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Abstract

“Zero-shot” neural architecture search (ZNAS) is key to achieving real-time neural1

architecture search. ZNAS comes from “one-shot” neural architecture search but2

searches in a weight-agnostic supernet and consequently largely reduce the search3

cost. However, the weight parameters are agnostic in the zero-shot NAS and none4

of the previous methods try to explain it. We question whether there exists a5

way to unify the one-shot and zero-shot experiences for interpreting the agnostic6

weight messages. To answer this question, we propose a causal definition for “zero-7

shot NAS” and facilitate it with interventional data from “one-shot” knowledge.8

The experiments on the standard NAS-bench-201 and CIFAR-10 benchmarks9

demonstrate a breakthrough of search cost which requires merely 8 GPU seconds10

on CIFAR-10 while maintaining competitive precision.11

1 Introduction12

Neural architecture search has been an interesting topic in the AutoML community [27]. Traditional13

methods search by training the distinct neural architecture iteratively [31] whose training cost is14

huge. One-shot model cleverly use a supernet to merge all the singular neural architectures into15

one and consequently, the waste of search time is largely saved [16]. Further, the gradient-based16

one-shot method [12] is proposed which acquires robust results on NASNet [32]. Though the one-shot17

model largely reduces the search cost, it still suffers from a weight-sharing problem, and especially,18

gradient-based approaches cause degenerate architectures [29]. The work [25] gives theoretical proof19

for this and subtly uses a progressive tuning metric to discretize the one-shot supernet iteratively20

which gets awesome neural architectures. However, it still gets degenerate architectures with different21

training settings.22

The brilliant work [5] from Google Brain gives a hint for searching neural networks without tuning the23

parameters. “To produce architectures that themselves encode solutions, the importance of weights24

must be minimized”. In this manner, a zero-shot neural architecture search (ZNAS) is born. The25

work [10] firsts propose the idea of ZNAS to be “it does not optimize network parameters during26

search ”. From a one-shot perspective, the “zero-shot” is given credit by “one-shot” where single27

neural architectures are supposed to be selected from the weight-agnostic supernet [5]. Considering28

causal weight messages, the “zero-shot” select neural architecture with the minimum impact of29

any weight parameter [5]. Thus a causal definition is supposed to be that the weight messages are30

multi-environmentally distributed. Compared to one-shot NAS, zero-shot NAS gets imperfect weight31

messages due to random initialization and searching without training [10, 2].32

A training-free approach is first proposed by the work [13]. Different from the previous zero-shot33

model [10], the work [13] samples well-trained architectures and get validation accuracy to train the34
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statistical proxy before it searches. The work [2] follows the way of the previous work [10] and uses35

the DARTS search space to conduct zero-shot NAS on CIFAR-10 and ImagNet in a training-free36

manner. However, the number of samples directly decides the belief of the final precision. The37

“well-trained” architectures might not be “perfectly-trained” in different training settings.38

Zero-shot NAS learns the representation of neural architectures to get the best one. Consistently39

compared to one-shot NAS methods, zeros-shot NAS methods ignore the weight information. By40

merely measuring the architectural expressivity, they overlooked the impact of weights as a necessary41

assessment element. From a one-shot NAS perspective, architectural information can be represented42

by a list of neuron representations [25]. The message of training weights ω supports the neuron’s43

representation [15, 12, 25]. Because the structural dependencies of shared (mutual) messages across44

neurons are all agnostic [5], in the zero-shot neural architecture search, the neuron’s representation is45

harder to interpret due to the random messages. What is worse, the uniterpretability might result in46

large bias and variances because the imprecise observational data might be misleading. Finally, it47

will lead the search to get degenerate architectures through the process of accumulating errors.48

