
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONSISTENT LOW-RANK APPROXIMATION

Anonymous authors

Paper under double-blind review

ABSTRACT

We introduce and study the problem of consistent low-rank approximation, in which rows of an input matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ arrive sequentially and the goal is to provide a sequence of subspaces that well-approximate the optimal rank- k approximation to the submatrix $\mathbf{A}^{(t)}$ that has arrived at each time t , while minimizing the recourse, i.e., the overall change in the sequence of solutions. We first show that when the goal is to achieve a low-rank cost within an additive $\varepsilon \cdot \|\mathbf{A}^{(t)}\|_F^2$ factor of the optimal cost, roughly $\mathcal{O}(\frac{k}{\varepsilon} \log(nd))$ recourse is feasible. For the more challenging goal of achieving a relative $(1 + \varepsilon)$ -multiplicative approximation of the optimal rank- k cost, we show that a simple upper bound in this setting is $\frac{k^2}{\varepsilon^2} \cdot \text{poly log}(nd)$ recourse, which we further improve to $\frac{k^{3/2}}{\varepsilon^2} \cdot \text{poly log}(nd)$ for integer-bounded matrices and $\frac{k}{\varepsilon^2} \cdot \text{poly log}(nd)$ for data streams with polynomial online condition number. We also show that $\Omega(\frac{k}{\varepsilon} \log \frac{n}{k})$ recourse is necessary for any algorithm that maintains a multiplicative $(1 + \varepsilon)$ -approximation to the optimal low-rank cost, even if the full input is known in advance. Finally, we perform a number of empirical evaluations to complement our theoretical guarantees, demonstrating the efficacy of our algorithms in practice.

1 INTRODUCTION

Low-rank approximation is a fundamental technique that is frequently used in machine learning, data science, and statistics to identify important structural information from large datasets. Given an input matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ consisting of n observations across d features, the goal of low-rank approximation is to decompose \mathbf{A} into a combination of k independent latent variables called factors. We represent these factors by matrices $\mathbf{U} \in \mathbb{R}^{n \times k}$ and $\mathbf{V} \in \mathbb{R}^{k \times d}$, so that the product \mathbf{UV} should be an “accurate” representation of the original dataset \mathbf{A} . Formally, we want to minimize the quantity $\min_{\mathbf{U} \in \mathbb{R}^{n \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}} \mathcal{L}(\mathbf{UV} - \mathbf{A})$, where \mathcal{L} denotes any predetermined loss function chosen for its specific properties. Though there is a variety of standard metrics, such as subspace alignment angles or peak signal-to-noise ratio (PSNR), in this paper we focus on Frobenius loss, which is perhaps the most common loss function, due to its connection with least squares regression. As a result, the problem is equivalent to finding the right factor matrix $\mathbf{V} \in \mathbb{R}^{k \times d}$ of orthonormal rows to minimize the quantity $\|\mathbf{A} - \mathbf{AV}^\top \mathbf{V}\|_F^2$, in which case the optimal left factor matrix is $\mathbf{U} = \mathbf{AV}^\top$.

The rank parameter k is generally chosen based on the complexity of the underlying model chosen to fit the data. The identification and subsequent utilization of the factors can often decrease the number of relevant features in an observation and thus simultaneously improve interpretability and decrease dimensionality. In particular, low-rank approximation facilitates using the factors \mathbf{U} and \mathbf{V} to approximately represent the original dataset \mathbf{A} , thus using only $(n + d)k$ parameters in the representation rather than the original nd entries of \mathbf{A} . Thereafter, given a vector $\mathbf{x} \in \mathbb{R}^d$, we can compute the matrix-vector product \mathbf{UVx} as an approximation to \mathbf{Ax} in time $(n + d)k$. By contrast, computing \mathbf{Ax} requires nd time. As a result of these advantages and more, low-rank approximation is one of the most common tools, with applications in recommendation systems, mathematical modeling, predictive analytics, dimensionality reduction, computer vision, and natural language processing.

Data streams. The streaming model of computation has emerged as a popular setting for analyzing large evolving datasets, such as database logs generated from commercial transactions, financial markets, Internet of Things (IoT) devices, scientific observations, social network correspondences, or virtual traffic measurements. In the row-arrival model, each stream update provides an additional

054 observation, i.e., an additional matrix row $\mathbf{a}_t \in \mathbb{R}^d$ of the ultimate input $\mathbf{A} \in \mathbb{R}^{n \times d}$ for low-rank
055 approximation. Often, downstream decisions and policies must be determined with uncertainty
056 about future inputs. That is, the input may be revealed in a data stream and practitioners may be
057 required to make irrevocable choices at time $t \in [n]$, given only the dataset $\mathbf{A}^{(t)} = \mathbf{a}_1 \circ \dots \circ \mathbf{a}_t$
058 consisting of the first t data point observations. A prototypical example is the setting of online
059 caching/paging algorithms (Fiat et al., 1991; Irani, 1996), which must choose to keep or evict items
060 in the cache at every time step. This generalizes to the k -server problem for penalties that are
061 captured by metric spaces (Manasse et al., 1990; Bansal et al., 2015; Bubeck et al., 2023).

062 **Consistency.** Although irrevocable decisions are theoretically interesting in the context of online
063 algorithms, such a restriction may be overly stringent for many practical settings. Lattanzi & Vassil-
064 vitskii (2017) notes that in the earlier setting of caching and paging, a load balancer that receives on-
065 line requests for assignment to different machines can simply reassign some of the past tasks to other
066 machines to increase overall performance if necessary. Moreover, the ability of algorithms to adjust
067 previous decisions based on updated information allows for a richer understanding of the structure
068 of the underlying problem beyond the impossibility barriers of online algorithms. On the other hand,
069 such adjustments have downstream ramifications to applications that rely on the decisions/policies
070 resulting from the algorithm. Therefore, the related notions of consistency and recourse were de-
071 fined to quantify the cumulative number of changes to the output solution of an algorithm over time.
072 Low-recourse online algorithms have been well-studied for a number of problems (Gupta & Ku-
073 mar, 2014; Gupta et al., 2014; Lacki et al., 2015; Gu et al., 2016; Megow et al., 2016; Gupta &
074 Levin, 2020; Bhattacharya et al., 2023), while consistent clustering and facility location have re-
075 cently received considerable attention (Lattanzi & Vassilvitskii, 2017; Cohen-Addad et al., 2019;
076 Fichtenberger et al., 2021; Lacki (F) et al., 2023). In a standard scenario in feature engineering, low-
077 rank approximation algorithms are used to select specific features or linear combinations of features,
078 on which models are trained. Thus, large consistency costs correspond to expensive retrainings of
079 whole large-scale machine learning systems (Lattanzi & Vassilvitskii, 2017), due to different sets of
080 features being passed to the learner.

081 **Building on the notion of consistency, we formalize the problem of consistent low-rank approxima-
082 tion, which captures the need for online algorithms that adapt to evolving data while keeping their
083 outputs stable for downstream use.** As discussed above, low-rank approximation is widely used for
084 feature engineering: the factors produced define the feature subspace on which downstream models
085 are trained. In dynamic settings, high recourse can cause these features to change abruptly even
086 under minor updates, triggering frequent and costly retraining of large-scale models (Lattanzi &
087 Vassilvitskii, 2017). Consistent, low-recourse LRA algorithms maintain feature stability over time,
088 reducing retraining costs and improving reliability.

089 The importance of stability extends across many practical domains. In biometrics, consistent low-
090 dimensional representations of fingerprints or iris patterns are crucial for maintaining reliable iden-
091 tification (Jain et al., 2004). In image processing, tasks such as object detection, handwriting recog-
092 nition, and facial recognition depend on derived features that should not fluctuate unpredictably as
093 new data arrives (Nixon & Aguado, 2012). In data compression and signal processing, stable re-
094 duced representations preserve essential structure while controlling noise (Witten & Frank, 2002;
095 Proakis, 2007). In text mining and information retrieval, numerical features such as TF-IDF vectors
096 or embeddings must remain coherent to maintain the quality of search and classification (Aggar-
097 wal & Aggarwal, 2015; Schütze et al., 2008). Even in large-scale data curation for foundation
098 models—where clustering, a constrained form of low-rank approximation, is used to deduplicate
099 data—high recourse leads to unstable representative sets and repeated retraining of models (Lacki
100 (F) et al., 2023).

101 Across these settings, the underlying principle is consistent: downstream systems rely not only on
102 the quality of the approximation but also on the *stability* of the feature representations over time.
103 By explicitly accounting for this need, consistent low-rank approximation provides solutions that
104 evolve smoothly while maintaining strong accuracy guarantees, delivering both theoretical insight
105 and concrete practical benefits in dynamic, real-world pipelines.

106

1.1 OUR CONTRIBUTIONS

107 In this paper, we initiate the study of consistent low-rank approximation.

108 **Formal model.** Given an accuracy parameter $\varepsilon > 0$, our goal is to provide a $(1 + \varepsilon)$ -approximation
109 to low-rank approximation at all times. We assume the input is a matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$, whose rows
110 $\mathbf{a}_1, \dots, \mathbf{a}_n$ arrive sequentially, so that at each time t , the algorithm only has access to $\mathbf{A}^{(t)}$, the first
111 t rows of \mathbf{A} . That is, the goal of the algorithm is firstly to output a set $\mathbf{V}^{(t)} \in \mathbb{R}^{k \times d}$ of k factors at
112 each time $t \in [n]$, so that

113
$$\|\mathbf{A}^{(t)} - \mathbf{A}^{(t)}(\mathbf{V}^{(t)})^\top \mathbf{V}^{(t)}\|_F^2 \leq (1 + \varepsilon) \cdot \text{OPT}_t,$$

114

115 where OPT_t is the cost of the optimal low-rank approximation at time t , $\text{OPT}_t =$
116 $\min_{\mathbf{V} \in \mathbb{R}^{k \times d}} \|\mathbf{A}^{(t)} - \mathbf{A}^{(t)}\mathbf{V}^\top \mathbf{V}\|_F^2$. In other words, we want the low-rank cost induced by the factor
117 $\mathbf{V}^{(t)}$ returned by the algorithm to closely capture the optimal low-rank approximation. Secondly,
118 we would like the sequence $\mathbf{V}^{(1)}, \dots, \mathbf{V}^{(n)}$ of factors to change minimally over time. Specifically,
119 the goal of the algorithm is to minimize $\sum_{t=2}^n \text{Recourse}(\mathbf{V}^{(t)}, \mathbf{V}^{(t-1)})$, where $\text{Recourse}(\mathbf{R}, \mathbf{T}) =$
120 $\|\mathbf{P}_\mathbf{R} - \mathbf{P}_\mathbf{T}\|_F^2$ is the squared subspace distance between the orthogonal projection matrices $\mathbf{P}_\mathbf{R}, \mathbf{P}_\mathbf{T}$
121 of the two subspaces.

122 We remark on our choice of the cost function $\text{Recourse}(\mathbf{R}, \mathbf{T})$ for factors \mathbf{R} and \mathbf{T} . At first glance,
123 a natural setting of the cost function may be the number of vectors that are different between \mathbf{R} and
124 \mathbf{T} , since in some sense it captures the change between \mathbf{R} and \mathbf{T} . However, it should be observed
125 that even if there is a unique rank k subspace \mathbf{V} that minimizes the low-rank approximation cost
126 $\|\mathbf{A} - \mathbf{AV}^\top \mathbf{V}\|_F^2$, there may be many representations of \mathbf{V} , up to any arbitrary rotation of the basis
127 vectors within the subspace. Thus, a cost function sensitive to the choice of basis vectors may not
128 be appropriate because a large change in the change of basis vectors may not result in any change
129 in the resulting projection $\mathbf{AV}^\top \mathbf{V}$. This implies that a reasonable cost function should capture the
130 difference in the spaces spanned by the subspaces \mathbf{R} and \mathbf{T} . For example, the dimension of the
131 subspace of \mathbf{T} that is orthogonal to \mathbf{R} would be an appropriate quantity. However, it should be
132 noted that this quantity still punishes a subspace \mathbf{T} that is a small perturbation of \mathbf{R} , for example if
133 \mathbf{R} is the elementary vector $(0, 1)$ and \mathbf{T} is the vector $(\varepsilon, \sqrt{1 - \varepsilon^2})$ for arbitrarily small ε . A more
134 robust quantity would be a continuous analogue of the dimension, which is the squared mass of
135 the projection of \mathbf{T} away from \mathbf{R} ; this quantity corresponds exactly to our cost function Recourse .
136 Thus, we believe that our choice of the consistency cost function is quite natural.

137 We note that we can further assume that the input matrix \mathbf{A} has integer entries bounded in magnitude
138 by some parameter M . We remark that this assumption is standard in numerical linear algebra
139 because in general it is difficult to represent real numbers up to arbitrary precision in the input of
140 the algorithm. Instead, for inputs that are rational, after appropriate scaling each entry of the input
141 matrix can be written as an integer. Thus, this standard assumption can model the number of bits
142 used to encode each entry of the matrix, without loss of generality.

143 **Theoretical results.** We first note that the optimal low-rank approximation can completely change
144 at every step, in the sense that the optimal subspace $\mathbf{V}^{(t-1)}$ at time $t - 1$ may still have dimension
145 k after being projected onto the optimal subspace $\mathbf{V}^{(t)}$. Thus, to achieve optimality, it may be
146 possible that $\Omega(nk)$ recourse could be necessary, i.e., by recomputing the best k factors after the
147 arrival of each of the n rows. Nevertheless, on the positive side, we first show sublinear recourse
148 can be achieved if the goal is to simply achieve an additive $\varepsilon \cdot \|\mathbf{A}^{(t)}\|_F^2$ additive error to the low-rank
149 approximation cost at all times.

150 **Theorem 1.1.** *Suppose $\mathbf{A} \in \mathbb{Z}^{n \times d}$ is an integer matrix with rank $r > k$ and entries bounded in
151 magnitude by M and let $\mathbf{A}^{(t)}$ denote the first t rows of \mathbf{A} , for any $t \in [n]$. There exists an algorithm
152 that achieves $\varepsilon \cdot \|\mathbf{A}^{(t)}\|_F^2$ -additive approximation to the cost of the optimal low-rank approximation
153 \mathbf{A} at all times and achieves recourse $\mathcal{O}\left(\frac{k}{\varepsilon} \log(ndM)\right)$.*

154 We remark that the algorithm corresponding to **Theorem 1.1** uses $\frac{kd}{\varepsilon} \cdot \text{polylog}(ndM)$ bits of space
155 and $d \cdot \text{poly}\left(k, \frac{1}{\varepsilon}, \log(ndM)\right)$ amortized update time. Since the squared Frobenius norm is an
156 upper bound on the optimal low-rank approximation cost, achieving additive $\varepsilon \cdot \|\mathbf{A}^{(t)}\|_F^2$ error to the
157 optimal cost is significantly easier than achieving relative $(1 + \varepsilon)$ -multiplicative error, particularly
158 in the case where the top singular vectors correspond to large singular values. In fact, we can even
159 achieve recourse linear in k if the online condition number of the stream is at most $\text{poly}(n)$:

160 **Theorem 1.2.** *Given a stream with online condition number $\text{poly}(n)$, there exists an algorithm that
161 achieves a $(1 + \varepsilon)$ -approximation for low-rank approximation, and uses recourse $\mathcal{O}\left(\frac{k}{\varepsilon^2} \log^3 n\right)$.*

162 We remark that for streams with online condition number $\text{poly}(n)$, we actually show a stronger result
163 in Lemma 2.1. In particular, we show that the optimal rank- k subspace changes by only a constant
164 amount after rank-one perturbations corresponding to single-entry changes, row modifications, row
165 insertions, and row deletions. Thus this result implies Theorem 1.2 using standard techniques for
166 reducing the “effective” stream length and in fact, also immediately gives an algorithm that maintains
167 the optimal rank- k approximation under any sequence of such updates while incurring only $\mathcal{O}(n)$
168 total recourse over a stream of n operations. Hence, our approach can handle explicit distributional
169 shifts arising in insertion–deletion streams; extending this ability to handle implicit deletions such as
170 in the sliding window model (Datar et al., 2002; Braverman & Ostrovsky, 2007) is a natural direction
171 for future work.

172 For standard matrices with integer entries bounded by $\text{poly}(n)$, however, the assumption that the
173 online condition number is bounded by $\text{poly}(n)$ may not hold. For example, it is known that there
174 exist integer matrices with dimension $n \times d$ but optimal low-rank cost as small as $\exp(-\Omega(k))$. To
175 that end, we first observe that a simple application of a result by Braverman et al. (2020) can be used
176 to achieve recourse $\frac{k^2}{\varepsilon^2} \cdot \text{polylog}(ndM)$ while maintaining a $(1 + \varepsilon)$ -multiplicative approximation at
177 all times. Indeed, for constant ε , roughly $k \cdot \text{polylog}(ndM)$ rows can be sampled through a process
178 known as online ridge-leverage score sampling, to preserve the low-rank approximation at all times.
179 Then for quadratic recourse, it suffices to recompute the top right k singular vectors for the sampled
180 submatrix each time a new row is sampled. A natural question is whether $\Omega(k)$ recourse is necessary
181 for each step, i.e., whether recomputing the top right k singular vectors is necessary. We show this
182 is not the case, and that overall the recourse can be made sub-quadratic.

