x1, . . . , xk) ∈ [0, 1]k. Set m := v(F ) + e(F ), and enumerate
V (F ) = {1, . . . , v(F )}, E(F ) = {e1, . . . , ee(F )}. Define

γ := (f(x1), . . . , f(xv(F )),W (xe1), . . . ,W (xee(F )
)) ∈ [−r, r]v(F ) × [0, 1]e(F ). (61)

19



Let

Nℓ : R → R, γℓ 7→
Lℓ∑
j=1

c
(ℓ)
j cos

(
a
(ℓ)
j γℓ + b

(ℓ)
j

)
+ d(ℓ) (62)

be a neural network with one hidden layer for each ℓ ∈ [m] and cos as nonlinearity, ap-
proximating gℓ(x) := xdℓ if ℓ ≤ v(F ) on [−r, r] and the identity gℓ(x) := x if ℓ > v(F ) on
[0, 1], each uniformly with error at most δ. The standard universal approximation theorem
ensures that such networks Nℓ exist. Further, we remark that for the identity, Lℓ = 1 can
be chosen by differentiability of cos and zooming in and out appropriately at a point of
non-vanishing derivative.

We exploit a property of cos that allows us to express products as sums. Namely, it is
well-known that for x1, . . . , xm ∈ R we have

m∏
j=1

cos(xj) =
1

2m

∑
σ∈{±1}m

cos

 m∑
j=1

σjxj

 . (63)

We now aim to approximate [0, 1]k ∋ x 7→
(∏

i∈V (F ) f(xi)
di
)(∏

{i,j}∈E(F )W (xi, xj)
)

=∏m
ℓ=1 gℓ(γℓ) by

m∏
ℓ=1

Nℓ(γℓ) =
m∏
ℓ=1

 Lℓ∑
j=1

c
(ℓ)
j cos

(
a
(ℓ)
j γℓ + b

(ℓ)
j

)
+ d(ℓ)

 (64)

=
∑
A⊆[m]

 ∏
ℓ∈[m]\A

d(l)

 ∑
jℓ∈[Lℓ]
ℓ∈A

(∏
ℓ∈A

c
(ℓ)
jℓ

cos
(
a
(ℓ)
jℓ
γℓ + b

(ℓ)
jℓ

))
(65)

=
∑
A⊆[m]

 ∏
ℓ∈[m]\A

d(l)

 ∑
jℓ∈[Lℓ]
ℓ∈A

∏
ℓ∈A c

(ℓ)
jℓ

2|A|

∑
σ∈{±1}A

cos

(∑
ℓ∈A

σℓ

(
a
(ℓ)
jℓ
γℓ + b

(ℓ)
jℓ

))
,

(66)

where we used Equation (63) for the last equality. By taking a look at the terms inside the
cosines in Equation (66), it is straightforward to see that

∫
[0,1]k

∏m
ℓ=1Nℓ(γℓ) dλ

k can be im-

plemented by an IWN. It remains to be shown that Equation (66) does indeed approximate
t(F,d, ·) uniformly on WLr. Note that∣∣∣∣∣
∫
[0,1]k

m∏
ℓ=1

Nℓ(γℓ) dλ
k(x)− t(F,d, (W, f))

∣∣∣∣∣ =
∣∣∣∣∣
∫
[0,1]k

(
m∏
ℓ=1

Nℓ(γℓ)−
m∏
ℓ=1

gℓ(γℓ)

)
dλk

∣∣∣∣∣ (67)

≤

∥∥∥∥∥
m∏
ℓ=1

Nℓ(γℓ)−
m∏
ℓ=1

gℓ(γℓ)

∥∥∥∥∥
∞

, (68)

and {Nℓ(γℓ)}ℓ, {gℓ(γℓ)}ℓ ∈ [−r − δ, r + δ]v(F ) × [−1 − δ, 1 + δ]e(F ), ∥Nℓ(γℓ)− gℓ(γℓ)∥∞ ≤ δ
for all ℓ ∈ [m], and γ 7→

∏m
ℓ=1 γℓ is Lipschitz-continuous on compact domains. Hence,
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Equation (68) converges to zero as δ → 0 uniformly in (W, f) ∈ WLr, and thus can be
made ≤ ε if δ > 0 is chosen small enough. This concludes the proof.

