
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

CONSISTENT LOW-RANK APPROXIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce and study the problem of consistent low-rank approximation, in
which rows of an input matrix A ∈ Rn×d arrive sequentially and the goal is to
provide a sequence of subspaces that well-approximate the optimal rank-k approx-
imation to the submatrix A(t) that has arrived at each time t, while minimizing
the recourse, i.e., the overall change in the sequence of solutions. We first show
that when the goal is to achieve a low-rank cost within an additive ε · ||A(t)||2F
factor of the optimal cost, roughly O

(
k
ε log(nd)

)
recourse is feasible. For the

more challenging goal of achieving a relative (1 + ε)-multiplicative approxima-
tion of the optimal rank-k cost, we show that a simple upper bound in this setting
is k2

ε2 · poly log(nd) recourse, which we further improve to k3/2

ε2 · poly log(nd) for
integer-bounded matrices and k

ε2 · poly log(nd) for data streams with polynomial
online condition number. We also show that Ω

(
k
ε log

n
k

)
recourse is necessary

for any algorithm that maintains a multiplicative (1 + ε)-approximation to the
optimal low-rank cost, even if the full input is known in advance. Finally, we per-
form a number of empirical evaluations to complement our theoretical guarantees,
demonstrating the efficacy of our algorithms in practice.

1 INTRODUCTION

Low-rank approximation is a fundamental technique that is frequently used in machine learning,
data science, and statistics to identify important structural information from large datasets. Given
an input matrix A ∈ Rn×d consisting of n observations across d features, the goal of low-rank
approximation is to decompose A into a combination of k independent latent variables called factors.
We represent these factors by matrices U ∈ Rn×k and V ∈ Rk×d, so that the product UV should be
an “accurate” representation of the original dataset A. Formally, we want to minimize the quantity
minU∈Rn×k,V∈Rk×d L(UV −A), where L denotes any predetermined loss function chosen for its
specific properties. Though there is a variety of standard metrics, such as subspace alignment angles
or peak signal-to-noise ratio (PSNR), in this paper we focus on Frobenius loss, which is perhaps
the most common loss function, due to its connection with least squares regression. As a result, the
problem is equivalent to finding the right factor matrix V ∈ Rk×d of orthonormal rows to minimize
the quantity ∥A−AV⊤V∥2F , in which case the optimal left factor matrix is U = AV⊤.

The rank parameter k is generally chosen based on the complexity of the underlying model chosen
to fit the data. The identification and subsequent utilization of the factors can often decrease the
number of relevant features in an observation and thus simultaneously improve interpretability and
decrease dimensionality. In particular, low-rank approximation facilitates using the factors U and
V to approximately represent the original dataset A, thus using only (n + d)k parameters in the
representation rather than the original nd entries of A. Thereafter, given a vector x ∈ Rd, we
can compute the matrix-vector product UVx as an approximation to Ax in time (n + d)k. By
contrast, computing Ax requires nd time. As a result of these advantages and more, low-rank
approximation is one of the most common tools, with applications in recommendation systems,
mathematical modeling, predictive analytics, dimensionality reduction, computer vision, and natural
language processing.

Data streams. The streaming model of computation has emerged as a popular setting for analyzing
large evolving datasets, such as database logs generated from commercial transactions, financial
markets, Internet of Things (IoT) devices, scientific observations, social network correspondences,
or virtual traffic measurements. In the row-arrival model, each stream update provides an additional

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

observation, i.e., an additional matrix row at ∈ Rd of the ultimate input A ∈ Rn×d for low-rank
approximation. Often, downstream decisions and policies must be determined with uncertainty
about future inputs. That is, the input may be revealed in a data stream and practitioners may be
required to make irrevocable choices at time t ∈ [n], given only the dataset A(t) = a1 ◦ . . . ◦ at
consisting of the first t data point observations. A prototypical example is the setting of online
caching/paging algorithms (Fiat et al., 1991; Irani, 1996), which must choose to keep or evict items
in the cache at every time step. This generalizes to the k-server problem for penalties that are
captured by metric spaces (Manasse et al., 1990; Bansal et al., 2015; Bubeck et al., 2023).

Consistency. Although irrevocable decisions are theoretically interesting in the context of online
algorithms, such a restriction may be overly stringent for many practical settings. Lattanzi & Vassil-
vitskii (2017) notes that in the earlier setting of caching and paging, a load balancer that receives on-
line requests for assignment to different machines can simply reassign some of the past tasks to other
machines to increase overall performance if necessary. Moreover, the ability of algorithms to adjust
previous decisions based on updated information allows for a richer understanding of the structure
of the underlying problem beyond the impossibility barriers of online algorithms. On the other hand,
such adjustments have downstream ramifications to applications that rely on the decisions/policies
resulting from the algorithm. Therefore, the related notions of consistency and recourse were de-
fined to quantify the cumulative number of changes to the output solution of an algorithm over time.
Low-recourse online algorithms have been well-studied for a number of problems (Gupta & Ku-
mar, 2014; Gupta et al., 2014; Lacki et al., 2015; Gu et al., 2016; Megow et al., 2016; Gupta &
Levin, 2020; Bhattacharya et al., 2023), while consistent clustering and facility location have re-
cently received considerable attention (Lattanzi & Vassilvitskii, 2017; Cohen-Addad et al., 2019;
Fichtenberger et al., 2021; Lacki r⃝ et al., 2023). In a standard scenario in feature engineering, low-
rank approximation algorithms are used to select specific features or linear combinations of features,
on which models are trained. Thus, large consistency costs correspond to expensive retrainings of
whole large-scale machine learning systems (Lattanzi & Vassilvitskii, 2017), due to different sets of
features being passed to the learner.

Building on the notion of consistency, we formalize the problem of consistent low-rank approxima-
tion, which captures the need for online algorithms that adapt to evolving data while keeping their
outputs stable for downstream use. As discussed above, low-rank approximation is widely used for
feature engineering: the factors produced define the feature subspace on which downstream models
are trained. In dynamic settings, high recourse can cause these features to change abruptly even
under minor updates, triggering frequent and costly retraining of large-scale models (Lattanzi &
Vassilvitskii, 2017). Consistent, low-recourse LRA algorithms maintain feature stability over time,
reducing retraining costs and improving reliability.