183 **Theorem 1.3.** *Suppose $\mathbf{A} \in \mathbb{Z}^{n \times d}$ is an integer matrix with entries bounded in magnitude by M .
184 There exists an algorithm that achieves a $(1 + \varepsilon)$ -approximation to the cost of the optimal low-rank
185 approximation \mathbf{A} at all times and achieves recourse $\frac{k^{3/2}}{\varepsilon^2} \cdot \text{polylog}(ndM)$.*

186 We again remark that the algorithm corresponding to Theorem 1.3 uses $\frac{kd}{\varepsilon} \cdot \text{polylog}(ndM)$ bits
187 of space and $d \cdot \text{poly}(k, \frac{1}{\varepsilon}, \log(ndM))$ amortized update time. Finally, we show that $\Omega(\frac{k}{\varepsilon} \log \frac{n}{k})$
188 recourse is necessary for any multiplicative $(1 + \varepsilon)$ -approximation algorithm for low-rank approxi-
189 mation, even if the full input is known in advance.

190 **Theorem 1.4.** *For any parameter $\varepsilon > \frac{\log n}{n}$, there exists a sequence of rows $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$
191 such that any algorithm that produces a $(1 + \varepsilon)$ -approximation to the cost of the optimal low-rank
192 approximation at all times must have consistency cost $\Omega(\frac{k}{\varepsilon} \log \frac{n}{k})$.*

193 **Empirical evaluations.** We complement our theoretical results with a number of empirical evalua-
194 tions in Section 4. Our results show that although our formal guarantees provide a worst-case analy-
195 sis of the approximation cost of the low-rank solution output by our algorithm, the performance can
196 be even (much) better in practice. Importantly, our results show that algorithms for online low-rank
197 approximation such as Frequent Directions (Ghashami et al., 2016) do not achieve good recourse,
198 motivating the study of algorithms specifically designed for consistent low-rank approximation.

199 **Organization of the paper.** We give the linear recourse algorithms in Section 2 and conduct em-
200 pirical evaluations in Section 4 and Appendix G. We give our result for integer-valued matrices in
201 Section 3. We defer all proofs to the full appendix, and specifically the lower bound to Appendix D.
202 The reader may also find it helpful to consult Appendix A for standard notation and additional
203 preliminaries used in our paper.

204

1.2 RELATED WORK

205 In this section, we briefly describe a number of existing techniques in closely related models and
206 provide intuition on why they do not suffice for our setting.

207 **Frequent directions and online ridge leverage score sampling.** The most natural approach would
208 be to apply existing algorithms from the streaming literature for low-rank approximation. The two
209 most related works are the deterministic Frequent Directions work by Ghashami et al. (2016) and
210 the (online) ridge leverage score sampling procedure popularized by Cohen et al. (2017); Braverman
211 et al. (2020). Both procedures maintain a small number of rows that capture the “important” direc-
212 tions of the matrix at all times. Hence to report a near-optimal rank- k approximation at each time,
213 these algorithms simply return the top k right singular vectors of the singular value decompositon

216 of the matrix stored by each algorithm. However, one could easily envision a situation in which the
217 k -th and $(k+1)$ -th largest singular vectors repeatedly alternate, incurring recourse at each step. For
218 example, suppose $k=1$ and at all times $2t$ for integral $t > 0$, the top singular vectors are $(2t, 0)$
219 and $(0, 2t - \varepsilon)$, but at all times $2t+1$ for integral $t \geq 0$, the top singular vectors are $(2t+1 - \varepsilon, 0)$
220 and $(0, 2t+1)$. Then at all times $2t$, the best rank- k solution for $k=1$ would be the elementary
221 vector e_1 while at all times $2t+1$, the best rank- k solution would be the elementary vector e_2 .
222 These algorithms would incur recourse n , whereas even an algorithm that never changes the initial
223 vector e_2 would incur recourse 0. Thus, these algorithms seem to fail catastrophically, i.e., not even
224 provide a $\text{poly}(n)$ -multiplicative approximation to the recourse, even for simple inputs.

225 One may observe that our goal is to only upper bound the total recourse, rather than to achieve
226 a multiplicative approximation to the recourse. Indeed for this purpose, the online ridge leverage
227 sampling technique provides some gain. In particular, Braverman et al. (2020) showed that over the
228 entirety of the stream, at most $\frac{k}{\varepsilon^2} \cdot \text{polylog}(n, d, \frac{1}{\varepsilon})$ rows will be sampled into the sketch matrix in
229 total, and moreover the sketch matrix will accurately capture the residual for the projection onto any
230 subspace of dimension k . Thus to achieve $\mathcal{O}(k^2)$ recourse, it suffices to simply recompute the top- k
231 singular vectors each time a new row is sampled by the online ridge leverage sampling procedure.

232 **Singular value decomposition.** Note that the previous example also shows that more generally, it
233 does not suffice to simply output the top- k right singular vectors of the singular value decomposition
234 (SVD). However, one might hope that it suffices to replace just a single direction in the SVD each
235 time a row is sampled into the sketch matrix by online ridge leverage score sampling. Unfortunately,
236 it seems possible that an approximately optimal solution from a previous step could require
237 all k factors to be replaced by the arrival of a single row. Suppose for example, that the factor $\mathbf{V}^{(1)}$
238 consisting of the elementary vectors e_{k+1}, \dots, e_{2k} achieves the same loss as the factor $\mathbf{V}^{(2)}$ consisting
239 of the elementary vectors e_1, \dots, e_k . Now if the next row is non-zero exactly in the coordinates
240 $1, \dots, k$, then the top k space could change entirely, from $\mathbf{V}^{(1)}$ to $\mathbf{V}^{(2)}$. While this worst-case input
241 is unavoidable, we show this can only happen a small number of times. It is more problematic when
242 only one of these factors drastically change, while the other $k-1$ factors only change by a little,
243 but we still output k completely new factors. Our algorithm avoids this by carefully choosing the
244 factors to replace based on casework on the corresponding singular values.

2 SIMPLE ALGORITHMS WITH OPTIMAL RE COURSE

245 In this section, we briefly describe two simple algorithms that achieve recourse linear in k .

246 **Additive error.** The first algorithm roughly $\mathcal{O}(\frac{k}{\varepsilon} \log n)$ recourse when the goal is to maintain an
247 additive $\varepsilon \cdot \|\mathbf{A}^{(t)}\|_F^2$ error at all times $t \in [n]$, where $\mathbf{A}^{(t)}$ is the t rows of matrix \mathbf{A} that have arrived
248 at time t . We simply track the squared Frobenius norm of the matrix $\mathbf{A}^{(t)}$ at all times. For each time
249 the squared Frobenius norm has increased by a factor of $(1 + \varepsilon)$, then we recompute the singular
250 value decomposition of $\mathbf{A}^{(t)}$ and choose $\mathbf{V}^{(t)}$ to be the top k right singular vectors of $\mathbf{A}^{(t)}$. For all
251 other times, we maintain the same set of factors.

252 The main intuition is that each time we reset $\mathbf{V}^{(t)}$, we find the optimal solution at time t . Over
253 the next few steps after t , our solution will degrade, but the most it can degrade by is the squared
254 Frobenius norm of the submatrix formed by the incoming rows. Thus as long as this quantity is
255 less than an ε -fraction of the squared Frobenius norm of the entire matrix, then our correctness
256 guarantee will hold. On the other hand, such a guarantee *must* hold as long as the squared Frobenius
257 norm has not increased by a $(1 + \varepsilon)$ -multiplicative factor. Thus we incur recourse k for each of
258 the $\mathcal{O}(\frac{1}{\varepsilon} \log(ndM))$ times the matrix can have its squared Frobenius norm increase by $(1 + \varepsilon)$
259 multiplicatively. We give our algorithm in full in [Algorithm 4](#) in [Appendix E](#).

260 **Bounded online condition number.** We next show that the optimal rank k subspace incurs at most
261 constant recourse under rank one perturbations. In particular, it suffices to consider the case where
262 a single row is added to the matrix:

263 **Lemma 2.1.** Let $\mathbf{A}^{(t-1)} \in \mathbb{R}^{(t-1) \times d}$ and $\mathbf{A}^{(t)} \in \mathbb{R}^{t \times d}$ such that $\mathbf{A}^{(t)}$ is $\mathbf{A}^{(t-1)}$ with the row \mathbf{A}_t
264 appended. Let \mathbf{V}_{t-1}^* and \mathbf{V}_t^* be the optimal rank- k subspaces (the span of the top k right singular
265 vectors) of $\mathbf{A}^{(t-1)}$ and $\mathbf{A}^{(t)}$, respectively. Then $\text{Recourse}(\mathbf{V}_{t-1}^*, \mathbf{V}_t^*) \leq 8$.

270 Note that whenever a single entry of a matrix is changed, any row of a matrix is changed, a new
 271 row of a matrix is added, or an existing row of a matrix is deleted, these all correspond to rank one
 272 perturbations of the matrix. Thus, we immediately have the following corollary:

273 **Theorem 2.2.** *There exists an algorithm that maintains the optimal rank- k approximation of a
 274 matrix under any sequence of rank-one updates, including entry modifications, row modifications,
 275 row insertions, or row deletions, and incurs total recourse $\mathcal{O}(n)$ on a stream of n updates. Moreover,
 276 if each row has dimension d , then the update time is $\mathcal{O}((n+d)k + k^3)$.*

277 Given the statement in [Lemma 2.1](#), we immediately obtain an algorithm with $\mathcal{O}(n)$ recourse in the
 278 row-arrival model for a stream of length n . Because n recourse is too large, we use the following
 279 standard approach to decrease the effective number of rows in the matrix.

280 **Definition 2.3** (Projection-cost preserving sketch). *Given a matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$, a matrix $\mathbf{M} \in \mathbb{R}^{m \times d}$
 281 is a $(1 + \varepsilon)$ projection-cost preserving sketch of \mathbf{A} if for all projection matrices $\mathbf{P} \in \mathbb{R}^{d \times d}$,*

$$(1 - \varepsilon)\|\mathbf{A} - \mathbf{A}\mathbf{P}\|_F^2 \leq \|\mathbf{M} - \mathbf{M}\mathbf{P}\|_F^2 \leq (1 + \varepsilon)\|\mathbf{A} - \mathbf{A}\mathbf{P}\|_F^2.$$

285 Intuitively, a projection-cost preserving sketch is a sketch matrix that approximately captures the
 286 residual mass after projecting away any rank k subspace. The following theorem shows that a
 287 projection-cost preserving sketch can be acquired via online ridge leverage sampling.

288 **Theorem 2.4** (Theorem 3.1 in [Braverman et al. \(2020\)](#)). *Given an accuracy parameter $\varepsilon > 0$, a rank
 289 parameter $k > 0$, and a matrix $\mathbf{A} = \mathbf{a}_1 \circ \dots \circ \mathbf{a}_n \in \mathbb{R}^{n \times d}$ whose rows arrive sequentially in a stream
 290 with condition number κ , there exists an algorithm that outputs a matrix \mathbf{M} with $\mathcal{O}(\frac{k}{\varepsilon^2} \log n \log^2 \kappa)$
 291 rescaled rows of \mathbf{A} such that*

$$(1 - \varepsilon)\|\mathbf{A} - \mathbf{A}_{(k)}\|_F^2 \leq \|\mathbf{M} - \mathbf{M}_{(k)}\|_F^2 \leq (1 + \varepsilon)\|\mathbf{A} - \mathbf{A}_{(k)}\|_F^2,$$

293 so that with high probability, \mathbf{M} is a rank k projection-cost preservation of \mathbf{A} .

295 In particular, if the online condition number of the stream is upper bounded by $\text{poly}(n)$, then [Theo-
 296 rem 2.4](#) states that online ridge leverage sampling achieves an online coresset of size $\mathcal{O}(\frac{k}{\varepsilon^2} \log^3 n)$.
 297 By applying [Lemma 2.1](#), it follows that simply maintaining the optimal rank- k subspace for the
 298 online coresset at all times, we have [Theorem 1.2](#).

3 ALGORITHM FOR RELATIVE ERROR

300 In this section, we give our algorithm for $(1 + \varepsilon)$ -multiplicative relative error at all times in the
 301 stream. Let $t \in [n]$, let $\mathbf{x}_t \in \{-\Delta, \dots, \Delta - 1, \Delta\}^d$ and let $\mathbf{X}_t = \mathbf{x}_1 \circ \dots \circ \mathbf{x}_t$. For each $\mathbf{X}_t \in \mathbb{R}^{t \times d}$,
 302 we compute a low-rank approximation $\mathbf{U}_t \mathbf{V}_t$ of \mathbf{X}_t , where $\mathbf{U}_t \in \mathbb{R}^{t \times k}$ and $\mathbf{V}_t \in \mathbb{R}^{k \times d}$ are the
 303 factors of \mathbf{X}_t . We abuse notation and write \mathbf{V}_t as a set V_t of k points in \mathbb{R}^d . Note that the quantity
 304 $\sum_{t=1}^n |V_t \setminus V_{t-1}|$ is an upper bound on the recourse or the consistency cost. Thus in this section, we
 305 interchangeably refer to this quantity as the recourse or the consistency cost, as we can lower bound
 306 this sharper quantity.

307 First, we recall an important property about the optimal solution for our formulation of low-rank
 308 approximation, i.e., with Frobenius loss.

309 **Theorem 3.1** (Eckart-Young-Mirsky theorem). *([Eckart & Young, 1936](#); [Mirsky, 1960](#)) Let $\mathbf{A} \in$
 310 $\mathbb{R}^{n \times d}$ with rank r have singular value decomposition $\mathbf{A} = \mathbf{U}\Sigma\mathbf{V}$ for $\mathbf{U} \in \mathbb{R}^{n \times r}$, $\Sigma \in \mathbb{R}^{r \times r}$,
 311 $\mathbf{V} \in \mathbb{R}^{r \times d}$ and singular values $\sigma_1(\mathbf{A}) \geq \sigma_2(\mathbf{A}) \geq \dots \geq \sigma_d(\mathbf{A})$. Let \mathbf{X} be the top k right
 312 singular vectors of \mathbf{A} , i.e., the top k rows of \mathbf{V} , breaking ties arbitrarily. Then an optimal rank k
 313 approximation of \mathbf{A} is $\mathbf{A}\mathbf{X}^\top\mathbf{X}$ and the cost is $\|\mathbf{A} - \mathbf{A}\mathbf{X}^\top\mathbf{X}\|_F^2 = \sum_{i=k+1}^d \sigma_i^2(\mathbf{A})$.*

314 As a corollary to [Theorem 3.1](#), we have that an algorithmic procedure to compute an optimal rank k
 315 approximation is just to take the top k right singular vectors of \mathbf{A} , c.f., procedure [RECLUSTER](#)(\mathbf{A}, k)
 316 in [Algorithm 1](#), though faster methods for approximate SVD can also be used.

317 **Corollary 3.2.** *There exists an algorithm [RECLUSTER](#)(\mathbf{A}, k) that outputs a set of orthonormal rows
 318 \mathbf{X} that produces the optimal rank k approximation to \mathbf{A} .*

319 Our algorithm performs casework on the contribution of the bottom \sqrt{k} singular values of the top k .
 320 If the contribution is small, the corresponding singular vectors can be replaced without substantially

Algorithm 1 RECLUSTER(\mathbf{A}, k), i.e., Truncated SVD

326 **Input:** Matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$, rank parameter k
 327 **Output:** Top k right singular vectors of \mathbf{A}
 328 1: Let r be the rank of \mathbf{A}
 329 2: Let $\mathbf{U} \in \mathbb{R}^{n \times r}$, $\Sigma \in \mathbb{R}^{r \times r}$, $\mathbf{V} \in \mathbb{R}^{r \times d}$ be the singular value decomposition of $\mathbf{A} = \mathbf{U}\Sigma\mathbf{V}$
 330 3: Return the first $\min(r, k)$ rows of \mathbf{V}

increasing the error. Thus, each time a new row arrives, we simply replace one of the bottom singular vectors with the new row. On the other hand, if the contribution is large, it means that the optimal solution cannot be projected away too much from these directions, or else the optimal low-rank approximation cost will also significantly increase. Thus we can simply choose the optimal set of top right k singular vectors at each time, because there will be substantial overlap between the new subspace and the old subspace. We give our algorithm in full in [Algorithm 2](#).