Until now, we have only worked with ϱ = cos in Lemma 14. Extending this result
to an arbitrary nonlinearity boils down to a simple application of the standard universal
approximation theorem for feedforward neural networks.

Lemma 15 The statement of Lemma 14 holds for any continuous non-polynomial ϱ : R →
R.

Proof We first show that we can approximate any IWN with cosine nonlinearity up to
arbitrary precision using ϱ. Fix δ > 0 and let

N (W, f) :=

S∑
s=1

L(2)
s

(
cos(L(1)

s (W ) + L̃(1)
s (f) + b(1)s )

)
+ b(2) (69)

be an IWN as in Equation (3). Set M := maxs∈{1,...,S} ∥cos(L
(1)
s (W ) + L̃

(1)
s (f) + b

(1)
s )∥∞

and let Cs be the Lipschitz constant of L
(2)
s w.r.t. ∥·∥∞. Then, by universal approximation,

there exists a feedforward NN Ncos : R → R with ϱ as nonlinearity such that

sup
x∈[−M,M ]

|Ncos(x)− cos(x)| ≤ δ. (70)

Clearly, replacing cos with Ncos in Equation (69) yields a valid IWN with ϱ as nonlinearity,
and for any (W, f) ∈ WLr, we obtain∣∣∣∣∣

S∑
s=1

L(2)
s

(
Ncos(L

(1)
s (W ) + L̃(1)

s (f) + b(1)s )
)
−

S∑
s=1

L(2)
s

(
cos(L(1)

s (W ) + L̃(1)
s (f) + b(1)s )

)∣∣∣∣∣
(71)

≤
S∑
s=1

Cs

∥∥∥Ncos(L
(1)
s (W ) + L̃(1)

s (f) + b(1)s )− cos(L(1)
s (W ) + L̃(1)

s (f) + b(1)s )
∥∥∥
∞

(72)

Equation (70)

≤ δ ·
S∑
s=1

Cs, (73)

which converges to zero as δ → 0. Hence, this bound also holds when taking the supremum
over all (W, f) ∈ WLr. By combining this with Lemma 14, we obtain that any homo-
morphism density t(F,d, ·) on WLr can be approximated by an IWN with any continuous
nonlinearity ϱ up to any desired accuracy.

Proof [Proof of Theorem 5] We show this statement by applying the Stone-Weierstrass the-
orem. In principle, proving approximation of the signal-weighted homomorphism densities
(Lemma 14 and Lemma 15) is the main difficulty. Fix a compact subset K ⊂ (W̃Lr, δp).
Consider the space of all graphon-signal motif parameters, i.e.,

D := span{t(F,d, ·) |F simple graph,d ∈ Nv(F )
0 } ⊆ C(K,R). (74)
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Clearly, D is a linear subspace, and D contains a non-zero constant function as we can take
a homomorphism density of a graph F with no edges and d = 0. Also, it is straightforward

to see that D is a subalgebra, as for any two simple graphs F1, F2, d1 ∈ Nv(F1)
0 , d2 ∈ Nv(F2)

0 ,

t(F1,d1, ·) · t(F2,d2, ·) = t(F1 ⊔ F2,d1∥d2, ·) ∈ D, (75)

i.e., the product of homomorphism densities w.r.t. two simple graphs can be rewritten as the
homomorphism density w.r.t. their disjoint union. By Theorem 1, D also separates points,
and we can apply Stone-Weierstrass to conclude that D ⊆ C(K,R) is dense. However, by
Lemma 15, any element of D can be approximated with arbitrary precision by IWNϱ, and
thus

C(K,R) = D ⊆ IWNϱ ⊆ C(K,R). (76)

This concludes the proof.

