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ABSTRACT

In this paper, we present an integrated approach to real-time mosquito detec-
tion using our multiclass dataset (MosquitoFusion) containing 1204 diverse im-
ages and leverage cutting-edge technologies, specifically computer vision, to
automate the identification of Mosquitoes, Swarms, and Breeding Sites. The
pre-trained YOLOv8 model, trained on this dataset, achieved a mean Aver-
age Precision (mAP@50) of 57.1%, with precision at 73.4% and recall at
50.5%. The integration of Geographic Information Systems (GIS) further
enriches the depth of our analysis, providing valuable insights into spatial
patterns. The dataset and code are available at https://github.com/
faiyazabdullah/MosquitoFusion.

1 INTRODUCTION

Mosquito-borne diseases stand as a major global health threat due to the adaptability and resilience
of mosquitoes. Roughly 700 million people are infected with mosquito-borne diseases every year.
Qureshi (2018) An estimated 1 million people die from these diseases annually. Combatting these
diseases requires a reevaluation of existing strategies. Understanding mosquito breeding grounds
and behaviors is crucial for effective prevention. This research tackles the broader challenge of
preventing mosquito-borne diseases by emphasizing the swift detection of mosquitoes. In this paper,
we contribute to this effort by leveraging our extensive MosquitoFusion dataset. To understand the
usability of our dataset, we implement the pre-trained YOLOv8 object detection model.

2 EXISTING WORKS

Recent research has witnessed a surge in multidisciplinary approaches to combat mosquito-borne
diseases. Bravo et al. (2021) pioneered an automated detection system using unmanned aerial vehi-
cles (UAVs) for identifying potential breeding sites, emphasizing the efficacy of aerial surveillance.
Schenkel et al. (2020) leveraged Convolutional Neural Networks (CNNs) and geospatial analysis,
highlighting the synergy between advanced algorithms and geographic insights. Passos et al. (2022)
integrated Geographic Information Systems (GIS) for refined risk assessments, emphasizing the cor-
relation between breeding sites and environmental factors. Recent studies by Liu et al. (2023) and
Kittichai et al. (2023) underscore the significance of image annotation precision and preprocessing
techniques for improved model accuracy. However, existing works focused on creating the datasets
in laboratory environments Ong & Ahmad (2022) and often lack multi-class diversity. Such datasets
of mosquitoes do not consider real-life aspects in images. Also, many datasets concentrate on a sin-
gle aspect, like mosquito Chumchu et al. or breeding site Perumal et al. (2023) detection. Moreover,
a majority of these datasets are not publicly accessible.

3 METHODOLOGY

In Fig. 1 we present an overview of the annotated dataset. In section 3.1 and 3.2 we present our
dataset and technical validation.
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Figure 1: Fully tagged and labeled image. (A), (B), (C), (D) shows the original image. In (A’)
and (C’), the purple borders mark the breeding sites. In (B’) and (D’) the yellow borders mark the
mosquitos. (D’) The red borders mark the swarms

3.1 DATASET

The dataset comprises 1204 meticulously curated images, strategically divided into training (87%),
validation (8%), and test (5%) sets, totaling 1053, 100, and 51 images, respectively. Rigorous
preprocessing A.2 measures ensure high-quality data. Augmentations such as flips, rotations, crops,
and grayscale applications enhance dataset diversity. This meticulously prepared dataset serves as a
valuable resource for training, validating, and testing models for mosquito detection. More details
of the dataset have been discussed in the section A. In figure 2 we present the total overview of our
methodology.

3.2 TECHNICAL VALIDATION

We use the pre-trained ’YOLOv8s’ object detection model Jocher et al. (2023) which utilizes the
CNN architecture, to evaluate our dataset. This configuration achieved a mean Average Precision
(mAP@50) of 57.1%, with a precision of 73.4% and a recall of 50.5%. This configuration aligns
with the objective of efficient and accurate mosquito identification. Then we integrate the Geo-
graphic Information Systems (GIS) to further enrich the depth of our analysis, providing valuable
insights into spatial patterns. The summary of evolution matrices is shown in Table 2. More techni-
cal validation is shown in A.4.