We first propose to interpret the zero-shot NAS in a causal-representation-learning setting. According49

to the weight-agnostic setting, we formulate the zero-shot NAS as a novel framework for imperfect-50

information NAS. The structural information of zero-shot NAS is interpreted by impact with the51

latent factors. As a consequence, intrinsic high-level interventional data acquired by one-shot NAS52

is properly adopted to refine the imperfectness. Moreover, we reformulate the causality by game53

theory and interpret the imperfect-information NAS as imperfect information game G. Extensive54

experiments on various benchmark datasets including CIFAR-10, NAS-Bench-201, and ImageNet55

have shown the super search efficiency (10000× faster than DARTS) of our methods. In this work,56

our main contributions are as follows:57

• We propose that the causal zero-shot NAS is to learn the neuron’s representation with latent58

factors in observationally imperfect messages.59

• We theoretically demonstrate the validation information of either a neuron or a neuron60

ensemble obeys a Gaussian distribution given a Gaussian input.61

• The proposed method uses high-level interventional data from one-shot NAS to facilitating62

zero-shot NAS to solve the imperfectness.63

• Our method sets the new state-of-the-art in zero-shot NAS of search cost (8 GPU seconds)64

while maintaining comparable test accuracies.65

2 Preliminaries and Related Work66

In this section, we talk about the preliminaries and the previous works on one-shot NAS and zero-shot67

NAS. We talk about the motivation to replace statistical proxy by introducing the basic knowledge on68

causal interventaional representation learning in causality [20, 1].69

2.1 One-shot NAS70

One-shot NAS methods [12, 16], that unify all the single-path neural architectures into one super-71

network S (supernet), select the single-path neural architecture as the best one by training the weights72

ω in a weight-sharing manner and maximizing the validation accuracy (V) of architecture A as73

follows:74
MaxA(V(A, ω̄)) s.t. ω̄ = ω + δAωS (1)

The iterative updating of ω and selection of A makes the one-shot NAS a bi-level optimization75

problem that is NP-hard. Differentiable one-shot model also relies on the observational data from76

unitedly trained validation accuracies of differentiable subnets [12]. Wang et al. [25] propose a77

selection-based approach to modify the output of differentiable one-shot NAS [12] to discretize a78

single-path neural architecture that consists of operations (neurons) with strength. As a consequence,79

the perturbation-based inductive bias is demonstrated to be helpful to solve the degeneration.80

2.2 Statistical proxies in zero-shot NAS81

We compare the various training-free and zero-shot NAS methods according to the usage of statistical82

representation. Some training-free approaches use the statistic of validation accuracy to predict the83
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final architecture. NASWOT [13] samples a number (N ) of well-trained neural architectures from84

the NAS-Bench-201 dataset to learn the kernel. However, to get these representations, the training85

costs tremendously. The zero-shot methods directly use zero-cost statistical proxies to represent the86

expressivity without weights and validation accuracy. Zen-NAS [10] uses a Gaussian complexity to87

measure the network expressivity and evolve the architectures to maximize the expressivity. Other88

training-free approaches such as TE-NAS [2] and NASI [22] imitate the train of NAS by neural89

tangent kernel (NTK) which largely reduces the waste of train cost. TE-NAS [2] propose to maximize90

the number of linear region of activation patterns [14]. On the opposite, NASI [22] subtly optimize91

the trace of NTK by sampling.92

Here raise the question that to what extent the validation accuracy outperforms the statistical proxy.93

Vice versa, we question if the statistical proxy is in substitute of the validation accuracy. Compared to94

the proxy-based methods with approximations, the validation-based method is more reproducible. The95

validation accuracy is an intrinsic robust and upper-bounded proxy to measure the neural architectures.96

Besides, previous arts of one-shot manner usually use the validation accuracy to be the objective to97

maximize. Despite these benefits, the zero-shot representation is imperfect due to the weight-agnostic98

messages.99

2.3 Causal representation learning100

The study [20] demonstrates that causality is a “subtle concept” which can not be fully described101

by Boolean or Probabilistic. It is more about reasoning. Reichenbach demonstrates a common102

cause principle to explain the causality by dependencies among variables [18]. Causal representation103

learning mainly deals with learning causally for representations. By observational data, we can hardly104

learn the real circumstances (environments), especially in complex scenes and high-dimensional data105

scenarios. Causal representation learning seeks to extract high-level information (dependencies) from106

low-level data. Interventions have taken a prominent role in representation learning literature on107

causation. The work [1] uses interventional data to facilitate the causal representations to get precise108

outcomes. Neural architecture search aims at learning the architectural representations automatically.109