The importance of stability extends across many practical domains. In biometrics, consistent low-
dimensional representations of fingerprints or iris patterns are crucial for maintaining reliable iden-
tification (Jain et al., 2004). In image processing, tasks such as object detection, handwriting recog-
nition, and facial recognition depend on derived features that should not fluctuate unpredictably as
new data arrives (Nixon & Aguado, 2012). In data compression and signal processing, stable re-
duced representations preserve essential structure while controlling noise (Witten & Frank, 2002;
Proakis, 2007). In text mining and information retrieval, numerical features such as TF–IDF vectors
or embeddings must remain coherent to maintain the quality of search and classification (Aggar-
wal & Aggarwal, 2015; Schütze et al., 2008). Even in large-scale data curation for foundation
models—where clustering, a constrained form of low-rank approximation, is used to deduplicate
data—high recourse leads to unstable representative sets and repeated retraining of models (Lacki
r⃝ et al., 2023).

Across these settings, the underlying principle is consistent: downstream systems rely not only on
the quality of the approximation but also on the stability of the feature representations over time.
By explicitly accounting for this need, consistent low-rank approximation provides solutions that
evolve smoothly while maintaining strong accuracy guarantees, delivering both theoretical insight
and concrete practical benefits in dynamic, real-world pipelines.

1.1 OUR CONTRIBUTIONS

In this paper, we initiate the study of consistent low-rank approximation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Formal model. Given an accuracy parameter ε > 0, our goal is to provide a (1 + ε)-approximation
to low-rank approximation at all times. We assume the input is a matrix A ∈ Rn×d, whose rows
a1, . . . ,an arrive sequentially, so that at each time t, the algorithm only has access to A(t), the first
t rows of A. That is, the goal of the algorithm is firstly to output a set V(t) ∈ Rk×d of k factors at
each time t ∈ [n], so that

∥A(t) −A(t)(V(t))⊤V(t)∥2F ≤ (1 + ε) · OPTt,

where OPTt is the cost of the optimal low-rank approximation at time t, OPTt =
minV∈Rk×d ∥A(t)−A(t)V⊤V∥2F . In other words, we want the low-rank cost induced by the factor
V(t) returned by the algorithm to closely capture the optimal low-rank approximation. Secondly,
we would like the sequence V(1), . . . ,V(n) of factors to change minimally over time. Specifically,
the goal of the algorithm is to minimize

∑n
t=2 Recourse(V

(t),V(t−1)), where Recourse(R,T) =
∥PR−PT∥2F is the squared subspace distance between the orthogonal projection matrices PR, PT

of the two subspaces.

We remark on our choice of the cost function Recourse(R,T) for factors R and T. At first glance,
a natural setting of the cost function may be the number of vectors that are different between R and
T, since in some sense it captures the change between R and T. However, it should be observed
that even if there is a unique rank k subspace V that minimizes the low-rank approximation cost
∥A−AV⊤V∥2F , there may be many representations of V, up to any arbitrary rotation of the basis
vectors within the subspace. Thus, a cost function sensitive to the choice of basis vectors may not
be appropriate because a large change in the change of basis vectors may not result in any change
in the resulting projection AV⊤V. This implies that a reasonable cost function should capture the
difference in the spaces spanned by the subspaces R and T. For example, the dimension of the
subspace of T that is orthogonal to R would be an appropriate quantity. However, it should be
noted that this quantity still punishes a subspace T that is a small perturbation of R, for example if
R is the elementary vector (0, 1) and T is the vector (ε,

√
1− ε2) for arbitrarily small ε. A more

robust quantity would be a continuous analogue of the dimension, which is the squared mass of
the projection of T away from R; this quantity corresponds exactly to our cost function Recourse.
Thus, we believe that our choice of the consistency cost function is quite natural.

We note that we can further assume that the input matrix A has integer entries bounded in magnitude
by some parameter M . We remark that this assumption is standard in numerical linear algebra
because in general it is difficult to represent real numbers up to arbitrary precision in the input of
the algorithm. Instead, for inputs that are rational, after appropriate scaling each entry of the input
matrix can be written as an integer. Thus, this standard assumption can model the number of bits
used to encode each entry of the matrix, without loss of generality.

Theoretical results. We first note that the optimal low-rank approximation can completely change
at every step, in the sense that the optimal subspace V(t−1) at time t − 1 may still have dimension
k after being projected onto the optimal subspace V(t). Thus, to achieve optimality, it may be
possible that Ω(nk) recourse could be necessary, i.e., by recomputing the best k factors after the
arrival of each of the n rows. Nevertheless, on the positive side, we first show sublinear recourse
can be achieved if the goal is to simply achieve an additive ε · ∥A(t)∥2F additive error to the low-rank
approximation cost at all times.
Theorem 1.1. Suppose A ∈ Zn×d is an integer matrix with rank r > k and entries bounded in
magnitude by M and let A(t) denote the first t rows of A, for any t ∈ [n]. There exists an algorithm
that achieves ε · ∥A(t)∥2F -additive approximation to the cost of the optimal low-rank approximation
A at all times and achieves recourse O

(
k
ε log(ndM)

)
.

We remark that the algorithm corresponding to Theorem 1.1 uses kd
ε · polylog(ndM) bits of space

and d · poly
(
k, 1

ε , log(ndM)
)

amortized update time. Since the squared Frobenius norm is an
upper bound on the optimal low-rank approximation cost, achieving additive ε · ∥A(t)∥2F error to the
optimal cost is significantly easier than achieving relative (1 + ε)-multiplicative error, particularly
in the case where the top singular vectors correspond to large singular values. In fact, we can even
achieve recourse linear in k if the online condition number of the stream is at most poly(n):
Theorem 1.2. Given a stream with online condition number poly(n), there exists an algorithm that
achieves a (1 + ε)-approximation for low-rank approximation, and uses recourse O

(
k
ε2 log

3 n
)
.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

We remark that for streams with online condition number poly(n), we actually show a stronger result
in Lemma 2.1. In particular, we show that the optimal rank-k subspace changes by only a constant
amount after rank-one perturbations corresponding to single-entry changes, row modifications, row
insertions, and row deletions. Thus this result implies Theorem 1.2 using standard techniques for
reducing the “effective” stream length and in fact, also immediately gives an algorithm that maintains
the optimal rank-k approximation under any sequence of such updates while incurring only O (n)
total recourse over a stream of n operations. Hence, our approach can handle explicit distributional
shifts arising in insertion–deletion streams; extending this ability to handle implicit deletions such as
in the sliding window model (Datar et al., 2002; Braverman & Ostrovsky, 2007) is a natural direction
for future work.