D.3. Point Separation of IWNs

Corollary 16 (Point Separation of IWNs) Let (W, f), (V, g) ∈ WLr be not weakly
isomorphic, i.e., δp((W, f), (V, g)) > 0 for any p ∈ [1,∞) (or equivalently δ□((W, f), (V, g)) >
0). Then, there exists an IWN N such that

N (W, f) ̸= N (V, g). (77)

Proof By Theorem 1, for any two graphon-signals (W, f), (V, g) we have δp((W, f), (V, g)) =
0 (⇔ δ□((W, f), (V, g)) = 0) if and only if t(F,d, (W, f)) = t(F,d, (V, g)) for any simple

graph F and d ∈ Nv(F )
0 . Hence, if δp((W, f), (V, g)) > 0, there exists a simple graph F and

d ∈ Nv(F )
0 such that ε := |t(F,d, (W, f))− t(F,d, (V, g))| > 0. By Lemma 15, take an IWN

N such that sup(U,h)∈WLr
|N (U, h)− t(F,d, (U, h))| ≤ ε/3. We obtain

|N (W, f)−N (V, g)| (78)

= |N (W, f)− t(F,d, (W, f)) + t(F,d, (W, f))− t(F,d, (V, g)) + t(F,d, (V, g))−N (V, g)|
(79)

≥ |t(F,d, (W, f))− t(F,d, (V, g))| (80)

− |N (W, f)− t(F,d, (W, f))| − |t(F,d, (V, g))−N (V, g)| (81)

≥ ε− ε/3− ε/3 = ε/3 > 0, (82)

which yields the claim.

D.4. Proof of Theorem 6

Proof [Proof of Theorem 6] Let p : R → R be a polynomial such that the IWN Np which
is obtained from N by replacing each occurrence of ϱ with p fulfills

∥Np −N∥∞,WLr := sup
(W,f)∈WLr

|Np(W, f)−N (W, f)| ≤ ε/2. (83)
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Such a p exists: We can approximate ϱ : R → R uniformly arbitrarily well on compact
subsets of R by the standard Weierstrass theorem, and, as the domain of N only contains
bounded functionsW and f , for any input (W, f) ∈ WLr, ϱ is only ever considered on some
fixed bounded set (which depends on the model parameters). The argument is the same as
switching activation functions, as done on multiple occasions in the proof of Theorem 5.

Now, observe that Np can be reduced to an integral over [0, 1]n of a polynomial in the
variables W (xi, xj) and f(xk), for i, j, k ∈ [n] and some n ∈ N. This essentially means that
Np is a linear combination of signal-weighted homomorphism densities. Thus, there are

finite collections of {αi}i ∈ R, multigraphs {Fi}i, and exponents {di}i, di ∈ Nv(Fi)
0 , such

that

Np(W, f) =
∑
i

αi · t(Fi,di, (W, f)) (84)

for any (W, f) ∈ WLr. Set

Ñp(W, f) =
∑
i

αi · t(F simple
i ,di, (W, f)), (85)

where Fi 7→ F simple
i removes parallel edges. Ñp is Lipschitz continuous in the cut distance

by Lemma 9 and, crucially, agrees with Np on 0-1-valued graphons (since any monomial

x 7→ xd has 0 and 1 as fixed points). Let M > 0 denote the δ□-Lipschitz constant of Ñp.

Now, consider (Gn,fn), (Gm,fm) ∼ Gn(W, f), Gm(W, f). By the graphon-signal sam-
pling lemma (Levie, 2023, Theorem 3.7), we can bound

E
[
|N (Gn,fn)−N (Gm,fm)|

]
(86)

≤ E
[
|N (Gn,fn)−Np(Gn,fn)|

]︸ ︷︷ ︸
≤ε/2

+E
[
|Ñp(Gn,fn)− Ñp(Gm,fm)|

]
(87)

+ E
[
|Np(Gm,fm)−N (Gm,fm)|

]︸ ︷︷ ︸
≤ε/2

(88)

≤ ε+M · E [δ□((Gn,fn), (Gm,fm))] (89)

≤ ε+M ·
(
E
[
δ□((Gn,fn), (W, f))

]
+ E

[
δ□((W, f), (Gm,fm))

])
(90)

(∗)
≤ ε+M

(
15√
log n

+
15√
logm

)
≤ ε+ 15M︸ ︷︷ ︸

=:Cε,N

(
1√
log n

+
1√

logm

)
, (91)

where the sampling lemma was used in (∗). This completes the proof.

Appendix E. Comparison to Results of Cai and Wang (2022)

Cai and Wang (2022) already studied the convergence of IGNs using the full IGN basis
and a partition norm, which is for W ∈ L2[0, 1]k a bell(k)-dimensional vector consisting of
L2 norms of W on all possible diagonals. While they show that convergence of a discrete
IGN on weighted graphs sampled from a graphon to its continuous counterpart holds, they
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also demonstrate that this is not the case for unweighted graphs with {0, 1}-valued adja-
cency matrix, which is a fact that also follows directly from our observation on continuity
(Theorem 4).

