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ABSTRACT

We introduce and study the problem of consistent low-rank approximation, in
which rows of an input matrix A € R™*? arrive sequentially and the goal is to
provide a sequence of subspaces that well-approximate the optimal rank-k approx-
imation to the submatrix A(*) that has arrived at each time ¢, while minimizing
the recourse, i.e., the overall change in the sequence of solutions. We first show
that when the goal is to achieve a low-rank cost within an additive ¢ - [|A(* ||2
factor of the optimal cost, roughly O (E 1og(nd)) recourse is feasible. For the
more challenging goal of achieving a relative (1 + ¢)-multiplicative approxima-
t10n of the optimal rank-k cost, we show that a 51mple upper bound in this setting

1s - poly log(nd) - poly log(nd) for
1nteger-bounded matrices and = - poly log(nd) for data streams with polynomial
online condition number. We also show that (2 (f log %) recourse is necessary
for any algorithm that maintains a multiplicative (1 + £)-approximation to the
optimal low-rank cost, even if the full input is known in advance. Finally, we per-
form a number of empirical evaluations to complement our theoretical guarantees,
demonstrating the efficacy of our algorithms in practice.

1 INTRODUCTION

Low-rank approximation is a fundamental technique that is frequently used in machine learning,
data science, and statistics to identify important structural information from large datasets. Given
an input matrix A € R™*¢ consisting of n observations across d features, the goal of low-rank
approximation is to decompose A into a combination of £ independent latent variables called factors.
We represent these factors by matrices U € R"** and V € R¥*?, 5o that the product UV should be
an “accurate” representation of the original dataset A. Formally, we want to minimize the quantity
mingegnxk yverrxa LUV — A), where £ denotes any predetermined loss function chosen for its
specific properties. Though there is a variety of standard metrics, such as subspace alignment angles
or peak signal-to-noise ratio (PSNR), in this paper we focus on Frobenius loss, which is perhaps
the most common loss function, due to its connection with least squares regression. As a result, the
problem is equivalent to finding the right factor matrix V € R**< of orthonormal rows to minimize
the quantity |[A — AV TV||Z, in which case the optimal left factor matrix is U = AV T.

The rank parameter k is generally chosen based on the complexity of the underlying model chosen
to fit the data. The identification and subsequent utilization of the factors can often decrease the
number of relevant features in an observation and thus simultaneously improve interpretability and
decrease dimensionality. In particular, low-rank approximation facilitates using the factors U and
V to approximately represent the original dataset A, thus using only (n + d)k parameters in the
representation rather than the original nd entries of A. Thereafter, given a vector x € R%, we
can compute the matrix-vector product UVx as an approximation to Ax in time (n + d)k. By
contrast, computing Ax requires nd time. As a result of these advantages and more, low-rank
approximation is one of the most common tools, with applications in recommendation systems,
mathematical modeling, predictive analytics, dimensionality reduction, computer vision, and natural
language processing.

Data streams. The streaming model of computation has emerged as a popular setting for analyzing
large evolving datasets, such as database logs generated from commercial transactions, financial
markets, Internet of Things (IoT) devices, scientific observations, social network correspondences,
or virtual traffic measurements. In the row-arrival model, each stream update provides an additional



observation, i.e., an additional matrix row a; € R% of the ultimate input A € R™*4 for low-rank
approximation. Often, downstream decisions and policies must be determined with uncertainty
about future inputs. That is, the input may be revealed in a data stream and practitioners may be
required to make irrevocable choices at time ¢ € [n], given only the dataset A®) =ao0... 0a
consisting of the first ¢ data point observations. A prototypical example is the setting of online
caching/paging algorithms (Fiat et al., 1991; Irani, 1996), which must choose to keep or evict items
in the cache at every time step. This generalizes to the k-server problem for penalties that are
captured by metric spaces (Manasse et al., 1990; Bansal et al., 2015; Bubeck et al., 2023).

Consistency. Although irrevocable decisions are theoretically interesting in the context of online
algorithms, such a restriction may be overly stringent for many practical settings. Lattanzi & Vassil-
vitskii (2017) notes that in the earlier setting of caching and paging, a load balancer that receives on-
line requests for assignment to different machines can simply reassign some of the past tasks to other
machines to increase overall performance if necessary. Moreover, the ability of algorithms to adjust
previous decisions based on updated information allows for a richer understanding of the structure
of the underlying problem beyond the impossibility barriers of online algorithms. On the other hand,
such adjustments have downstream ramifications to applications that rely on the decisions/policies
resulting from the algorithm. Therefore, the related notions of consistency and recourse were de-
fined to quantify the cumulative number of changes to the output solution of an algorithm over time.
Low-recourse online algorithms have been well-studied for a number of problems (Gupta & Ku-
mar, 2014; Gupta et al., 2014; Lacki et al., 2015; Gu et al., 2016; Megow et al., 2016; Gupta &
Levin, 2020; Bhattacharya et al., 2023), while consistent clustering and facility location have re-
cently received considerable attention (Lattanzi & Vassilvitskii, 2017; Cohen-Addad et al., 2019;
Fichtenberger et al., 2021; Lacki () et al., 2023). In a standard scenario in feature engineering, low-
rank approximation algorithms are used to select specific features or linear combinations of features,
on which models are trained. Thus, large consistency costs correspond to expensive retrainings of
whole large-scale machine learning systems (Lattanzi & Vassilvitskii, 2017), due to different sets of
features being passed to the learner.

Building on the notion of consistency, we formalize the problem of consistent low-rank approxima-
tion, which captures the need for online algorithms that adapt to evolving data while keeping their
outputs stable for downstream use. As discussed above, low-rank approximation is widely used for
feature engineering: the factors produced define the feature subspace on which downstream models
are trained. In dynamic settings, high recourse can cause these features to change abruptly even
under minor updates, triggering frequent and costly retraining of large-scale models (Lattanzi &
Vassilvitskii, 2017). Consistent, low-recourse LRA algorithms maintain feature stability over time,
reducing retraining costs and improving reliability.

The importance of stability extends across many practical domains. In biometrics, consistent low-
dimensional representations of fingerprints or iris patterns are crucial for maintaining reliable iden-
tification (Jain et al., 2004). In image processing, tasks such as object detection, handwriting recog-
nition, and facial recognition depend on derived features that should not fluctuate unpredictably as
new data arrives (Nixon & Aguado, 2012). In data compression and signal processing, stable re-
duced representations preserve essential structure while controlling noise (Witten & Frank, 2002;
Proakis, 2007). In text mining and information retrieval, numerical features such as TF-IDF vectors
or embeddings must remain coherent to maintain the quality of search and classification (Aggar-
wal & Aggarwal, 2015; Schiitze et al., 2008). Even in large-scale data curation for foundation
models—where clustering, a constrained form of low-rank approximation, is used to deduplicate
data—high recourse leads to unstable representative sets and repeated retraining of models (Lacki
@® etal., 2023).

Across these settings, the underlying principle is consistent: downstream systems rely not only on
the quality of the approximation but also on the stability of the feature representations over time.
By explicitly accounting for this need, consistent low-rank approximation provides solutions that
evolve smoothly while maintaining strong accuracy guarantees, delivering both theoretical insight
and concrete practical benefits in dynamic, real-world pipelines.

1.1 OUR CONTRIBUTIONS

In this paper, we initiate the study of consistent low-rank approximation.



Formal model. Given an accuracy parameter € > 0, our goal is to provide a (1 + ¢)-approximation
to low-rank approximation at all times. We assume the input is a matrix A € R™*?, whose rows
ai,...,a, arrive sequentially, so that at each time ¢, the algorithm only has access to A(*), the first
t rows of A. That is, the goal of the algorithm is firstly to output a set V(*) € RF*? of k factors at
each time ¢ € [n], so that

[A® — AOVOYTVE 2 < (1 4¢)-OPT,,

where OPT,; is the cost of the optimal low-rank approximation at time t, OPT, =
miny cprxa [|A® — AOV TV, In other words, we want the low-rank cost induced by the factor
V®) returned by the algorithm to closely capture the optimal low-rank approximation. Secondly,
we would like the sequence V(1) ... V(") of factors to change minimally over time. Specifically,
the goal of the algorithm is to minimize 3"}, Recourse(V®), V{{=1) where Recourse(R, T) =
|Pr —Pr||% is the squared subspace distance between the orthogonal projection matrices Pr, P
of the two subspaces.

We remark on our choice of the cost function Recourse(R, T) for factors R and T. At first glance,
a natural setting of the cost function may be the number of vectors that are different between R and
T, since in some sense it captures the change between R and T. However, it should be observed
that even if there is a unique rank k subspace V that minimizes the low-rank approximation cost
|A — AV T V|2, there may be many representations of V, up to any arbitrary rotation of the basis
vectors within the subspace. Thus, a cost function sensitive to the choice of basis vectors may not
be appropriate because a large change in the change of basis vectors may not result in any change
in the resulting projection AV " V. This implies that a reasonable cost function should capture the
difference in the spaces spanned by the subspaces R and T. For example, the dimension of the
subspace of T that is orthogonal to R would be an appropriate quantity. However, it should be
noted that this quantity still punishes a subspace T that is a small perturbation of R, for example if
R is the elementary vector (0, 1) and T is the vector (¢,v/1 — £2) for arbitrarily small e. A more
robust quantity would be a continuous analogue of the dimension, which is the squared mass of
the projection of T away from R; this quantity corresponds exactly to our cost function Recourse.
Thus, we believe that our choice of the consistency cost function is quite natural.

We note that we can further assume that the input matrix A has integer entries bounded in magnitude
by some parameter M. We remark that this assumption is standard in numerical linear algebra
because in general it is difficult to represent real numbers up to arbitrary precision in the input of
the algorithm. Instead, for inputs that are rational, after appropriate scaling each entry of the input
matrix can be written as an integer. Thus, this standard assumption can model the number of bits
used to encode each entry of the matrix, without loss of generality.