For standard matrices with integer entries bounded by poly(n), however, the assumption that the
online condition number is bounded by poly(n) may not hold. For example, it is known that there
exist integer matrices with dimension n× d but optimal low-rank cost as small as exp(−Ω(k)). To
that end, we first observe that a simple application of a result by Braverman et al. (2020) can be used
to achieve recourse k2

ε2 ·polylog(ndM) while maintaining a (1+ ε)-multiplicative approximation at
all times. Indeed, for constant ε, roughly k · polylog(ndM) rows can be sampled through a process
known as online ridge-leverage score sampling, to preserve the low-rank approximation at all times.
Then for quadratic recourse, it suffices to recompute the top right k singular vectors for the sampled
submatrix each time a new row is sampled. A natural question is whether Ω(k) recourse is necessary
for each step, i.e., whether recomputing the top right k singular vectors is necessary. We show this
is not the case, and that overall the recourse can be made sub-quadratic.
Theorem 1.3. Suppose A ∈ Zn×d is an integer matrix with entries bounded in magnitude by M .
There exists an algorithm that achieves a (1 + ε)-approximation to the cost of the optimal low-rank
approximation A at all times and achieves recourse k3/2

ε2 · polylog(ndM).

We again remark that the algorithm corresponding to Theorem 1.3 uses kd
ε · polylog(ndM) bits

of space and d · poly
(
k, 1

ε , log(ndM)
)

amortized update time. Finally, we show that Ω
(
k
ε log

n
k

)
recourse is necessary for any multiplicative (1 + ε)-approximation algorithm for low-rank approxi-
mation, even if the full input is known in advance.

Theorem 1.4. For any parameter ε > logn
n , there exists a sequence of rows x1, . . . ,xn ∈ Rd

such that any algorithm that produces a (1 + ε)-approximation to the cost of the optimal low-rank
approximation at all times must have consistency cost Ω

(
k
ε log

n
k

)
.

Empirical evaluations. We complement our theoretical results with a number of empirical evalua-
tions in Section 4. Our results show that although our formal guarantees provide a worst-case analy-
sis of the approximation cost of the low-rank solution output by our algorithm, the performance can
be even (much) better in practice. Importantly, our results show that algorithms for online low-rank
approximation such as Frequent Directions (Ghashami et al., 2016) do not achieve good recourse,
motivating the study of algorithms specifically designed for consistent low-rank approximation.

Organization of the paper. We give the linear recourse algorithms in Section 2 and conduct em-
pirical evaluations in Section 4 and Appendix G. We give our result for integer-valued matrices in
Section 3. We defer all proofs to the full appendix, and specifically the lower bound to Appendix D.
The reader may also find it helpful to consult Appendix A for standard notation and additional
preliminaries used in our paper.

1.2 RELATED WORK

In this section, we briefly describe a number of existing techniques in closely related models and
provide intuition on why they do not suffice for our setting.

Frequent directions and online ridge leverage score sampling. The most natural approach would
be to apply existing algorithms from the streaming literature for low-rank approximation. The two
most related works are the deterministic Frequent Directions work by Ghashami et al. (2016) and
the (online) ridge leverage score sampling procedure popularized by Cohen et al. (2017); Braverman
et al. (2020). Both procedures maintain a small number of rows that capture the “important” direc-
tions of the matrix at all times. Hence to report a near-optimal rank-k approximation at each time,
these algorithms simply return the top k right singular vectors of the singular value decomposition

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

of the matrix stored by each algorithm. However, one could easily envision a situation in which the
k-th and (k+1)-th largest singular vectors repeatedly alternate, incurring recourse at each step. For
example, suppose k = 1 and at all times 2t for integral t > 0, the top singular vectors are (2t, 0)
and (0, 2t− ε), but at all times 2t+ 1 for integral t ≥ 0, the top singular vectors are (2t+ 1− ε, 0)
and (0, 2t + 1). Then at all times 2t, the best rank-k solution for k = 1 would be the elementary
vector e1 while at all times 2t + 1, the best rank-k solution would be the elementary vector e2.
These algorithms would incur recourse n, whereas even an algorithm that never changes the initial
vector e2 would incur recourse 0. Thus, these algorithms seem to fail catastrophically, i.e., not even
provide a poly(n)-multiplicative approximation to the recourse, even for simple inputs.

One may observe that our goal is to only upper bound the total recourse, rather than to achieve
a multiplicative approximation to the recourse. Indeed for this purpose, the online ridge leverage
sampling technique provides some gain. In particular, Braverman et al. (2020) showed that over the
entirety of the stream, at most k

ε2 · polylog
(
n, d, 1

ε

)
rows will be sampled into the sketch matrix in

total, and moreover the sketch matrix will accurately capture the residual for the projection onto any
subspace of dimension k. Thus to achieveO

(
k2

)
recourse, it suffices to simply recompute the top-k

singular vectors each time a new row is sampled by the online ridge leverage sampling procedure.

Singular value decomposition. Note that the previous example also shows that more generally, it
does not suffice to simply output the top-k right singular vectors of the singular value decomposition
(SVD). However, one might hope that it suffices to replace just a single direction in the SVD each
time a row is sampled into the sketch matrix by online ridge leverage score sampling. Unfortu-
nately, it seems possible that an approximately optimal solution from a previous step could require
all k factors to be replaced by the arrival of a single row. Suppose for example, that the factor V(1)

consisting of the elementary vectors ek+1, . . . , e2k achieves the same loss as the factor V(2) consist-
ing of the elementary vectors e1, . . . , ek. Now if the next row is non-zero exactly in the coordinates
1, . . . , k, then the top k space could change entirely, from V(1) to V(2). While this worst-case input
is unavoidable, we show this can only happen a small number of times. It is more problematic when
only one of these factors drastically change, while the other k − 1 factors only change by a little,
but we still output k completely new factors. Our algorithm avoids this by carefully choosing the
factors to replace based on casework on the corresponding singular values.

2 SIMPLE ALGORITHMS WITH OPTIMAL RECOURSE

In this section, we briefly describe two simple algorithms that achieve recourse linear in k.

Additive error. The first algorithm roughly O
(
k
ε log n

)
recourse when the goal is to maintain an

additive ε · ∥A(t)∥2F error at all times t ∈ [n], where A(t) is the t rows of matrix A that have arrived
at time t. We simply track the squared Frobenius norm of the matrix A(t) at all times. For each time
the squared Frobenius norm has increased by a factor of (1 + ε), then we recompute the singular
value decomposition of A(t) and choose V(t) to be the top k right singular vectors of A(t). For all
other times, we maintain the same set of factors.