As a remedy, Cai and Wang (2022) constrain the IGN space to IGN-small, which consists
of IGNs for which applying the discrete version to a grid-sampled step graphon yields the
same output as applying the continuous version and grid-sampling afterwards. Note the fact
that while their condition of IGN-small considers the entire multilayer neural network, we
impose our boundedness condition on the individual linear equivariant layers. As a notable
difference, Cai and Wang (2022) use multilayer continuous IGNs with multiple channels,
i.e., neural networks N of the form

N = L(T ) ◦ ϱ ◦ · · · ◦ ϱ ◦ L(1), (92)

in which each L(t), t ∈ [T ], is an equivariant affine linear map from dt−1-channeled kernels of
“tensor order” kt−1 (i.e., functions W : [0, 1]kt−1 → Rdt−1) to dt-channeled kernels of order
kt. Here, (k0, d0) = (2, 2) and (kT , dT ) = (0, 1). For a graphon-signal (W, f) ∈ WLr, the in-
put to such an IGN is (x1, x2) 7→ (W (x1, x2),1{x1 = x2}f(x1)), but for compatibility with
our method, (x1, x2) 7→ (W (x1, x2), f(x1)) yields the same function class. It is straightfor-
ward to see that any IWN as defined in Equation (3) can be represented as in Cai and Wang
(2022): Padding all tensor orders to their maximum, we can indeed rewrite Equation (3)
to Equation (92) with T = 2 layers, and the hidden dimension being the former number of
addends d1 = S. Alternatively, any IWN could be straightforwardly approximated up to
arbitrary precision with O(S) layers of hidden dimension O(1).

Lemma 12 immediately implies that the representation of an IWN in the framework of
Cai and Wang (2022) as described above does indeed yield a network in IGN-small. The
converse, i.e., that individual linear equivariant layers in IGN-small have to be in LEk→l,
does not necessarily hold, as there is a lot of ambiguity: For example, a graphon W could
be embedded into a higher-dimension diagonal, and in a second step, the integral over
this diagonal could be used as output of the continuous IGN. While in this case the entire
network as a whole does fulfill the consistency requirement, the individual layers are not
bounded linear operators.

Consequently, Theorem 5 also applies to IGN-small in the sense that IGN-small of ar-
bitrary tensor order can distinguish any pair of non-weakly isomorphic graphons, which is
a significantly stronger statement than the ability of (2-)IGN-small being able to approxi-
mate spectral GNNs as demonstrated by Cai and Wang (2022). Further, our approach may
appear more intuitive as it leads to less representation ambiguity, generalizes to arbitrary
measure spaces (as shown in Equation (2)), and might align with defining a similar notion
for IGNs in graphon space without prior knowledge of the discrete version, ensuring only
well-behaved functions w.r.t. the underlying space of interest.

Appendix F. IWNs of Bounded Order and k-WL

We emphasize that our approach, just as Keriven and Peyré (2019), depends on having
arbitrarily large tensor orders at disposal. In the discrete setting, multilayer k-IGNs of the
form of Equation (92) are known to be at least as powerful as the k-dimensional Weisfeiler-
Lehman (WL) test (Maron et al., 2019; Azizian and Lelarge, 2021). k-WL, in turn, has
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been shown to distinguish homomorphism densities w.r.t. precisely all graphs of treewidth
bounded by k (Dvořák, 2010; Dell et al., 2018). In contrast, in our proof we use tensor
orders of n to model homomorphism densities of graphs up to size n, which suggests that
restricting the order in Equation (3) will not yield any particularly useful function class
hierarchy. With multilayer IWNs similar to Equation (92) of order bounded by k, it can be
shown that such a model can approximate any signal-weighted homomorphism density w.r.t.
multigraphs of treewidth k, using the tree decomposition of a graph as in Böker (2023). As
a result, multilayer IWNs of order k are at least as powerful as k-WL for graphons.