Theoretical results. We first note that the optimal low-rank approximation can completely change
at every step, in the sense that the optimal subspace V(*~1) at time ¢ — 1 may still have dimension
k after being projected onto the optimal subspace V(). Thus, to achieve optimality, it may be
possible that Q(nk) recourse could be necessary, i.e., by recomputing the best k factors after the
arrival of each of the n rows. Nevertheless, on the positive side, we first show sublinear recourse
can be achieved if the goal is to simply achieve an additive < - || A(*)||2. additive error to the low-rank
approximation cost at all times.

Theorem 1.1. Suppose A € Z"*% is an integer matrix with rank r > k and entries bounded in
magnitude by M and let A®) denote the first t rows of A, for any t € [n]. There exists an algorithm
that achieves ¢ - | A" ||%.-additive approximation to the cost of the optimal low-rank approximation
A at all times and achieves recourse O (£ log(ndM)).

We remark that the algorithm corresponding to Theorem 1.1 uses % - polylog(ndM) bits of space

and d - poly (k, %, log(ndM )) amortized update time. Since the squared Frobenius norm is an
upper bound on the optimal low-rank approximation cost, achieving additive ¢ - || A |2 error to the
optimal cost is significantly easier than achieving relative (1 + ¢)-multiplicative error, particularly
in the case where the top singular vectors correspond to large singular values. In fact, we can even

achieve recourse linear in k if the online condition number of the stream is at most poly(n):
Theorem 1.2. Given a stream with online condition number poly(n), there exists an algorithm that
achieves a (1 + €)-approximation for low-rank approximation, and uses recourse O (E% 10g3 n)



We remark that for streams with online condition number poly(n), we actually show a stronger result
in Lemma 2.1. In particular, we show that the optimal rank-k subspace changes by only a constant
amount after rank-one perturbations corresponding to single-entry changes, row modifications, row
insertions, and row deletions. Thus this result implies Theorem 1.2 using standard techniques for
reducing the “effective” stream length and in fact, also immediately gives an algorithm that maintains
the optimal rank-k approximation under any sequence of such updates while incurring only O (n)
total recourse over a stream of n operations. Hence, our approach can handle explicit distributional
shifts arising in insertion—deletion streams; extending this ability to handle implicit deletions such as
in the sliding window model (Datar et al., 2002; Braverman & Ostrovsky, 2007) is a natural direction
for future work.

For standard matrices with integer entries bounded by poly(n), however, the assumption that the
online condition number is bounded by poly(n) may not hold. For example, it is known that there
exist integer matrices with dimension n x d but optimal low-rank cost as small as exp(—(k)). To
that end, we first observe that a simple application of a result by Braverman et al. (2020) can be used
to achieve recourse ’g—z - polylog(ndM) while maintaining a (1 + ¢)-multiplicative approximation at
all times. Indeed, for constant €, roughly % - polylog(ndM) rows can be sampled through a process
known as online ridge-leverage score sampling, to preserve the low-rank approximation at all times.
Then for quadratic recourse, it suffices to recompute the top right k singular vectors for the sampled
submatrix each time a new row is sampled. A natural question is whether Q(k) recourse is necessary
for each step, i.e., whether recomputing the top right & singular vectors is necessary. We show this
is not the case, and that overall the recourse can be made sub-quadratic.

Theorem 1.3. Suppose A € Z"*? is an integer matrix with entries bounded in magnitude by M.
There exists an algorithm that achieves a (1 + &)-approximation to the cost of the optimal low-rank

K2 polylog(ndM).

£2

approximation A at all times and achieves recourse

We again remark that the algorithm corresponding to Theorem 1.3 uses % - polylog(ndM) bits
of space and d - poly (k, L,log(ndM)) amortized update time. Finally, we show that 2 (£ log %)

s e
recourse is necessary for any multiplicative (1 + €)-approximation algorithm for low-rank approxi-
mation, even if the full input is known in advance.

logn

Theorem 1.4. For any parameter £ > , there exists a sequence of rows X1, ...,X, € R?
such that any algorithm that produces a (1 + €)-approximation to the cost of the optimal low-rank
approximation at all times must have consistency cost () (f log %)

Empirical evaluations. We complement our theoretical results with a number of empirical evalua-
tions in Section 4. Our results show that although our formal guarantees provide a worst-case analy-
sis of the approximation cost of the low-rank solution output by our algorithm, the performance can
be even (much) better in practice. Importantly, our results show that algorithms for online low-rank
approximation such as Frequent Directions (Ghashami et al., 2016) do not achieve good recourse,
motivating the study of algorithms specifically designed for consistent low-rank approximation.

Organization of the paper. We give the linear recourse algorithms in Section 2 and conduct em-
pirical evaluations in Section 4 and Appendix G. We give our result for integer-valued matrices in
Section 3. We defer all proofs to the full appendix, and specifically the lower bound to Appendix D.
The reader may also find it helpful to consult Appendix A for standard notation and additional
preliminaries used in our paper.

1.2 RELATED WORK

In this section, we briefly describe a number of existing techniques in closely related models and
provide intuition on why they do not suffice for our setting.

Frequent directions and online ridge leverage score sampling. The most natural approach would
be to apply existing algorithms from the streaming literature for low-rank approximation. The two
most related works are the deterministic Frequent Directions work by Ghashami et al. (2016) and
the (online) ridge leverage score sampling procedure popularized by Cohen et al. (2017); Braverman
et al. (2020). Both procedures maintain a small number of rows that capture the “important” direc-
tions of the matrix at all times. Hence to report a near-optimal rank-% approximation at each time,
these algorithms simply return the top k right singular vectors of the singular value decomposition



of the matrix stored by each algorithm. However, one could easily envision a situation in which the
k-th and (k + 1)-th largest singular vectors repeatedly alternate, incurring recourse at each step. For
example, suppose k£ = 1 and at all times 2¢ for integral ¢ > 0, the top singular vectors are (2t,0)
and (0, 2t — €), but at all times 2¢ + 1 for integral ¢ > 0, the top singular vectors are (2t + 1 — ,0)
and (0,2t + 1). Then at all times 2t, the best rank-k solution for & = 1 would be the elementary
vector e; while at all times 2¢ + 1, the best rank-% solution would be the elementary vector e,.
These algorithms would incur recourse n, whereas even an algorithm that never changes the initial
vector e would incur recourse 0. Thus, these algorithms seem to fail catastrophically, i.e., not even
provide a poly(n)-multiplicative approximation to the recourse, even for simple inputs.

One may observe that our goal is to only upper bound the total recourse, rather than to achieve
a multiplicative approximation to the recourse. Indeed for this purpose, the online ridge leverage
sampling technique provides some gain. In particular, Braverman et al. (2020) showed that over the
entirety of the stream, at most % - polylog (n, d, 1) rows will be sampled into the sketch matrix in
total, and moreover the sketch matrix will accurately capture the residual for the projection onto any
subspace of dimension k. Thus to achieve O (kz) recourse, it suffices to simply recompute the top-%
singular vectors each time a new row is sampled by the online ridge leverage sampling procedure.

Singular value decomposition. Note that the previous example also shows that more generally, it
does not suffice to simply output the top-k right singular vectors of the singular value decomposition
(SVD). However, one might hope that it suffices to replace just a single direction in the SVD each
time a row is sampled into the sketch matrix by online ridge leverage score sampling. Unfortu-
nately, it seems possible that an approximately optimal solution from a previous step could require
all k factors to be replaced by the arrival of a single row. Suppose for example, that the factor V(1)
consisting of the elementary vectors e, 1, . . . , €25 achieves the same loss as the factor V@ consist-
ing of the elementary vectors eq, . .., e;. Now if the next row is non-zero exactly in the coordinates
1,...,k, then the top k space could change entirely, from V(! to V(2), While this worst-case input
is unavoidable, we show this can only happen a small number of times. It is more problematic when
only one of these factors drastically change, while the other k£ — 1 factors only change by a little,
but we still output & completely new factors. Our algorithm avoids this by carefully choosing the
factors to replace based on casework on the corresponding singular values.

2 SIMPLE ALGORITHMS WITH OPTIMAL RECOURSE

In this section, we briefly describe two simple algorithms that achieve recourse linear in k.

Additive error. The first algorithm roughly O (g log n) recourse when the goal is to maintain an
additive ¢ - || A(®)||2 error at all times ¢ € [n], where A(*) is the ¢ rows of matrix A that have arrived
at time ¢. We simply track the squared Frobenius norm of the matrix A (*) at all times. For each time
the squared Frobenius norm has increased by a factor of (1 + ¢), then we recompute the singular

value decomposition of A(*) and choose V* to be the top % right singular vectors of A®). For all
other times, we maintain the same set of factors.

The main intuition is that each time we reset V), we find the optimal solution at time t. Over
the next few steps after ¢, our solution will degrade, but the most it can degrade by is the squared
Frobenius norm of the submatrix formed by the incoming rows. Thus as long as this quantity is
less than an e-fraction of the squared Frobenius norm of the entire matrix, then our correctness
guarantee will hold. On the other hand, such a guarantee must hold as long as the squared Frobenius
norm has not increased by a (1 + ¢)-multiplicative factor. Thus we incur recourse k for each of
the O (% log(ndM )) times the matrix can have its squared Frobenius norm increase by (1 + ¢)
multiplicatively. We give our algorithm in full in Algorithm 4 in Appendix E.

Bounded online condition number. We next show that the optimal rank %k subspace incurs at most
constant recourse under rank one perturbations. In particular, it suffices to consider the case where
a single row is added to the matrix:

Lemma 2.1. Let A=Y € RE-Dxd gng A® € R4 such that A® is A=Y with the row A,
appended. Let Vi_, and V' be the optimal rank-k subspaces (the span of the top k right singular

vectors) of A=Y and A, respectively. Then Recourse(Vi_,, Vi) < 8.



Note that whenever a single entry of a matrix is changed, any row of a matrix is changed, a new
row of a matrix is added, or an existing row of a matrix is deleted, these all correspond to rank one
perturbations of the matrix. Thus, we immediately have the following corollary:

Theorem 2.2. There exists an algorithm that maintains the optimal rank-k approximation of a
matrix under any sequence of rank-one updates, including entry modifications, row modifications,
row insertions, or row deletions, and incurs total recourse O (n) on a stream of n updates. Moreover,
if each row has dimension d, then the update time is O ((n + d)k + k?).