Algorithm 2 Relative-error algorithm for low-rank approximation with low recourse

Correctness. For the purposes of discussion, say that an epoch is the set of times during which the optimal low-rank approximation cost has not increased by a multiplicative $(1 + \varepsilon)$ -approximation. We first show the correctness of our algorithm across the times t during epochs in which HEAVY is set to FALSE. That is, we show that our algorithm maintains a $(1 + \varepsilon)$ -multiplicative approximation to the optimal low-rank approximation cost across all times t in an epoch where the bottom \sqrt{k} singular values of the top k right singular values do not contribute significant mass.

Lemma 3.3. Consider a time s during which c is reset to 0. Suppose **HEAVY** is set to FALSE at time s and c is not reset to 0 within the next r steps, for $r \leq \sqrt{k}$. Let $\mathbf{V}^{(t)}$ be the output of \mathbf{V} at time

378 *t. Then $\mathbf{V}^{(t)}$ provides a $(1 + \frac{\varepsilon}{2})$ -approximation to the cost of the optimal low-rank approximation*
 379 *of $\mathbf{A}^{(t)}$ for all $t \in [s, s + r]$.*

381 Next, we show the correctness of our algorithm across the times t during epochs in which HEAVY is
 382 set to TRUE. That is, we show that our algorithm maintains a $(1 + \varepsilon)$ -multiplicative approximation
 383 to the optimal low-rank approximation cost across all times t in an epoch where the bottom \sqrt{k}
 384 singular values of the top k right singular values do contribute significant mass.

385 **Lemma 3.4.** *Consider a time t during which HEAVY is set to TRUE. Let $\mathbf{V}^{(t)}$ be the output*
 386 *of \mathbf{V} at time t . Then $\mathbf{V}^{(t)}$ provides a $(1 + \frac{\varepsilon}{2})$ -approximation to the cost of the optimal low-rank*
 387 *approximation of $\mathbf{A}^{(t)}$.*

389 Correctness at all times now follows from [Lemma 3.3](#) and [Lemma 3.4](#):

390 **Lemma 3.5.** *At all times $t \in [n]$, [Algorithm 2](#) provides a $(1 + \frac{\varepsilon}{2})$ -approximation to the cost of the*
 391 *optimal low-rank approximation of $\mathbf{A}^{(t)}$.*

393 **Recourse.** We first bound the recourse if the bottom \sqrt{k} singular values of the top k right singular
 394 values do not contribute significant mass.

395 **Lemma 3.6.** *Suppose HEAVY is set to FALSE at time s and c is reset to 0 at time s . If c is not reset*
 396 *to 0 within the next r steps, for $r \leq \sqrt{k}$, then $\sum_{i=s+1}^{s+r} \text{Recourse}(\mathbf{V}^{(s)}, \mathbf{V}^{(s-1)}) \leq r$.*

398 At this point, we remark a subtlety in the analysis that is easily overlooked. Our general strategy
 399 is to show that each time the cost of the optimal low-rank approximation doubles, we should incur
 400 recourse $\mathcal{O}(k^{1.5})$. One might then expect that because the matrix contains integer entries bounded
 401 by $\text{poly}(n)$, then the cost of the optimal low-rank approximation can only double $\mathcal{O}(\log n)$ times,
 402 since it can be at most $\text{poly}(n)$.

403 Unfortunately, there exist constructions of anti-Hadamard integer matrices with dimension $n \times d$ but
 404 optimal low-rank cost as small as $\exp(-\Omega(k))$. Hence, the optimal cost can double $\mathcal{O}(k)$ times,
 405 thereby incurring total recourse $\mathcal{O}(k^{2.5})$, which is undesirably large. Instead, we show that when
 406 the optimal low-rank cost is exponentially small, then the rank of the matrix must also be quite
 407 small, meaning that the recourse of our algorithm cannot be as large as in the full-rank case. To that
 408 end, we require a structural property, c.f., [Lemma F.2](#) that describes the cost of the optimal low-rank
 409 approximation, and parameterized to handle general matrices with rank $r > k$. This is to handle the
 410 case where the cost of the optimal low-rank approximation may be exponentially small in k . As a
 411 result, we have the following upper bound on the total recourse across all epochs when the bottom
 412 \sqrt{k} singular values of the top k do not contribute significant mass.

413 **Lemma 3.7.** *Suppose HEAVY is set to TRUE at time t and c is not reset to 0 within the next r steps,*
 414 *for $r \leq k$. Then $\sum_{i=t+1}^{t+r} \text{Recourse}(\mathbf{V}^{(t)}, \mathbf{V}^{(t-1)}) \leq r\sqrt{k}$.*

416 We analyze the total recourse during times when we reset the counter c because the cost of the
 417 optimal low-rank approximation has doubled. Finally, it remains to bound the total recourse at times
 418 when we transition from one epoch to another. Specifically, we bound the recourse at times t where
 419 the optimal low-rank approximation cost has increased by a multiplicative $(1 + \varepsilon)$ -approximation
 420 since the beginning of the previous epoch.

421 **Lemma 3.8.** *Let T be the set of times at which c is set to 0. Then $\sum_{t \in T} \text{Recourse}(\mathbf{V}^{(t)}, \mathbf{V}^{(t-1)}) \leq$
 422 $\mathcal{O}\left(n\sqrt{k} + \frac{k}{\varepsilon} \log^2(ndM)\right)$.*

424 Using [Lemma 3.6](#), [Lemma 3.7](#), and [Lemma 3.8](#), we then bound the total recourse of our algorithm.

425 **Lemma 3.9.** *The total recourse of [Algorithm 2](#) on an input matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ with integer entries*
 426 *bounded in magnitude by M is $\mathcal{O}\left(n\sqrt{k} + \frac{k}{\varepsilon} \log^2(ndM)\right)$.*

428 Using [Lemma 3.5](#) and [Lemma 3.9](#), we can provide the formal guarantees of our subroutine.

429 **Lemma 3.10.** *Given an input matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ with integer entries bounded in magnitude by M ,*
 430 *[Algorithm 2](#) achieves a $(1 + \frac{\varepsilon}{2})$ -approximation to the cost of the optimal low-rank approximation*
 431 *and achieves recourse $\mathcal{O}\left(n\sqrt{k} + \frac{k}{\varepsilon} \log^2(ndM)\right)$.*

Algorithm 3 Relative-error algorithm for low-rank approximation with recourse $\frac{k^{3/2}}{\varepsilon^2} \cdot \text{polylog}(ndM)$

Input: Rows $\mathbf{a}_1, \dots, \mathbf{a}_n$ of input matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ with integer entries magnitude at most M
Output: $(1 + \frac{\varepsilon}{4})$ -approximation to the cost of the optimal low-rank approximation at all times

- 1: **for** each row \mathbf{a}_t **do**
- 2: Sample \mathbf{a}_t with online ridge leverage score
- 3: Run [Algorithm 2](#) on the stream induced by the sampled rows
- 4: **end for**

▷ [Theorem 2.4](#)

To reduce the number of rows in the input, we again apply [Theorem 2.4](#), which, combined with [Lemma 3.10](#), gives our main result [Theorem 1.3](#) for [Algorithm 3](#). Finally, we remark that since [Theorem 2.4](#) samples $\mathcal{O}\left(\frac{k}{\varepsilon^2} \log n \log^2 \kappa\right)$ rows and there are input sparsity algorithms for approximations of the sampling probabilities ([Cohen et al., 2017](#)), then [Algorithm 3](#) can be implemented and used $\frac{kd}{\varepsilon} \cdot \text{polylog}(ndM)$ bits of space and $d \cdot \text{poly}\left(k, \frac{1}{\varepsilon}, \log(ndM)\right)$ amortized update time.

4 EMPIRICAL EVALUATIONS

We describe our empirical evaluations on a large-scale real-world dataset, comparing the quality of the solution of our algorithm to the quality of the optimal low-rank approximation solution. We discuss a number of additional experiments on both synthetic and real-world datasets in [Appendix G](#). All experiments were conducted utilizing Python version 3.10.4 on a 64-bit operating system running on an AMD Ryzen 7 5700U CPU. The system was equipped with 8GB of RAM and featured 8 cores, each operating at a base clock speed of 1.80 GHz.

k	$(1 + \varepsilon)$	Median	Std. Dev.	Mean
25	1.1	1.000	0.0000	1.0000
	2	1.000	0.0000	1.0000
	5	1.0000	0.0367	1.0016
	10	1.0000	2.4463	1.598
	100	1.1907	51.9353	7.8882

Table 1: Median, standard deviation, and mean for ratios of cost across various values of accuracy parameters for landmark dataset, between 150 and 5000 updates

Fig. 1: Recourse comparisons for $k = 25$, $c = (1 + \varepsilon) \in \{1.1, 2.5, 5, 10, 100\}$

Experimental setup. In this section, we focus on our evaluations [Algorithm 4](#) on the Landmark dataset from the SuiteSparse Matrix Collection ([Davis & Hu, 2011](#)), which is commonly used in benchmark comparison for low-rank approximation, e.g., ([Ban et al., 2019](#)). The dataset consists of a total of 71952 rows with $d = 2704$ features. As our theoretical results prove that our algorithm has

a small amount of recourse, we first compare the cost of the solution output by [Algorithm 4](#) with the cost of the optimal low-rank approximation. However, determining the optimal cost over each time is computationally expensive and serves as the main bottleneck. Specifically, for a stream of length n , the baseline requires $n \cdot \mathcal{O}(n^\omega) = \Omega(n^3)$ runtime for $n \approx d$, where $\omega \approx 2.37$ is the exponent for matrix multiplication ([Alman et al., 2025](#)). Thus we consider the first $n = 5000$ rows for our data stream, so the goal was to perform low-rank approximation on every single prefix matrix of size $n' \times d$ with $n' \leq n$. In particular, we computed in the runtimes and ratios of the two costs for $k = 25$ across $c = (1 + \varepsilon) \in \{1.1, 2.5, 5, 10, 100\}$ in [Figure 2](#) with central statistics in [Table 1](#), even though [Algorithm 4](#) only guarantees additive error, rather than multiplicative error. Finally, we compared the recourse of our algorithms in [Figure 1](#), along with FREQUENTDIRECTIONS, labeled FD, a standard algorithm for online low-rank approximation ([Ghashami et al., 2016](#)).

Results and discussion. Our results show a strong separation in the quality of online low-rank approximations such as Frequent Directions and our algorithms, which were specifically designed to achieve low recourse. Namely, for $n = 5000$, Frequent Directions has achieved recourse 121904 while our algorithms range from recourse 100 to 300, more than a factor of 400X. Moreover, our results show that the approximation guarantees of our algorithms are actually quite good in practice, especially as the number of rows increases; we believe the large variance in [Figure 2b](#) is due to the optimal low-rank approximation cost being quite small compared to the additive Frobenius error. Thus it seems our empirical evaluations provide compelling evidence that our algorithms achieve significantly better recourse than existing algorithms for online low-rank approximation; we provide a number of additional experiments in [Appendix G](#).

Fig. 2: Runtime and approximations on landmark dataset, for $k = 25$, $c = (1 + \varepsilon) \in \{1.1, 2.5, 5, 10, 100\}$

REFERENCES

Charu C Aggarwal and Charu C Aggarwal. *Mining text data*. Springer, 2015. [2](#)

Josh Alman, Ran Duan, Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. More asymmetry yields faster matrix multiplication. In *Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete Algorithms, SODA*, pp. 2005–2039, 2025. [10](#)

Frank Ban, David P. Woodruff, and Qiuyi (Richard) Zhang. Regularized weighted low rank approximation. In *Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS*, pp. 4061–4071, 2019. [9](#)

Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor. A polylogarithmic-competitive algorithm for the k -server problem. *J. ACM*, 62(5):40:1–40:49, 2015. [2](#)

Rajen Bhatt and Abhinav Dhall. Skin Segmentation. UCI Machine Learning Repository, 2012. DOI: <https://doi.org/10.24432/C5T30C>. [25](#)

Sayan Bhattacharya, Niv Buchbinder, Roie Levin, and Thatchaphol Saranurak. Chasing positive bodies. In *64th IEEE Annual Symposium on Foundations of Computer Science, FOCS*, pp. 1694–1714, 2023. [2](#)

540 Sayan Bhattacharya, Martín Costa, Naveen Garg, Silvio Lattanzi, and Nikos Parotsidis. Fully dy-
541 namic k-clustering with fast update time and small recourse. In *65th IEEE Annual Symposium on*
542 *Foundations of Computer Science, FOCS*, pp. 216–227, 2024. 16
543

544 Michele Borassi, Alessandro Epasto, Silvio Lattanzi, Sergei Vassilvitskii, and Morteza Zadimoghad-
545 dam. Sliding window algorithms for k-clustering problems. In *Advances in Neural Information*
546 *Processing Systems 33: Annual Conference on Neural Information Processing Systems, NeurIPS,*
547 2020. 25

548 Matthew Brand. Fast low-rank modifications of the thin singular value decomposition. *Linear*
549 *algebra and its applications*, 415(1):20–30, 2006. 19
550

551 Vladimir Braverman and Rafail Ostrovsky. Smooth histograms for sliding windows. In *48th Annual*
552 *IEEE Symposium on Foundations of Computer Science (FOCS), Proceedings*, pp. 283–293, 2007.
553 4

554 Vladimir Braverman, Petros Drineas, Cameron Musco, Christopher Musco, Jalaj Upadhyay,
555 David P. Woodruff, and Samson Zhou. Near optimal linear algebra in the online and sliding
556 window models. In *61st IEEE Annual Symposium on Foundations of Computer Science, FOCS*,
557 pp. 517–528, 2020. 4, 5, 6, 14

558 Sébastien Bubeck, Christian Coester, and Yuval Rabani. The randomized k -server conjecture is
559 false! In *Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC*, pp.
560 581–594, 2023. 2

562 T.-H. Hubert Chan, Shaofeng H.-C. Jiang, Tianyi Wu, and Mengshi Zhao. Online clustering with
563 nearly optimal consistency. In *The Thirteenth International Conference on Learning Representa-*
564 *tions, ICLR*, 2025. 16

566 Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the streaming model. In
567 *Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC*, pp. 205–214,
568 2009. 15

569 Michael B. Cohen, Cameron Musco, and Christopher Musco. Input sparsity time low-rank ap-
570 proximation via ridge leverage score sampling. In *Proceedings of the Twenty-Eighth Annual*
571 *ACM-SIAM Symposium on Discrete Algorithms, SODA*, pp. 1758–1777, 2017. 4, 9

573 Vincent Cohen-Addad, Niklas Hjuler, Nikos Parotsidis, David Saulpic, and Chris Schwiegelshohn.
574 Fully dynamic consistent facility location. In *Advances in Neural Information Processing Systems*
575 *32: Annual Conference on Neural Information Processing Systems, NeurIPS*, pp. 3250–3260,
576 2019. 2

577 Vincent Cohen-Addad, Silvio Lattanzi, Andreas Maggiori, and Nikos Parotsidis. Online and consis-
578 tent correlation clustering. In *International Conference on Machine Learning, ICML*, pp. 4157–
579 4179, 2022. 16

581 Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream statistics over
582 sliding windows. *SIAM J. Comput.*, 31(6):1794–1813, 2002. 4

583 Timothy A Davis and Yifan Hu. The university of florida sparse matrix collection. *ACM Transac-*
584 *tions on Mathematical Software (TOMS)*, 38(1):1–25, 2011. 9

586 Paul Duetting, Federico Fusco, Silvio Lattanzi, Ashkan Norouzi-Fard, and Morteza Zadimoghad-
587 dam. Consistent submodular maximization. In *Forty-first International Conference on Machine*
588 *Learning, ICML*. OpenReview.net, 2024. 16

589 Paul Dütting, Federico Fusco, Silvio Lattanzi, Ashkan Norouzi-Fard, Ola Svensson, and Morteza
590 Zadimoghaddam. The cost of consistency: Submodular maximization with constant recourse.
591 *CoRR*, abs/2412.02492, 2024. 16

593 Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. *Psychome-*
594 *trika*, 1(3):211–218, 1936. 6

594 Alessandro Epasto, Vahab Mirrokni, Shyam Narayanan, and Peilin Zhong. k-means clustering with
595 distance-based privacy. In *Advances in Neural Information Processing Systems 36: Annual Con-*
596 *ference on Neural Information Processing Systems, NeurIPS*, 2023. 25

597

598 Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic Sleator, and Neal E.
599 Young. Competitive paging algorithms. *J. Algorithms*, 12(4):685–699, 1991. 2

600 Hendrik Fichtenberger, Silvio Lattanzi, Ashkan Norouzi-Fard, and Ola Svensson. Consistent k -
601 clustering for general metrics. In *Proceedings of the 2021 ACM-SIAM Symposium on Discrete*
602 *Algorithms, SODA*, pp. 2660–2678, 2021. 2, 16