The automatism of the previous arts of neural architecture search might not be causal especially in110

zero-shot setting.111

3 Method112

3.1 Imperfect information113

Neural architecture search is a task aiming at interpreting the mechanism of architectural knowledge114

of neural networks given methods of evaluations. Activation patterns, statistical proxies, and naive115

validation accuracy are adopted to evaluate the score of a neural network. However, we can hardly116

understand any neural network and even hardly explain the weight distribution of any neural network117

without assumptions. Observational data are always imperfect due to the infinite environments (search118

spaces/training schemes/hardware/etc.) of all possible networks with finite observations and limited119

tools. Architecture information is not stand-alone.120

In one-shot NAS, demonstrated in Equation 4, given a neural network, we first train the weights ω121

and the ω combined with architecture A can give a validation accuracy V . After V is given, we then122

update the ω to get ω̄ and a novel architecture A until the validation accuracy V is maximum. In123

the train, the architecture of a neural network is the key factor that impacts the other two factors ω124

and validation accuracy V . The search is actually a reverse way of train to the aspect of the intrinsic125

dependency of accuracy V on the weight ω and architecture A. However, we have overlooked a lot of126

factors like data distributions, batch sizes, rates of weight decay, and so on and on which we can not127

optimize as “one shot”. If the observational data alone can not interpret the phenomenon, it is a must128

to model the latent factors Z that cause this uninterpretability. Figure 1 illustrates the dependencies129

of architecture A, validation accuracy V , and weights ω. The dashed line reveals that Z changes the130

dependencies of selected neurons (or searched architectures) on observational data of ω and V [23],131

which indeed implies strong causality [20]. In logical condition, the structural relationship between132

V and ω can be almost broken1.133

1See demonstration in Section 3.3, results in Section 4.
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Figure 1: Illustrations of the dependencies of architecture A, validation accuracy V , and weights
ω with latent factor Z on the train (left), one-shot neural architecture search (middle), and causal
zero-shot neural architecture search (right).

We assume the validation accuracy V of a set of neural architectures {A} obeys a Gaussian distribution.134

135 V ∼ N (µ, σ2) (2)
Due to the random weight information, artificial neural networks (ANN) themselves have architectural136

information to deliver the neural networks’ expressivity with large variances [5]. It is demonstrated137

that the weight-agnostic neural network still preserves the 92% accuracy-level information for digit138

classification by the work [5]. However, the weights are agnostic and consequently the validation139

accuracies are imperfect. We assume the true validation accuracy is the difference of the observational140

Vobser and latent impact of factor Z demonstrated in Equation 3.141

V ∼ N (µobser − µZ , σ
2
obser − σ2

Z) (3)

3.2 Problem formulation142

In Zen-NAS, the adoption of statistical proxy on the feature map is impressive while it is constrained143

to structural dependencies [10]. We question to what extent, when we search a neural network, the144

statistical proxies can be replaced with the more robust functions such as validation accuracy causally145

[20]. In some one-shot [16, 12] and training-free methods [13], the evaluation metrics are usually the146

validation accuracy of the associated neural architectures.147

Inspired by the previous work [25], we evaluate each neuron to select respectively in substitute.148

Intuitively, we measure the importance of each neuron by a simple validation accuracy of a singular149

associate neuron while resting other neurons on the same edge. DARTS+PT [25] the perturbation-150

based approach mutes the irrelevant neurons to conduct an inference while saving the other paralleled151

edges. For each paralleled edge (layer) E that contains M neurons N s, we mute the other neurons152

while only saving the ith neuron N(i). The kth paralleled edge E
(k)
i consequently only contains one153

neuron (operation): E
(k)
i = {0× N(1), 0× N(2), . . . ,N(i), . . . , 0× N(M)}. When saving the other154

paralleled edges {E(j)}j ̸=k, N(i) denotes any single sub-architecture (a neuron) in the supernet S155

with tuned weights ωS of the supernet. Formally, the one-shot neuron selection for kth paralleled156

edge is defined as:157

N ∗ = argmax(F ({V(N(i), ωS)})) ∀N(i) ∈ E (k) (4)

where validation accuracy V is measured by an intrinsic inductive bias function F such as a rein-158

forcement learning policy π [31, 32]. V(N(i)) = V({E (1),E (2), . . . ,E
(k)
i , . . . ,E (N)}) in practise.159