The main intuition is that each time we reset V(t), we find the optimal solution at time t. Over
the next few steps after t, our solution will degrade, but the most it can degrade by is the squared
Frobenius norm of the submatrix formed by the incoming rows. Thus as long as this quantity is
less than an ε-fraction of the squared Frobenius norm of the entire matrix, then our correctness
guarantee will hold. On the other hand, such a guarantee must hold as long as the squared Frobenius
norm has not increased by a (1 + ε)-multiplicative factor. Thus we incur recourse k for each of
the O

(
1
ε log(ndM)

)
times the matrix can have its squared Frobenius norm increase by (1 + ε)

multiplicatively. We give our algorithm in full in Algorithm 4 in Appendix E.

Bounded online condition number. We next show that the optimal rank k subspace incurs at most
constant recourse under rank one perturbations. In particular, it suffices to consider the case where
a single row is added to the matrix:

Lemma 2.1. Let A(t−1) ∈ R(t−1)×d and A(t) ∈ Rt×d such that A(t) is A(t−1) with the row At

appended. Let V∗
t−1 and V∗

t be the optimal rank-k subspaces (the span of the top k right singular
vectors) of A(t−1) and A(t), respectively. Then Recourse(V∗

t−1,V
∗
t) ≤ 8.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Note that whenever a single entry of a matrix is changed, any row of a matrix is changed, a new
row of a matrix is added, or an existing row of a matrix is deleted, these all correspond to rank one
perturbations of the matrix. Thus, we immediately have the following corollary:
Theorem 2.2. There exists an algorithm that maintains the optimal rank-k approximation of a
matrix under any sequence of rank-one updates, including entry modifications, row modifications,
row insertions, or row deletions, and incurs total recourseO (n) on a stream of n updates. Moreover,
if each row has dimension d, then the update time is O

(
(n+ d)k + k3

)
.

Given the statement in Lemma 2.1, we immediately obtain an algorithm with O (n) recourse in the
row-arrival model for a stream of length n. Because n recourse is too large, we use the following
standard approach to decrease the effective number of rows in the matrix.
Definition 2.3 (Projection-cost preserving sketch). Given a matrix A ∈ Rn×d, a matrix M ∈ Rm×d

is a (1 + ε) projection-cost preserving sketch of A if for all projection matrices P ∈ Rd×d,

(1− ε)∥A−AP∥2F ≤ ∥M−MP∥2F ≤ (1 + ε)∥A−AP∥2F .

Intuitively, a projection-cost preserving sketch is a sketch matrix that approximately captures the
residual mass after projecting away any rank k subspace. The following theorem shows that a
projection-cost preserving sketch can be acquired via online ridge leverage sampling.
Theorem 2.4 (Theorem 3.1 in Braverman et al. (2020)). Given an accuracy parameter ε > 0, a rank
parameter k > 0, and a matrix A = a1◦. . .◦an ∈ Rn×d whose rows arrive sequentially in a stream
with condition number κ, there exists an algorithm that outputs a matrix M withO

(
k
ε2 log n log2 κ

)
rescaled rows of A such that

(1− ε)∥A−A(k)∥2F ≤ ∥M−M(k)∥2F ≤ (1 + ε)∥A−A(k)∥2F ,
so that with high probability, M is a rank k projection-cost preservation of A.

In particular, if the online condition number of the stream is upper bounded by poly(n), then Theo-
rem 2.4 states that online ridge leverage sampling achieves an online coreset of size O

(
k
ε2 log

3 n
)
.

By applying Lemma 2.1, it follows that simply maintaining the optimal rank-k subspace for the
online coreset at all times, we have Theorem 1.2.

3 ALGORITHM FOR RELATIVE ERROR

In this section, we give our algorithm for (1 + ε)-multiplicative relative error at all times in the
stream. Let t ∈ [n], let xt ∈ {−∆, . . . ,∆−1,∆}d and let Xt = x1 ◦ . . .◦xt. For each Xt ∈ Rt×d,
we compute a low-rank approximation UtVt of Xt, where Ut ∈ Rt×k and Vt ∈ Rk×d are the
factors of Xt. We abuse notation and write Vt as a set Vt of k points in Rd. Note that the quantity∑n

t=1 |Vt \Vt−1| is an upper bound on the recourse or the consistency cost. Thus in this section, we
interchangeably refer to this quantity as the recourse or the consistency cost, as we can lower bound
this sharper quantity.

First, we recall an important property about the optimal solution for our formulation of low-rank
approximation, i.e., with Frobenius loss.
Theorem 3.1 (Eckart-Young-Mirsky theorem). (Eckart & Young, 1936; Mirsky, 1960) Let A ∈
Rn×d with rank r have singular value decomposition A = UΣV for U ∈ Rn×r, Σ ∈ Rr×r,
V ∈ Rr×d and singular values σ1(A) ≥ σ2(A) ≥ . . . ≥ σd(A). Let X be the top k right
singular vectors of A, i.e., the top k rows of V, breaking ties arbitrarily. Then an optimal rank k

approximation of A is AX⊤X and the cost is ∥A−AX⊤X∥2F =
∑d

i=k+1 σ
2
i (A).

As a corollary to Theorem 3.1, we have that an algorithmic procedure to compute an optimal rank k
approximation is just to take the top k right singular vectors of A, c.f., procedure RECLUSTER(A, k)
in Algorithm 1, though faster methods for approximate SVD can also be used.
Corollary 3.2. There exists an algorithm RECLUSTER(A, k) that outputs a set of orthonormal rows
X that produces the optimal rank k approximation to A.

Our algorithm performs casework on the contribution of the bottom
√
k singular values of the top k.

If the contribution is small, the corresponding singular vectors can be replaced without substantially

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Algorithm 1 RECLUSTER(A, k), i.e., Truncated SVD

Input: Matrix A ∈ Rn×d, rank parameter k
Output: Top k right singular vectors of A

1: Let r be the rank of A
2: Let U ∈ Rn×r,Σ ∈ Rr×r,V ∈ Rr×d be the singular value decomposition of A = UΣV
3: Return the first min(r, k) rows of V

increasing the error. Thus, each time a new row arrives, we simply replace one of the bottom singular
vectors with the new row. On the other hand, if the contribution is large, it means that the optimal
solution cannot be projected away too much from these directions, or else the optimal low-rank
approximation cost will also significantly increase. Thus we can simply choose the optimal set of
top right k singular vectors at each time, because there will be substantial overlap between the new
subspace and the old subspace. We give our algorithm in full in Algorithm 2.

