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Abstract

In prompt tuning, a prefix or suffix text is001
added to the prompt, and the embeddings (soft002
prompts) or token indices (hard prompts) of the003
prefix/suffix are optimized to gain more control004
over language models for specific tasks. This005
approach eliminates the need for hand-crafted006
prompt engineering or explicit model fine-007
tuning. Prompt tuning is significantly more008
parameter-efficient than model fine-tuning, as009
it involves optimizing partial inputs of language010
models to produce desired outputs.011

In this work, we aim to further reduce the012
amount of trainable parameters required for013
a language model to perform well on specific014
tasks. We propose Low-rank Prompt Tuning015
(LoPT), a low-rank model for prompts that016
achieves efficient prompt optimization. The017
proposed method demonstrates similar out-018
comes to full parameter prompt tuning while019
reducing the number of trainable parameters by020
a factor of 5. It also provides promising results021
compared to the state-of-the-art methods that022
would require 10 to 20 times more parameters.023

1 Introduction024

With the success of large language models (Tou-025

vron et al., 2023; Achiam et al., 2023; Jiang et al.,026

2023), it has become increasingly important for lan-027

guage models (LMs) to handle instructions effec-028

tively for customized agents and tasks. There are029

three essential categories of methods to adapt pre-030

trained language models to specific and customized031

needs: prompt engineering, model fine-tuning, and032

prompt tuning.033

Prompt engineering (Brown et al., 2020; Sanh034

et al., 2021; Chung et al., 2024) involves crafting035

handcrafted prompts and faces the challenge of get-036

ting LMs to consistently produce desired outputs037

with few-shot instructions. This effort may be dif-038

ficult to generalize or extend to new tasks. Model039

fine-tuning (Raffel et al., 2020) can perform very040

well for task-specific needs but requires explicit 041

fine-tuning of a significant number of model pa- 042

rameters, even with parameter-efficient fine-tuning 043

(PEFT) approaches (Liu et al., 2022; Hu et al., 044

2021). 045

Prompt tuning (PT) (Li and Liang, 2021; Lester 046

et al., 2021; Wen et al., 2024; Shi et al., 2022; Shin 047

et al., 2020; Khashabi et al., 2021) is a promis- 048

ing method that lies between prompt engineering 049

and model fine-tuning. Instead of handcrafting 050

prompts, it optimizes a small number of prompt 051

embeddings or indices with training data and has 052

demonstrated capabilities comparable to those of 053

model fine-tuning approaches (Asai et al., 2022; 054

Shi and Lipani, 2023; Wang et al., 2023). 055

We focus on soft prompt tuning, which operates 056

by adding a prefix or suffix to the existing inputs 057

and optimizing the embeddings of this prefix or suf- 058

fix. The embeddings, or the soft prompt matrix, has 059

dimensions n× d, where n is the “tokens" length 060

of soft prompts, and d is the embedding size. The 061

soft prompt length n can be task specific to achieve 062

desired outcomes. For example, more sophisticated 063

tasks might benefit from longer soft prompts that 064

allow for more parameters to be optimized. 065

In this work, we introduce a low-rank model- 066

ing approach for the soft prompt matrix, which 067

effectively reduces the number of trainable param- 068

eters in prompt tuning without compromising per- 069

formance. We find that soft prompt matrices are in- 070

herently low-rank due to their dimensionality, and 071

we apply further dimensionality reduction through 072

our proposed method. We demonstrate that the 073

number of parameters required for tuning LMs to 074

meet specific task requirements can be minimal. 075

Additionally, the number of trainable parameters 076

can be easily controlled by adjusting the rank of 077

the soft prompt matrix. 078

Our approach distinguishes itself from existing 079

methods by directly imposing low-rank constraints 080

on the entire soft prompt to be trained. While recent 081
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work (Shi and Lipani, 2023) also explores low-082