603

604 Steve Fisk. A very short proof of cauchy’s interlace theorem for eigenvalues of hermitian matrices.
605 *arXiv preprint math/0502408*, 2005. 14

606 Sebastian Forster and Antonis Skarlatos. Dynamic consistent k -center clustering with optimal re-
607 course. In *Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete Algorithms,*
608 *SODA*, pp. 212–254, 2025. 16

609

610 Mina Ghashami, Edo Liberty, Jeff M. Phillips, and David P. Woodruff. Frequent directions: Simple
611 and deterministic matrix sketching. *SIAM J. Comput.*, 45(5):1762–1792, 2016. 4, 10

612 Albert Gu, Anupam Gupta, and Amit Kumar. The power of deferral: Maintaining a constant-
613 competitive steiner tree online. *SIAM J. Comput.*, 45(1):1–28, 2016. 2

614

615 Xiangyu Guo, Janardhan Kulkarni, Shi Li, and Jiayi Xian. Consistent k-median: Simpler, better and
616 robust. In *The 24th International Conference on Artificial Intelligence and Statistics, AISTATS*,
617 pp. 1135–1143, 2021. 16

618 Anupam Gupta and Amit Kumar. Online steiner tree with deletions. In *Proceedings of the Twenty-*
619 *Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA*, pp. 455–467, 2014. 2

620

621 Anupam Gupta and Roie Levin. Fully-dynamic submodular cover with bounded recourse. In *61st*
622 *IEEE Annual Symposium on Foundations of Computer Science, FOCS*, pp. 1147–1157, 2020. 2

623

624 Anupam Gupta, Amit Kumar, and Cliff Stein. Maintaining assignments online: Matching, schedul-
625 ing, and flows. In *Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete*
626 *Algorithms, SODA*, pp. 468–479, 2014. 2

627

628 Suk-Geun Hwang. Cauchy’s interlace theorem for eigenvalues of hermitian matrices. *The American*
629 *mathematical monthly*, 111(2):157–159, 2004. 14

630

631 Sandy Irani. Competitive analysis of paging. In *Online Algorithms, The State of the Art*, volume
1442 of *Lecture Notes in Computer Science*, pp. 52–73. Springer, 1996. 2

632

633 Mohammad Reza Karimi Jaghargh, Andreas Krause, Silvio Lattanzi, and Sergei Vassilvitskii. Con-
634 sistent online optimization: Convex and submodular. In *The 22nd International Conference on*
635 *Artificial Intelligence and Statistics, AISTATS*, pp. 2241–2250, 2019. 16

636

637 Anil K Jain, Arun Ross, and Salil Prabhakar. An introduction to biometric recognition. *IEEE*
638 *Transactions on circuits and systems for video technology*, 14(1):4–20, 2004. 2

639

640 Jakub Lacki, Jakub Ocwieja, Marcin Pilipczuk, Piotr Sankowski, and Anna Zych. The power of
641 dynamic distance oracles: Efficient dynamic algorithms for the steiner tree. In *Proceedings of the*
642 *Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC*, pp. 11–20, 2015. 2

643

644 Jakub Lacki (✉), Bernhard Haeupler (✉), Christoph Grunau (✉), Václav Rozhon (✉), and Rajesh Ja-
645 yaram (✉). Fully dynamic consistent k-center clustering, 2023. 2, 16

646

647 Silvio Lattanzi and Sergei Vassilvitskii. Consistent k-clustering. In *Proceedings of the 34th Inter-*
648 *national Conference on Machine Learning, ICML*, pp. 1975–1984, 2017. 2, 16

649

650 Mark S. Manasse, Lyle A. McGeoch, and Daniel Dominic Sleator. Competitive algorithms for server
651 problems. *J. Algorithms*, 11(2):208–230, 1990. 2

648 Kolby Nottingham Markelle Kelly, Rachel Longjohn. The uci machine learning repository, 1987.
 649 URL <https://archive.ics.uci.edu>. 25
 650

651 Nicole Megow, Martin Skutella, José Verschae, and Andreas Wiese. The power of recourse for
 652 online MST and TSP. *SIAM J. Comput.*, 45(3):859–880, 2016. 2

653 Leon Mirsky. Symmetric gauge functions and unitarily invariant norms. *The quarterly journal of*
 654 *mathematics*, 11(1):50–59, 1960. 6

655 Mark S. Nixon and Alberto S Aguado. *Feature extraction & image processing for computer vision*.
 656 Academic press, 2012. 2

657 John G Proakis. *Digital signal processing: principles, algorithms, and applications*, 4/E. Pearson
 658 Education India, 2007. 2

659 Rice. Rice (Cammeo and Osmancik). UCI Machine Learning Repository, 2019. DOI:
 660 <https://doi.org/10.24432/C5MW4Z>. 25
 661

662 Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. *Introduction to information*
 663 *retrieval*, volume 39. Cambridge University Press Cambridge, 2008. 2

664 Ian H Witten and Eibe Frank. Data mining: practical machine learning tools and techniques with
 665 java implementations. *AcM Sigmod Record*, 31(1):76–77, 2002. 2

666 David P. Woodruff, Peilin Zhong, and Samson Zhou. Near-optimal k-clustering in the sliding win-
 667 dow model. In *Advances in Neural Information Processing Systems 36: Annual Conference on*
 668 *Neural Information Processing Systems*, NeurIPS, 2023. 25

669

670 A PRELIMINARIES

671 We use $[n]$ to denote the set $\{1, \dots, n\}$. We use $\text{poly}(n)$ to denote a fixed polynomial in n , which
 672 can be adjusted using constants in the parameter settings. We use $\text{polylog}(n)$ to denote $\text{poly}(\log n)$.

673 We use \circ to denote the vertical concatenation of rows $\mathbf{a}_1, \mathbf{a}_2 \in \mathbb{R}^d$, so that $\mathbf{a}_1 \circ \mathbf{a}_2 = \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \end{bmatrix}$. We say
 674 an event \mathcal{E} occurs with high probability if $\Pr[\mathcal{E}] \geq 1 - \frac{1}{\text{poly}(n)}$. Recall that the Frobenius norm of
 675 a matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ is defined by $\|\mathbf{A}\|_F = \left(\sum_{i=1}^n \sum_{j=1}^d A_{i,j}^2 \right)^{1/2}$.

676 The singular value decomposition of a matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ with rank r is the decomposition $\mathbf{A} =$
 677 $\mathbf{U}\Sigma\mathbf{V}$ for $\mathbf{U} \in \mathbb{R}^{n \times r}$, $\Sigma \in \mathbb{R}^{r \times r}$, $\mathbf{V} \in \mathbb{R}^{r \times d}$, where the columns of \mathbf{U} are orthonormal, the rows
 678 of \mathbf{V} are orthonormal, and Σ is a diagonal matrix whose entries correspond to the singular values of
 679 \mathbf{A} .

680 **Lemma A.1.** *For subspaces \mathbf{R} and \mathbf{T} of rank k , let their corresponding orthogonal projection*
 681 *matrices be \mathbf{P} and \mathbf{Q} . Then there exist constants $C_1, C_2 > 0$ such that $C_1(\|\mathbf{P} - \mathbf{PQ}\|_F^2 + \|\mathbf{Q} -$
 682 $\mathbf{QP}\|_F^2) \leq \text{Recourse}(\mathbf{R}, \mathbf{T}) \leq C_2(\|\mathbf{P} - \mathbf{PQ}\|_F^2 + \|\mathbf{Q} - \mathbf{QP}\|_F^2)$.*

683 *Proof.* By definition, we have $\text{Recourse}(\mathbf{R}, \mathbf{T}) = \|\mathbf{P} - \mathbf{Q}\|_F^2$. By the triangle inequality, we have
 684 $\|\mathbf{P} - \mathbf{Q}\|_F \leq \|\mathbf{P} - \mathbf{PQ}\|_F + \|\mathbf{PQ} - \mathbf{Q}\|_F$. Observe that $\|\mathbf{Q} - \mathbf{QP}\|_F^2 = \|\mathbf{Q} - \mathbf{PQ}\|_F^2$ because the
 685 left-hand side is the trace of $(\mathbf{Q} - \mathbf{QP})^\top(\mathbf{Q} - \mathbf{QP})$, which equals the trace of $(\mathbf{Q} - \mathbf{PQ})(\mathbf{Q} - \mathbf{QP})$,
 686 since $\mathbf{P}^\top = \mathbf{P}$ and $\mathbf{Q}^\top = \mathbf{Q}$ for projection matrices \mathbf{Q} and \mathbf{P} . By the cyclic property of trace, the
 687 trace of $(\mathbf{Q} - \mathbf{PQ})(\mathbf{Q} - \mathbf{QP})$ thus equals the trace of $(\mathbf{Q} - \mathbf{QP})(\mathbf{Q} - \mathbf{PQ})$, which by the same
 688 argument, is the trace of the right-hand side. Hence it follows that $\|\mathbf{Q} - \mathbf{QP}\|_F^2 = \|\mathbf{Q} - \mathbf{PQ}\|_F^2$, as
 689 desired. Thus, we have $\|\mathbf{P} - \mathbf{Q}\|_F \leq \|\mathbf{P} - \mathbf{PQ}\|_F + \|\mathbf{QP} - \mathbf{Q}\|_F$.

690 Next, observe that

$$691 \begin{aligned} 692 \|\mathbf{P} - \mathbf{PQ}\|_F^2 + \|\mathbf{PQ} - \mathbf{Q}\|_F^2 &= \text{Trace}(\mathbf{P}) + \text{Trace}(\mathbf{Q}) - 2 \text{Trace}(\mathbf{PQ}) \\ 693 &= 2k - 2 \text{Trace}(\mathbf{PQ}), \end{aligned}$$

702 since $\mathbf{P}^2 = \mathbf{P}$, $\mathbf{Q}^2 = \mathbf{Q}$ are symmetric idempotents, and $\text{Trace}(\mathbf{P}) = \text{Trace}(\mathbf{Q}) = k$. Similarly,

$$\begin{aligned} 703 \quad 2k + 2\|\mathbf{QP}\|_F^2 - 4\text{Trace}(\mathbf{PQ}) &= 2k + 2\text{Trace}(\mathbf{PQP}) - 4\text{Trace}(\mathbf{PQ}) \\ 704 \quad &= 2k - 2\text{Trace}(\mathbf{PQ}), \\ 705 \end{aligned}$$

706 using $\|\mathbf{QP}\|_F^2 = \text{Trace}(\mathbf{PQP}) = \text{Trace}(\mathbf{PQ})$. Thus, we have $\|\mathbf{P} - \mathbf{PQ}\|_F^2 + \|\mathbf{PQ} - \mathbf{Q}\|_F^2 =$
707 $2k + 2\|\mathbf{QP}\|_F^2 - 4 \cdot \text{Trace}(\mathbf{P}^\top \mathbf{Q})$. The latter quantity is at most $4k - 4 \cdot \text{Trace}(\mathbf{P}^\top \mathbf{Q}) = 2(2k -$
708 $2 \cdot \text{Trace}(\mathbf{P}^\top \mathbf{Q}))$, which is just $2\|\mathbf{P} - \mathbf{Q}\|_F^2$. \square

710 Thus, it suffices to work with the less natural but perhaps more mathematically accessible definition
711 of $\|\mathbf{R} - \mathbf{RT}^\dagger \mathbf{T}\|_F^2 + \|\mathbf{T} - \mathbf{TR}^\dagger \mathbf{R}\|_F^2$, i.e., the symmetric difference of the mass of the two subspaces,
712 as a notion of recourse.

713 **Theorem A.2** (Min-max theorem). *Let $\mathbf{A} \in \mathbb{R}^{n \times d}$ be a matrix with singular values $\sigma_1(\mathbf{A}) \geq$
714 $\sigma_2(\mathbf{A}) \geq \dots \geq \sigma_d(\mathbf{A})$ and let $\xi_j(\mathbf{A}) = \sigma_{d-j+1}(\mathbf{A})$ for all $j \in [d]$, so that $\xi_1(\mathbf{A}) \leq \dots \leq \xi_d(\mathbf{A})$ is
715 the reverse spectrum of \mathbf{A} . Then for any subspace \mathbf{V} of \mathbf{A} with dimension k , there exist unit vectors
716 $\mathbf{x}, \mathbf{y} \in \mathbf{V}$ such that*

$$717 \quad \|\mathbf{Vx}\|_2^2 \leq \sigma_k^2(\mathbf{A}), \quad \|\mathbf{Vy}\|_2^2 \geq \xi_k^2(\mathbf{A}).$$

718 **Theorem A.3** (Cauchy interlacing theorem). (*Hwang, 2004; Fisk, 2005*) *Let $\mathbf{A} \in \mathbb{R}^{n \times d}$ be a matrix
719 with singular values $\sigma_1(\mathbf{A}) \geq \sigma_2(\mathbf{A}) \geq \dots \geq \sigma_d(\mathbf{A})$. Let $\mathbf{v} \in \mathbb{R}^d$ and $\mathbf{B} = \mathbf{A} \circ \mathbf{v} \in \mathbb{R}^{(n+1) \times d}$
720 with singular values $\sigma_1(\mathbf{B}) \geq \sigma_2(\mathbf{B}) \geq \dots \geq \sigma_d(\mathbf{B})$. Then $\sigma_i(\mathbf{B}) \geq \sigma_i(\mathbf{A})$ for all $i \in [d]$.*

721 B TECHNICAL OVERVIEW

724 In this section, we provide intuition for our main results, summarizing our algorithms, various challenges,
725 as well as natural other approaches and why they do not work.

727 **Warm-up: additive error algorithm.** As a simple warm-up, we first describe our algorithm that
728 achieves additive error at most $\varepsilon \cdot \|\mathbf{A}^{(t)}\|_F^2$ across all times $t \in [n]$, while only incurring recourse
729 $\mathcal{O}\left(\frac{k}{\varepsilon} \log(ndM)\right)$, corresponding to [Theorem 1.1](#). This algorithm is quite simple. We maintain the
730 squared Frobenius norm of the matrix $\mathbf{A}^{(t)}$ across all times $t \in [n]$. We also maintain the same set
731 of factors provided the squared Frobenius norm has not increased by a factor of $(1 + \varepsilon)$ since the
732 previous time we changed the set of factors. When the squared Frobenius norm has increased by a
733 factor of $(1 + \varepsilon)$ at a time t since the previous time we changed the set of factors, then we simply use
734 the singular value decomposition of $\mathbf{A}^{(t)}$ to set $\mathbf{V}^{(t)}$ to be the top k right singular vectors of $\mathbf{A}^{(t)}$.
735 Since we change the entire set of factors, this process can incur recourse cost at most k .

736 The correctness follows from the observation that each time we reset $\mathbf{V}^{(t)}$, we find the optimal
737 solution at time t . Now, over the next few times after t , our solution can only degrade by the squared
738 Frobenius norm of the submatrix formed by the incoming rows, which is less than an ε -fraction of
739 the squared Frobenius norm of the entire matrix, due to the requirement that we recompute $\mathbf{V}^{(t)}$
740 each time the squared Frobenius norm has increased by a $(1 + \varepsilon)$ factor. Since the Frobenius norm
741 can only increase by a multiplicative $(1 + \varepsilon)$ factor a total of at most $\mathcal{O}\left(\frac{1}{\varepsilon} \log(ndM)\right)$ times and we
742 incur recourse cost k each time, then the resulting recourse is at most the desired $\mathcal{O}\left(\frac{k}{\varepsilon} \log(ndM)\right)$.
743

744 **Stream reduction for relative error algorithm.** We now discuss the goal of achieving $\frac{k^{3/2}}{\varepsilon^2} \cdot$
745 $\text{polylog}(ndM)$ recourse while maintaining a relative $(1 + \varepsilon)$ -multiplicative approximation to the
746 optimal low-rank approximation cost at all times, i.e., [Theorem 1.3](#). We first utilize online ridge-
747 leverage score sampling ([Braverman et al., 2020](#)) to sample $\frac{k}{\varepsilon} \cdot \text{polylog}(ndM)$ rows of the stream \mathcal{S}
748 of rows $\mathbf{a}_1, \dots, \mathbf{a}_n$ on-the-fly, to form a stream \mathcal{S}' consisting of reweighted rows $\mathbf{b}_1, \dots, \mathbf{b}_m$ of \mathbf{A}
749 with $m = \frac{k}{\varepsilon} \cdot \text{polylog}(ndM)$. By the guarantees of online ridge-leverage score sampling, to achieve
750 a $(1 + \varepsilon)$ -approximation to the matrix $\mathbf{A}^{(t)}$ consisting of the rows $\mathbf{a}_1, \dots, \mathbf{a}_t$, it suffices to achieve a
751 $(1 + \mathcal{O}(\varepsilon))$ -approximation to the matrix $\mathbf{B}^{(t')}$ consisting of the rows $\mathbf{b}_1, \dots, \mathbf{b}_{t'}$ that have arrived
752 by time t . Note that since \mathbf{B} is a submatrix of \mathbf{A} , we have $t' \leq t$. Moreover, the rows of \mathbf{A} that are
753 sampled into \mathbf{B} are only increased by at most a $\text{poly}(n)$ factor, so we can assume that the magnitude
754 of the entries is still bounded polynomially by n . Thus it suffices to perform consistent low-rank
755 approximation on the matrix \mathbf{B} instead. Hence for the remainder of the discussion, we assume that
the stream length is $\frac{k}{\varepsilon} \cdot \text{polylog}(ndM)$ rather than n .