Algorithm 2 Relative-error algorithm for low-rank approximation with low recourse

Input: Rows a1, . . . ,an of input matrix A ∈ Rn×d with integer entries bounded in magnitude by
M

Output:
(
1 + ε

4

)
-approximation to the cost of the optimal low-rank approximation at all times

1: for each row at do
2: OPT←

∑d
i=k+1 σ

2
i (At)

3: HEAVY ← TRUE, C ← 0, c← 0
4: if OPT ≥

(
1 + ε

4

)
C or (c =

√
k and HEAVY = FALSE) or (c = k and HEAVY = TRUE)

then
5: C ← OPT, c← 0
6: V← RECLUSTER(A(t), k)

7: if
∑k

i=k−
√
k σ

2
i (A

(t)) ≥ ε
3 · C then

8: HEAVY ← TRUE
9: else

10: HEAVY ← FALSE
11: end if
12: else
13: if HEAVY = FALSE then
14: Let v be the unit vector in V that minimizes ∥A(s)v∥22, where s was the most recent

time RECLUSTER was called
15: Replace v with 1

∥at∥2
· at in V ▷Ignore all zero rows

16: c← c+ 1
17: else if HEAVY = TRUE then
18: if ∥A(t) −A(t)V⊤V∥2F ≥

(
1 + ε

2

)
OPT then

19: V← RECLUSTER(A(t), k)
20: c← c+ 1
21: end if
22: end if
23: end if
24: Return V
25: end for

Correctness. For the purposes of discussion, say that an epoch is the set of times during which the
optimal low-rank approximation cost has not increased by a multiplicative (1 + ε)-approximation.
We first show the correctness of our algorithm across the times t during epochs in which HEAVY is
set to FALSE. That is, we show that our algorithm maintains a (1+ ε)-multiplicative approximation
to the optimal low-rank approximation cost across all times t in an epoch where the bottom

√
k

singular values of the top k right singular values do not contribute significant mass.

Lemma 3.3. Consider a time s during which c is reset to 0. Suppose HEAVY is set to FALSE at
time s and c is not reset to 0 within the next r steps, for r ≤

√
k. Let V(t) be the output of V at time

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

t. Then V(t) provides a
(
1 + ε

2

)
-approximation to the cost of the optimal low-rank approximation

of A(t) for all t ∈ [s, s+ r].

Next, we show the correctness of our algorithm across the times t during epochs in which HEAVY is
set to TRUE. That is, we show that our algorithm maintains a (1 + ε)-multiplicative approximation
to the optimal low-rank approximation cost across all times t in an epoch where the bottom

√
k

singular values of the top k right singular values do contribute significant mass.

Lemma 3.4. Consider a time t during which HEAVY is set to TRUE. Let V(t) be the output
of V at time t. Then V(t) provides a

(
1 + ε

2

)
-approximation to the cost of the optimal low-rank

approximation of A(t).

Correctness at all times now follows from Lemma 3.3 and Lemma 3.4:
Lemma 3.5. At all times t ∈ [n], Algorithm 2 provides a

(
1 + ε

2

)
-approximation to the cost of the

optimal low-rank approximation of A(t).

Recourse. We first bound the recourse if the bottom
√
k singular values of the top k right singular

values do not contribute significant mass.
Lemma 3.6. Suppose HEAVY is set to FALSE at time s and c is reset to 0 at time s. If c is not reset
to 0 within the next r steps, for r ≤

√
k, then

∑s+r
i=s+1 Recourse(V

(s),V(s−1)) ≤ r.

At this point, we remark a subtlety in the analysis that is easily overlooked. Our general strategy
is to show that each time the cost of the optimal low-rank approximation doubles, we should incur
recourse O

(
k1.5

)
. One might then expect that because the matrix contains integer entries bounded

by poly(n), then the cost of the optimal low-rank approximation can only double O (log n) times,
since it can be at most poly(n).

Unfortunately, there exist constructions of anti-Hadamard integer matrices with dimension n×d but
optimal low-rank cost as small as exp(−Ω(k)). Hence, the optimal cost can double O (k) times,
thereby incurring total recourse O

(
k2.5

)
, which is undesirably large. Instead, we show that when

the optimal low-rank cost is exponentially small, then the rank of the matrix must also be quite
small, meaning that the recourse of our algorithm cannot be as large as in the full-rank case. To that
end, we require a structural property, c.f., Lemma F.2 that describes the cost of the optimal low-rank
approximation, and parameterized to handle general matrices with rank r > k. This is to handle the
case where the cost of the optimal low-rank approximation may be exponentially small in k. As a
result, we have the following upper bound on the total recourse across all epochs when the bottom√
k singular values of the top k do not contribute significant mass.

Lemma 3.7. Suppose HEAVY is set to TRUE at time t and c is not reset to 0 within the next r steps,
for r ≤ k. Then

∑t+r
i=t+1 Recourse(V

(t),V(t−1)) ≤ r
√
k.

We analyze the total recourse during times when we reset the counter c because the cost of the
optimal low-rank approximation has doubled. Finally, it remains to bound the total recourse at times
when we transition from one epoch to another. Specifically, we bound the recourse at times t where
the optimal low-rank approximation cost has increased by a multiplicative (1 + ε)-approximation
since the beginning of the previous epoch.

Lemma 3.8. Let T be the set of times at which c is set to 0. Then
∑

t∈T Recourse(V(t),V(t−1)) ≤
O
(
n
√
k + k

ε log
2(ndM)

)
.

Using Lemma 3.6, Lemma 3.7, and Lemma 3.8, we then bound the total recourse of our algorithm.
Lemma 3.9. The total recourse of Algorithm 2 on an input matrix A ∈ Rn×d with integer entries
bounded in magnitude by M is O

(
n
√
k + k

ε log
2(ndM)

)
.

Using Lemma 3.5 and Lemma 3.9, we can provide the formal guarantees of our subroutine.
Lemma 3.10. Given an input matrix A ∈ Rn×d with integer entries bounded in magnitude by M ,
Algorithm 2 achieves a

(
1 + ε

2

)
-approximation to the cost of the optimal low-rank approximation

and achieves recourse O
(
n
√
k + k

ε log
2(ndM)

)
.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Algorithm 3 Relative-error algorithm for low-rank approximation with recourse k3/2

ε2 ·
polylog(ndM)

Input: Rows a1, . . . ,an of input matrix A ∈ Rn×d with integer entries magnitude at most M
Output:

(
1 + ε

4

)
-approximation to the cost of the optimal low-rank approximation at all times

1: for each row at do
2: Sample at with online ridge leverage score ▷Theorem 2.4
3: Run Algorithm 2 on the stream induced by the sampled rows
4: end for

To reduce the number of rows in the input, we again apply Theorem 2.4, which, combined with
Lemma 3.10, gives our main result Theorem 1.3 for Algorithm 3. Finally, we remark that since
Theorem 2.4 samples O

(
k
ε2 log n log2 κ

)
rows and there are input sparsity algorithms for approx-

imations of the sampling probabilities (Cohen et al., 2017), then Algorithm 3 can be implemented
used kd

ε · polylog(ndM) bits of space and d · poly
(
k, 1

ε , log(ndM)
)

amortized update time.