In zero-shot NAS, the weight information is agnostic, which is impacted by a latent factor Z as160

shown in Figure 1. [4]. The latent variable obeys a distribution P in dimension Λ:161

Z ∼ PΛ (5)

When we sample larger enough numbers of impacts, the sample of factor Z obeys a Gaussian162

distribution by the central limit theorem (CLT). The causal zero-shot neural architecture search163

(Causal-Znas) that searches in imperfect messages is defined as:164

N ∗ = argmax(F ({V(N(i), ω)}|Z)) ∀N(i) ∈ E (k) (6)
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for i = 1, 2, . . . ,M . In this Equation 6, Z means the latent information to impact agnostic-weights165

(such as a random initialization [5, 10]) and consequently validation accuracies V . Therefore, we get a166

causal information set of singular neuron representation {V(N(i))|Z} for i = 1, 2, . . . ,M . For each167

paralleled edge (layer) E that contains M neurons N s: E = {N(1),N(2), . . . ,N(M)}. We calculate168

the information of singular neuron Ni on edge E (j) by freezing the other layers (ensembles/edges)169

{E (k)}k ̸=j so that the causal information is only impacted by the current neurons due to the same170

condition (in the same paralleled edge). Then the causal information set of a paralleled edge E is as:171

{V(E )|Z} = {N(1)(X|Z),N(2)(X|Z), . . . ,N(M)(X|Z)} (7)

In a Causal-Znas, a prediction function F is able to measure the selected architectures from the172

un-trained supernet. To avoid the improper introduction of inductive biases, we use an identity173

function to measure the importance of neurons.174

3.3 Gaussian intervention175

Most existing NAS approaches use observational data and make assumptions on the architectural de-176

pendencies to achieve provable representation identification. However, in our causal zero-shot neural177

architecture search, there is a wealth of interventional data available. To perfect the observational178

validation accuracies Vobser in D, we sample Vven from an interventional distribution D(Z) to be in179

substitute for the ones derived by the observation Vobser. Formally, we have:Vven ∼ D(Z). Though180

pure architectural information is imperfectly obseved, we can use an interventional function I (do181

intervn [1]) to replenish data from a one-shot perspective:182

V = ID(Z)
p Vven

⋃
ID
1−pVobser (8)

Ming et al. [10] assume the inputs obey Gaussian distribution and get comparable results with183

one-shot methods [12, 16]. What we use as the input for each neuron is a Gaussian image which also184

obeys the assumption of Gaussian inputs of Zen-NAS [10].185

Lemma 1. Given a Gaussian input X ∼ N (µ, σ2), the output of a neuron N in the first layer is186

Gaussian.187

Proof. Assuming each neuron is a distinct convolution denoted as Convi for i = 1, 2, . . . ,M , then188

the output of this edge is:189

O =

M∑
i=1

({Conv(1)(X ,W(1)), Conv(2)(X ,W(2)), . . . , Conv(M)(X ,W(M))}) (9)

where X ∼ N (µ, σ2) and W(i) ∼ N (µw, σ
2
w) for i = 1, 2, . . . ,M . Given the i.i.d. inputs190

and weights, the output score (validation accuracy) of the neural network layer is Gaussian since191

the Convolution of a Gaussian (random variable) is still a Gaussian (random variable). We have192

Gaussian weights W(i) and Conv(i)(X ,W(i)) ∼ N (µ(i), σ
2
(i)). Then

∑
i Conv(i)(X ,W(i)) ∼193

N (
∑

µ(i),
∑

σ2
(i)).194

Lemma 2. Given a Gaussian input X ∼ N (µ, σ2), the output of a neuron N in any layer is195