756 **Relative error algorithm on reduced stream.** We now describe our algorithm for $(1 + \varepsilon)$ -
757 multiplicative relative error at all times of the stream of length $\frac{k}{\varepsilon} \cdot \text{polylog}(ndM)$. At some time s in
758 the stream, we use the singular value decomposition of $\mathbf{A}^{(s)}$ to compute the top k right singular
759 values of $\mathbf{A}^{(s)}$, which we then set to be our factor $\mathbf{V}^{(s)}$. We can do this each time the optimal low-rank
760 approximation cost has increased by a multiplicative $(1 + \mathcal{O}(\varepsilon))$ -factor since the previous time we
761 set our factor to be $\mathbf{V}^{(s)}$. We first discuss how to maintain a $(1 + \varepsilon)$ -approximation with the desired
762 recourse in between the times at which the optimal low-rank approximation cost has increased by a
763 $(1 + \varepsilon)$ -multiplicative factor.
764

765 Towards this goal, we perform casework on the contribution of the bottom \sqrt{k} singular values within
766 the top k right singular values of $\mathbf{V}^{(s)}$. Namely, if $\sum_{i=k-\sqrt{k}}^k \sigma_i^2(\mathbf{A}^{(s)})$ is “small”, then intuitively,
767 the corresponding singular vectors can be replaced without substantially increasing the error. Hence
768 in this case, we can replace one of the bottom \sqrt{k} singular vectors with the new row each time a
769 new incoming row arrives. This procedure will incur \sqrt{k} total recourse over the next \sqrt{k} updates,
770 after which at time t we reset the factor to be the top k right singular vectors of the matrix $\mathbf{A}^{(t)}$.
771 Therefore, we incur recourse $\mathcal{O}(k)$ across \sqrt{k} time steps.

772 On the other hand, if $\sum_{i=k-\sqrt{k}}^k \sigma_i^2(\mathbf{A}^{(s)})$ is “large”, then the optimal low-rank approximation factors
773 cannot be projected away too much from these directions, since otherwise the optimal low-rank
774 approximation cost would significantly increase. Thus, we can simply choose the optimal set of
775 top right k singular vectors at each time, because there will be substantial overlap between the new
776 subspace and the old subspace. In particular, if we choose our threshold to be $\sum_{i=k-\sqrt{k}}^k \sigma_i^2(\mathbf{A}^{(s)})$
777 to be an $\mathcal{O}(\varepsilon)$ -factor of the optimal cost, then we show that incurring \sqrt{k} recourse will increase
778 the low-rank approximation cost by $(1 + \varepsilon)$, which violates the assumption that we consider times
779 during which the optimal low-rank approximation cost has not increased by a $(1 + \varepsilon)$ -multiplicative
780 factor. Therefore, the recourse is at most \sqrt{k} across each time.
781

782 In summary, between the times at which the optimal low-rank approximation cost has increased by
783 a $(1 + \varepsilon)$ -multiplicative factor, we incur at most \sqrt{k} recourse for each time. Since the stream length
784 is $\frac{k}{\varepsilon} \cdot \text{polylog}(ndM)$, we then incur $\frac{k^{1.5}}{\varepsilon} \cdot \text{polylog}(ndM)$ total recourse across these times, which
785 is our desired bound. It remains to bound the total recourse at times s when the optimal low-rank
786 approximation cost has increased by a $(1 + \varepsilon)$ multiplicative factor, as we reset our solution to be the
787 top k right singular values, incurring recourse k at each of these times. Because the Frobenius norm
788 is at most $\text{poly}(ndM)$, a natural conclusion would be that the optimal low-rank approximation cost
789 can increase by a $(1 + \varepsilon)$ multiplicative factor at most $\mathcal{O}\left(\frac{1}{\varepsilon} \log(ndM)\right)$ times. Unfortunately, this
790 is not the case.
791

792 **Anti-Hadamard matrices.** Problematically, there exist constructions of anti-Hadamard integer
793 matrices, which have dimension $n \times d$ but optimal low-rank cost as small as $\exp(-\mathcal{O}(k))$. Hence,
794 the optimal cost can double $\mathcal{O}(k)$ times, thereby incurring total recourse $\mathcal{O}(k^{2.5})$, which is undesirably large.
795 Instead, we show that when the optimal low-rank cost is exponentially small, then the rank of the matrix must also be quite small, meaning that the recourse of our algorithm cannot be
796 as large as in the full-rank case. Namely, we generalize a result by [Clarkson & Woodruff \(2009\)](#)
797 to show that if an integer matrix $\mathbf{A} \in \mathbb{Z}^{n \times d}$ has rank $r > k$ and entries bounded in magnitude by
798 M , then its optimal low-rank approximation cost is at least $(ndM^2)^{-\frac{k}{r-k}}$. Hence, we only need to
799 consider anti-Hadamard matrices when the rank is less than $2k$.
800

802 Fortunately, when the rank is at most $r < 2k$, we can apply a more fine-grained analysis for the
803 above cases, since there are only r vectors spanning the row span, so the recourse in many of the
804 previous operations can be at most $r - k$. In particular, for $r < k$, we can simply maintain the
805 entire row span. We then argue that if the rank r of the matrix is between $k + 2^i$ and $k + 2^{i+1}$, then
806 there can be at most $\mathcal{O}\left(\frac{k}{\varepsilon} \frac{1}{2^i}\right)$ epochs before the cost of the optimal low-rank approximation is at
807 least $(ndM^2)^{-100}$. Moreover, the recourse incurred by recomputing the top eigenspace is at most
808 $r - k \leq 2^{i+1}$, so that the total recourse for the times where the rank of the matrix is between $k + 2^i$
809 and $k + 2^{i+1}$ is at most $\mathcal{O}\left(\frac{k}{\varepsilon} \log(ndM)\right)$. It then follows that the total recourse across all times
before the rank becomes at least $2k$ is at most $\mathcal{O}\left(\frac{k}{\varepsilon} \log^2(ndM)\right)$.
810

810 A keen reader might ask whether $k^{3/2}$ is best possible recourse for our algorithmic approach. To
 811 that end, observe that if we change a large number of factors per update, then the total recourse will
 812 increase. Let us suppose that there are roughly k updates, which is the size of the online projection-
 813 cost preserving coresset. Now if we change r factors per update, then the total recourse will be at least
 814 kr . On the other hand, if we change a smaller number of factors per update, then we will need to
 815 recompute every $\frac{k}{r}$ steps. Each recompute takes k recourse, for a total of $\frac{k^2}{r}$ overall recourse. Hence,
 816 the maximum of the quantities kr and $\frac{k^2}{r}$ is minimized at $r = \sqrt{k}$, giving recourse $kr = \frac{k^2}{r} = k^{3/2}$.
 817

818 **Recourse lower bound.** Our lower bound construction that shows recourse $\Omega\left(\frac{k}{\varepsilon} \log \frac{n}{k}\right)$ is neces-
 819 sary, corresponding to [Theorem 1.4](#), is simple. We divide the stream into $\Theta\left(\frac{1}{\varepsilon} \log \frac{n}{k}\right)$ phases where
 820 the optimal low-rank approximation cost increases by a multiplicative $(1 + \mathcal{O}(\varepsilon))$ factor between
 821 each phase. Moreover, the optimal solution to the i -th phase is orthogonal to the optimal solution
 822 to the $(i-1)$ -th phase, so that depending on the parity of the phase i , the optimal solution is either
 823 the first k elementary vectors, or the elementary vectors $k+1$ through $2k$. Therefore, a multiplica-
 824 tive $(1 + \varepsilon)$ -approximation at all times requires incurring $\Omega(k)$ recourse between each phase, which
 825 shows the desired $\Omega\left(\frac{k}{\varepsilon} \log \frac{n}{k}\right)$ lower bound.
 826

828 C ADDITIONAL RELATED WORK

830 We remark that there has been a flurry of recent work studying consistency for various problems.
 831 The problem of consistent clustering was initialized by [Lattanzi & Vassilvitskii \(2017\)](#), who gave an
 832 algorithm with recourse $k^2 \cdot \text{polylog}(n)$ for k -clustering on insertion-only streams, i.e., the incre-
 833 mental setting. This recourse bound was subsequently improved to $k \cdot \text{polylog}(n)$ by [Fichtenberger
 834 et al. \(2021\)](#), while a version robust to outliers was presented by [Guo et al. \(2021\)](#). The approxima-
 835 tion guarantee was also recently improved to $(1 + \varepsilon)$ by [Chan et al. \(2025\)](#). A line of recent work
 836 has studied k -clustering in the dynamic setting [Lacki ① et al. \(2023\)](#); [Bhattacharya et al. \(2024\)](#);
 837 [Forster & Skarlatos \(2025\)](#), where points may be inserted and deleted. Rather than k -clustering,
 838 [Cohen-Addad et al. \(2022\)](#) studied consistency for correlation clustering, where edges are positively
 839 or negatively labeled, and the goal is to form as many clusters as necessary to minimize the number
 840 of negatively labeled edges within a cluster and the number of positively labeled edges between two
 841 different clusters. For problems beyond clustering, a line of work has also focused on submodular
 842 maximization [\(Jaghargh et al., 2019; Duetting et al., 2024; Dütting et al., 2024\)](#).
 843

844 **Consistent clustering.** Another approach might be to adapt ideas from the consistent clustering
 845 literature. In this setting, a sequence of points in \mathbb{R}^d arrive one-by-one, and the goal is to maintain
 846 a constant-factor approximation to the (k, z) -clustering cost, while minimizing the total recourse.
 847 Here, the recourse incurred at a time t is the size of the symmetric difference between the clustering
 848 centers selected at time $t-1$ and at time t . The only algorithm to achieve recourse subquadratic in k
 849 is the algorithm by [Fichtenberger et al. \(2021\)](#), which attempts to create robust clusters at each time
 850 by looking at geometric balls with increasing radius around each existing point to pick centers that
 851 are less sensitive to possible future points. Unfortunately, such a technique utilizes the geometric
 852 properties implicit in the objective of k -clustering and it is not obvious what the corresponding
 853 analogues should be for low-rank approximation.
 854

855 D RE COURSE LOWER BOUND

856 In this section, we prove our recourse lower bound. The main idea is to simply partition the data
 857 stream into $\Theta\left(\frac{1}{\varepsilon} \log \frac{n}{k}\right)$ phases, so that the optimal low-rank approximation cost increases by a
 858 multiplicative $(1 + \mathcal{O}(\varepsilon))$ -factor between each phase. We also design the input matrix so that the
 859 optimal solution to the i -th phase is orthogonal to the optimal solution to the $(i-1)$ -th phase. Hence,
 860 depending on the parity of the phase i , the optimal solution is either the first k elementary vectors,
 861 or the elementary vectors $k+1$ through $2k$ and thus a $(1 + \varepsilon)$ -approximation at all times requires
 862 incurring $\Omega(k)$ recourse between each phase, which shows the desired $\Omega\left(\frac{k}{\varepsilon} \log \frac{n}{k}\right)$ lower bound.
 863

864 **Theorem 1.4.** For any parameter $\varepsilon > \frac{\log n}{n}$, there exists a sequence of rows $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$
 865 such that any algorithm that produces a $(1 + \varepsilon)$ -approximation to the cost of the optimal low-rank
 866 approximation at all times must have consistency cost $\Omega\left(\frac{k}{\varepsilon} \log \frac{n}{k}\right)$.
 867

868 *Proof.* We divide the stream into $\Theta\left(\frac{1}{\varepsilon} \log \frac{n}{k}\right)$ phases. Let $C > 2$ be some parameter that we shall
 869 set. If i is odd, then in the i -th phase, we add $(1 + \varepsilon)^i$ copies of the elementary vectors $\mathbf{e}_1, \dots, \mathbf{e}_k$.
 870 If i is even, then in the i -th phase, we add $(1 + C\varepsilon)^i$ copies of the elementary vectors $\mathbf{e}_{k+1}, \dots, \mathbf{e}_{2k}$.
 871 Note that since there are $\Theta\left(\frac{1}{\varepsilon} \log \frac{n}{k}\right)$ phases and each phase inserts $(1 + C\varepsilon)^i$ copies of k rows,
 872 then the total number of copies of each row inserted is at most $\mathcal{O}(n)2k$ for the correct fixing of the
 873 constant in the $\Theta(\cdot)$ notation, and thus there are at most n rows overall.
 874

875 We remark that by construction, after the i -th phase, the optimal rank- k approximation
 876 is the elementary vectors $\mathbf{e}_1, \dots, \mathbf{e}_k$ if i is odd and the elementary vectors
 877 $\mathbf{e}_{k+1}, \dots, \mathbf{e}_{2k}$ if i is even. In particular, by the Eckart-Young-Mirsky theorem, i.e., [Theorem 3.1](#), after the i -th phase, the optimal rank- k approximation to the underlying matrix
 878 induces cost $k \cdot ((1 + C\varepsilon)^2 + (1 + C\varepsilon)^4 + \dots + (1 + C\varepsilon)^{i-1})$ if i is odd and $k \cdot$
 879 $((1 + C\varepsilon) + (1 + C\varepsilon)^3 + \dots + (1 + C\varepsilon)^{i-1})$ if i is even. Note that both of these quantities are
 880 at most $2k(1 + C\varepsilon)^{i-1}$. Thus for the time t after an odd phase i , a matrix \mathbf{M} of rank- k factors must
 881 satisfy
 882

$$\|\mathbf{X}^{(t)} - \mathbf{X}^{(t)}\mathbf{M}^\dagger\mathbf{M}\|_F^2 \leq 2\varepsilon k(1 + C\varepsilon)^{i-1},$$

883 in order to be a $(1 + \varepsilon)$ -approximation to the optimal low-rank cost.
 884

885 Let $\mathbf{E}^{(1)} = \mathbf{e}_1 \circ \dots \circ \mathbf{e}_k$ and $\mathbf{E}^{(2)} = \mathbf{e}_{k+1} \circ \dots \circ \mathbf{e}_{2k}$. For any constant $C > 100$, it follows that
 886 \mathbf{M} must have squared mass at least $k(1 - 2\varepsilon)$ onto $\mathbf{E}^{(1)}$ to be a $(1 + \varepsilon)$ -approximation to the cost
 887 of the optimal low-rank approximation to $\mathbf{X}^{(t)}$, i.e., $\|\mathbf{M}(\mathbf{E}^{(1)})^\top \mathbf{E}^{(1)}\|_F^2 \geq k(1 - 2\varepsilon)$ for the time
 888 t immediately following an odd phase i . By similar reasoning, \mathbf{M} must have squared mass at least
 889 $k(1 - 2\varepsilon)$ onto $\mathbf{E}^{(2)}$ to be a $(1 + \varepsilon)$ -approximation to the cost of the optimal low-rank approximation
 890 to $\mathbf{X}^{(t)}$ for the time t immediately following an odd phase i . However, because $\mathbf{E}^{(1)}$ and $\mathbf{E}^{(2)}$
 891 are disjoint, then it follows that \mathbf{M} must have recourse $\Omega(k)$ between each phase. Since there are
 892 $\Omega\left(\frac{1}{\varepsilon} \log \frac{n}{k}\right)$ phases, then the total recourse must be $\Omega\left(\frac{k}{\varepsilon} \log \frac{n}{k}\right)$. \square
 893

894 E MISSING PROOFS FROM SECTION 2

895 **Algorithm 4** Additive error algorithm for low-rank approximation with low recourse

896 **Input:** Rows $\mathbf{a}_1, \dots, \mathbf{a}_n$ of input matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ with integer entries bounded in magnitude by
 897 M , error parameter $\varepsilon > 0$
 898 **Output:** Additive $\varepsilon \cdot \|\mathbf{A}^{(t)}\|_F^2$ error to the cost of the optimal low-rank approximation at all times
 899
 900 1: $C \leftarrow 0$
 901 2: **for** each row \mathbf{a}_t **do**
 902 3: **if** $\|\mathbf{A}^{(t)}\|_F^2 \geq (1 + \varepsilon) \cdot C$ **then**
 903 4: $\mathbf{V} \leftarrow \text{RECLUSTER}(\mathbf{A}^{(t)}, k)$
 904 5: $C \leftarrow \|\mathbf{A}^{(t)}\|_F^2$
 905 6: **end if**
 906 7: Return \mathbf{V}
 907 8: **end for**
 908

909 We show correctness of [Algorithm 4](#) at all times:
 910

911 **Lemma E.1.** Let $\mathbf{A}^{(t)}$ be the first t rows of \mathbf{A} and let $\mathbf{V}^{(t)}$ be the output of [Algorithm 4](#) at
 912 time t . Let OPT_t be the cost of the optimal low-rank approximation at time t . Then $\|\mathbf{A}^{(t)} -$
 913 $\mathbf{A}^{(t)}(\mathbf{V}^{(t)})^\top \mathbf{V}^{(t)}\|_F^2 \leq \text{OPT}_t + \varepsilon \cdot \|\mathbf{A}^{(t)}\|_F^2$.
 914

915 It then remains to bound the recourse of [Algorithm 4](#):

916 **Lemma E.2.** The recourse of [Algorithm 4](#) is at most $\mathcal{O}\left(\frac{k}{\varepsilon} \log(ndM)\right)$.
 917

Theorem 1.1 then follows from [Lemma E.1](#) and [Lemma E.2](#).