4 EMPIRICAL EVALUATIONS

We describe our empirical evaluations on a large-scale real-world dataset, comparing the quality of
the solution of our algorithm to the quality of the optimal low-rank approximation solution. We dis-
cuss a number of additional experiments on both synthetic and real-world datasets in Appendix G.
All experiments were conducted utilizing Python version 3.10.4 on a 64-bit operating system run-
ning on an AMD Ryzen 7 5700U CPU. The system was equipped with 8GB of RAM and featured
8 cores, each operating at a base clock speed of 1.80 GHz.

k (1 + ε) Median Std. Dev. Mean

25

1.1 1.000 0.0000 1.0000
2 1.000 0.0000 1.0000
5 1.0000 0.0367 1.0016
10 1.0000 2.4463 1.598
100 1.1907 51.9353 7.8882

Table 1: Median, standard deviation, and mean for ratios of cost across various values of accuracy
parameters for landmark dataset, between 150 and 5000 updates

(a) Recourse comparisons (b) Recourse comparisons

Fig. 1: Recourse comparisons for k = 25, c = (1 + ε) ∈ {1.1, 2.5, 5, 10, 100}

Experimental setup. In this section, we focus on our evaluations Algorithm 4 on the Landmark
dataset from the SuiteSparse Matrix Collection (Davis & Hu, 2011), which is commonly used in
benchmark comparison for low-rank approximation, e.g., (Ban et al., 2019). The dataset consists of
a total of 71952 rows with d = 2704 features. As our theoretical results prove that our algorithm has

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

a small amount of recourse, we first compare the cost of the solution output by Algorithm 4 with the
cost of the optimal low-rank approximation. However, determining the optimal cost over each time
is computationally expensive and serves as the main bottleneck. Specifically, for a stream of length
n, the baseline requires n · O (nω) = Ω(n3) runtime for n ≈ d, where ω ≈ 2.37 is the exponent
for matrix multiplication (Alman et al., 2025). Thus we consider the first n = 5000 rows for our
data stream, so the goal was to perform low-rank approximation on every single prefix matrix of
size n′ × d with n′ ≤ n. In particular, we computed in the runtimes and ratios of the two costs for
k = 25 across c = (1 + ε) ∈ {1.1, 2.5, 5, 10, 100} in Figure 2 with central statistics in Table 1,
even though Algorithm 4 only guarantees additive error, rather than multiplicative error. Finally, we
compared the recourse of our algorithms in Figure 1, along with FREQUENTDIRECTIONS, labeled
FD, a standard algorithm for online low-rank approximation (Ghashami et al., 2016).

Results and discussion. Our results show a strong separation in the quality of online low-rank
approximations such as Frequent Directions and our algorithms, which were specifically designed
to achieve low recourse. Namely, for n = 5000, Frequent Directions has achieved recourse 121904
while our algorithms range from recourse 100 to 300, more than a factor of 400X. Moreover, our
results show that the approximation guarantees of our algorithms are actually quite good in practice,
especially as the number of rows increases; we believe the large variance in Figure 2b is due to the
optimal low-rank approximation cost being quite small compared to the additive Frobenius error.
Thus it seems our empirical evaluations provide compelling evidence that our algorithms achieve
significantly better recourse than existing algorithms for online low-rank approximation; we provide
a number of additional experiments in Appendix G.

(a) Runtime comparisons (b) Approximation comparisons (c) Approximations comparisons

Fig. 2: Runtime and approximations on landmark dataset, for k = 25, c = (1 + ε) ∈
{1.1, 2.5, 5, 10, 100}

REFERENCES

Charu C Aggarwal and Charu C Aggarwal. Mining text data. Springer, 2015. 2

Josh Alman, Ran Duan, Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou.
More asymmetry yields faster matrix multiplication. In Proceedings of the 2025 Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA, pp. 2005–2039, 2025. 10

Frank Ban, David P. Woodruff, and Qiuyi (Richard) Zhang. Regularized weighted low rank ap-
proximation. In Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS, pp. 4061–4071, 2019. 9

Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor. A polylogarithmic-competitive
algorithm for the k-server problem. J. ACM, 62(5):40:1–40:49, 2015. 2

Rajen Bhatt and Abhinav Dhall. Skin Segmentation. UCI Machine Learning Repository, 2012.
DOI: https://doi.org/10.24432/C5T30C. 25

Sayan Bhattacharya, Niv Buchbinder, Roie Levin, and Thatchaphol Saranurak. Chasing positive
bodies. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS, pp. 1694–
1714, 2023. 2

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Sayan Bhattacharya, Martı́n Costa, Naveen Garg, Silvio Lattanzi, and Nikos Parotsidis. Fully dy-
namic k-clustering with fast update time and small recourse. In 65th IEEE Annual Symposium on
Foundations of Computer Science, FOCS, pp. 216–227, 2024. 16

Michele Borassi, Alessandro Epasto, Silvio Lattanzi, Sergei Vassilvitskii, and Morteza Zadimoghad-
dam. Sliding window algorithms for k-clustering problems. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems, NeurIPS,
2020. 25

Matthew Brand. Fast low-rank modifications of the thin singular value decomposition. Linear
algebra and its applications, 415(1):20–30, 2006. 19

Vladimir Braverman and Rafail Ostrovsky. Smooth histograms for sliding windows. In 48th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), Proceedings, pp. 283–293, 2007.
4

Vladimir Braverman, Petros Drineas, Cameron Musco, Christopher Musco, Jalaj Upadhyay,
David P. Woodruff, and Samson Zhou. Near optimal linear algebra in the online and sliding
window models. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS,
pp. 517–528, 2020. 4, 5, 6, 14

Sébastien Bubeck, Christian Coester, and Yuval Rabani. The randomized k-server conjecture is
false! In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC, pp.
581–594, 2023. 2

T.-H. Hubert Chan, Shaofeng H.-C. Jiang, Tianyi Wu, and Mengshi Zhao. Online clustering with
nearly optimal consistency. In The Thirteenth International Conference on Learning Representa-
tions, ICLR, 2025. 16

Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the streaming model. In
Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC, pp. 205–214,
2009. 15

Michael B. Cohen, Cameron Musco, and Christopher Musco. Input sparsity time low-rank ap-
proximation via ridge leverage score sampling. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 1758–1777, 2017. 4, 9

Vincent Cohen-Addad, Niklas Hjuler, Nikos Parotsidis, David Saulpic, and Chris Schwiegelshohn.
Fully dynamic consistent facility location. In Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems, NeurIPS, pp. 3250–3260,
2019. 2

Vincent Cohen-Addad, Silvio Lattanzi, Andreas Maggiori, and Nikos Parotsidis. Online and consis-
tent correlation clustering. In International Conference on Machine Learning, ICML, pp. 4157–
4179, 2022. 16

Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream statistics over
sliding windows. SIAM J. Comput., 31(6):1794–1813, 2002. 4

Timothy A Davis and Yifan Hu. The university of florida sparse matrix collection. ACM Transac-
tions on Mathematical Software (TOMS), 38(1):1–25, 2011. 9

Paul Duetting, Federico Fusco, Silvio Lattanzi, Ashkan Norouzi-Fard, and Morteza Zadimoghad-
dam. Consistent submodular maximization. In Forty-first International Conference on Machine
Learning, ICML. OpenReview.net, 2024. 16

Paul Dütting, Federico Fusco, Silvio Lattanzi, Ashkan Norouzi-Fard, Ola Svensson, and Morteza
Zadimoghaddam. The cost of consistency: Submodular maximization with constant recourse.
CoRR, abs/2412.02492, 2024. 16

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychome-
trika, 1(3):211–218, 1936. 6

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Alessandro Epasto, Vahab Mirrokni, Shyam Narayanan, and Peilin Zhong. k-means clustering with
distance-based privacy. In Advances in Neural Information Processing Systems 36: Annual Con-
ference on Neural Information Processing Systems, NeurIPS, 2023. 25

Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic Sleator, and Neal E.
Young. Competitive paging algorithms. J. Algorithms, 12(4):685–699, 1991. 2

Hendrik Fichtenberger, Silvio Lattanzi, Ashkan Norouzi-Fard, and Ola Svensson. Consistent k-
clustering for general metrics. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms, SODA, pp. 2660–2678, 2021. 2, 16

Steve Fisk. A very short proof of cauchy’s interlace theorem for eigenvalues of hermitian matrices.
arXiv preprint math/0502408, 2005. 14

Sebastian Forster and Antonis Skarlatos. Dynamic consistent k-center clustering with optimal re-
course. In Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, pp. 212–254, 2025. 16

Mina Ghashami, Edo Liberty, Jeff M. Phillips, and David P. Woodruff. Frequent directions: Simple
and deterministic matrix sketching. SIAM J. Comput., 45(5):1762–1792, 2016. 4, 10

Albert Gu, Anupam Gupta, and Amit Kumar. The power of deferral: Maintaining a constant-
competitive steiner tree online. SIAM J. Comput., 45(1):1–28, 2016. 2

Xiangyu Guo, Janardhan Kulkarni, Shi Li, and Jiayi Xian. Consistent k-median: Simpler, better and
robust. In The 24th International Conference on Artificial Intelligence and Statistics, AISTATS,
pp. 1135–1143, 2021. 16

Anupam Gupta and Amit Kumar. Online steiner tree with deletions. In Proceedings of the Twenty-
Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 455–467, 2014. 2

Anupam Gupta and Roie Levin. Fully-dynamic submodular cover with bounded recourse. In 61st
IEEE Annual Symposium on Foundations of Computer Science, FOCS, pp. 1147–1157, 2020. 2

Anupam Gupta, Amit Kumar, and Cliff Stein. Maintaining assignments online: Matching, schedul-
ing, and flows. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pp. 468–479, 2014. 2

Suk-Geun Hwang. Cauchy’s interlace theorem for eigenvalues of hermitian matrices. The American
mathematical monthly, 111(2):157–159, 2004. 14

Sandy Irani. Competitive analysis of paging. In Online Algorithms, The State of the Art, volume
1442 of Lecture Notes in Computer Science, pp. 52–73. Springer, 1996. 2

Mohammad Reza Karimi Jaghargh, Andreas Krause, Silvio Lattanzi, and Sergei Vassilvitskii. Con-
sistent online optimization: Convex and submodular. In The 22nd International Conference on
Artificial Intelligence and Statistics, AISTATS, pp. 2241–2250, 2019. 16

Anil K Jain, Arun Ross, and Salil Prabhakar. An introduction to biometric recognition. IEEE
Transactions on circuits and systems for video technology, 14(1):4–20, 2004. 2

Jakub Lacki, Jakub Ocwieja, Marcin Pilipczuk, Piotr Sankowski, and Anna Zych. The power of
dynamic distance oracles: Efficient dynamic algorithms for the steiner tree. In Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC, pp. 11–20, 2015. 2

Jakub Lacki r⃝, Bernhard Haeupler r⃝, Christoph Grunau r⃝, Václav Rozhon r⃝, and Rajesh Ja-
yaram r⃝. Fully dynamic consistent k-center clustering, 2023. 2, 16

Silvio Lattanzi and Sergei Vassilvitskii. Consistent k-clustering. In Proceedings of the 34th Inter-
national Conference on Machine Learning, ICML, pp. 1975–1984, 2017. 2, 16

Mark S. Manasse, Lyle A. McGeoch, and Daniel Dominic Sleator. Competitive algorithms for server
problems. J. Algorithms, 11(2):208–230, 1990. 2

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Kolby Nottingham Markelle Kelly, Rachel Longjohn. The uci machine learning repository, 1987.
URL https://archive.ics.uci.edu. 25

Nicole Megow, Martin Skutella, José Verschae, and Andreas Wiese. The power of recourse for
online MST and TSP. SIAM J. Comput., 45(3):859–880, 2016. 2

Leon Mirsky. Symmetric gauge functions and unitarily invariant norms. The quarterly journal of
mathematics, 11(1):50–59, 1960. 6

Mark S. Nixon and Alberto S Aguado. Feature extraction & image processing for computer vision.
Academic press, 2012. 2

John G Proakis. Digital signal processing: principles, algorithms, and applications, 4/E. Pearson
Education India, 2007. 2

Rice. Rice (Cammeo and Osmancik). UCI Machine Learning Repository, 2019. DOI:
https://doi.org/10.24432/C5MW4Z. 25

Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. Introduction to information
retrieval, volume 39. Cambridge University Press Cambridge, 2008. 2

Ian H Witten and Eibe Frank. Data mining: practical machine learning tools and techniques with
java implementations. Acm Sigmod Record, 31(1):76–77, 2002. 2

David P. Woodruff, Peilin Zhong, and Samson Zhou. Near-optimal k-clustering in the sliding win-
dow model. In Advances in Neural Information Processing Systems 36: Annual Conference on
Neural Information Processing Systems, NeurIPS, 2023. 25

A PRELIMINARIES

We use [n] to denote the set {1, . . . , n}. We use poly(n) to denote a fixed polynomial in n, which
can be adjusted using constants in the parameter settings. We use polylog(n) to denote poly(log n).

