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Abstract

In prompt tuning, a prefix or suffix text is
added to the prompt, and the embeddings (soft
prompts) or token indices (hard prompts) of the
prefix/suffix are optimized to gain more control
over language models for specific tasks. This
approach eliminates the need for hand-crafted
prompt engineering or explicit model fine-
tuning. Prompt tuning is significantly more
parameter-efficient than model fine-tuning, as
it involves optimizing partial inputs of language
models to produce desired outputs.

In this work, we aim to further reduce the
amount of trainable parameters required for
a language model to perform well on specific
tasks. We propose Low-rank Prompt Tuning
(LoPT), a low-rank model for prompts that
achieves efficient prompt optimization. The
proposed method demonstrates similar out-
comes to full parameter prompt tuning while
reducing the number of trainable parameters by
a factor of 5. It also provides promising results
compared to the state-of-the-art methods that
would require 10 to 20 times more parameters.

1 Introduction

With the success of large language models (Tou-
vron et al., 2023; Achiam et al., 2023; Jiang et al.,
2023), it has become increasingly important for lan-
guage models (LMs) to handle instructions effec-
tively for customized agents and tasks. There are
three essential categories of methods to adapt pre-
trained language models to specific and customized
needs: prompt engineering, model fine-tuning, and
prompt tuning.

Prompt engineering (Brown et al., 2020; Sanh
et al., 2021; Chung et al., 2024) involves crafting
handcrafted prompts and faces the challenge of get-
ting LMs to consistently produce desired outputs
with few-shot instructions. This effort may be dif-
ficult to generalize or extend to new tasks. Model
fine-tuning (Raffel et al., 2020) can perform very

well for task-specific needs but requires explicit
fine-tuning of a significant number of model pa-
rameters, even with parameter-efficient fine-tuning
(PEFT) approaches (Liu et al., 2022; Hu et al.,
2021).

Prompt tuning (PT) (Li and Liang, 2021; Lester
et al., 2021; Wen et al., 2024; Shi et al., 2022; Shin
et al., 2020; Khashabi et al., 2021) is a promis-
ing method that lies between prompt engineering
and model fine-tuning. Instead of handcrafting
prompts, it optimizes a small number of prompt
embeddings or indices with training data and has
demonstrated capabilities comparable to those of
model fine-tuning approaches (Asai et al., 2022;
Shi and Lipani, 2023; Wang et al., 2023).

We focus on soft prompt tuning, which operates
by adding a prefix or suffix to the existing inputs
and optimizing the embeddings of this prefix or suf-
fix. The embeddings, or the soft prompt matrix, has
dimensions n x d, where n is the “tokens" length
of soft prompts, and d is the embedding size. The
soft prompt length n can be task specific to achieve
desired outcomes. For example, more sophisticated
tasks might benefit from longer soft prompts that
allow for more parameters to be optimized.

In this work, we introduce a low-rank model-
ing approach for the soft prompt matrix, which
effectively reduces the number of trainable param-
eters in prompt tuning without compromising per-
formance. We find that soft prompt matrices are in-
herently low-rank due to their dimensionality, and
we apply further dimensionality reduction through
our proposed method. We demonstrate that the
number of parameters required for tuning LMs to
meet specific task requirements can be minimal.
Additionally, the number of trainable parameters
can be easily controlled by adjusting the rank of
the soft prompt matrix.

Our approach distinguishes itself from existing
methods by directly imposing low-rank constraints
on the entire soft prompt to be trained. While recent



work (Shi and Lipani, 2023) also explores low-

rank matrices for prompt tuning, it restricts low-

rankness to the differences or updates of a frozen

baseline prompt, similar to the LoRA technique

used in model fine-tuning (Hu et al., 2021), and is

only applied to a portion of the overall soft prompt.
Our primary contributions are:

* We introduce Low-rank Prompt Tuning
(LoPT) that significantly reduces the number
of trainable parameters required in prompt
tuning.

* We achieve a 5-fold reduction in trainable pa-
rameters while maintaining performance com-
parable to the full-parameter prompt tuning.

* We demonstrate the efficacy of our method
across 5 diverse datasets, showing substantial
improvements in parameter efficiency com-
pared to existing methods.

Our proposed parameter-efficient method would
be particularly beneficial for computationally de-
manding prompt tuning needs in sophisticated tasks
and large language models.

2 Method

2.1 Problem statement

In soft prompt tuning (Lester et al., 2021), we add
a prefix or suffix to the original prompt and op-
timize the embeddings of this prefix or suffix as
trainable parameters using supervised training data
to achieve task-specific predictions.

Given a language model M with frozen network
parameters 6 and embedding matrix E € RY*¢,
where V' is the vocabulary size, d is the embedding
size, with each row of F representing a token in
the vocabulary. We optimize trainable embeddings
X € R™*? of the prefix, where n is the number
of soft tokens. The optimization problem can be
formulated as:

arg)r(nin 2 LM(X5T]:0) . wi), (1)

where L is the loss function for the task. For the
i-th training sample, I; € R**¢ denotes tokenized
embeddings of the original model input with se-
quence length ¢, and y; is the label associated with
this sample.