Given the statement in Lemma 2.1, we immediately obtain an algorithm with O (n) recourse in the
row-arrival model for a stream of length n. Because n recourse is too large, we use the following
standard approach to decrease the effective number of rows in the matrix.

Definition 2.3 (Projection-cost preserving sketch). Given a matrix A € R"*%, a matrix M € Rm™>4
is a (1 + ) projection-cost preserving sketch of A if for all projection matrices P € R4*4,

(1-9)|A - AP|% < [M-MP[ < (1+¢)|A - AP|.

Intuitively, a projection-cost preserving sketch is a sketch matrix that approximately captures the
residual mass after projecting away any rank k subspace. The following theorem shows that a
projection-cost preserving sketch can be acquired via online ridge leverage sampling.

Theorem 2.4 (Theorem 3.1 in Braverman et al. (2020)). Given an accuracy parameter e > 0, a rank
parameter k > 0, and a matrix A = ajo...oa, € R"*? whose rows arrive sequentially in a stream
with condition number k, there exists an algorithm that outputs a matrix M with O (E% log n log? I<L)
rescaled rows of A such that

(1 —e)llA = AulE < IM = MylE < (1+e)|A - AplE,
so that with high probability, M is a rank k projection-cost preservation of A.

In particular, if the online condition number of the stream is upper bounded by poly(n), then Theo-
rem 2.4 states that online ridge leverage sampling achieves an online coreset of size O (E% log3 n)
By applying Lemma 2.1, it follows that simply maintaining the optimal rank-k subspace for the
online coreset at all times, we have Theorem 1.2.

3 ALGORITHM FOR RELATIVE ERROR

In this section, we give our algorithm for (1 + ¢)-multiplicative relative error at all times in the
stream. Lett € [n], letx; € {—A,...,A—1,A}?andlet X; = xj 0...0x;. Foreach X; € R**4,
we compute a low-rank approximation U;V; of X;, where U; € R*** and V; € R**? are the
factors of X;. We abuse notation and write V; as a set V; of k points in R%. Note that the quantity

?:1 |V \ Vi—1| is an upper bound on the recourse or the consistency cost. Thus in this section, we
interchangeably refer to this quantity as the recourse or the consistency cost, as we can lower bound
this sharper quantity.

First, we recall an important property about the optimal solution for our formulation of low-rank
approximation, i.e., with Frobenius loss.

Theorem 3.1 (Eckart-Young-Mirsky theorem). (Eckart & Young, 1936; Mirsky, 1960) Let A &
R™*4 with rank r have singular value decomposition A = UXV for U € R"*", & ¢ R"™*",
V € R"™*? and singular values o1(A) > a3(A) > ... > a4(A). Let X be the top k right
singular vectors of A, i.e., the top k rows of V, breaking ties arbitrarily. Then an optimal rank k
approximation of A is AX "X and the cost is | A — AXTX||% = Ef:kH a?(A).

As a corollary to Theorem 3.1, we have that an algorithmic procedure to compute an optimal rank k
approximation is just to take the top k right singular vectors of A, c.f., procedure RECLUSTER(A, k)
in Algorithm 1, though faster methods for approximate SVD can also be used.

Corollary 3.2. There exists an algorithm RECLUSTER (A, k) that outputs a set of orthonormal rows
X that produces the optimal rank k approximation to A.

Our algorithm performs casework on the contribution of the bottom /% singular values of the top k.
If the contribution is small, the corresponding singular vectors can be replaced without substantially



Algorithm 1 RECLUSTER(A, k), i.e., Truncated SVD

Input: Matrix A € R"*¢, rank parameter k

Output: Top k right singular vectors of A
1: Let r be the rank of A
2: Let U € R™*" 3 € R™*", V € R"* be the singular value decomposition of A = UXV
3: Return the first min(r, k) rows of V

increasing the error. Thus, each time a new row arrives, we simply replace one of the bottom singular
vectors with the new row. On the other hand, if the contribution is large, it means that the optimal
solution cannot be projected away too much from these directions, or else the optimal low-rank
approximation cost will also significantly increase. Thus we can simply choose the optimal set of
top right &k singular vectors at each time, because there will be substantial overlap between the new
subspace and the old subspace. We give our algorithm in full in Algorithm 2.

Algorithm 2 Relative-error algorithm for low-rank approximation with low recourse

Input: Rows ay,...,a, of input matrix A € R"*¢ with integer entries bounded in magnitude by
M
Output: (1 + i)-approximation to the cost of the optimal low-rank approximation at all times
1: for each row a; do

2 OPT + 30, . 0%(Ay)
3:  HEAVY <~ TRUE,C +- 0,c+ 0
4 ifOPT > (14 £)Cor(c= vk and HEAVY = FALSE) or (¢ = k and HEAVY = TRUE)
then
5 C <+ OPT,c+0
6: V < RECLUSTER(A(®) | k)
7: it > r0?(A®) > £ . C then
8: HEAVY «+ TRUE
9: else
10 HEAVY <« FALSE
11: end if
12:  else
13: if HEAVY = FALSE then
14: Let v be the unit vector in V that minimizes ||A(*)v||3, where s was the most recent
time RECLUSTER was called
15: Replace v with m -a;in'V >Ignore all zero rows
16: c+—c+1
17: else if HEAVY = TRUE then
18: it [A® — AOVTV|3 > (1+ 5) OPT then
19: V < RECLUSTER(A(®) | k)
20: c+—c+1
21: end if
22: end if
23:  endif
24: Return V
25: end for

Correctness. For the purposes of discussion, say that an epoch is the set of times during which the
optimal low-rank approximation cost has not increased by a multiplicative (1 + ¢)-approximation.
We first show the correctness of our algorithm across the times ¢ during epochs in which HEAVY is
set to FALSE. That is, we show that our algorithm maintains a (1 + )-multiplicative approximation
to the optimal low-rank approximation cost across all times ¢ in an epoch where the bottom vk
singular values of the top k right singular values do not contribute significant mass.

Lemma 3.3. Consider a time s during which c is reset to 0. Suppose HEAVY is set to FALSE at
time s and c is not reset to 0 within the next r steps, for r < \'k. Let V) be the output of V' at time



t. Then V) provides a (1 + %) -approximation to the cost of the optimal low-rank approximation
of AW forallt € [s,s+ 1]

Next, we show the correctness of our algorithm across the times ¢ during epochs in which HEAVY is
set to TRUE. That is, we show that our algorithm maintains a (1 + ¢)-multiplicative approximation

to the optimal low-rank approximation cost across all times ¢ in an epoch where the bottom vk
singular values of the top k right singular values do contribute significant mass.

Lemma 3.4. Consider a time t during which HEAVY is set to TRUE. Let V() be the output
of V at time t. Then V) provides a (1 + %)—approximation to the cost of the optimal low-rank
approximation of A,

Correctness at all times now follows from [Lemma 3.3 and Lemma 3.4:
Lemma 3.5. At all times t € [n], Algorithm 2 provides a (1 + %)—approximation to the cost of the
optimal low-rank approximation of A®.

Recourse. We first bound the recourse if the bottom v/ singular values of the top k right singular
values do not contribute significant mass.

Lemma 3.6. Suppose HEAVY is set to FALSE at time s and c is reset to 0 at time s. If c is not reset
to 0 within the next r steps, for r < \/'k, then Zfi:+1 Recourse(V(®), V=) < g,

At this point, we remark a subtlety in the analysis that is easily overlooked. Our general strategy
is to show that each time the cost of the optimal low-rank approximation doubles, we should incur
recourse O (k:l‘5). One might then expect that because the matrix contains integer entries bounded
by poly(n), then the cost of the optimal low-rank approximation can only double O (logn) times,
since it can be at most poly(n).

Unfortunately, there exist constructions of anti-Hadamard integer matrices with dimension n x d but
optimal low-rank cost as small as exp(—(k)). Hence, the optimal cost can double O (k) times,
thereby incurring total recourse O (k2'5), which is undesirably large. Instead, we show that when
the optimal low-rank cost is exponentially small, then the rank of the matrix must also be quite
small, meaning that the recourse of our algorithm cannot be as large as in the full-rank case. To that
end, we require a structural property, c.f., Lemma F.2 that describes the cost of the optimal low-rank
approximation, and parameterized to handle general matrices with rank » > k. This is to handle the
case where the cost of the optimal low-rank approximation may be exponentially small in k. As a
result, we have the following upper bound on the total recourse across all epochs when the bottom

vk singular values of the top & do not contribute significant mass.

Lemma 3.7. Suppose HEAVY is set to TRUE at time t and c is not reset to 0 within the next r steps,
forr < k. Then 3";77 | Recourse(V(®), V=1) < rv/k,

We analyze the total recourse during times when we reset the counter ¢ because the cost of the
optimal low-rank approximation has doubled. Finally, it remains to bound the total recourse at times
when we transition from one epoch to another. Specifically, we bound the recourse at times ¢ where
the optimal low-rank approximation cost has increased by a multiplicative (1 4 ¢)-approximation
since the beginning of the previous epoch.

Lemma 3.8. Let T be the set of times at which c is set to 0. Then ), Recourse(V®, v-1) <
@ (n\/E + glogZ(ndM)).

Using Lemma 3.6, Lemma 3.7, and Lemma 3.8, we then bound the total recourse of our algorithm.
Lemma 3.9. The total recourse of Algorithm 2 on an input matrix A € R™*? with integer entries
bounded in magnitude by M is O (n\/E + g logQ(ndM)).

Using Lemma 3.5 and Lemma 3.9, we can provide the formal guarantees of our subroutine.

Lemma 3.10. Given an input matrix A € R™*% with integer entries bounded in magnitude by M,
Algorithm 2 achieves a (1 + %)-approximation to the cost of the optimal low-rank approximation

and achieves recourse O (n\/% + g logg(ndM)).