Gaussian.196

Proof. Apparently, any weighted summation of random variables that obey two distinct Gaussian is197

still a Gaussian. In neural networks, the layers are stacked. Based on Lemma 1, in the latter layer,198

the outputs also obey the Gaussian, whose inputs are the former layer’s outputs. The convolution199

(neuron) Conv′(i) of the next layer with output of latter layer O (in Equation 9) has Conv′(i)(O) ∼200

N (µ′
(i), σ

′
(i)

2).201

Corollary 2.1. Given a Gaussian input X ∼ N (µ, σ2), the output of any neuron ensemble202

{N(i)}i∈M is Gaussian.203

Formally, we have O(i) ∼ N (i)(µ′, σ′2). Õ = {O(1),O(2), . . . ,O(K)} where Õ denotes all the204

outputs across edges
︷ ︸︸ ︷
E(1),E(2), . . . ,E(K). Based on Lemma 1 and Lemma 2, we get the Corollary 2.1205

to select edges (topology preferences).206
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Proof. By Lemma 1, we have any neuron N(i) has a Gaussian output O(i) ∼ N (µ(i), σ
2
(i)). Any207

ensemble of neurons has an output
∑

i O(i). Then we have
∑

i O(i) ∼ N (
∑

µ(i),
∑

σ2
(i)).208

As demonstrated in Equation 8, we propose an intervention function ID to facilitate the imper-209

fect causal representation of the validation information. We propose that the ideal information is210

distributed in the information set by a probability p. The distribution D is N (µ, σ) in the context.211

Figure 2: Illustration of intervention of observational data. The blue denotes interventional data while
the white denotes observational data.

Herein, we question to what extent, the imperfectness can be interventionally refined [1]. We use212

the parameter p to asymmetrically flipping the random Gaussian IN (µ,σ2)
p [15] to understand the213

imperfect information in dimension Λ which is mapped to a vanilla Gaussian (in Equation 5). As214

shown in Figure 2, it compares the information difference between the observational information set215

and interventional information set impacted by the parameter p. In different environments, the data216

of interventional data combined with observation obeys a distinct Gaussian, which implies strong217

coherence and robustness. When p = 1, the causality is perfectly achieved due to breaking the218

dependency of validation accuracy V on weights ω; otherwise, it is imperfect. The mean and variance219

coefficients of the additional notion of intervention are derived by sampling validation accuracy of220

one-shot prior. We propose that setting of p is conditional on the fraction of the mean of latent factor221

to the difference of the mean of observational data and the mean of interventional data.222

Proposition 1. When p −→ µZ
µobser−µven

, the mean of the intervened data µ̃ −→ µtrue.223

As demonstrated in Proposition 1, a sufficient condition of the mean of intervened data is getting224

closer to the true mean of the validation accuracy is that the p is closer to 1 and interventional data is225

closer to the true data.226

3.4 Causal zero-shot neural architecture search227

We formulate the zero-shot NAS into ensemble selection and neuron selection. There are K neuron228

ensembles
︷ ︸︸ ︷
{N(i)}

(1)
i∈M, {N(i)}

(2)
i∈M, . . . , {N(i)}

(K)
i∈M. For each ensemble, there are M neurons229

(operations). The ensemble selection is the selection of an ensemble {N(i)}
(j)
i∈M of neurons among230

the K ensembles (j ∈ K), while neuron selection follows the same formula and selects a neuron N(i)231

from a neuron ensemble {N(i)}
(j)
i∈M.232

Figure 3: The distribution plate of three neurons and a big distribution plate of ensemble of them.
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Algorithm 1 Causal zero-shot neuron selection.
Initialize supernet weights ω;
For i = 1, 2, . . . ,M :

Calculate validate accuracy Vobser(N(i)(ω))};
do intervn by p;

Maximize the V and select the N ∗.