2.2 Our Low-Rank Prompt Tuning (LoPT)

Recent work (Lester et al., 2021; Shi and Lipani,
2023) demonstrates that prompt tuning could yield
performance comparable to parameter-efficient
model fine-tuning methods (Hu et al., 2021) with
a significantly smaller amount of learnable param-
eters. In this work, we push the boundaries by ex-
ploring parameter-efficient prompt tuning to further
reduce the number of trainable parameters without
compromising accuracy.

Because the prefix or suffix length n is often
significantly smaller that the embedding dimension
d in prompt tuning, the rank of the soft prompt
matrix X would inherently be constrained by n,
making X low-rank. The potential similarity be-
tween neighboring embeddings in a prompt could
also suggest that X is low-rank. Therefore, we
explore this potential and impose constraints on
X for dimensionality reduction and more efficient
prompt tuning.

We propose two low-rank approximations for
modeling X. The proposed methods could dras-
tically reduce the number of learnable parameters
while maintaining performance comparable to full-
parameter prompt tuning.

2.2.1 LoPT-1

For effective prompt tuning with a reduced and
adjustable number of parameters, we propose to de-
composite the low-rank prompt matrix X € R™*¢
as:

X=UV. 2)

In this formulation, U € R™*" and V € R"*¢
are the new trainable matrices. We train U and
V simultaneously, transforming the prompt tuning
optimization problem to the following:

argmin 3, L(M([UV; L];0),yi) . (3
U, v

We initialize both U and V' with uniform random
values in the range of [-0.5, 0.5] at the beginning
of training.

The number of trainable parameters is reduced
tor(n + d). As n < d, the total number of param-
eters can be significantly reduced compared to the
original nd, especially with adjustable choices of
r < n.

2.22 LoPT-2

we also introduce an empirical mapping scheme
for the low-rank approximation of X, employing



Method #Params | SST-2 AGNews
No LoPT 12.8k 92.8 91.8
LoPT-1 (ours) 2.58k 92.1 91.9
LoPT-2 (ours) 5.12k 90.9 90.0
Table 1: Accuracy (%) on the SST-2 and AGNews

validation sets compares the proposed LoPT-1 and LoPT-
2 to the baseline soft prompt tuning without low-rank
factorization (No LoPT). The language model used is
GPT-2 large with embedding dimension d = 1280, and
prompt length n = 10. We set the rank r = 2 for both
LoPT-1 and LoPT-2, and calculate the # of parameters
accordingly.

learnable linear projections and nonlinear thresh-
olding operation to achieve effects analogous to
singular value thresholding (Cai et al., 2010) and
with reduced number of parameters for optimiza-
tion. Specifically, we construct X as:

X =o(XU)V, 4)

where X, € R™*? is a random initialization of X,
U c R and V € R™? are linear projection
matrices. o(-) = max(+,0) represents the nonlin-
ear thresholding operation that filters out negative
values. Similar to LoPT-1, U and V' are randomly
initialized and optimized with function

argmin ) . L (M ([o(XoU)V; L];0),y;).

U,v
)

The number of trainable parameters becomes
2rd rather than nd. By choosing a smaller pro-
jected dimension r < n/2, we can easily reduce
redundancy in trainable parameters and improve
time and memory efficiency. It is worth noting that
for n < d, LoPT-1 is more parameter efficient than
LoPT-2.

Implementation Simplification The proposed
LoPT-2 mapping for X improves parameter effi-
ciency, and we propose a straightforward imple-
mentation. We use two linear layers for the linear
projections U and V, and apply an ELU (Clevert
et al., 2015) function for the nonlinear thresholding
operator o (-). Empirically, we found that ELU per-
forms better than ReLLU (Nair and Hinton, 2010;
Fukushima, 1969) and GELU (Hendrycks and Gim-
pel, 2016).

We demonstrate that the proposed low-rank mod-
eling and formulations yield effective parameter
reduction with promising outcomes.

3 Experiments

3.1 Experiment Setup

Datasets We evaluate the proposed method on
classification tasks using various datasets in En-
glish: the sentiment analysis task SST-2 (Socher
et al., 2013), the 4-way topic classification task
AGNews (Zhang et al., 2015), and datasets in
the SuperGLUE benchmark (Wang et al., 2019).
These include BoolQ (Clark et al., 2019), RTE
(Giampiccolo et al., 2007), WiC (Pilehvar and
Camacho-Collados, 2018), and CB (De Marneffe
et al., 2019).

Training Details The proposed low-rank factor-
izations, LoPT-1 and LoPT-2, are optimized us-
ing GPT-2 large (774M parameters, d = 1280)
(Radford et al., 2019) and T5-base (220M param-
eters, d = 768) (Raffel et al., 2020) models. We
build upon the settings in (Ding et al., 2021; Wen
et al., 2024), and optimize the prompts using the
Adafactor optimizer (Shazeer and Stern, 2018) with
a learning rate of 0.3. We apply soft prompt length
n of 10 or 20, and batch size of 8 for SuperGLUE
datasets, and 16 for other data.