918 **Lemma E.1.** Let $\mathbf{A}^{(t)}$ be the first t rows of \mathbf{A} and let $\mathbf{V}^{(t)}$ be the output of [Algorithm 4](#) at
919 time t . Let OPT_t be the cost of the optimal low-rank approximation at time t . Then $\|\mathbf{A}^{(t)} -$
920 $\mathbf{A}^{(t)}(\mathbf{V}^{(t)})^\top \mathbf{V}^{(t)}\|_F^2 \leq \text{OPT}_t + \varepsilon \cdot \|\mathbf{A}^{(t)}\|_F^2$.
921

922 *Proof.* Let s be the time at which $\mathbf{V}^{(t-1)}$ was first set, so that $\mathbf{V}^{(t-1)} = \mathbf{V}^{(s)}$ are the top k right
923 singular vectors of $\mathbf{A}^{(s)}$. Therefore, $\|\mathbf{A}^{(s)} - \mathbf{A}^{(s)}(\mathbf{V}^{(s)})^\top \mathbf{V}^{(s)}\|_F^2 = \text{OPT}_s$. Hence,
924

$$\begin{aligned} 925 \quad \|\mathbf{A}^{(t)} - \mathbf{A}^{(t)}(\mathbf{V}^{(t)})^\top \mathbf{V}^{(t)}\|_F^2 &= \|\mathbf{A}^{(s)} - \mathbf{A}^{(s)}(\mathbf{V}^{(t)})^\top \mathbf{V}^{(t)}\|_F^2 + \sum_{i=s+1}^t \|\mathbf{a}_i - \mathbf{a}_i(\mathbf{V}^{(t)})^\top \mathbf{V}^{(t)}\|_F^2 \\ 926 \quad &= \|\mathbf{A}^{(s)} - \mathbf{A}^{(s)}(\mathbf{V}^{(s)})^\top \mathbf{V}^{(s)}\|_F^2 + \sum_{i=s+1}^t \|\mathbf{a}_i - \mathbf{a}_i(\mathbf{V}^{(t)})^\top \mathbf{V}^{(t)}\|_F^2 \\ 927 \quad &= \text{OPT}_s + \sum_{i=s+1}^t \|\mathbf{a}_i - \mathbf{a}_i(\mathbf{V}^{(t)})^\top \mathbf{V}^{(t)}\|_2^2. \\ 928 \quad & \\ 929 \quad & \\ 930 \quad & \\ 931 \quad & \\ 932 \quad & \\ 933 \quad & \end{aligned}$$

934 Note that since $(\mathbf{V}^{(t)})^\top \mathbf{V}^{(t)}$ is a projection operator, then the length of \mathbf{a}_i cannot increase after
935 being projected onto the row span of $\mathbf{V}^{(t)}$, so that $\|\mathbf{a}_i - \mathbf{a}_i(\mathbf{V}^{(t)})^\top \mathbf{V}^{(t)}\|_2^2 \leq \|\mathbf{a}_i\|_2^2$. Therefore,
936

$$\begin{aligned} 937 \quad \|\mathbf{A}^{(t)} - \mathbf{A}^{(t)}(\mathbf{V}^{(t)})^\top \mathbf{V}^{(t)}\|_F^2 &= \text{OPT}_s + \sum_{i=s+1}^t \|\mathbf{a}_i - \mathbf{a}_i(\mathbf{V}^{(t)})^\top \mathbf{V}^{(t)}\|_2^2 \\ 938 \quad &\leq \text{OPT}_s + \sum_{i=s+1}^t \|\mathbf{a}_i\|_2^2 \\ 939 \quad &\leq \text{OPT}_s + \varepsilon \cdot \|\mathbf{A}^{(s)}\|_F^2, \\ 940 \quad & \\ 941 \quad & \\ 942 \quad & \\ 943 \quad & \end{aligned}$$

944 where the last inequality is due to Line 3 of [Algorithm 4](#). Finally, by the monotonicity of the optimal
945 low-rank approximation cost with additional rows, we have that $\text{OPT}_s \leq \text{OPT}_t$ and thus,
946

$$\|\mathbf{A}^{(t)} - \mathbf{A}^{(t)}(\mathbf{V}^{(t)})^\top \mathbf{V}^{(t)}\|_F^2 \leq \text{OPT}_t + \varepsilon \cdot \|\mathbf{A}^{(s)}\|_F^2,$$

947 as desired. □
948

949 **Lemma E.2.** The recourse of [Algorithm 4](#) is at most $\mathcal{O}\left(\frac{k}{\varepsilon} \log(ndM)\right)$.
950

951 *Proof.* Since each entry of \mathbf{A} is an integer bounded in magnitude by at most M , then the squared
952 Frobenius norm of \mathbf{A} is at most $(nd)M^2$. Moreover, each entry of \mathbf{A} is an integer bounded, the first
953 time it is nonzero, the squared Frobenius norm must be at least 1. Hence, the squared Frobenius
954 norm of \mathbf{A} can increase by a factor of $(1 + \varepsilon)$ at most $\log_{(1+\varepsilon)}(nd)M^2 = \mathcal{O}\left(\frac{1}{\varepsilon} \log(ndM)\right)$ from
955 the first time it is nonzero. Each time t it does so, we recompute the right singular values of $\mathbf{A}^{(t)}$
956 to be the set of factors $\mathbf{V}^{(t)}$. Thus the recourse incurred at these times is at most $\mathcal{O}\left(\frac{k}{\varepsilon} \log(ndM)\right)$.
957 For all other times, we retain the same choice of the factors. Hence the desired claim follows. □
958

959 We now show that the optimal rank k subspace incurs at most constant recourse under rank one
960 perturbations.
961

962 **Lemma 2.1.** Let $\mathbf{A}^{(t-1)} \in \mathbb{R}^{(t-1) \times d}$ and $\mathbf{A}^{(t)} \in \mathbb{R}^{t \times d}$ such that $\mathbf{A}^{(t)}$ is $\mathbf{A}^{(t-1)}$ with the row \mathbf{A}_t
963 appended. Let \mathbf{V}_{t-1}^* and \mathbf{V}_t^* be the optimal rank- k subspaces (the span of the top k right singular
964 vectors) of $\mathbf{A}^{(t-1)}$ and $\mathbf{A}^{(t)}$, respectively. Then $\text{Recourse}(\mathbf{V}_{t-1}^*, \mathbf{V}_t^*) \leq 8$.
965

966 *Proof.* The recourse between two subspaces is defined as the squared Frobenius norm of the difference
967 between their corresponding orthogonal projection matrices. We first consider the covariance
968 matrices induced by the optimal rank- k subspaces. Namely, consider the covariance
969 matrices $\mathbf{B}_{t-1} = (\mathbf{A}_{t-1}^*)^\top \mathbf{A}_{t-1}^*$ and $\mathbf{B}_t = (\mathbf{A}^{(t)})^\top \mathbf{A}^{(t)}$. Then we have the relationship
970 $\mathbf{B}_t = \mathbf{B}_{t-1} + \mathbf{A}_t^\top \mathbf{A}_t$, i.e., \mathbf{B}_t is obtained from \mathbf{B}_{t-1} by a rank-1 positive semi-definite (PSD)
971 update. By the Eckart-Young theorem, c.f., [Theorem 3.1](#), the subspace \mathbf{V}_t^* is the span of the top k
972 eigenvectors of \mathbf{B}_t , and similarly for \mathbf{V}_{t-1}^* and \mathbf{B}_{t-1} .
973

We next consider the intersection of the eigenspaces of \mathbf{B}_t and \mathbf{B}_{t-1} . We first aim to show that the dimension of the intersection of the two subspaces is at least $k - 1$, i.e., $\dim(\mathbf{V}_{t-1}^* \cap \mathbf{V}_t^*) \geq k - 1$. Let \mathbf{S}_a be the subspace orthogonal to \mathbf{A}_t , so that $\mathbf{S}_a = \{\mathbf{v} \in \mathbb{R}^d : \mathbf{A}_t \mathbf{v} = 0\}$ and $\dim(\mathbf{S}_a) = d - 1$. Consider the intersection $\mathbf{W} = \mathbf{V}_{t-1}^* \cap \mathbf{S}_a$. By the properties of subspace dimensions:

$$\dim(\mathbf{W}) = \dim(\mathbf{V}_{t-1}^*) + \dim(\mathbf{S}_a) - \dim(\mathbf{V}^{t-1} \cap \mathbf{S}_a).$$

Since $\dim(b\mathbf{V}_{t-1}^*) = k$, $\dim(\mathbf{S}_a) = d - 1$, and $\dim(\mathbf{V}_{t-1}^* \cap \mathbf{S}_a) \leq d$, we have:

$$\dim(\mathbf{W}) \geq k + (d - 1) - d = k - 1.$$

Now we analyze the properties of vectors in \mathbf{W} . Let $\mathbf{w} \in \mathbf{W}$. Since $\mathbf{w} \in \mathbf{S}_a$, we have $\mathbf{A}_t \mathbf{w} = 0$. Observe that

$$\mathbf{B}_t \mathbf{w} = (\mathbf{B}_{t-1} + \mathbf{A}_t^\top \mathbf{A}_t) \mathbf{w} = \mathbf{B}_{t-1} \mathbf{w} + \mathbf{A}_t^\top (\mathbf{A}_t \mathbf{w}) = \mathbf{B}_{t-1} \mathbf{w}.$$

Hence, \mathbf{W} is a subspace contained in both \mathbf{B}_{t-1} and \mathbf{B}_t .

Let $\lambda_1 \geq \dots \geq \lambda_d$ be the eigenvalues of \mathbf{B}_{t-1} , and $\mu_1 \geq \dots \geq \mu_d$ be the eigenvalues of \mathbf{B}_t . Since \mathbf{B}_t is a rank-1 PSD update of \mathbf{B}_{t-1} , the eigenvalues interlace by [Theorem A.3](#):

$$\mu_1 \geq \lambda_1 \geq \mu_2 \geq \lambda_2 \geq \dots \geq \mu_k \geq \lambda_k \geq \mu_{k+1} \geq \lambda_{k+1} \dots$$

Since $\mathbf{W} \subseteq \mathbf{V}^* t - 1$, the subspace \mathbf{W} is spanned by eigenvectors of \mathbf{B}_{t-1} corresponding to eigenvalues $\lambda_1, \dots, \lambda_k$. Because $\mathbf{B}_t \mathbf{w} = \mathbf{B}_{t-1} \mathbf{w}$ for $\mathbf{w} \in \mathbf{W}$, these are also eigenvectors of \mathbf{B}_t with the same eigenvalues. Since $\lambda_k \geq \mu_{k+1}$, the eigenvalues associated with the subspace \mathbf{W} are greater than or equal to the $(k + 1)$ -th eigenvalue of \mathbf{B}_t . Thus, \mathbf{W} must be a subspace of the top- $(k + 1)$ eigenspace of \mathbf{B}_t . Therefore, $\mathbf{W} \subseteq \mathbf{V}_{t-1}^* \cap (\mathbf{V}_t^* \cup \{\mathbf{u}\})$, where \mathbf{u} is the eigenvector of \mathbf{B}_t corresponding to eigenvalue μ_{k+1} . Since $\dim(\mathbf{W}) \geq k - 1$, we have established that $\dim(\mathbf{V}_{t-1}^* \cap \mathbf{V}_t^*) \geq k - 2$.

Now, let \mathbf{P}_{t-1} and \mathbf{P}_t be the orthogonal projection matrices onto \mathbf{V}_{t-1}^* and \mathbf{V}_t^* , respectively. Let $\mathbf{W}_{\text{int}} = \mathbf{V}_{t-1}^* \cap \mathbf{V}_t^*$ and $\mathbf{P}_{\text{shared}}$ be the projection onto \mathbf{W}_{int} . If $\dim(\mathbf{W}_{\text{int}}) = k$, then $\mathbf{V}^* t - 1 = \mathbf{V}_t^*$ and so the recourse is $\|\mathbf{P}_t - \mathbf{P}_{t-1}\|_F^2 = 0$.

Otherwise, if $\dim(\mathbf{W}_{\text{int}}) = 1$, we can decompose the orthogonal projection matrices as:

$$\mathbf{P}_{t-1} = \mathbf{P}_{\text{shared}} + \mathbf{u}_1 \mathbf{u}_1^\top, \quad \mathbf{P}^* t = \mathbf{P}_{\text{shared}} + \mathbf{u}_2 \mathbf{u}_2^\top,$$

where $\mathbf{u}_1, \mathbf{u}_2$ are unit vectors orthogonal to \mathbf{W}_{int} . The recourse is $\|\mathbf{P}_t - \mathbf{P}_{t-1}\|_F^2$. Thus, we have

$$\mathbf{P}_t - \mathbf{P}_{t-1} = (\mathbf{P}_{\text{shared}} + \mathbf{u}_2 \mathbf{u}_2^\top) - (\mathbf{P}_{\text{shared}} + \mathbf{u}_1 \mathbf{u}_1^\top) = \mathbf{u}_2 \mathbf{u}_2^\top - \mathbf{u}_1 \mathbf{u}_1^\top,$$

so that by generalized triangle inequality,

$$\text{Recourse}(\mathbf{P}_t, \mathbf{P}_{t-1}) \leq 2\|\mathbf{u}_1 \mathbf{u}_1^\top\|_F^2 + 2\|\mathbf{u}_2 \mathbf{u}_2^\top\|_F^2.$$

Since \mathbf{u}_1 and \mathbf{u}_2 are unit vectors, then we have $\text{Recourse}(\mathbf{P}_t, \mathbf{P}_{t-1}) \leq 4$. The same proof with four unit vectors shows that if $\dim(\mathbf{W}_{\text{int}}) = 2$, then $\text{Recourse}(\mathbf{P}_t, \mathbf{P}_{t-1}) \leq 8$. \square

Finally, we remark that due to the simplicity of rank-one perturbations, any algorithm that maintains the SVD only needs to perform a rank-one update to the SVD, which takes time $\mathcal{O}((n + d)k + k^3)$ for a matrix with dimensions at most $n \times d$ [Brand \(2006\)](#).