rank matrices for prompt tuning, it restricts low-083

rankness to the differences or updates of a frozen084

baseline prompt, similar to the LoRA technique085

used in model fine-tuning (Hu et al., 2021), and is086

only applied to a portion of the overall soft prompt.087

Our primary contributions are:088

• We introduce Low-rank Prompt Tuning089

(LoPT) that significantly reduces the number090

of trainable parameters required in prompt091

tuning.092

• We achieve a 5-fold reduction in trainable pa-093

rameters while maintaining performance com-094

parable to the full-parameter prompt tuning.095

• We demonstrate the efficacy of our method096

across 5 diverse datasets, showing substantial097

improvements in parameter efficiency com-098

pared to existing methods.099

Our proposed parameter-efficient method would100

be particularly beneficial for computationally de-101

manding prompt tuning needs in sophisticated tasks102

and large language models.103

2 Method104

2.1 Problem statement105

In soft prompt tuning (Lester et al., 2021), we add106

a prefix or suffix to the original prompt and op-107

timize the embeddings of this prefix or suffix as108

trainable parameters using supervised training data109

to achieve task-specific predictions.110

Given a language model M with frozen network111

parameters θ and embedding matrix E ∈ RV×d,112

where V is the vocabulary size, d is the embedding113

size, with each row of E representing a token in114

the vocabulary. We optimize trainable embeddings115

X ∈ Rn×d of the prefix, where n is the number116

of soft tokens. The optimization problem can be117

formulated as:118

arg min
X

∑
i L (M ([X; Ii] ;θ) ,yi) , (1)119

where L is the loss function for the task. For the120

i-th training sample, Ii ∈ Rt×d denotes tokenized121

embeddings of the original model input with se-122

quence length t, and yi is the label associated with123

this sample.124

2.2 Our Low-Rank Prompt Tuning (LoPT) 125

Recent work (Lester et al., 2021; Shi and Lipani, 126

2023) demonstrates that prompt tuning could yield 127

performance comparable to parameter-efficient 128

model fine-tuning methods (Hu et al., 2021) with 129

a significantly smaller amount of learnable param- 130

eters. In this work, we push the boundaries by ex- 131

ploring parameter-efficient prompt tuning to further 132

reduce the number of trainable parameters without 133

compromising accuracy. 134

Because the prefix or suffix length n is often 135

significantly smaller that the embedding dimension 136

d in prompt tuning, the rank of the soft prompt 137

matrix X would inherently be constrained by n, 138

making X low-rank. The potential similarity be- 139

tween neighboring embeddings in a prompt could 140

also suggest that X is low-rank. Therefore, we 141

explore this potential and impose constraints on 142

X for dimensionality reduction and more efficient 143

prompt tuning. 144

We propose two low-rank approximations for 145

modeling X . The proposed methods could dras- 146

tically reduce the number of learnable parameters 147

while maintaining performance comparable to full- 148

parameter prompt tuning. 149

2.2.1 LoPT-1 150

For effective prompt tuning with a reduced and 151

adjustable number of parameters, we propose to de- 152

composite the low-rank prompt matrix X ∈ Rn×d 153

as: 154

X = UV . (2) 155

In this formulation, U ∈ Rn×r and V ∈ Rr×d 156

are the new trainable matrices. We train U and 157

V simultaneously, transforming the prompt tuning 158

optimization problem to the following: 159

arg min
U ,V

∑
i L (M ([UV ; Ii] ;θ) ,yi) . (3) 160

We initialize both U and V with uniform random 161

values in the range of [-0.5, 0.5] at the beginning 162

of training. 163

The number of trainable parameters is reduced 164

to r(n+ d). As n ≪ d, the total number of param- 165

eters can be significantly reduced compared to the 166

original nd, especially with adjustable choices of 167

r < n. 168

2.2.2 LoPT-2 169

we also introduce an empirical mapping scheme 170

for the low-rank approximation of X , employing 171
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Method # Params SST-2 AGNews
No LoPT 12.8k 92.8 91.8
LoPT-1 (ours) 2.58k 92.1 91.9
LoPT-2 (ours) 5.12k 90.9 90.0

Table 1: Accuracy (%) on the SST-2 and AGNews
validation sets compares the proposed LoPT-1 and LoPT-
2 to the baseline soft prompt tuning without low-rank
factorization (No LoPT). The language model used is
GPT-2 large with embedding dimension d = 1280, and
prompt length n = 10. We set the rank r = 2 for both
LoPT-1 and LoPT-2, and calculate the # of parameters
accordingly.