As is shown in Figure 3, the validation accuracy of both a neuron and a neuron ensemble obey233

Gaussian distributions respectively. From a macro perspective it is an ensemble selection while from234

a minor perspective, it is a neuron selection. Thus we talk about both types in the same formula.235

As demonstrated in Equation 6, the final outcome neurons are derived by maximizing their validation236

accuracies according to the latent factor. Given the Gaussian intervention in Equation 8, we further237

modify the formula of the causal neuron selection by doing intervention (without the additional238

inductive bias [20]):239

Ñ ∗ = argmax({Ṽ(N(i))}i∈M) (10)

, where Ṽ is the validation accuracy with intervention.240

The methodology of neuron selection is given in Algorithm 1. The search process of neuron ensemble241

follows the same formulation as mentioned in this Section. do intervn represents to do intervention.242

At first, the weight ω of the supernet is randomly initialized [10]. Second, validation scores V on the243

validation set are prepared for the calculation of the neurons N which adopts probability p to do the244

intervention. At last, the maximum of values is compared to select the best neuron (operation). In245

practice, when the probability p is close to 1, the validation accuracy of observation has less need to246

compute.247

Equation 6 reveals a universal formula for causal neural architecture search in the zero-shot settings.248

The measure function F measures the importance [25] (“responsibility”) of a neuron and Shapley249

value is proposed to be ideal for the selection of a neuron [7] or ensemble [19].250

N ∗ = argmax({G(i)({Ṽ})}i∈M) (11)
We use the game-theoretic inductive bias to extract the valuable information [20, 7]. G represent the251

Shapely value [21]. Given Corollary 2.1, we know that any the neuron ensemble obeys a Gaussian252

distribution. The information set of Shapley value is thus build on top of an ensemble of Gaussian253

variables. However, we could not guarantee a Gaussian distribution of the Shapley value [24]. As254

a consequence, we use a Gaussian distribution to do intervention on validation accuracy and then255

calculate the Shapely value of the intervened validation accuracy. At last, the Shapley value is256

maximized whose associated neuron is supposed to be more expressive [7].257

3.5 Weight-agnostic weights258

In the assumptions of various methods, weights are initialized as Gaussian. However, in our frame-259

work, we demonstrate that this strong assumption is not a must. Supernet can be initialized in different260

ways: i) with Gaussian [10], ii) Uniform [5], and iii) Constant number [5].261

Corollary 2.2. Given a Gaussian input X ∼ N (µ, σ2), if the initial weights are Uniform or Constant262

number C, the output of any neuron ensemble {N(i)}i∈M is not Gaussian.263

Proof. Apparently, the convolution of a Gaussian input with constant or uniform weights obeys a264

difference of CDF Φ of the Gaussian in the range of constant or uniform.265

In the previous work [5], it is proposed that weights are supposed to be initialized by a distribution266

but not a constant (C). To be more precise, we propose that the constant value could not represent the267

agnostic weights and thus could not reflect the latent information while a uniform distribution can268

guarantee the randomness. By training on a “wide range” of uniform weight samples, Gaier et al.269

propose that “the best performing values were outside of this training set” [5]. We propose that this270

phenomenon is essentially resulted from a distribution shift of the Gaussian validation accuracy which271

causes the change of search procedure. To solve the distribution shift, we could use the difference of272

CDF of Gaussian (Φ) to conduct intervention. Even in a broader view, if the weights distributions are273

totally unknown, we can use Bayesian method to approximate a distribution D(Z) in Equation 8.274
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4 Experiments275

We present the results and all experiment details of our method in this section. A robustness analysis276

is included to examine the stability of our method, which also explains the time efficiency. Results277

are given on the benchmark datasets, NAS-Bench-201 and CIFAR-10.278

4.1 Experimental details279

We use the search space of DARTS [12] for fair comparisons with the state-of-the-art NAS approaches.280

During the searching process, we follow adopting the same and hyper-parameters as DARTS [12]281

to initialize the supernet on the CIFAR-10 and NAS-Bench-201 datasets for a fair comparison with282

DARTS-variants (one-shot methods). All the training is conducted on a single 2080Ti GPU.283

4.2 Results on CIFAR-10284

Table 1: Comparison with state-of-the-art NAS methods on CIFAR-10.