Algorithm 3 Relative-error algorithm for low-rank approximation with recourse sz

polylog(ndM)

Input: Rows ay, ..., a, of input matrix A € R"*¢ with integer entries magnitude at most M
Output: (1 + i)-approximation to the cost of the optimal low-rank approximation at all times
1: for each row a; do

2:  Sample a; with online ridge leverage score >Theorem 2.4
3:  Run Algorithm 2 on the stream induced by the sampled rows
4: end for

To reduce the number of rows in the input, we again apply Theorem 2.4, which, combined with
Lemma 3.10, gives our main result Theorem 1.3 for Algorithm 3. Finally, we remark that since
Theorem 2.4 samples O (£ lognlog® k) rows and there are input sparsity algorithms for approx-
imations of the sampling probabilities (Cohen et al., 2017), then Algorithm 3 can be implemented
used % - polylog(ndM) bits of space and d - poly (k L log(ndM )) amortized update time.

e
4 EMPIRICAL EVALUATIONS

We describe our empirical evaluations on a large-scale real-world dataset, comparing the quality of
the solution of our algorithm to the quality of the optimal low-rank approximation solution. We dis-
cuss a number of additional experiments on both synthetic and real-world datasets in Appendix G.
All experiments were conducted utilizing Python version 3.10.4 on a 64-bit operating system run-
ning on an AMD Ryzen 7 5700U CPU. The system was equipped with 8GB of RAM and featured
8 cores, each operating at a base clock speed of 1.80 GHz.

kE | (1+¢) | Median | Std. Dev. | Mean
1.1 1.000 0.0000 | 1.0000
2 1.000 0.0000 | 1.0000
25 ) 1.0000 0.0367 1.0016
10 1.0000 | 2.4463 1.598
100 1.1907 | 51.9353 | 7.8882

Table 1: Median, standard deviation, and mean for ratios of cost across various values of accuracy
parameters for landmark dataset, between 150 and 5000 updates
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Fig. 1: Recourse comparisons for k = 25, ¢ = (1 4+ ¢) € {1.1,2.5,5,10, 100}

Experimental setup. In this section, we focus on our evaluations Algorithm 4 on the Landmark
dataset from the SuiteSparse Matrix Collection (Davis & Hu, 2011), which is commonly used in
benchmark comparison for low-rank approximation, e.g., (Ban et al., 2019). The dataset consists of
a total of 71952 rows with d = 2704 features. As our theoretical results prove that our algorithm has



a small amount of recourse, we first compare the cost of the solution output by Algorithm 4 with the
cost of the optimal low-rank approximation. However, determining the optimal cost over each time
is computationally expensive and serves as the main bottleneck. Specifically, for a stream of length
n, the baseline requires n - O (n¥) = Q(n3) runtime for n ~ d, where w ~ 2.37 is the exponent
for matrix multiplication (Alman et al., 2025). Thus we consider the first n = 5000 rows for our
data stream, so the goal was to perform low-rank approximation on every single prefix matrix of
size n’ x d with n’ < n. In particular, we computed in the runtimes and ratios of the two costs for
k = 25 across ¢ = (1 +¢) € {1.1,2.5,5,10,100} in Figure 2 with central statistics in Table 1,
even though Algorithm 4 only guarantees additive error, rather than multiplicative error. Finally, we
compared the recourse of our algorithms in Figure 1, along with FREQUENTDIRECTIONS, labeled
FD, a standard algorithm for online low-rank approximation (Ghashami et al., 2016).

Results and discussion. Our results show a strong separation in the quality of online low-rank
approximations such as Frequent Directions and our algorithms, which were specifically designed
to achieve low recourse. Namely, for n = 5000, Frequent Directions has achieved recourse 121904
while our algorithms range from recourse 100 to 300, more than a factor of 400X. Moreover, our
results show that the approximation guarantees of our algorithms are actually quite good in practice,
especially as the number of rows increases; we believe the large variance in Figure 2b is due to the
optimal low-rank approximation cost being quite small compared to the additive Frobenius error.
Thus it seems our empirical evaluations provide compelling evidence that our algorithms achieve
significantly better recourse than existing algorithms for online low-rank approximation; we provide
a number of additional experiments in Appendix G.
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A PRELIMINARIES

We use [n] to denote the set {1,...,n}. We use poly(n) to denote a fixed polynomial in n, which
can be adjusted using constants in the parameter settings. We use polylog(n) to denote poly (logn).

. . a
We use o to denote the vertical concatentation of rows a;, as € R%, so that a; oag = al . We say
2

an event £ occurs with high probability if Pr [£] > 1 — Recall that the Frobenius norm of

1
poly(n)*

1/2
a matrix A € R"*4 is defined by || A| r = (Z:L:l Z';:l A?’j) .

The singular value decomposition of a matrix A € R"*¢ with rank r is the decomposition A =
UXV for U € R™*" ¥ € R™*", V € R"*? where the columns of U are orthonormal, the rows
of V are orthonormal, and ¥ is a diagonal matrix whose entries correspond to the singular values of
A.

Lemma A.1. For subspaces R and T of rank k, let their corresponding orthogonal projection
matrices be P and Q. Then there exist constants C1,Cy > 0 such that C1(|P — PQ|% + [|Q —
QP|%) < Recourse(R, T) < Co(|[P — PQJl% + |Q — QP||).

Proof. By definition, we have Recourse(R, T) = |P — Q||%. By the triangle inequality, we have
IP-Qlr <|P—-PQ|r+|PQ-Q|r. Observe that || Q — QP||% = ||Q — PQ||% because the
left-hand side is the trace of (Q — QP) " (Q — QP), which equals the trace of (Q — PQ)(Q — QP),
since PT = P and Q" = Q for projection matrices Q and P. By the cyclic property of trace, the

trace of (Q — PQ)(Q — QP) thus equals the trace of (Q — QP)(Q — PQ), which by the same
argument, is the trace of the right-hand side. Hence it follows that || Q — QP||% = ||Q — PQ||%, as
desired. Thus, we have [|P — Q||lr < ||P — PQJr + |QP — Q|| r.

Next, observe that

P —PQ|% + [IPQ — Qlff = Trace(P) + Trace(Q) — 2 Trace(PQ)
= 2k — 2 Trace(PQ),
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since P2 = P, Q% = Q are symmetric idempotents, and Trace(P) = Trace(Q) = k. Similarly,
2k + 2||QP||% — 4 Trace(PQ) = 2k + 2 Trace(PQP) — 4 Trace(PQ)
= 2k — 2 Trace(PQ),

using || QP||% = Trace(PQP) = Trace(PQ). Thus, we have |P — PQ|%2 + |PQ — Q|% =
2k + 2||QP||% — 4 - Trace(P " Q). The latter quantity is at most 4k — 4 - Trace(P ' Q) = 2(2k —
2 - Trace(P T Q)), which is just 2| P — Q||%. O

Thus, it suffices to work with the less natural but perhaps more mathematically accessible definition
of [R—RTT||%+|T—-TRR|%, i.e., the symmetric difference of the mass of the two subspaces,
as a notion of recourse.

Theorem A.2 (Min-max theorem). Let A € R"*? be a matrix with singular values o1(A) >
o2(A) > ... > 0q(A) andlet {;(A) = 04— j41(A) forall j € [d], sothat &1(A) < ... < Eq(A)is
the reverse spectrum of A. Then for any subspace V of A with dimension k, there exist unit vectors
X,y € V such that
Vx5 < ai(A), V3 = &(A).

Theorem A.3 (Cauchy interlacing theorem). (Hwang, 2004, Fisk, 2005) Let A € R™*? be a matrix
with singular values o1(A) > 02(A) > ... > 04(A). Let v € R and B = A o v € R(*+1)xd
with singular values 01(B) > 02(B) > ... > 04(B). Then 0,(B) > 0;(A) for all i € [d].

B TECHNICAL OVERVIEW

In this section, we provide intuition for our main results, summarizing our algorithms, various chal-
lenges, as well as natural other approaches and why they do not work.

Warm-up: additive error algorithm. As a simple warm-up, we first describe our algorithm that
achieves additive error at most ¢ - || A(®||2. across all times ¢ € [n], while only incurring recourse
@ (f log(ndM )) , corresponding to Theorem 1.1. This algorithm is quite simple. We maintain the

squared Frobenius norm of the matrix A(*) across all times ¢ € [n]. We also maintain the same set
of factors provided the squared Frobenius norm has not increased by a factor of (1 + ¢) since the
previous time we changed the set of factors. When the squared Frobenius norm has increased by a
factor of (1+¢) at a time ¢ since the previous time we changed the set of factors, then we simply use
the singular value decomposition of A(*) to set V(*) to be the top k right singular vectors of A ().
Since we change the entire set of factors, this process can incur recourse cost at most k.

The correctness follows from the observation that each time we reset V), we find the optimal
solution at time ¢. Now, over the next few times after ¢, our solution can only degrade by the squared
Frobenius norm of the submatrix formed by the incoming rows, which is less than an e-fraction of
the squared Frobenius norm of the entire matrix, due to the requirement that we recompute V()
each time the squared Frobenius norm has increased by a (1 + ¢) factor. Since the Frobenius norm
can only increase by a multiplicative (1+ €) factor a total of at most O (% log(ndM)) times and we

incur recourse cost k each time, then the resulting recourse is at most the desired O (f log(ndM ))

Stream reduction for relative error algorithm. We now discuss the goal of achieving "2# .
polylog(ndM) recourse while maintaining a relative (1 + ¢)-multiplicative approximation to the
optimal low-rank approximation cost at all times, i.e., Theorem 1.3. We first utilize online ridge-
leverage score sampling (Braverman et al., 2020) to sample % - polylog(ndM) rows of the stream S
of rows ay, ..., a, on-the-fly, to form a stream S’ consisting of reweighted rows by, ..., b, of A
withm = f -polylog(ndM ). By the guarantees of online ridge-leverage score sampling, to achieve
a (1 + )-approximation to the matrix A® consisting of the rows ay, . .., a, it suffices to achieve a
(1 + O (&))-approximation to the matrix B(*") consisting of the rows by, ..., b, that have arrived
by time ¢. Note that since B is a submatrix of A, we have ¢ < ¢. Moreover, the rows of A that are
sampled into B are only increased by at most a poly(n) factor, so we can assume that the magnitude
of the entries is still bounded polynomially by n. Thus it suffices to perform consistent low-rank
approximation on the matrix B instead. Hence for the remainder of the discussion, we assume that
the stream length is £ - polylog(ndM) rather than n.