learnable linear projections and nonlinear thresh-172

olding operation to achieve effects analogous to173

singular value thresholding (Cai et al., 2010) and174

with reduced number of parameters for optimiza-175

tion. Specifically, we construct X as:176

X = σ(X0U)V , (4)177

where X0 ∈ Rn×d is a random initialization of X ,178

U ∈ Rd×r and V ∈ Rr×d are linear projection179

matrices. σ(·) = max(·, 0) represents the nonlin-180

ear thresholding operation that filters out negative181

values. Similar to LoPT-1, U and V are randomly182

initialized and optimized with function183

arg min
U ,V

∑
i L (M ([σ(X0U)V ; Ii] ;θ) ,yi) .

(5)184

The number of trainable parameters becomes185

2rd rather than nd. By choosing a smaller pro-186

jected dimension r < n/2, we can easily reduce187

redundancy in trainable parameters and improve188

time and memory efficiency. It is worth noting that189

for n ≪ d, LoPT-1 is more parameter efficient than190

LoPT-2.191

Implementation Simplification The proposed192

LoPT-2 mapping for X improves parameter effi-193

ciency, and we propose a straightforward imple-194

mentation. We use two linear layers for the linear195

projections U and V , and apply an ELU (Clevert196

et al., 2015) function for the nonlinear thresholding197

operator σ(·). Empirically, we found that ELU per-198

forms better than ReLU (Nair and Hinton, 2010;199

Fukushima, 1969) and GELU (Hendrycks and Gim-200

pel, 2016).201

We demonstrate that the proposed low-rank mod-202

eling and formulations yield effective parameter203

reduction with promising outcomes.204

3 Experiments 205

3.1 Experiment Setup 206

Datasets We evaluate the proposed method on 207

classification tasks using various datasets in En- 208

glish: the sentiment analysis task SST-2 (Socher 209

et al., 2013), the 4-way topic classification task 210

AGNews (Zhang et al., 2015), and datasets in 211

the SuperGLUE benchmark (Wang et al., 2019). 212

These include BoolQ (Clark et al., 2019), RTE 213

(Giampiccolo et al., 2007), WiC (Pilehvar and 214

Camacho-Collados, 2018), and CB (De Marneffe 215

et al., 2019). 216

Training Details The proposed low-rank factor- 217

izations, LoPT-1 and LoPT-2, are optimized us- 218

ing GPT-2 large (774M parameters, d = 1280) 219

(Radford et al., 2019) and T5-base (220M param- 220

eters, d = 768) (Raffel et al., 2020) models. We 221

build upon the settings in (Ding et al., 2021; Wen 222

et al., 2024), and optimize the prompts using the 223

Adafactor optimizer (Shazeer and Stern, 2018) with 224

a learning rate of 0.3. We apply soft prompt length 225

n of 10 or 20, and batch size of 8 for SuperGLUE 226

datasets, and 16 for other data. 227

We set the rank parameter r of LoPT-1 or LoPT-2 228

to ⌊n4 ⌋ for most experiments to achieve the desired 229

level of trainable parameter reduction. In the case 230

of prompt tuning without our proposed low-rank 231

approximations, the number of trainable parame- 232

ters is nd. For LoPT-1, the number of learnable 233

parameters is r(n+ d). For LoPT-2, the trainable 234

parameter amount is 2dr. 235

3.2 Comparisons and Results 236

We compare the proposed parameter efficient ap- 237

proaches to vanilla soft prompt tuning using the 238

GPT-2 large model, and evaluate their effectiveness 239

with SST-2 and AGNews datasets. As presented 240

in Table 1, LoPT-1 significantly reduces the num- 241

ber of trainable parameters from 12.8k to 2.58k, 242

while maintaining accuracy levels comparable to 243

full parameter prompt tuning. LoPT-2 achieves a 244

60% reduction in parameters and successfully pre- 245

serves classification accuracy for both binary and 246

multi-class classification tasks. 247

Our methods are compared against a variety of 248