F MISSING PROOFS FROM SECTION 3

Lemma 3.3. *Consider a time s during which c is reset to 0. Suppose **HEAVY** is set to FALSE at time s and c is not reset to 0 within the next r steps, for $r \leq \sqrt{k}$. Let $\mathbf{V}^{(t)}$ be the output of \mathbf{V} at time t . Then $\mathbf{V}^{(t)}$ provides a $(1 + \frac{\varepsilon}{2})$ -approximation to the cost of the optimal low-rank approximation of $\mathbf{A}^{(t)}$ for all $t \in [s, s + r]$.*

Proof. Consider $\|\mathbf{A}^{(t)} - \mathbf{A}^{(t)}(\mathbf{V}^{(t)})^\top \mathbf{V}^{(t)}\|_F^2$. Let $\mathbf{V}^{(t')}$ be the matrix $\mathbf{V}^{(s)}$ with the $t - s$ vectors corresponding to the smallest $t - s$ singular values of $\mathbf{A}^{(s)}$ instead being replaced with the rows $\mathbf{a}_{s+1}, \dots, \mathbf{a}_t$. By optimality of \mathbf{v} , we have

$$\|\mathbf{A}^{(t)} - \mathbf{A}^{(t)}(\mathbf{V}^{(t)})^\top \mathbf{V}^{(t)}\|_F^2 \leq \|\mathbf{A}^{(t)} - \mathbf{A}^{(t)}(\mathbf{V}^{(t')})^\top \mathbf{V}^{(t')}\|_F^2.$$

1026 Since $\mathbf{a}_t \in \mathbf{V}^{(t')}$ for all $t \in [s, s + \sqrt{k}]$, then we have

$$1028 \quad \|\mathbf{A}^{(t)} - \mathbf{A}^{(t)}(\mathbf{V}^{(t')})^\top \mathbf{V}^{(t')}\|_F^2 = \|\mathbf{A}^{(s)} - \mathbf{A}^{(s)}(\mathbf{V}^{(t')})^\top \mathbf{V}^{(t')}\|_F^2.$$

1029 In other words, the rows $\mathbf{a}_{s+1}, \dots, \mathbf{a}_t$ cannot contribute to the low-rank approximation cost of
1030 $\mathbf{V}^{(t')}$ because they are contained within the span of $\mathbf{V}^{(t')}$. It remains to upper bound $\|\mathbf{A}^{(s)} -$
1031 $\mathbf{A}^{(s)}(\mathbf{V}^{(t')})^\top \mathbf{V}^{(t')}\|_F^2$. We have

$$1033 \quad C = \sum_{i=k+1}^d \sigma_i^2(\mathbf{A}_s) = \|\mathbf{A}^{(s)} - \mathbf{A}^{(s)}(\mathbf{V}^{(s)})^\top \mathbf{V}^{(s)}\|_F^2$$

1036 and $\sum_{i=k-\sqrt{k}}^k \sigma_i^2(\mathbf{A}_s) < \frac{\varepsilon}{3} \cdot C$ since HEAVY is set to FALSE. Note that since $t \in [s, s + \sqrt{k}]$, then
1037 $\mathbf{A}^{(t')}$ contains the top $k - \sqrt{k}$ singular vectors of $\mathbf{A}^{(s)}$. Therefore, it follows that

$$1039 \quad \|\mathbf{A}^{(s)} - \mathbf{A}^{(s)}(\mathbf{V}^{(t')})^\top \mathbf{V}^{(t')}\|_F^2 \leq \|\mathbf{A}^{(s)} - \mathbf{A}^{(s)}(\mathbf{V}^{(s)})^\top \mathbf{V}^{(s)}\|_F^2 + \sum_{i=k-\sqrt{k}}^k \sigma_i^2(\mathbf{A}_s) \leq \left(1 + \frac{\varepsilon}{3}\right) \cdot C.$$

1042 Since the cost of the optimal low-rank approximation of $\mathbf{A}^{(t)}$ is at least the cost of the optimal low-
1043 rank approximation of $\mathbf{A}^{(s)}$ for $t > s$, then $\mathbf{V}^{(t)}$ provides a $(1 + \frac{\varepsilon}{3})$ -approximation to the cost of
1044 the optimal low-rank approximation of $\mathbf{A}^{(t)}$ for all $t \in [s, s + \sqrt{k}]$. \square

1045 **Lemma 3.6.** *Suppose HEAVY is set to FALSE at time s and c is reset to 0 at time s . If c is not reset
1046 to 0 within the next r steps, for $r \leq \sqrt{k}$, then $\sum_{i=s+1}^{s+r} \text{Recourse}(\mathbf{V}^{(s)}, \mathbf{V}^{(s-1)}) \leq r$.*

1047 *Proof.* Let s be a time during which c is reset to 0 and HEAVY is set to FALSE. Then for the next
1048 r steps, each time a new row is received, then Algorithm 2 replaces a row of \mathbf{V} with the new row.
1049 Thus, the recourse is at most r . \square

1052 **Lemma 3.4.** *Consider a time t during which HEAVY is set to TRUE. Let $\mathbf{V}^{(t)}$ be the output
1053 of \mathbf{V} at time t . Then $\mathbf{V}^{(t)}$ provides a $(1 + \frac{\varepsilon}{2})$ -approximation to the cost of the optimal low-rank
1054 approximation of $\mathbf{A}^{(t)}$.*

1055 *Proof.* Let $\text{OPT} = \sum_{i=k+1}^d \sigma_i^2(\mathbf{A}_t)$. We have two cases. Either $\|\mathbf{A}^{(t)} -$
1056 $\mathbf{A}^{(t)}(\mathbf{V}^{(t-1)})^\top \mathbf{V}^{(t-1)}\|_F^2 \geq (1 + \frac{\varepsilon}{2}) \cdot \text{OPT}$ or $\|\mathbf{A}^{(t)} - \mathbf{A}^{(t)}(\mathbf{V}^{(t-1)})^\top \mathbf{V}^{(t-1)}\|_F^2 < (1 + \frac{\varepsilon}{2}) \cdot \text{OPT}$.

1059 In the former case, $\mathbf{V}^{(t-1)}$ is already a $(1 + \frac{\varepsilon}{2})$ -approximation to the cost of the optimal low-rank
1060 approximation of $\mathbf{A}^{(t)}$ and the algorithm sets $\mathbf{V}^{(t)} = \mathbf{V}^{(t-1)}$, so that $\mathbf{V}^{(t)}$ is also a $(1 + \frac{\varepsilon}{2})$ -
1061 approximation to the cost of the optimal low-rank approximation of $\mathbf{A}^{(t)}$.

1062 In the latter case, the algorithm sets $\mathbf{V}^{(t)}$ to be the output of RECLUSTER($\mathbf{A}^{(t)}, k$), i.e., the top k
1063 eigenvectors of $\mathbf{A}^{(t)}$, in which case $\|\mathbf{A}^{(t)} - \mathbf{A}^{(t)}(\mathbf{V}^{(t)})^\top \mathbf{V}^{(t)}\|_F^2 = \text{OPT}$. Thus in both cases, $\mathbf{V}^{(t)}$
1064 provides a $(1 + \frac{\varepsilon}{2})$ -approximation to the cost of the optimal low-rank approximation of $\mathbf{A}^{(t)}$. \square

1066 **Lemma 3.5.** *At all times $t \in [n]$, Algorithm 2 provides a $(1 + \frac{\varepsilon}{2})$ -approximation to the cost of the
1067 optimal low-rank approximation of $\mathbf{A}^{(t)}$.*

1069 *Proof.* Let $\mathbf{V}^{(t)}$ be the output of \mathbf{V} at time t . We first consider the times t where c is not reset to zero
1070 and HEAVY is set to FALSE. By Lemma 3.3, the output $\mathbf{V}^{(t)}$ provides a $(1 + \frac{\varepsilon}{2})$ -approximation
1071 to the cost of the optimal low-rank approximation of $\mathbf{A}^{(t)}$ at these times.

1073 We next consider the times t where c is not reset to zero and HEAVY is set to TRUE. By Lemma 3.4,
1074 the output $\mathbf{V}^{(t)}$ provides a $(1 + \frac{\varepsilon}{2})$ -approximation to the cost of the optimal low-rank approxima-
1075 tion of $\mathbf{A}^{(t)}$ at these times.

1076 Finally, we consider the times t where c is reset to zero. At these times, the algorithm sets $\mathbf{V}^{(t)}$
1077 to be the output of RECLUSTER($\mathbf{A}^{(t)}, k$), i.e., the top k eigenvectors of \mathbf{A} , in which case $\|\mathbf{A}^{(t)} -$
1078 $\mathbf{A}^{(t)}(\mathbf{V}^{(t)})^\top \mathbf{V}^{(t)}\|_F^2 = \text{OPT}$. Therefore, Algorithm 2 provides a $(1 + \frac{\varepsilon}{2})$ -approximation to the cost
1079 of the optimal low-rank approximation of $\mathbf{A}^{(t)}$ at all times $t \in [n]$. \square

We next bound the recourse between epochs when the bottom \sqrt{k} singular values of the top k do not contribute significant mass.

Lemma F.1. *Consider a time t during which HEAVY is set to TRUE. Let $\mathbf{V}^{(t)}$ be the output of \mathbf{V} at time t . Suppose $\mathbf{V}^{(t-1)}$ fails to be a $(1 + \frac{\varepsilon}{2})$ -approximation to the optimal low-rank approximation cost. Then $\text{Recourse}(\mathbf{V}^{(t)}, \mathbf{V}^{(t-1)}) \leq \sqrt{k}$.*

Proof. Let s be the most recent time at which HEAVY was set to TRUE, so that $s \leq t-1$. Let $\mathbf{V}^{(s)}$ denote the top k right singular vectors of $\mathbf{A}^{(s)}$ and note that by condition of HEAVY being set to TRUE,

$$\sum_{i=k-\sqrt{k}}^k \sigma_i^2(\mathbf{V}^{(s)}) \geq \frac{\varepsilon}{3} \cdot \|\mathbf{A}^{(s)} - \mathbf{A}^{(s)}(\mathbf{V}^{(s)})^\top \mathbf{V}^{(s)}\|_F^2.$$

Now, let r be the time at which $\mathbf{V}^{(t-1)}$ was first set, so that $\mathbf{V}^{(t-1)}$ are the top k right singular vectors of $\mathbf{A}^{(r)}$. Since $r \geq s$, then by the interlacing of singular values, i.e., [Theorem A.3](#), we have that

$$\sigma_i(\mathbf{V}^{(r)}) \geq \sigma_i(\mathbf{V}^{(s)}),$$

for all $i \in [d]$. Therefore,

$$\sum_{i=k-\sqrt{k}}^k \sigma_i^2(\mathbf{V}^{(r)}) \geq \frac{\varepsilon}{3} \cdot \|\mathbf{A}^{(s)} - \mathbf{A}^{(s)}(\mathbf{V}^{(s)})^\top \mathbf{V}^{(s)}\|_F^2,$$

since all singular values are by definition non-negative.

Suppose by way of contradiction that we have

$$\text{Recourse}(\mathbf{V}^{(t)}, \mathbf{V}^{(t-1)}) = \text{Recourse}(\mathbf{V}^{(t)}, \mathbf{V}^{(r)}) > \sqrt{k}.$$

Then at least \sqrt{k} singular vectors for $\mathbf{V}^{(t-1)}$ have been displaced and thus by the min-max theorem, i.e., [Theorem A.2](#),

$$\begin{aligned} \|\mathbf{A}^{(t)} - \mathbf{A}^{(t)}(\mathbf{V}^{(t)})^\top \mathbf{V}^{(t)}\|_F^2 &> \|\mathbf{A}^{(r)} - \mathbf{A}^{(s)}(\mathbf{V}^{(s)})^\top \mathbf{V}^{(s)}\|_F^2 + \sum_{i=k-\sqrt{k}}^k \sigma_i^2(\mathbf{V}^{(r)}) \\ &\geq \left(1 + \frac{\varepsilon}{3}\right) \cdot \|\mathbf{A}^{(s)} - \mathbf{A}^{(s)}(\mathbf{V}^{(s)})^\top \mathbf{V}^{(s)}\|_F^2. \end{aligned}$$

Furthermore, because $\mathbf{V}^{(t)}$ is the top k right singular vectors of $\mathbf{A}^{(t)}$, then $\|\mathbf{A}^{(t)} - \mathbf{A}^{(t)}(\mathbf{V}^{(t)})^\top \mathbf{V}^{(t)}\|_F^2$ is the cost of the optimal low-rank approximation at time t . In other words, the optimal low-rank approximation cost at time t would be larger than $\left(1 + \frac{\varepsilon}{3}\right) \cdot \|\mathbf{A}^{(s)} - \mathbf{A}^{(s)}(\mathbf{V}^{(s)})^\top \mathbf{V}^{(s)}\|_F^2$.

On the other hand, since s and t are in the same epoch, then

$$\|\mathbf{A}^{(s)} - \mathbf{A}^{(s)}(\mathbf{V}^{(s)})^\top \mathbf{V}^{(s)}\|_F^2 \leq \|\mathbf{A}^{(t)} - \mathbf{A}^{(t)}(\mathbf{V}^{(t)})^\top \mathbf{V}^{(t)}\|_F^2 \leq \left(1 + \frac{\varepsilon}{4}\right) \|\mathbf{A}^{(s)} - \mathbf{A}^{(s)}(\mathbf{V}^{(s)})^\top \mathbf{V}^{(r)}\|_F^2,$$

which is a contradiction. Hence, it follows that $\text{Recourse}(\mathbf{V}^{(t)}, \mathbf{V}^{(t-1)}) \leq \sqrt{k}$. \square

Lemma F.2. *Suppose $\mathbf{A} \in \mathbb{Z}^{n \times d}$ is an integer matrix with rank $r > k$ and entries bounded in magnitude by M . Then the cost of the optimal low-rank approximation to \mathbf{A} is at least $(ndM^2)^{-\frac{k}{r-k}}$.*

Proof. Let $\mathbf{A} \in \mathbb{Z}^{n \times d}$ be an integer matrix with rank $r > k$ and entries bounded in magnitude by M . Suppose without loss of generality that $n \geq d$. Let $\sigma_1 \geq \dots \geq \sigma_d \geq 0$ be the singular values of \mathbf{A} and let $\lambda_1 \geq \dots \geq \lambda_d \geq 0$ be the corresponding eigenvalues of $\mathbf{A}^\top \mathbf{A}$. Let $p(\lambda) = \lambda^{d-r} \prod_{i \in [r]} (\lambda - \lambda_i)$. Note that since the entries of \mathbf{A} are all integers, then the entries of $\mathbf{A}^\top \mathbf{A}$ are all integers and thus the coefficients of $p(\lambda)$ are all integers. In particular, since the coefficient of λ^{d-r} in $p(\lambda)$ is the product of the nonzero eigenvalues of $\mathbf{A}^\top \mathbf{A}$, then $\prod_{i=1}^r \lambda_i \geq 1$. Since $\lambda_i = \sigma_i^2$ and $\sigma_i \geq 0$ for all $i \in [d]$, we also have $\prod_{i=1}^r \sigma_i \geq 1$.

1134 Moreover, the squared Frobenius norm satisfies
1135

$$1136 \quad \sum_{i=1}^d \lambda_i = \sum_{i=1}^d \sigma_i^2 = \|\mathbf{A}\|_F^2 \leq ndM^2.$$

1139 Thus, $\lambda_i \leq ndM^2$ for all $i \in [d]$. Hence,

$$1140 \quad \lambda_{k+1}^{r-k} \geq \prod_{i=k+1}^r \lambda_i \geq \frac{1}{(ndM^2)^k} \prod_{i=1}^r \lambda_i \geq \frac{1}{(ndM^2)^k}.$$

1143 Thus we have $\lambda_{k+1} \geq (ndM^2)^{-\frac{k}{r-k}}$. It follows that the optimal low-rank approximation cost is
1144

$$1145 \quad \sqrt{\sum_{i=k+1}^d \lambda_i} \geq \lambda_{k+1} \geq (ndM^2)^{-\frac{k}{r-k}}.$$

1146 \square

1150 **Lemma 3.7.** Suppose HEAVY is set to TRUE at time t and c is not reset to 0 within the next r steps,
1151 for $r \leq k$. Then $\sum_{i=t+1}^{t+r} \text{Recourse}(\mathbf{V}^{(t)}, \mathbf{V}^{(t-1)}) \leq r\sqrt{k}$.
1152

1153 *Proof.* By Lemma F.1, we have $\text{Recourse}(\mathbf{V}^{(t)}, \mathbf{V}^{(t-1)}) \leq \sqrt{k}$ for all $i \in [t+1, t+r]$. Thus the
1154 total recourse is at most $r\sqrt{k}$. \square
1155

1156 We analyze the total recourse during times when we reset the counter c because the cost of the
1157 optimal low-rank approximation has doubled.

1158 **Lemma F.3.** Let T be the set of times at which c is set to 0 because $\sum_{i=k+1}^d \sigma_i^2(\mathbf{A}_t) \geq 2C$. Then
1159 $\sum_{t \in T} \text{Recourse}(\mathbf{V}^{(t)}, \mathbf{V}^{(t-1)}) \leq \mathcal{O}\left(\frac{k}{\varepsilon} \log^2(ndM)\right)$.
1160

1162 *Proof.* We define times $\tau_1 < \tau_2$ and decompose T into the times before τ_1 , the times between
1163 τ_1 and τ_2 , and the times after τ_2 . Formally, let t_0 be the first time at which the optimal low-rank
1164 approximation cost is nonzero, i.e., the first time at which the input matrix has rank $k+1$. Let
1165 T_0 be the optimal low-rank approximation cost at time t_0 . Define each epoch i to be the times
1166 during which the cost of the optimal low-rank approximation is at least $(1 + \frac{\varepsilon}{4})^i \cdot T_0$ and less than
1167 $(1 + \frac{\varepsilon}{4})^{i+1} \cdot T_0$.

1168 Let τ_1 be the first time the input matrix has rank $k+1$. Observe that before time τ_1 , we can maintain
1169 the entire row span of the matrix by adding each new linearly independent row to the low-rank
1170 subspace, thus preserving the optimal low-rank approximation cost at all times. This process incurs
1171 recourse at most k in total before time τ_1 .