4 RESULT ANALYSIS AND FUTURE WORK

The model trained on the MosquitoFusion dataset exhibits promising performance, showcasing its
efficacy in real-time mosquito detection. The dataset’s careful curation and diverse augmentations
contribute to the model’s robustness. The split into training, validation, and test sets ensures re-
liable evaluation, emphasizing the dataset’s value for training effective mosquito detection model.
Beyond its utility in research, the dataset holds great potential for applications in public health, en-
vironmental monitoring, and disease control strategies. Our future work includes creating a custom
model exclusively designed for detecting mosquitoes, swarms, and breeding sites to further advance
our capabilities in this domain. Additionally, we’ll address a limitation of the pre-trained YOLOv8
model in our future work that, it may struggle to differentiate swarms formed by mosquitoes from
those formed by other insects.
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A APPENDIX

In sections A.1, A.2, A.3, and A.4, we present our data collection, data preprocessing, distribution
analysis and folder structure, and the model setup and evaluation of the dataset.
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A.1 DATA COLLECTION

In the initial phase of our project, data collection for the MosquitoFusion dataset involved meticulous
fieldwork, employing professional cameras to capture 1204 detailed images of mosquitoes, swarms,
and breeding sites. We have captured the images in the lighting conditions of daylight and in a sunny
environment. The dataset’s reliability is underscored by careful annotation using the tool Roboflow
Dwyer et al. (2022). This hands-on approach ensures the acquisition of authentic and representative
images for effective real-time mosquito detection.

A.2 DATA PREPROCESSING

Data preprocessing is a crucial step in ensuring the quality and effectiveness of a dataset for training
machine learning models. In the case of the MosquitoFusion dataset, our preprocessing pipeline
includes several key steps, starting with data cleaning and curation. Then we did auto-orientation
and resizing to a consistent 640x640 pixel dimension. We also filter out images lacking annotations
for integrity. Then we did augmentations, including flips, rotations, crops, and grayscale applications
to introduce variability. With a total of 1204 images strategically divided into training, validation,
and test sets, the preprocessing emphasizes creating a standardized yet diverse dataset.

A.3 DISTRIBUTION ANALYSIS AND FOLDER STRUCTURE

The dataset encompasses instances of three distinct classes: Breeding Place, Mosquito, and
Mosquito Swarm. Specifically, the Breeding Place Class is represented by 1031 instances, the
Mosquito Class includes 133 instances, and the Mosquito Swarm Class comprises 40 instances.
In table 1, we present the class distribution of our dataset.

The dataset appears imbalanced because capturing images of mosquitoes and swarms is quite chal-
lenging. Unlike other objects, mosquitoes are small, swift, and often found in dynamic swarms,
making it harder to obtain clear images. To tackle the imbalance in the dataset, we employ the
technique called oversampling. This involves increasing the number of instances for the imbal-
anced classes by using data augmentation methods. This helps ensure that the model is exposed to
a more balanced representation of all classes, enhancing its ability to recognize instances from each
category effectively.

Within each directory - Train, Valid, and Test - two folders, namely ”image” and ”label” organize
the dataset. This dual-folder structure streamlines data management, with the ”image” folder hous-
ing the visual representations, and the ”label” folder containing corresponding annotations. This
meticulous organization enhances the dataset’s usability. In figure 3 we present the folder structure
of our dataset.

Class Instances
Breeding Place 1031
Mosquito 133
Mosquito Swarm 40
Total 1204

Table 1: Distribution of Classes in the Dataset

A.4 MODEL SETUP AND EVALUATION

All the images in the dataset were manually reviewed to ensure that no individually identifiable
information was included or embedded in the dataset. To make sure the dataset is appropriate for
training deep learning models we trained the localization model using the pre-trained YOLOv8s
model. The images were randomly split into 87% (1053) training, 8% (100) validation, and 5% (51)
test images for training and testing the localization model.

The training process took place on a Windows 11 (Version 23H2) machine running, equipped with
Nvidia RTX 3070Ti GPU boasting 8GB of video memory and an AMD Ryzen 5800X processor.
The model underwent pre-training using the COCO3, running for a total of 25 epochs. The input
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size was set to 640 pixels, and standard hyperparameters were employed throughout the training
sessions.

Object Detection Performance: For the localization task, the Mosquitos, Swarms, and Breeding
Sites were detected with a box precision of 73.4%, recall of 50.5%, and mean Average Precision
(mAP@50) of 57.1% at IoU of the 50th percentile on the validation set.

Model Type YOLOv8s
Architecture CNN
mAP@50 57.1%
Precision 73.4%
Recall 50.5%

Table 2: Evaluation Metrics

Data Collection Data Store and Clean Data Annotation Data Preparation

Single

SwarmDatabase

Removal of 
Invalid  
Data

Breeding 
Place

Augmentation

Feature 
Extraction

Data Split

Training Data 
(87%)

Validation 
Data (8%)

Testing Data 
(5%)GIS 

Integration

Figure 2: Framework of Methodology

Figure 3: The folder structure of the MosquitoFusion dataset
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