&€
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Relative error algorithm on reduced stream. We now describe our algorithm for (1 + ¢)-
multiplicative relative error at all times of the stream of length % -polylog(ndM). At some time s in
the stream, we use the singular value decomposition of A(*) to compute the top k right singular val-
ues of A(S), which we then set to be our factor V(¢). We can do this each time the optimal low-rank
approximation cost has increased by a multiplicative (1 + O (g))-factor since the previous time we
set our factor to be V(%) We first discuss how to maintain a (1 + ¢)-approximation with the desired
recourse in between the times at which the optimal low-rank approximation cost has increased by a
(1 + ¢)-multiplicative factor.

Towards this goal, we perform casework on the contribution of the bottom /% singular values within
the top k right singular values of V(%) Namely, if Zf: K-V o? (A(®)) is “small”, then intuitively,
the corresponding singular vectors can be replaced without substantially increasing the error. Hence
in this case, we can replace one of the bottom v/ singular vectors with the new row each time a
new incoming row arrives. This procedure will incur v/k total recourse over the next v/k updates,
after which at time ¢ we reset the factor to be the top k right singular vectors of the matrix A (*).
Therefore, we incur recourse O (k) across v/k time steps.

On the other hand, if Zf:kf JE P (AL s “large”, then the optimal low-rank approximation fac-
tors cannot be projected away too much from these directions, since otherwise the optimal low-rank
approximation cost would significantly increase. Thus, we can simply choose the optimal set of
top right & singular vectors at each time, because there will be substantial overlap between the new

subspace and the old subspace. In particular, if we choose our threshold to be Zf: k—vE o2(A®))

to be an O (£)-factor of the optimal cost, then we show that incurring v/k recourse will increase
the low-rank approximation cost by (1 + ¢), which violates the assumption that we consider times
during which the optimal low-rank approximation cost has not increased by a (1 + ¢)-multiplicative

factor. Therefore, the recourse is at most vk across each time.

In summary, between the times at which the optimal low-rank approximation cost has increased by
a (1 + )-multiplicative factor, we incur at most v/k recourse for each time. Since the stream length
is g - polylog(ndM ), we then incur % - polylog(ndM) total recourse across these times, which
is our desired bound. It remains to bound the total recourse at times s when the optimal low-rank
approximation cost has increased by a (1 +¢) multiplicative factor, as we reset our solution to be the
top k right singular values, incurring recourse k at each of these times. Because the Frobenius norm
is at most poly(ndM ), a natural conclusion would be that the optimal low-rank approximation cost
can increase by a (1 4 €) multiplicative factor at most O (1 log(ndM)) times. Unfortunately, this
is not the case.

Anti-Hadamard matrices. Problematically, there exist constructions of anti-Hadamard integer
matrices, which have dimension n X d but optimal low-rank cost as small as exp(—O (k)). Hence,
the optimal cost can double O (k) times, thereby incurring total recourse O (k;“), which is unde-
sirably large. Instead, we show that when the optimal low-rank cost is exponentially small, then the
rank of the matrix must also be quite small, meaning that the recourse of our algorithm cannot be
as large as in the full-rank case. Namely, we generalize a result by Clarkson & Woodruff (2009)
to show that if an integer matrix A € Z"*? has rank 7 > k and entries bounded in magnitude by

. . L . _ K
M, then its optimal low-rank approximation cost is at least (ndM?)~7=%. Hence, we only need to
consider anti-Hadamard matrices when the rank is less than 2k.

Fortunately, when the rank is at most < 2k, we can apply a more fine-grained analysis for the
above cases, since there are only r vectors spanning the row span, so the recourse in many of the
previous operations can be at most r — k. In particular, for r < k, we can simply maintain the
entire row span. We then argue that if the rank r of the matrix is between k + 2% and k + 2¢+! then
there can be at most O (%g) epochs before the cost of the optimal low-rank approximation is at
least (ndM?)~19°, Moreover, the recourse incurred by recomputing the top eigenspace is at most
r —k < 2t+1 5o that the total recourse for the times where the rank of the matrix is between k + 2¢
and k + 2*1 is at most O (f log(ndM )) It then follows that the total recourse across all times

before the rank becomes at least 2k is at most O (£ log®(ndM)).
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A keen reader might ask whether %3/2 is best possible recourse for our algorithmic approach. To
that end, observe that if we change a large number of factors per update, then the total recourse will
increase. Let us suppose that there are roughly & updates, which is the size of the online projection-
cost preserving coreset. Now if we change r factors per update, then the total recourse will be at least
kr. On the other hand, if we change a smaller number of factors per update, then we will need to

. 2
recompute every % steps. Each recompute takes k recourse, for a total of k? overall recourse. Hence,

. .. 2. e . .. 2
the maximum of the quantities k7 and ’% is minimized at r = V/k, giving recourse kr = ’% = k3/2,

Recourse lower bound. Our lower bound construction that shows recourse 2 (f log %) is neces-
sary, corresponding to Theorem 1.4, is simple. We divide the stream into © (£ log %) phases where
the optimal low-rank approximation cost increases by a multiplicative (1 + O (¢)) factor between
each phase. Moreover, the optimal solution to the i-th phase is orthogonal to the optimal solution
to the (¢ — 1)-th phase, so that depending on the parity of the phase 4, the optimal solution is either
the first k elementary vectors, or the elementary vectors k + 1 through 2k. Therefore, a multiplica-
tive (1 + )-approximation at all times requires incurring §2(k) recourse between each phase, which
shows the desired €2 (f log %) lower bound.

C ADDITIONAL RELATED WORK

We remark that there has been a flurry of recent work studying consistency for various problems.
The problem of consistent clustering was initialized by Lattanzi & Vassilvitskii (2017), who gave an
algorithm with recourse k2 - polylog(n) for k-clustering on insertion-only streams, i.e., the incre-
mental setting. This recourse bound was subsequently improved to k - polylog(n) by Fichtenberger
et al. (2021), while a version robust to outliers was presented by Guo et al. (2021). The approxima-
tion guarantee was also recently improved to (1 + €) by Chan et al. (2025). A line of recent work
has studied k-clustering in the dynamic setting Lacki () et al. (2023); Bhattacharya et al. (2024);
Forster & Skarlatos (2025), where points may be inserted and deleted. Rather than k-clustering,
Cohen-Addad et al. (2022) studied consistency for correlation clustering, where edges are positively
or negatively labeled, and the goal is to form as many clusters as necessary to minimize the number
of negatively labeled edges within a cluster and the number of positively labeled edges between two
different clusters. For problems beyond clustering, a line of work has also focused on submodular
maximization (Jaghargh et al., 2019; Duetting et al., 2024; Diitting et al., 2024).

Consistent clustering. Another approach might be to adapt ideas from the consistent clustering
literature. In this setting, a sequence of points in R? arrive one-by-one, and the goal is to maintain
a constant-factor approximation to the (k, z)-clustering cost, while minimizing the total recourse.
Here, the recourse incurred at a time ¢ is the size of the symmetric difference between the clustering
centers selected at time ¢ — 1 and at time ¢. The only algorithm to achieve recourse subquadratic in k
is the algorithm by Fichtenberger et al. (2021), which attempts to create robust clusters at each time
by looking at geometric balls with increasing radius around each existing point to pick centers that
are less sensitive to possible future points. Unfortunately, such a technique utilizes the geometric
properties implicit in the objective of k-clustering and it is not obvious what the corresponding
analogues should be for low-rank approximation.

D RECOURSE LOWER BOUND

In this section, we prove our recourse lower bound. The main idea is to simply partition the data
stream into © (% log %) phases, so that the optimal low-rank approximation cost increases by a
multiplicative (1 + O (¢))-factor between each phase. We also design the input matrix so that the
optimal solution to the i-th phase is orthogonal to the optimal solution to the (i —1)-th phase. Hence,
depending on the parity of the phase 7, the optimal solution is either the first k elementary vectors,
or the elementary vectors k + 1 through 2k and thus a (1 + £)-approximation at all times requires
incurring Q(k) recourse between each phase, which shows the desired €2 (é log %) lower bound.
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Theorem 1.4. For any parameter ¢ > 105 " there exists a sequence of rows Xi,...,%X, € R¢

such that any algorithm that produces a (1 + €)-approximation to the cost of the optimal low-rank
approximation at all times must have consistency cost €} (f log %)

Proof. We divide the stream into © (1 log ) phases. Let C' > 2 be some parameter that we shall
set. If ¢ is odd, then in the i-th phase, we add (1 —&—_e)" copies of the elementary vectors eq, . .., €.
If i is even, then in the i-th phase, we add (1+ Ce)* copies of the elementary vectors €1, . . . , €2k.
Note that since there are © (% log %) phases and each phase inserts (1 + Ce)® copies of k rows,
then the total number of copies of each row inserted is at most O (n) 2k for the correct fixing of the
constant in the ©(-) notation, and thus there are at most n rows overall.

We remark that by construction, after the ¢-th phase, the optimal rank-k approxi-
mation is the elementary vectors ej,...,e; if ¢ is odd and the elementary vectors
€k+1,-.-,€, if ¢ is even. In particular, by the Eckart-Young-Mirsky theorem, i.e., The-
orem 3.1, after the i-th phase, the optimal rank-k£ approximation to the underlying ma-
trix induces cost k - ((1+Ce)>+(1+Ce)*+...+(1+Ce)"1) if i is odd and k -
(1+Ce)+(1+Ce)*+...+ (1+Ce)’"') if i is even. Note that both of these quantities are
at most 2k(1 + Ce)*~1. Thus for the time ¢ after an odd phase 4, a matrix M of rank-k factors must
satisfy
IX® — XOMIM|7 < 2ek(1+ Ce)' !,
in order to be a (1 + ¢)-approximation to the optimal low-rank cost.