Algorithm Test Error Params Search Cost Search Strategy
(%) (M) (GPU seconds)

DenseNet-BC [6] 3.46 25.6 - manual

NASNet-A + cutout [32] 2.65 3.3 1.73×108 RL
AmoebaNet-A [17] 3.34 ± 0.06 3.2 2.72×108 GA
AmoebaNet-B [17] 2.55 ± 0.05 2.8 2.72×108 GA
PNAS [11] 3.41 ± 0.09 3.2 1.94×107 SMBO

ENAS [16] 2.89 4.6 43200 RL
DARTS(1st) [12] 3.00 ± 0.14 3.3 34560 gradient
DARTS(2nd) [12] 2.76 ± 0.09 3.3 86400 gradient
BayesNAS [30] 2.81 ± 0.04 3.4 17280 gradient
DrNAS [3] 2.54 ± 0.03 4.0 34560 gradient
ISTA-NAS [26] 2.54 ± 0.05 3.3 4320 gradient
DARTS+PT [25] 2.61 ± 0.10 3.0 69120 gradient

TE-NAS [2] 2.63 ± 0.06 3.8 4320 NTK
NASI-FIX [22] 2.79 ± 0.01 3.9 864 NTK
NASI-ADA [22] 2.90 ± 0.01 3.7 864 NTK

Causal-Znas(p = 0.5) 2.89 ± 0.08 2.6 142 causal
Causal-Znas(p = 1) 2.75 ± 0.10 3.2 8 causal
Causal-Znas-G(p = 1) 2.61 ± 0.04 3.1 30 causal

As shown in Table 1, we compare the proposed Causal-Znas and game-version Causal-Znas-G with285

the state-of-the-art methods. The comparisons are made with respect to the informatics of the model,286

including test accuracy on the test set (Test Error), the number of parameters (Params), the search287

costs, and the search strategies. As shown, our results set the new state-of-the-art search speed with a288

competitive test error rate. Compared to DARTS [12], our method is 10000× faster with comparable289

accuracy (2.75% v.s. 2.76%). Compared to DARTS+PT [25], our model is much simpler without290

introducing the perturbation-based inductive bias [20] and achieves a similar test error rate (2.61%291

v.s. 2.61%). DrNAS [3] and ISTA-NAS [26] are not only precise (2.54%) but also theoretically sound292

approaches. ISTA-NAS [26] is extremely fast in one-shot NAS while ours are more competitive293

(500× faster) in search efficiency.294

We compare our method with other zero-shot NAS approaches in Table 1. It demonstrates that the295

TE-NAS [2] which is the first algorithm that reaches 4 GPU hours search cost is experimentally296

awesome. TE-NAS uses the neural tangent kernel to approximate the train so it largely reduces297

the cost of training the neural networks. Compared to TE-NAS, our proposed approach is 500×298

faster and our game-based result (-G) gets a comparable test error rate (2.61% v.s. 2.63 %) with a299

smaller number of parameters (3.1M v.s. 3.8M). We also surpass the current state-of-the-art zero-shot300

(training-free) method (NASI) [22] by more than 100× in search efficiency and get fewer errors in301

both settings (2.75% v.s.2.79%; 2.89% v.s. 2.90%).302

4.3 Results on NAS-Bench-201303

NAS-Bench-201 is a pure-architecture-aware dataset where the neural architectures are trained in the304

same settings, and the info such as performance, parameters, architecture topologies, and operations305
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are available. Compared to NAS-Bench-101 [28], NAS-Bench-201 adopts a different search space306

and gets results on various datasets such as CIFAR-10, CIFAR-100, and ImageNet16-120.307

As shown in Table 2, it compares our proposed method with the state-of-the-art methods on NAS-308

Bench-201. Compared to NASWOT(N=10) [13], NASWOT(N=100) and NASWOT(N=1000) are309

much more accurate due to enlarged sample amounts. However, it also cause 10× and 100× waste of310

search costs. NASI [22] also enlarges its search cost to get much more precise results with extension311

of 90s. Our approach gets the same search cost with NASWOT (3s) while being much more precise312

on CIFAR-10 (90.03% v.s. 89.14%, 93.49% v.s. 92.44), CIFAR-100 (70.18% v.s. 68.50%, 71.18%313

v.s. 68.62%) and ImageNet 16-120 (43.83% v.s. 41.09%, 44.43% v.s. 41.31). A 9s extension of314

search cost (Ours-G) by neuron games gets even better results than NASWOT and NASI for their315

extreme results.