We set the rank parameter r of LoPT-1 or LoPT-2
to | | for most experiments to achieve the desired
level of trainable parameter reduction. In the case
of prompt tuning without our proposed low-rank
approximations, the number of trainable parame-
ters is nd. For LoPT-1, the number of learnable
parameters is 7(n + d). For LoPT-2, the trainable
parameter amount is 2dr.

3.2 Comparisons and Results

We compare the proposed parameter efficient ap-
proaches to vanilla soft prompt tuning using the
GPT-2 large model, and evaluate their effectiveness
with SST-2 and AGNews datasets. As presented
in Table 1, LoPT-1 significantly reduces the num-
ber of trainable parameters from 12.8k to 2.58k,
while maintaining accuracy levels comparable to
full parameter prompt tuning. LoPT-2 achieves a
60% reduction in parameters and successfully pre-
serves classification accuracy for both binary and
multi-class classification tasks.

Our methods are compared against a variety of
baselines including Fine-tuning, LoRA (Hu et al.,
2021), PT (Lester et al., 2021), and DePT (Shi and
Lipani, 2023) using the T5-base model. As shown
in Table 2, LoPT-1 and LoPT-2 demonstrate promis-
ing performance, achieving reductions in trainable
parameters by factors of 20 and 10, respectively.



Method #Params | SST-2 BoolQ RTE WiC CB
Fine-tuning' 220M 94.6 81.1 719 702 85.7
LoRA? 3.8M 94.3 81.3 755 683 929
PT3 76.8k 91.9 63.7 788 50.8 679
DePT3 76.8k 94.2 79.3 79.1 68.7 929
LoPT-1 (ours) 3.94k 92.9 76.5 73.8 551 904
LoPT-2 (ours) 7.68k 92.4 75.5 743 627 74.0

Table 2: Accuracy (%) on the SST-2 and SuperGLUE benchmarks for classification tasks. The language model
is T5-Base with embedding dimension d = 768. We set the rank 7 = 5 and soft prompt length n = 20 for both
LoPT-1 and LoPT-2. Comparisons including Fine—tuning' from (Asai et al., 2022), LoRA? from (Sung et al., 2022),

PT? and DePT? are from (Shi and Lipani, 2023).

Length Rank A #Params SST-2
n =10 No LoPT - 92.8
r=1 -89.92% 90.5
n=10 r=2 -79.84% 92.1
r=2>5 -49.61% 92.1
r=1 -89.84% 91.4
n=20 r=2 -79.69% 92.8
r=2>5 -49.22% 92.9
r=1 -89.77% 90.9
n=30 r=2 -79.53% 922
r=>5 -48.83% 92.1
Table 3: Ablation study on LoPT-1: We evaluated

various combinations of prompt length n and rank r
using the SST-2 dataset and the GPT-2 large model. The
numbers of trainable parameters are compared to the
baseline prompt tuning, which has a fixed n = 10 and
no low-rank approximations. The parameter reduction
rate is represented by A # Params. LoPT-1 with n = 20
and » = 5 achieves the highest accuracy (%).

This marks a significant efficiency improvement
over existing prompt tuning approaches, which are
already noted for their high parameter efficiency.

It is noteworthy that LoPT-1 outperforms LoPT-
2 on the CB dataset, while LoPT-2 excels over
LoPT-1 on the WiC dataset. This suggests that
both approaches could be strategically exploited to
tailor the desired low-rank formation for optimal
performance on specific tasks.

3.3 Ablation Study

Using the SST-2 task and the GPT-2 large model,
Table 3 presents the accuracy of LoPT-1 with vary-
ing prompt lengths n and ranks 7 for the low-rank
factorization. We observe that an increased prompt
length does not necessarily lead to improved out-
comes, and the combination of n = 20 withr = 5
or r = 2 yield the highest accuracy. Given that

n 1s much smaller than d, the number of trainable
parameters is primarily controlled by the rank pa-
rameter 7 in LoPT, which can be easily adjusted to
achieve parameter reduction.

3.4 Limitations

This work relies on the low-rank hypothesis and
may not be effective when the prompt matrix is
not low-rank. Regarding the performance of the
proposed methods, further improvements could be
achieved through hyper-parameter tuning.

4 Conclusion

In this work, we propose Low-rank Prompt Tun-
ing (LoPT), a low-rank formulation of prompts
that significantly reduces the number of trainable
parameters for parameter-efficient prompt tuning
of language models. We demonstrate that LoPT
can decrease the number of trainable parameters
by a factor of 10 or 20 while achieving promising
performance across various datasets.

The proposed parameter-efficient method could
be particularly beneficial for sophisticated tasks
and large language models, where longer soft
prompts are increasingly important for effective
prompt tuning.
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