Let E) =e 0...0epand E® = e, 0... 0 ey, Forany constant C' > 100, it follows that
M must have squared mass at least k(1 — 2¢) onto E(") to be a (1 + £)-approximation to the cost
of the optimal low-rank approximation to X, i.e., [M(EM)TEM|]2, > k(1 — 2¢) for the time
t immediately following an odd phase i. By similar reasoning, M must have squared mass at least
k(1 —2¢) onto E(?) to be a (14 ¢)-approximation to the cost of the optimal low-rank approximation
to X® for the time ¢+ immediately following an odd phase i. However, because E(!) and E(?)
are disjoint, then it follows that M must have recourse {2(k) between each phase. Since there are
Q (2 log %) phases, then the total recourse must be Q (£ log 2). O

E MISSING PROOFS FROM SECTION 2

Algorithm 4 Additive error algorithm for low-rank approximation with low recourse

Input: Rows ay, ..., a, of input matrix A € R"*? with integer entries bounded in magnitude by
M, error parameter € > 0
Output: Additive ¢ - || A®||2 error to the cost of the optimal low-rank approximation at all times
I: C+0
2: for each row a; do
if [A® |2 > (1+¢)- C then
V < RECLUSTER(A(®) | k)
C AV
end if
Return V
end for

PRI AW

We show correctness of Algorithm 4 at all times:

Lemma E.1. Ler A® be the first t rows of A and let V) be the output of Algorithm 4 at
time t. Let OPT; be the cost of the optimal low-rank approximation at time t. Then |[A®) —

ADVE)TVOR < OPT, +c- [AD|fZ.

It then remains to bound the recourse of Algorithm 4:
Lemma E.2. The recourse of Algorithm 4 is at most O (£ log(ndM)).

Theorem 1.1 then follows from [Lemma E.1 and Lemma E.2.
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Lemma E.1. Ler A® be the first t rows of A and let V) be the output of Algorithm 4 at
time t. Let OPT; be the cost of the optimal low-rank approximation at time t. Then |[A®) —

ADVO)TVO L < OPT, +=- [A®3.

Proof. Let s be the time at which V—1) was first set, so that V(t=1) = V(%) are the top k right
singular vectors of A (%), Therefore, [|A(*) — A()(V)TV(S)||2, = OPT,. Hence,

t
[A® — AOVO) VO = AL~ AOVOTVOIE + 37 fa; - a,(VO) TV
1=s+1
t
=AY = AV VO + 37 Jla; —ai(VO) VO
1=s+1

t
=OPT,+ Y [a;—a;(V®)TVW3.
i=s+1

Note that since (V())TV® is a projection operator, then the length of a; cannot increase after
being projected onto the row span of V(*), so that [|la; — a;(V®)TV®) |2 < ||a;||3. Therefore,

t
HA(t) _ A(t)(V(t))TV(t)H% — OPT, + Z la; — ai(V(t))TV(t)H%
1=s+1

t
<OPT.+ > |lail}}
1=s+1

< OPT,+¢-||A®|2Z,

where the last inequality is due to Line 3 of Algorithm 4. Finally, by the monotonicity of the optimal
low-rank approximation cost with additional rows, we have that OPT, < OPT, and thus,

JA® — AOVO)TVE|L < OPT, +c- AW,
as desired. O

Lemma E.2. The recourse of Algorithm 4 is at most O (% log(ndM)).

Proof. Since each entry of A is an integer bounded in magnitude by at most M, then the squared
Frobenius norm of A is at most (nd) M 2, Moreover, each entry of A is an integer bounded, the first
time it is nonzero, the squared Frobenius norm must be at least 1. Hence, the squared Frobneius
norm of A can increase by a factor of (1 + ¢) at most log(; ) (nd)M? = O (L log(ndM)) from
the first time it is nonzero. Each time ¢ it does so, we recompute the right singular values of A (*)
to be the set of factors V(). Thus the recourse incurred at these times is at most O (% log(ndM ))
For all other times, we retain the same choice of the factors. Hence the desired claim follows. O

We now show that the optimal rank k subspace incurs at most constant recourse under rank one
perturbations.

Lemma 2.1. Let At=1) ¢ RE-Dxd gnq AW ¢ R¥¥D sych that AD is AC—YD with the row A,
appended. Let Vi_; and V} be the optimal rank-k subspaces (the span of the top k right singular

vectors) of A=Y and A®), respectively. Then Recourse(Vi_,, Vi) < 8.

Proof. The recourse between two subspaces is defined as the squared Frobenius norm of the dif-
ference between their corresponding orthogonal projection matrices. We first consider the co-
variance matrices induced by the optimal rank-k£ subspaces. Namely, consider the covariance
matrices B;_; = (A?t_l))TAZ‘t_l) and B, = (A®)TA®_ Then we have the relationship
B, = B,_1 + A: A, ie., B, is obtained from B;_; by a rank-1 positive semi-definite (PSD)
update. By the Eckart-Young theorem, c.f., Theorem 3.1, the subspace V7 is the span of the top k
eigenvectors of By, and similarly for V;_; and B;_;.
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We next consider the intersection of the eigenspaces of B; and B;_;. We first aim to show that the
dimension of the intersection of the two subspaces is at least k — 1, i.e., dim(V;_; N'V}) > k — 1.

Let S, be the subspace orthogonal to Ay, so that S, = {v € R : A;v = 0} and dim(S,) = d — 1.
Consider the intersection W = V;_; N S,. By the properties of subspace dimensions:
dim(W) = dim(V}_;) + dim(S,) — dim(V'~'nS,).
Since dim(bV;* ;) = k, dim(S,) = d — 1, and dim(V;_; N'S,) < d, we have:
dim(W)>k+(d-1)—-d=k—1.
Now we analyze the properties of vectors in W. Let w € W. Since w € S,, we have A;w = 0.
Observe that
Byw=(B;_1 + A:At)w =B, 1w+ A;—(Atw) =B;_1w.
Hence, W is a subspace contained in both B;_; and B;.

Let A\ > ... > )4 be the eigenvalues of B;_1, and 1 > ... > ug4 be the eigenvalues of B;. Since
B; is a rank-1 PSD update of B,_1, the eigenvalues interlace by Theorem A.3:

1> AL > flg > Ao > > e > Ak 2 g1 > Akl -

Since W C V*t — 1, the subspace W is spanned by eigenvectors of B;_; corresponding to eigen-
values Aq,...,\;. Because Byw = B;_;w for w € W, these are also eigenvectors of B; with
the same eigenvalues. Since \; > pry1, the eigenvalues associated with the subspace W' are
greater than or equal to the (k + 1)-th eigenvalue of B;. Thus, W must be a subspace of the
top-(k + 1) eigenspace of B;. Therefore, W C Vi _; N (V; U {u}), where u is the eigenvec-
tor of B, corresponding to eigenvalue pg41. Since dim(W) > k — 1, we have established that
dim(V;_,NV;) >k—2.

Now, let P;_; and P, be the orthogonal projection matrices onto V;_; and V7, respectively. Let
Wi = Vi_; NV} and P gyaeq be the projection onto Wiy. If dim(Wiy ) = k, then V¥t — 1 = V7
and so the recourse is |P; — P;_1]|% = 0.

Otherwise, if dim(W,;) = 1, we can decompose the orthogonal projection matrices as:
T T
P;_1 = Pgharea + uu, Pt = Pharea + uzu, ,

where u;, uz are unit vectors orthogonal to Wiy The recourse is |P; — P;_1||%. Thus, we have

T T T T
P, —P;_1 = (Pshared + U2y ) — (Pgparea + w11y ) = ugu, —ujuy,

so that by generalized triangle inequality,
Recourse(Py, Py_1) < 2|luju] |% + 2[|uguy ||%.

Since u; and uy are unit vectors, then we have Recourse(P;, P;_1) < 4. The same proof with four
unit vectors shows that if dim(W,,;) = 2, then Recourse(P;,P;_1) < 8. O

Finally, we remark that due to the simplicity of rank-one perturbations, any algorithm that maintains
the SVD only needs to perform a rank-one update to the SVD, which takes time O ((n + d)k + k?)
for a matrix with dimensions at most n x d Brand (2006).

F MISSING PROOFS FROM SECTION 3

Lemma 3.3. Consider a time s during which c is reset to 0. Suppose HEAVY is set to FALSE at

time s and c is not reset to 0 within the next r steps, for r < \'k. Let Vt) be the output of V' at time
t. Then V) provides a (1 + %)-approximation to the cost of the optimal low-rank approximation

of AW forallt € [s,s+r].

Proof. Consider ||A®) — AO(VO)YTV® |2 Let V(') be the matrix V(*) with the ¢ — s vectors
corresponding to the smallest ¢ — s singular values of A (%) instead being replaced with the rows
as41, - - -,a¢. By optimality of v, we have

[A® — AOVOYTVE |2 < |A® — AOVEN)TVE) 2
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Since a, € V() forall ¢ € [s, s + v/k], then we have
||A(t) —_A® (V(t ))TV(t )HQF - ||A(S) —A®) (V(t ))TV(t )H%'

In other words, the rows asy1,...,a; cannot contribute to the low-rank approximation cost of
V) because they are contained within the span of V) It remains to upper bound HA(S) -
AG(VENTVE) |2, We have

d

C= Y oi(A) =AY - ALNVE)TVER
i=k+1

and Zf:k_\/% 0?(Ay) < £ - C since HEAVY is set to FALSE. Note that since ¢ € [s, s + v/k], then
A ) contains the top k — NG singular vectors of A %) Therefore, it follows that

k

JAY = AOVEOTVEZ < JAD —AOVOTVO R+ 3 o2a) < (1+5)-C
i=k—vk

Since the cost of the optimal low-rank approximation of A (*) is at least the cost of the optimal low-

rank approximation of A(*) for ¢ > s, then V(*) provides a (1 + %)—approximation to the cost of

the optimal low-rank approximation of A® for all t € [s, s + V/k]. O

Lemma 3.6. Suppose HEAVY is set to FALSE at time s and c is reset to 0 at time s. If ¢ is not reset

10 0 within the next r steps, for r < \/k, then Z:;TH Recourse(V(®), V1) < g,

Proof. Let s be a time during which c is reset to 0 and HEAVY is set to FALSE. Then for the next
r steps, each time a new row is received, then Algorithm 2 replaces a row of V with the new row.
Thus, the recourse is at most 7. O]

Lemma 3.4. Consider a time t during which HEAVY is set to TRUE. Let V) be the output
of V at time t. Then V) provides a (1 + %)-approximation to the cost of the optimal low-rank
approximation of A,

Proof. Let OPT = Y0, . 0%(A). We have two cases. Either [|[A®) —
AOVEINTYVED|2 > (14 £).0PTor [A® - AO(VED)TVED|2 < (14 £).OPT.