1172 Next, let τ_2 be the first time such that the input matrix has rank at most $2k$. We analyze the re-
1173 course between times τ_1 and τ_2 . By Lemma F.2, the cost of the optimal low-rank approximation
1174 to a matrix with integer entries bounded by M and rank r is at least $(ndM^2)^{-\frac{k}{r-k}}$. Thus if the
1175 rank r of the matrix is at least $k+2^i$ and less than $k+2^{i+1}$, then the cost of the optimal low-rank
1176 approximation is at least $(ndM^2)^{-\frac{k}{2^i}}$. Thus there can be at most $\mathcal{O}\left(\frac{1}{\varepsilon} \frac{k}{2^i}\right)$ epochs before the cost
1177 of the optimal low-rank approximation is at least $(ndM^2)^{-100}$. Let j be the index of any epoch
1178 during which the cost of the optimal low-rank approximation exceeds $(ndM^2)^{-\frac{k}{2^i}}$. Since the total
1179 dimension of the span of the rows of \mathbf{A} that have arrived by epoch j is r , then the recourse in-
1180 curred by recomputing the top eigenspace is at most $\mathcal{O}(r-k) = \mathcal{O}(2^i)$. Since there can be at
1181 most $\mathcal{O}\left(\frac{1}{\varepsilon} \frac{k}{2^i} \log(ndM)\right)$ epochs before the cost of the optimal low-rank approximation is at least
1182 $(ndM^2)^{-100}$, then the consistency cost for the times where the rank of the matrix is at least $k+2^i$
1183 and less than $k+2^{i+1}$ is at most $\mathcal{O}\left(\frac{k}{\varepsilon} \log(ndM)\right)$. Thus the total consistency cost between times
1184 τ_1 and τ_2 is $\sum_{i=0}^{\log k} \mathcal{O}\left(\frac{k}{\varepsilon} \log(ndM)\right) = \mathcal{O}\left(\frac{k}{\varepsilon} \log^2(ndM)\right)$.
1185

1186 Note that after time τ_2 , the cost of the optimal low-rank approximation is at least $(ndM^2)^{-100}$.
1187 Since the squared Frobenius norm is at most ndM^2 , then the low-rank cost is also at most ndM^2 .

1188 Thus there can be at most $\mathcal{O}\left(\frac{1}{\varepsilon} \log(ndM)\right)$ epochs after time τ_2 . Each epoch incurs recourse $\mathcal{O}(k)$
 1189 due to recomputing the top eigenspace of the prefix of \mathbf{A} that has arrived at that time. Thus the total
 1190 recourse due to the set T of times after τ_2 is $\mathcal{O}\left(\frac{k}{\varepsilon} \log(ndM)\right)$.

1191 In summary, we can decompose T into the times before τ_1 , the times between τ_1 and τ_2 , and the
 1192 times after τ_2 . The total recourse at times $t \in T$ before τ_1 is at most $\mathcal{O}(k)$. The total recourse
 1193 at times $t \in T$ between times τ_1 and τ_2 is at most $\mathcal{O}\left(\frac{k}{\varepsilon} \log^2(ndM)\right)$. The total recourse at times
 1194 $t \in T$ after time τ_2 is at most $\mathcal{O}(k \log(ndM))$. Hence, the total recourse of times $t \in T$ is at most
 1195 $\mathcal{O}\left(\frac{k}{\varepsilon} \log^2(ndM)\right)$. \square

1196
 1197 **Lemma 3.8.** *Let T be the set of times at which c is set to 0. Then $\sum_{t \in T} \text{Recourse}(\mathbf{V}^{(t)}, \mathbf{V}^{(t-1)}) \leq$
 1198 $\mathcal{O}\left(n\sqrt{k} + \frac{k}{\varepsilon} \log^2(ndM)\right)$.*

1199
 1200

1201 *Proof.* Note that c can only be reset for one of the three different following reasons:

1202
 1203

- (1) $\text{HEAVY} = \text{TRUE}$ and $c = k$
- (2) $\text{HEAVY} = \text{FALSE}$ and $c = \sqrt{k}$
- (3) $\sum_{i=k+1}^d \sigma_i^2(\mathbf{A}_t) \geq 2C$

1204
 1205

1206 In all three cases, the algorithm calls $\text{RECLUSTER}(\mathbf{A}, k)$, incurring recourse k . Observe that for a
 1207 matrix \mathbf{A} with n rows, the counter c can exceed \sqrt{k} at most $\frac{n}{\sqrt{k}}$ times. Thus the first two cases can
 1208 occur at most $\frac{n}{\sqrt{k}}$ times, so the total recourse contributed by the first two cases is at most $n\sqrt{k}$.

1209 It remains to consider the total recourse incurred over the steps where the cost of the optimal
 1210 low-rank approximation has at least doubled from the previous time C was set. By [Lemma F.3](#),
 1211 the recourse from such times is at most $\mathcal{O}\left(\frac{k}{\varepsilon} \log^2(ndM)\right)$. Hence, the total recourse is at most
 1212 $\mathcal{O}\left(n\sqrt{k} + \frac{k}{\varepsilon} \log^2(ndM)\right)$. \square

1213
 1214

1215 **Lemma 3.9.** *The total recourse of [Algorithm 2](#) on an input matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ with integer entries
 1216 bounded in magnitude by M is $\mathcal{O}\left(n\sqrt{k} + \frac{k}{\varepsilon} \log^2(ndM)\right)$.*

1217
 1218

1219 *Proof.* We first consider the times t where c is not reset to zero and HEAVY is set to FALSE . By
 1220 [Lemma 3.6](#), the recourse across any consecutive set of r of these steps is at most r . Thus over the
 1221 stream of n rows, the total recourse incurred across all steps where HEAVY is set to FALSE is at
 1222 most n .

1223
 1224

1225 We next consider the times t where c is not reset to zero and HEAVY is set to TRUE . By [Lemma 3.7](#),
 1226 the recourse across any uninterrupted sequence of r of these steps is at most $r\sqrt{k}$. Hence over the
 1227 stream of n rows, the total recourse incurred across all steps where HEAVY is set to TRUE is at
 1228 most $n\sqrt{k}$.

1229
 1230

1231 Finally, we consider the times t where c is reset to zero. By [Lemma 3.8](#), the total recourse
 1232 incurred across all steps is at most $\mathcal{O}\left(n\sqrt{k} + \frac{k}{\varepsilon} \log^2(ndM)\right)$. Therefore, the total recourse is
 1233 $\mathcal{O}\left(n\sqrt{k} + \frac{k}{\varepsilon} \log^2(ndM)\right)$. \square

1234
 1235

1236 **Lemma 3.10.** *Given an input matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ with integer entries bounded in magnitude by M ,
 1237 [Algorithm 2](#) achieves a $(1 + \frac{\varepsilon}{2})$ -approximation to the cost of the optimal low-rank approximation
 1238 and achieves recourse $\mathcal{O}\left(n\sqrt{k} + \frac{k}{\varepsilon} \log^2(ndM)\right)$.*

1239
 1240

1241 *Proof.* Note that correctness follows from [Lemma 3.5](#) and the upper bound on recourse follows from
 1242 [Lemma 3.9](#). \square

1242 **Theorem 1.3.** Suppose $\mathbf{A} \in \mathbb{Z}^{n \times d}$ is an integer matrix with entries bounded in magnitude by M .
 1243 There exists an algorithm that achieves a $(1 + \varepsilon)$ -approximation to the cost of the optimal low-rank
 1244 approximation \mathbf{A} at all times and achieves recourse $\frac{k^{3/2}}{\varepsilon^2} \cdot \text{polylog}(ndM)$.
 1245

1246
 1247 *Proof.* Let $\varepsilon \in (0, \frac{1}{100})$. By [Theorem 2.4](#), the optimal low-rank approximation to the rows of \mathbf{M}
 1248 that have been sampled by a time t achieves a $(1 + \frac{\varepsilon}{10})$ -approximation to the cost of the optimal
 1249 low-rank approximation of \mathbf{A} that have arrived at time t . Thus, it suffices to show that we provide
 1250 a $(1 + \frac{\varepsilon}{2})$ -approximation to the cost of the optimal low-rank approximation to the matrix \mathbf{M} at
 1251 all times. Thus we instead consider a new stream consisting of the rows of $\mathbf{M} \in \mathbb{R}^{m \times d}$, where
 1252 $m = \frac{k}{\varepsilon^2} \cdot \text{polylog}(ndM)$ and the entries of \mathbf{M} are integers bounded in magnitude by $M \cdot \text{poly}(n)$.
 1253

1254 Consider [Algorithm 2](#) on input \mathbf{M} . Correctness follows from [Lemma 3.10](#), so it remains to repara-
 1255 meterize the settings in [Lemma 3.10](#) to analyze the total recourse. By [Lemma 3.9](#), the total
 1256 recourse on an input matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ with integer entries bounded in magnitude by M is
 1257 $\mathcal{O}\left(n\sqrt{k} + \frac{k}{\varepsilon} \log^2(ndM)\right)$. Thus for input matrix \mathbf{M} with $\frac{k}{\varepsilon^2} \cdot \text{polylog}(ndM)$ rows and integer
 1258 entries bounded in magnitude by $M \cdot \text{poly}(n)$, the total recourse is $\frac{k^{3/2}}{\varepsilon^2} \cdot \text{polylog}(ndM)$. \square
 1259

1260 G ADDITIONAL EXPERIMENTS

1261 In this section, we describe a number of additional empirical evaluations.

1265 G.1 RANDOM SYNTHETIC DATASET

1266 We generate a random synthetic dataset with 3000 rows and 4 columns with integer entries between
 1267 0 and 100 and subsequently normalized by column. We again compared the cost of the solution
 1268 output by [Algorithm 4](#) with the cost of the optimal low-rank approximation for $k = 1$ across $c =$
 1269 $(1 + \varepsilon) \in \{1.1, 2.5, 5, 10, 100\}$. We summarize our results in [Figure 3](#). In particular, we first plot in
 1270 [Figure 3a](#) the runtime of our algorithm. We then plot in [Figure 3b](#) the ratio of the cost of the solution
 1271 output by [Algorithm 4](#) with the cost of the optimal low-rank approximation.

1272 Similar to the skin segmentation and the rice datasets, our algorithm provides better approximation
 1273 to the optimal solution as $c = (1 + \varepsilon)$ decreases from 100 to 1, with a number of spikes for a small
 1274 number of rows likely due to the optimal low-rank approximation cost being quite small compared to
 1275 the additive Frobenius error. Moreover, our results perform demonstrably better than the worst-case
 1276 theoretical guarantee, giving roughly a 2.5-approximation compared to the theoretical guarantee of
 1277 100-approximation.
 1278

1294 Fig. 3: Runtime and approximations on random dataset. [Figure 3a](#) considers $k = 1$, $c = 10$, while
 1295 [Figure 3b](#) considers $k = 1$, $c = (1 + \varepsilon) \in \{1.1, 2.5, 5, 10, 100\}$

1296
1297
1298
1299
1300
1301
1302
1303
1304 (a) Runtime on SKIN dataset (b) Approximations for $k = 1$ (c) Approximations for $k = 2$
1305
1306 Fig. 4: Runtime and approximations on SKIN dataset. Figure 4a considers $k = 1$ and $c = 1.1$, while
1307 Figure 4b considers $k = 1$, $c = (1 + \varepsilon) \in \{1.1, 2.5, 5, 10, 100\}$ and Figure 4c considers $k = 2$,
1308 $c = (1 + \varepsilon) \in \{1.1, 1.5, 2.5, 10\}$

1311 G.2 SKIN SEGMENTATION DATASET

1313 We evaluate Algorithm 4 on the Skin Segmentation (SKIN) dataset (Bhatt & Dhall, 2012) from
1314 the UCI repository (Markelle Kelly, 1987), which is commonly used in benchmark comparison for
1315 unsupervised learning tasks, e.g., (Borassi et al., 2020; Epasto et al., 2023; Woodruff et al., 2023).
1316 The dataset consists of a total of 245057 face images encoded by B,G,R values, collected from the
1317 Color FERET Image Database and the PAL Face Database from Productive Aging Laboratory from
1318 the University of Texas at Dallas. The faces were collected from various age groups (young, middle,
1319 and old), race groups (white, black, and asian), and genders. Among the dataset, 50859 images are
1320 skin samples, while the other 194198 images are non-skin samples, and the task is to classify which
category each image falls under.

1321 **Experimental setup.** For our experiments, we only considered the first 3000 skin images and
1322 stripped the labels, so that the goal was to perform low-rank approximation on the B,G,R values of
1323 the remaining skin images. As our theoretical guarantees ensure that the solution is changed a small
1324 number of times, we compared the cost of the solution output by Algorithm 4 with the cost of the
1325 optimal low-rank approximation. In particular, we computed the ratios of the two costs for $k = 1$
1326 across $c = (1 + \varepsilon) \in \{1.1, 2.5, 5, 10, 100\}$ and for $k = 2$ across $c = (1 + \varepsilon) \in \{1.1, 1.5, 2.5, 10\}$,
1327 even though the formal guarantees of Algorithm 4 involve upper bounding the additive error.

1328 **Results and discussion.** In Figure 4, we plot the ratio of the cost of the solution output by Algo-
1329 rithm 4 with the cost of the optimal low-rank approximation at each time over the duration of the
1330 data stream. We then provide the central statistics, i.e., the mean, standard deviation, and maximum
1331 for the ratio of across various values of k and accuracy parameters for the SKIN dataset in Table 2.
1332

1333 Our results show that as expected, our algorithm provides better approximation to the optimal solution
1334 as $c = (1 + \varepsilon)$ decreases from 100 to 1. Once the optimal low-rank approximation cost became
1335 sufficiently large, our algorithm achieved a good multiplicative approximation. Thus we believe the
1336 main explanation for the spikes at the beginning of Figure 4c is due to the optimal low-rank approx-
1337 imation cost being quite small compared to the additive Frobenius error. It is somewhat surprising
1338 that despite the worst-case theoretical guarantee that our algorithm should only provide a 100-
1339 approximation, it actually performs significantly better, i.e., it provides roughly a 4-approximation.
1340 Thus it seems our empirical evaluations provide a simple proof-of-concept demonstrating that our
1341 theoretical worst-case guarantees can be even stronger in practice.

1342 G.3 RICE DATASET

1344 We next consider the RICE dataset (Rice) from the UCI repository (Markelle Kelly, 1987), where
1345 the goal is to classify between 2 types of rice grown in Turkey. The first type of rice is the Osmancik
1346 species, which has a large planting area since 1997, while the second type of rice is the Cammeo
1347 species, which has been grown since 2014 (Rice). The dataset consists of a total of 3810 rice grain
1348 images taken for the two species, with 7 morphological features were obtained for each grain of rice.
1349 Specifically, the features are the area, perimeter, major axis length, minor axis length, eccentricity,
convex area, and the extent of the rice grain.

k	$(1 + \varepsilon)$	Mean	Std. Dev.	Max
1	1.1	1.0006	0.0022	1.0383
	2	1.0088	0.0479	1.7870
	5	1.0374	0.1341	2.6038
	10	1.1324	0.4167	4.8201
	100	3.2971	0.4532	4.8201
2	1.1	1.0016	0.0069	1.1521
	1.5	1.0148	0.1327	5.1533
	2.5	1.0371	0.2430	5.2778
	10	1.3175	0.9238	6.8602

Table 2: Average, standard deviation, and maximum for ratios of cost across various values of k and accuracy parameters for SKIN dataset.

Fig. 5: Runtime and approximations on RICE dataset. Figure 5a considers $k = 1, c = 10$, while Figure 5b and Figure 5c consider $k = 1, c = (1 + \varepsilon) \in \{1.1, 2.5, 5, 10, 100\}$

Evaluation summary. For our experiments, we performed low-rank approximation on the seven provided features of the RICE dataset. We compared the cost of the solution output by Algorithm 4 with the cost of the optimal low-rank approximation for $k = 1$ across $c = (1 + \varepsilon) \in \{1.1, 2.5, 5, 10, 100\}$. We summarize our results in Figure 5, plotting the runtime of our algorithm in Figure 5a and the ratio of the cost of the solution output by Algorithm 4 with the cost of the optimal low-rank approximation in Figure 5b.

Our results show that similar to the skin segmentation dataset, our algorithm provides better approximation to the optimal solution as $c = (1 + \varepsilon)$ decreases from 100 to 1. Figure 5b again has a number of spikes for a small number of rows likely due to the optimal low-rank approximation cost being quite small compared to the additive Frobenius error. Furthermore, our results again exhibit the somewhat surprising result that our algorithm provides a relatively good approximation compared to the worst-case theoretical guarantee, i.e., our algorithm empirically provides roughly a 2-approximation despite the worst-case guarantees only providing a 100-approximation.

Finally, we note that, as anticipated, the recourse of our algorithm decreases as the required accuracy of the factors decreases. This is because coarser factor representations require less frequent updates as the matrix evolves.