Crucially, we also note that cut distance discontinuity is not specific to IWNs, but
inherently linked to k-WL. The k-WL test for graphons (Böker, 2023) considers multigraph
homomorphism densities, which are discontinuous in the cut distance. As such, any k-
WL expressive function defined on graphon-signals would exhibit this discontinuity. The
consideration of multigraphs arises from a fundamental difference in how k-WL and 1-WL
handle edges. For 1-WL, weighted edges are treated simply as weights, i.e., function values
of a graphon only act through its shift operator and, thus, carry precisely the meaning of
edge probabilities. In contrast, the k-WL test as well as IWNs capture the full distribution
of these edge weights. Future versions of this work will address this in more detail.

Appendix G. Asymptotic Dimension Analysis of LE
[0,1]
k→l

In this section, we briefly analyze the asymptotic differences in dimension between LE
[n]
k→l,

the linear equivariant layer space of discrete IGNs, and LEk→l = LE
[0,1]
k→l, of IWNs.

Recall that

dimLE
[n]
k→l = bell(k + l), (93)

dimLE
[0,1]
k→l =

min{k,l}∑
s=0

s!

(
k

s

)(
l

s

)
. (94)

For a comparison of the dimensions for the first few pairs (k, l), see Table 1.

Table 1: Dimensions of LE
[n]
k→l and LE

[0,1]
k→l.

dimLE
[n]
k→l 0 1 2 3 4

0 1 1 2 5 15
1 1 2 5 15 52
2 2 5 15 52 203
3 5 15 52 203 877
4 15 52 203 877 4140

dimLE
[0,1]
k→l 0 1 2 3 4

0 1 1 1 1 1
1 1 2 3 4 5
2 1 3 7 13 21
3 1 4 13 34 73
4 1 5 21 73 209

The case of bounded k or l. Immediately visible from Table 1 is the vastly different
behavior of the two expressions as long as one of the variables k, l is bounded: In the
discrete case, whenever k → ∞ or l → ∞, we have bell(k + l) → ∞ superexponentially.
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However, for the case of [0, 1], suppose w.l.o.g. that only k → ∞ and l = O(1) remains
constant. Then, the corresponding dimension growth is bounded by

dimLE
[0,1]
k→l = dimLE

[0,1]
l→k = O(kl), (95)

as Equation (94) is dominated by
(
k
l

)
in this case.

The case of k ∼ l. We will now consider the worst case, i.e., when k grows roughly as
fast as l. For simplicity, assume k = l, and thus

dimLE
[n]
k→k = bell(2k), dimLE

[0,1]
k→k =

k∑
s=0

s!

(
k

s

)2

. (96)

The bell numbers grow superexponentially, as can be seen by one of its asymptotic formulas
(e.g., refer to Weisstein, Equation 19):

bell(n) ∼ 1√
n

(
n

W (n)

)n+1/2

exp

(
n

W (n)
− n− 1

)
, (97)

where W denotes the Lambert W-function, i.e., the inverse of x 7→ x exp(x), or a simpler
characterization due to Grunwald and Serafin (2024, Proposition 4.7), which is not strictly
asymptotically correct but suffices in our case:(

1

e

n

log n

)n
≤ bell(n) ≤

(
3

4

n

log n

)n
, (98)

as long as n ≥ 2. Therefore, the dimension of linear equivariant layers in the discrete case
can be bounded as

dimLE
[n]
k→k ≥

(
1

e

2k

log 2k

)2k

. (99)

We will now provide bounds on the dimension in the continuous case. First note that by
only considering the last addend,

dimLE
[0,1]
k→k ≥ k! ≥ bell(k) (100)

still grows superexponentially. A well-known bound on the factorial (see, e.g., Knuth (1997,
§ 1.2.5, Ex. 24)) is

nn

en−1
≤ n! ≤ nn+1

en−1
, (101)

for n ∈ N. For a rough upper bound on the dimension, we consider just an even tensor
order k:

dimLE
[0,1]
k→k =

k∑
s=0

s!

(
k

s

)2

(102)

≤ (k + 1)k!

(
k

k/2

)2

= (k + 1)
k!3

(k/2)!4
(103)

Equation (101)

≤ (k + 1)
k3k+3

e3k−3

e2k−4

(k/2)2k
=

1

e
(k + 1)k3

(
4

e
k

)k
, (104)

which still grows significantly slower than Equation (99).
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