In the former case, V=1 is already a (1 + %)-approximation to the cost of the optimal low-rank
approximation of A®) and the algorithm sets V() = V=1 50 that V(*) is also a (1 + £)-
approximation to the cost of the optimal low-rank approximation of A (*).

In the latter case, the algorithm sets V® to be the output of RECLUSTER(A(t)7 k), i.e., the top k
eigenvectors of A, in which case |[A®) — AO(V®)TV®) |2 = OPT. Thus in both cases, V(*)
provides a (1 + %)-approximation to the cost of the optimal low-rank approximation of A®), [

Lemma 3.5. Ar all times t € [n], Algorithm 2 provides a (1 + %)-approximation to the cost of the
optimal low-rank approximation of A®.

Proof. Let V() be the output of V at time ¢. We first consider the times ¢ where ¢ is not reset to zero
and HEAVY is set to FALSE. By Lemma 3.3, the output V) is provides a (1 + %)-approximation

to the cost of the optimal low-rank approximation of A(*) at these times.

We next consider the times ¢ where c is not reset to zero and HEAVY is set to TRUE. By Lemma 3.4,
the output V(® is provides a (1 + §)-approximation to the cost of the optimal low-rank approxima-
tion of A(*) at these times.

Finally, we consider the times ¢ where c is reset to zero. At these times, the algorithm sets V()
to be the output of RECLUSTER(A ("), k), i.e., the top k eigenvectors of A, in which case ||A(®) —
ADVO)TV®||2 = OPT. Therefore, Algorithm 2 provides a (1 + §)-approximation to the cost
of the optimal low-rank approximation of A (") at all times t € [n]. O
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We next bound the recourse between epochs when the bottom /% singular values of the top k do
not contribute significant mass.

Lemma F.1. Consider a time t during which HEAVY is set to TRUE. Let V) be the output of V at
time t. Suppose VY fails to be a (1 + %)-approximation to the optimal low-rank approximation

cost. Then Recourse(V®), V1) < /L,

Proof. Let s be the most recent time at which HEAVY was set to TRUE, so that s <t — 1. Let V()
denote the top k right singular vectors of A(*) and note that by condition of HEAVY being set to

TRUE,
k

S € S S S S
Z UE(V( )) > 3 HA( ) Al )(V( ))TV( )||%.
i=k—Vk

Now, let r be the time at which V(*~1) was first set, so that V(*~1) are the top k right singular
vectors of A("). Since r > s, then by the interlacing of singular values, i.e., Theorem A.3, we have
that

ai(V(T)) > al-(V(S)),

for all ¢ € [d]. Therefore,
k
> GAVO) =z 2 ALY — ADVE)TVOE,
i=k—Vk
since all singular values are by definition non-negative.

Suppose by way of contradiction that we have
Recourse(V®, V1) = Recourse(VH, V) > V/E.
Then at least v/k singular vectors for V(=) have been displaced and thus by the min-max theorem,
i.e., Theorem A.2,
k
||A(t) —_A® (V(t))TV(t) 12 > HA(T) —_A®) (V(S))TV(S) 1% + Z o2 (V(’”))
i=k—Vk
> (1 + %) JJA® — A@(VE) TV,

Furthermore, because V() is the top k right singular vectors of A(®), then |[A(®) —
ADOVO)YTV®) |2 is the cost of the optimal low-rank approximation at time ¢. In other words,
the optimal low-rank approximation cost at time ¢ would be larger than (1+ £) - [|A(®) —
A<3)(V(S))TV(S>||2F.

On the other hand, since s and ¢ are in the same epoch, then

5 S S S € S S S T
JA® — AOVE)TVE |2 < A - AOVO)TVO2 < (1 + Z) [A®) — A (VE) V)2,
which is a contradiction. Hence, it follows that Recourse(V®), V#=1D) < \/k. O

Lemma F.2. Suppose A € 7Z"*% is an integer matrix with rank v > k and entries bounded in mag-
kb

nitude by M. Then the cost of the optimal low-rank approximation to A is at least (ndM?)™ 7%,

Proof. Let A € Z"*< be an integer matrix with rank » > k and entries bounded in magnitude
by M. Suppose without loss of generality that n > d. Let o7 > ... > o4 > 0 be the singular
values of A and let A\; > ... > A\; > 0 be the corresponding eigenvalues of ATA. Let p(A) =
Ad=r Hie[r] (A — \;). Note that since the entries of A are all integers, then the entries of AT A are

all integers and thus the coefficients of p()) are all integers. In particular, since the coefficient of
A%~ in p(A) is the product of the nonzero eigenvalues of AT A, then [[;_, A; > 1. Since \; = 07
and o; > 0 forall i € [d], we also have [],_, o; > 1.
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Moreover, the squared Frobenius norm satisfies

d d
Sai=Y ol =||A|} < ndM>.
1=1

Thus, \; < ndM? for all i € [d]. Hence,

Nztz I dMMH sz
i=k+1

Thus we have A\;11 > (ndM 2)_fk. It follows that the optimal low-rank approximation cost is

O

Lemma 3.7. Suppose HEAVY is set to TRUE at time t and c is not reset to O within the next r steps,
forr < k. Then 317, Recourse(V®, VD) < rv/k.

Proof. By Lemma F.1, we have Recourse(V®, V=1) < \/k forall i € [t 4 1,¢ + r]. Thus the
total recourse is at most 7v/k. O

We analyze the total recourse during times when we reset the counter ¢ because the cost of the
optimal low-rank approximation has doubled.

Lemma F.3. Let T be the set of times at which c is set to 0 because Z?:kﬂ 0?(Ay) > 2C. Then
> er Recourse(V®, VD) < O (£ log?(ndM)).

Proof. We define times 71 < 79 and decompose 7" into the times before 7, the times between
71 and 7o, and the times after 7. Formally, let ¢y be the first time at which the optimal low-rank
approximation cost is nonzero, i.e., the first time at which the input matrix has rank k£ + 1. Let
Ty be the optimal low-rank approximation cost at time ty. Define each epoch 7 to be the times

during which the cost of the optimal low-rank approximation is at least (1 + %)Z - Tp and less than
ey itl
(1+%5)" - To.

Let 7y be the first time the input matrix has rank k£ + 1. Observe that before time 7, we can maintain
the entire row span of the matrix by adding each new linearly independent row to the low-rank
subspace, thus preserving the optimal low-rank approximation cost at all times. This process incurs
recourse at most k in total before time 7.

Next, let 7, be the first time such that the input matrix has rank at most 2k. We analyze the re-
course between times 7; and 7. By Lemma F.2, the cost of the optimal low-rank approximation
to a matrix with integer entries bounded by M and rank r is at least (ndM 2)=7=%. Thus if the
rank 7 of the matrix is at least k + QZ and less than k 4 2%, then the cost of the optimal low-rank

approximation is at least (ndM?) ™ 27. Thus there can be at most O (7—) epochs before the cost

7

of the optimal low-rank approximatlon is at least (ndM?)~1%, Let j be the index of any epoch

during which the cost of the optimal low-rank approximation exceeds (ndM )72 3. Since the total
dimension of the span of the rows of A that have arrived by epoch j is r, then the recourse in-
curred by recomputing the top eigenspace is at most O (r — k) = O (21). Since there can be at
most O ( %% log(ndM )) epochs before the cost of the optimal low-rank approximation is at least
(ndM?)~109 then the consistency cost for the times where the rank of the matrix is at least k + 2
and less than k& + 2¢+! is at most O (% log(ndM )) Thus the total consistency cost between times
7 and 75 is 188 O (& log(ndM)) = O (£ log?(ndM)).

Note that after time 73, the cost of the optimal low-rank approximation is at least (ndM?)~109,
Since the squared Frobenius norm is at most ndM 2, then the low-rank cost is also at most ndM?2.
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Thus there can be at most O (£ log(ndM)) epochs after time 7,. Each epoch incurs recourse O (k)
due to recomputing the top eigenspace of the prefix of A that has arrived at that time. Thus the total
recourse due to the set 1" of times after 75 is O (f log(ndM)).

In summary, we can decompose 7" into the times before 71, the times between 7 and 72, and the
times after 75. The total recourse at times ¢t € T before 71 is at most O (k). The total recourse
at times ¢ € T between times 7; and 73 is at most O (f log? (ndM )) The total recourse at times
t € T after time 75 is at most O (klog(ndM)). Hence, the total recourse of times ¢ € T is at most
O (Elog?(ndM)). O

Lemma 3.8. Let T be the set of times at which c is set to 0. Then Y, . Recourse(V®, V{E=1)) <
O (n\/E—i— flogz(ndM)).

Proof. Note that ¢ can only be reset for one of the three different following reasons:

(1) HEAVY = TRUE and ¢ = k
(2) HEAVY = FALSE and ¢ = vk

(3) 102 (Ay) > 20

In all three cases, the algorithm calls RECLUSTER(A, k), incurring recourse k. Observe that for a
matrix A with n rows, the counter ¢ can exceed v/k at most % times. Thus the first two cases can

occur at most ﬁ times, so the total recourse contributed by the first two cases is at most k.
It remains to consider the total recourse incurred over the steps where the cost of the optimal

low-rank approximation has at least doubled from the previous time C' was set. By Lemma F.3,
the recourse from such times is at most O (f log?(ndM )) Hence, the total recourse is at most

10 (n\/E +k 1og2(ndM)). O

Lemma 3.9. The total recourse of Algorithm 2 on an input matrix A € R™*? with integer entries
bounded in magnitude by M is O (n\/E + f logz(ndM)).

Proof. We first consider the times ¢ where ¢ is not reset to zero and HEAVY is set to FALSE By
Lemma 3.6, the recourse across any consecutive set of r of these steps is at most . Thus over the
stream of n rows, the total recourse incurred across all steps where HEAVY is set to FALSE is at
most n.