baselines including Fine-tuning, LoRA (Hu et al., 249

2021), PT (Lester et al., 2021), and DePT (Shi and 250

Lipani, 2023) using the T5-base model. As shown 251

in Table 2, LoPT-1 and LoPT-2 demonstrate promis- 252

ing performance, achieving reductions in trainable 253

parameters by factors of 20 and 10, respectively. 254
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Method # Params SST-2 BoolQ RTE WiC CB
Fine-tuning1 220M 94.6 81.1 71.9 70.2 85.7
LoRA2 3.8M 94.3 81.3 75.5 68.3 92.9
PT3 76.8k 91.9 63.7 78.8 50.8 67.9
DePT3 76.8k 94.2 79.3 79.1 68.7 92.9
LoPT-1 (ours) 3.94k 92.9 76.5 73.8 55.1 90.4
LoPT-2 (ours) 7.68k 92.4 75.5 74.3 62.7 74.0

Table 2: Accuracy (%) on the SST-2 and SuperGLUE benchmarks for classification tasks. The language model
is T5-Base with embedding dimension d = 768. We set the rank r = 5 and soft prompt length n = 20 for both
LoPT-1 and LoPT-2. Comparisons including Fine-tuning1 from (Asai et al., 2022), LoRA2 from (Sung et al., 2022),
PT3 and DePT3 are from (Shi and Lipani, 2023).

Length Rank ∆ # Params SST-2
n = 10 No LoPT - 92.8

n = 10
r = 1 -89.92% 90.5
r = 2 -79.84% 92.1
r = 5 -49.61% 92.1

n = 20
r = 1 -89.84% 91.4
r = 2 -79.69% 92.8
r = 5 -49.22% 92.9

n = 30
r = 1 -89.77% 90.9
r = 2 -79.53% 92.2
r = 5 -48.83% 92.1

Table 3: Ablation study on LoPT-1: We evaluated
various combinations of prompt length n and rank r
using the SST-2 dataset and the GPT-2 large model. The
numbers of trainable parameters are compared to the
baseline prompt tuning, which has a fixed n = 10 and
no low-rank approximations. The parameter reduction
rate is represented by ∆ # Params. LoPT-1 with n = 20
and r = 5 achieves the highest accuracy (%).

This marks a significant efficiency improvement255

over existing prompt tuning approaches, which are256

already noted for their high parameter efficiency.257

It is noteworthy that LoPT-1 outperforms LoPT-258

2 on the CB dataset, while LoPT-2 excels over259

LoPT-1 on the WiC dataset. This suggests that260

both approaches could be strategically exploited to261

tailor the desired low-rank formation for optimal262

performance on specific tasks.263

3.3 Ablation Study264

Using the SST-2 task and the GPT-2 large model,265

Table 3 presents the accuracy of LoPT-1 with vary-266

ing prompt lengths n and ranks r for the low-rank267

factorization. We observe that an increased prompt268

length does not necessarily lead to improved out-269

comes, and the combination of n = 20 with r = 5270

or r = 2 yield the highest accuracy. Given that271

n is much smaller than d, the number of trainable 272

parameters is primarily controlled by the rank pa- 273

rameter r in LoPT, which can be easily adjusted to 274

achieve parameter reduction. 275

3.4 Limitations 276

This work relies on the low-rank hypothesis and 277

may not be effective when the prompt matrix is 278

not low-rank. Regarding the performance of the 279

proposed methods, further improvements could be 280

achieved through hyper-parameter tuning. 281

4 Conclusion 282

In this work, we propose Low-rank Prompt Tun- 283

ing (LoPT), a low-rank formulation of prompts 284

that significantly reduces the number of trainable 285

parameters for parameter-efficient prompt tuning 286

of language models. We demonstrate that LoPT 287

can decrease the number of trainable parameters 288

by a factor of 10 or 20 while achieving promising 289

performance across various datasets. 290

The proposed parameter-efficient method could 291

be particularly beneficial for sophisticated tasks 292

and large language models, where longer soft 293

prompts are increasingly important for effective 294

prompt tuning. 295
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