Table 2: Comparison with the state-of-the-art methods on NAS-Bench-201.
Algorithm Search Cost CIFAR-10 CIFAR-100 ImageNet 16-120

GPU seconds Val (%) Test (%) Val (%) Test (%) Val (%) Test (%)

ResNet [8] - 90.83 93.97 70.42 70.86 44.53 43.63
Optimal - 91.61 94.37 73.49 73.51 46.77 47.31

RSPS [9] 7587 84.16 ± 1.69 87.66 ± 1.69 45.78 ± 6.33 46.60 ± 6.57 31.09 ± 5.65 30.78 ± 6.12
DARTS(1st) [12] 10890 39.77 ± 0.00 54.30 ± 0.00 15.03 ± 0.00 15.61 ± 0.00 16.43 ± 0.00 16.32 ± 0.00
DARTS(2nd) [12] 29902 39.77 ± 0.00 54.30 ± 0.00 15.03 ± 0.00 15.61 ± 0.00 16.43 ± 0.00 16.32 ± 0.00

NASWOT(N=10) [13] 3 89.14 ± 1.14 92.44 ± 1.13 68.50 ± 2.03 68.62 ± 2.04 41.09 ± 3.97 41.31 ± 4.11
NASWOT(N=100) [13] 30 89.55 ± 0.89 92.81 ± 0.99 69.35 ± 1.70 69.48 ± 1.70 42.81 ± 3.05 43.10 ± 3.16
NASWOT(N=1000) [13] 300 89.69 ± 0.73 92.96 ± 0.81 69.86 ± 1.21 69.98 ± 1.22 43.95 ± 2.05 44.44 ± 2.10
NASI(T) [22] 30 - 93.08 ± 0.24 - 69.51 ± 0.59 - 40.87 ± 0.85
NASI(4T) [22] 120 - 93.55 ± 0.10 - 71.20 ± 0.14 - 44.84 ± 1.41

Ours 3 90.03 ± 0.61 93.49 ± 0.71 70.18 ± 1.38 71.18 ± 1.41 43.83 ± 2.10 44.43 ± 2.11
Ours-G 12 90.12 ± 0.52 93.59 ± 0.67 70.54 ± 1.29 71.50 ± 1.31 45.77 ± 1.20 45.73 ± 1.21

316

4.4 Results on ImageNet with the DARTS search space317

As shown in Table 3, we report the searched results on ImageNet. The validation size of the318

observation data batch is 1024. On ImageNet, the number of classes is 1000 so a large data batch is319

necessary. Compared to NASI [22], and TE-NAS [2], our search costs are faster when p = 1. The320

larger batches for evaluation enlarge the search cost for observational data resulting in a slightly321

larger search cost when p = 0.5. Ours(p=1) gets a competitive test error rate (25.0%) in the table and322

NASI-ADA [22] gets similar result (24.8%) but NASI-ADA has a larger search cost (864s v.s. 8s).

Table 3: Comparisons with the state-of-the-art on ImageNet.

Algorithm Search Cost Test Error Params
(GPU seconds) (%) (M)

DARTS [12] 8.64×105 26.7 4.7
DARTS+PT [25] 2.94×105 25.5 4.6
DrNAS [3] 3.37×105 24.2 5.2

TE-NAS [2] 4320 26.2 5.0
TE-NAS [2] 14688 24.5 5.4
NASI-ADA [22] 864 24.8 5.2
NASI-FIX [22] 864 24.3 5.5

Ours(p=0.5) 1020 25.5 4.9
Ours(p=1) 8 25.0 5.2
Ours-G 31 24.8 5.4

323

5 Conclusion324

In this work, we interpret the zero-shot NAS as a causal representation learning and solve it by325

interventional data from one-shot NAS. Besides, our work is dedicated to displaying the inheriting326

relationship among the latent variables. We demonstrate that the neural architectures can be evaluated327

and selected by a Gaussian distribution given Gaussian inputs. Experiments on benchmark datasets328

reveal awesome efficiency and competitive accuracy.329
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