We next consider the times ¢ where c is not reset to zero and HEAVY is set to TRUE. By Lemma 3.7,

the recourse across any uninterrupted sequence of 7 these steps is at most r/k. Hence over the
stream of n rows, the total recourse incurred across all steps where HEAVY is set to TRUE is at
most nv/k.

Finally, we consider the times ¢ where c is reset to zero. By Lemma 3.8, the total recourse
incurred across all steps is at most O (n\/E + glog2(ndM )) Therefore, the total recourse is

k.2
O (n\/E—i— Zlog (ndM)) O
Lemma 3.10. Given an input matrix A € R™*% with integer entries bounded in magnitude by M,

Algorithm 2 achieves a (1 + %)-approximation to the cost of the optimal low-rank approximation

and achieves recourse O (n\/E + £ logz(ndM)>.

Proof. Note that correctness follows from [Lemma 3.5 and the upper bound on recourse follows from
Lemma 3.9. O
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Theorem 1.3. Suppose A € Z"*% is an integer matrix with entries bounded in magnitude by M.
There exists an algorithm that achieves a (1 + €)-approximation to the cost of the optimal low-rank

approximation A at all times and achieves recourse k:f - polylog(ndM).

Proof. Lete € (0, 145). By Theorem 2.4, the optimal low-rank approximation to the rows of M

that have been sampled by a time ¢ achieves a (1 + f—o)-approximation to the cost of the optimal
low-rank approximation of A that have arrived at time ¢. Thus, it suffices to show that we provide
a (1 + %)-approximation to the cost of the optimal low-rank approximation to the matrix M at

all times. Thus we instead consider a new stream consisting of the rows of M € R™*4_ where
m = E% - polylog(ndM) and the entries of M are integers bounded in magnitude by M - poly(n).

Consider Algorithm 2 on input M. Correctness follows from Lemma 3.10, so it remains to repa-
rameterize the settings in Lemma 3.10 to analyze the total recourse. By Lemma 3.9, the to-
tal recourse on an input matrix A € R™*? with integer entries bounded in magnitude by M is

@ (n\/E + flogz(ndM )) Thus for input matrix M with E% - polylog(ndM) rows and integer
k2 polylog(ndM). O

entries bounded in magnitude by M - poly(n), the total recourse is *

G ADDITIONAL EXPERIMENTS

In this section, we describe a number of additional empirical evaluations.

G.1 RANDOM SYNTHETIC DATASET

We generate a random synthetic dataset with 3000 rows and 4 columns with integer entries between
0 and 100 and subsequently normalized by column. We again compared the cost of the solution
output by Algorithm 4 with the cost of the optimal low-rank approximation for £ = 1 across ¢ =
(14¢)e{1.1,2.5,5,10,100}. We summarize our results in Figure 3. In particular, we first plot in
Figure 3a the runtime of our algorithm. We then plot in Figure 3b the ratio of the cost of the solution
output by Algorithm 4 with the cost of the optimal low-rank approximation.

Similar to the skin segmentation and the rice datasets, our algorithm provides better approximation
to the optimal solution as ¢ = (1 + ¢) decreases from 100 to 1, with a number of spikes for a small
number of rows likely due to the optimal low-rank approximation cost being quite small compared to
the additive Frobenius error. Moreover, our results perform demonstrably better than the worst-case
theoretical guarantee, giving roughly a 2.5-approximation compared to the theoretical guarantee of
100-approximation.

Total runtime for random dataset Accuracy for random dataset

— c=11
2.4+ =2
150 1
— =5
2.2+ — =10
1251 — c=100

100 A

Total runtime (s)
Ratio of loss

50 4

254 1.2 1

0 500 1000 1500 2000 2500 3000 50 100 150 200 250 300
Number of rows Number of rows

(a) Runtime on random dataset (b) Approximations on random dataset

Fig. 3: Runtime and approximations on random dataset. Figure 3a considers k¥ = 1, ¢ = 10, while
Figure 3b considers k = 1,¢ = (1 +¢) € {1.1,2.5,5,10,100}
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Total runtime for SKIN dataset Accurac y for SKIN dataset Accurac: y for SKIN dataset

o 500 1000 2000 2500 3000 o 500 1000 2000 2500 3000 o 500 1000 2000 2500 3000

1500 1500 1500
Number of rows Number of rows. Number of rows

(a) Runtime on SKIN dataset (b) Approximations for k = 1 (c) Approximations for k = 2

Fig. 4: Runtime and approximations on SKIN dataset. Figure 4a considers £ = 1 and ¢ = 1.1, while
Figure 4b considers k = 1, ¢ = (1 4+ ¢) € {1.1,2.5,5,10,100} and Figure 4c considers k = 2,
c=(1+¢)e{1.1,1.5,2.510}

G.2 SKIN SEGMENTATION DATASET

We evaluate Algorithm 4 on the Skin Segmentation (SKIN) dataset (Bhatt & Dhall, 2012) from
the UCI repository (Markelle Kelly, 1987), which is commonly used in benchmark comparison for
unsupervised learning tasks, e.g., (Borassi et al., 2020; Epasto et al., 2023; Woodruff et al., 2023).
The dataset consists of a total of 245057 face images encoded by B,G,R values, collected from the
Color FERET Image Database and the PAL Face Database from Productive Aging Laboratory from
the University of Texas at Dallas. The faces were collected from various age groups (young, middle,
and old), race groups (white, black, and asian), and genders. Among the dataset, 50859 images are
skin samples, while the other 194198 images are non-skin samples, and the task is to classify which
category each image falls under.

Experimental setup. For our experiments, we only considered the first 3000 skin images and
stripped the labels, so that the goal was to perform low-rank approximation on the B,G,R values of
the remaining skin images. As our theoretical guarantees ensure that the solution is changed a small
number of times, we compared the cost of the solution output by Algorithm 4 with the cost of the
optimal low-rank approximation. In particular, we computed the ratios of the two costs for k = 1
across ¢ = (1 +¢) € {1.1,2.5,5,10,100} and for k = 2 across ¢ = (1 +¢) € {1.1,1.5,2.5,10},
even though the formal guarantees of Algorithm 4 involve upper bounding the additive error.

Results and discussion. In Figure 4, we plot the ratio of the cost of the solution output by Algo-
rithm 4 with the cost of the optimal low-rank approximation at each time over the duration of the
data stream. We then provide the central statistics, i.e., the mean, standard deviation, and maximum
for the ratio of across various values of k and accuracy parameters for the SKIN dataset in Table 2.

Our results show that as expected, our algorithm provides better approximation to the optimal solu-
tion as ¢ = (1 4 ¢) decreases from 100 to 1. Once the optimal low-rank approximation cost became
sufficiently large, our algorithm achieved a good multiplicative approximation. Thus we believe the
main explanation for the spikes at the beginning of Figure 4c is due to the optimal low-rank approx-
imation cost being quite small compared to the additive Frobenius error. It is somewhat surpris-
ing that despite the worst-case theoretical guarantee that our algorithm should only provide a 100-
approximation, it actually performs significantly better, i.e., it provides roughly a 4-approximation.
Thus it seems our empirical evaluations provide a simple proof-of-concept demonstrating that our
theoretical worst-case guarantees can be even stronger in practice.

G.3 RICE DATASET

We next consider the RICE dataset (Rice) from the UCI repository (Markelle Kelly, 1987), where
the goal is to classify between 2 types of rice grown in Turkey. The first type of rice is the Osmancik
species, which has a large planting area since 1997, while the second type of rice is the Cammeo
species, which has been grown since 2014 (Rice). The dataset consists of a total of 3810 rice grain
images taken for the two species, with 7 morphological features were obtained for each grain of rice.
Specifically, the features are the area, perimeter, major axis length, minor axis length, eccentricity,
convex area, and the extent of the rice grain.
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k| (14¢) | Mean | Std. Dev. | Max

1.1 1.0006 0.0022 1.0383
2 1.0088 | 0.0479 1.7870
1 5 1.0374 | 0.1341 2.6038
10 1.1324 0.4167 4.8201
100 3.2971 0.4532 4.8201
1.1 1.0016 0.0069 1.1521
1.5 1.0148 | 0.1327 | 5.1533
2.5 1.0371 0.2430 | 5.2778
10 1.3175 0.9238 6.8602

Table 2: Average, standard deviation, and maximum for ratios of cost across various values of k£ and
accuracy parameters for SKIN dataset.

Total runtime for RICE dataset Accurac: y for RICE dataset Total recourse for RICE dataset
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(a) Runtime on RICE (b) Approximations on RICE (c) Recourse on RICE

Fig. 5: Runtime and approximations on RICE dataset. Figure 5a considers £ = 1, ¢ = 10, while
Figure 5b and Figure 5c consider k = 1, ¢ = (1 +¢) € {1.1,2.5,5,10, 100}

Evaluation summary. For our experiments, we performed low-rank approximation on the seven
provided features of the RICE dataset. We compared the cost of the solution output by Algo-
rithm 4 with the cost of the optimal low-rank approximation for k¥ = 1 across ¢ = (1 +¢) €
{1.1,2.5,5,10,100}. We summarize our results in Figure 5, plotting the runtime of our algorithm
in Figure 5a and the ratio of the cost of the solution output by Algorithm 4 with the cost of the
optimal low-rank approximation in Figure 5b.

Our results show that similar to the skin segmentation dataset, our algorithm provides better ap-
proximation to the optimal solution as ¢ = (1 + &) decreases from 100 to 1. Figure 5b again has
a number of spikes for a small number of rows likely due to the optimal low-rank approximation
cost being quite small compared to the additive Frobenius error. Furthermore, our results again
exhibit the somewhat surprising result that our algorithm provides a relatively good approximation
compared to the worst-case theoretical guarantee, i.e., our algorithm empirically provides roughly a
2-approximation despite the worst-case guarantees only providing a 100-approximation.

Finally, we note that, as anticipated, the recourse of our algorithm decreases as the required accuracy
of the factors decreases. This is because coarser factor representations require less frequent updates
as the matrix evolves.
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