We use ◦ to denote the vertical concatentation of rows a1,a2 ∈ Rd, so that a1 ◦ a2 =

[
a1
a2

]
. We say

an event E occurs with high probability if Pr [E] ≥ 1 − 1
poly(n) . Recall that the Frobenius norm of

a matrix A ∈ Rn×d is defined by ∥A∥F =
(∑n

i=1

∑d
j=1 A

2
i,j

)1/2

.

The singular value decomposition of a matrix A ∈ Rn×d with rank r is the decomposition A =
UΣV for U ∈ Rn×r, Σ ∈ Rr×r, V ∈ Rr×d, where the columns of U are orthonormal, the rows
of V are orthonormal, and Σ is a diagonal matrix whose entries correspond to the singular values of
A.

Lemma A.1. For subspaces R and T of rank k, let their corresponding orthogonal projection
matrices be P and Q. Then there exist constants C1, C2 > 0 such that C1(∥P − PQ∥2F + ∥Q −
QP∥2F) ≤ Recourse(R,T) ≤ C2(∥P−PQ∥2F + ∥Q−QP∥2F).

Proof. By definition, we have Recourse(R,T) = ∥P −Q∥2F . By the triangle inequality, we have
∥P−Q∥F ≤ ∥P−PQ∥F +∥PQ−Q∥F . Observe that ∥Q−QP∥2F = ∥Q−PQ∥2F because the
left-hand side is the trace of (Q−QP)⊤(Q−QP), which equals the trace of (Q−PQ)(Q−QP),
since P⊤ = P and Q⊤ = Q for projection matrices Q and P. By the cyclic property of trace, the
trace of (Q − PQ)(Q −QP) thus equals the trace of (Q −QP)(Q − PQ), which by the same
argument, is the trace of the right-hand side. Hence it follows that ∥Q−QP∥2F = ∥Q−PQ∥2F , as
desired. Thus, we have ∥P−Q∥F ≤ ∥P−PQ∥F + ∥QP−Q∥F .

Next, observe that

∥P−PQ∥2F + ∥PQ−Q∥2F = Trace(P) + Trace(Q)− 2Trace(PQ)

= 2k − 2Trace(PQ),

13

https://archive.ics.uci.edu

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

since P2 = P, Q2 = Q are symmetric idempotents, and Trace(P) = Trace(Q) = k. Similarly,

2k + 2∥QP∥2F − 4Trace(PQ) = 2k + 2Trace(PQP)− 4Trace(PQ)

= 2k − 2Trace(PQ),

using ∥QP∥2F = Trace(PQP) = Trace(PQ). Thus, we have ∥P − PQ∥2F + ∥PQ − Q∥2F =
2k + 2∥QP∥2F − 4 · Trace(P⊤Q). The latter quantity is at most 4k − 4 · Trace(P⊤Q) = 2(2k −
2 · Trace(P⊤Q)), which is just 2∥P−Q∥2F .

Thus, it suffices to work with the less natural but perhaps more mathematically accessible definition
of ∥R−RT†T∥2F +∥T−TR†R∥2F , i.e., the symmetric difference of the mass of the two subspaces,
as a notion of recourse.
Theorem A.2 (Min-max theorem). Let A ∈ Rn×d be a matrix with singular values σ1(A) ≥
σ2(A) ≥ . . . ≥ σd(A) and let ξj(A) = σd−j+1(A) for all j ∈ [d], so that ξ1(A) ≤ . . . ≤ ξd(A) is
the reverse spectrum of A. Then for any subspace V of A with dimension k, there exist unit vectors
x,y ∈ V such that

∥Vx∥22 ≤ σ2
k(A), ∥Vy∥22 ≥ ξ2k(A).

Theorem A.3 (Cauchy interlacing theorem). (Hwang, 2004; Fisk, 2005) Let A ∈ Rn×d be a matrix
with singular values σ1(A) ≥ σ2(A) ≥ . . . ≥ σd(A). Let v ∈ Rd and B = A ◦ v ∈ R(n+1)×d

with singular values σ1(B) ≥ σ2(B) ≥ . . . ≥ σd(B). Then σi(B) ≥ σi(A) for all i ∈ [d].

B TECHNICAL OVERVIEW

In this section, we provide intuition for our main results, summarizing our algorithms, various chal-
lenges, as well as natural other approaches and why they do not work.

Warm-up: additive error algorithm. As a simple warm-up, we first describe our algorithm that
achieves additive error at most ε · ∥A(t)∥2F across all times t ∈ [n], while only incurring recourse
O
(
k
ε log(ndM)

)
, corresponding to Theorem 1.1. This algorithm is quite simple. We maintain the

squared Frobenius norm of the matrix A(t) across all times t ∈ [n]. We also maintain the same set
of factors provided the squared Frobenius norm has not increased by a factor of (1 + ε) since the
previous time we changed the set of factors. When the squared Frobenius norm has increased by a
factor of (1+ε) at a time t since the previous time we changed the set of factors, then we simply use
the singular value decomposition of A(t) to set V(t) to be the top k right singular vectors of A(t).
Since we change the entire set of factors, this process can incur recourse cost at most k.

The correctness follows from the observation that each time we reset V(t), we find the optimal
solution at time t. Now, over the next few times after t, our solution can only degrade by the squared
Frobenius norm of the submatrix formed by the incoming rows, which is less than an ε-fraction of
the squared Frobenius norm of the entire matrix, due to the requirement that we recompute V(t)

each time the squared Frobenius norm has increased by a (1 + ε) factor. Since the Frobenius norm
can only increase by a multiplicative (1+ ε) factor a total of at mostO

(
1
ε log(ndM)

)
times and we

incur recourse cost k each time, then the resulting recourse is at most the desired O
(
k
ε log(ndM)

)
.

Stream reduction for relative error algorithm. We now discuss the goal of achieving k3/2

ε2 ·
polylog(ndM) recourse while maintaining a relative (1 + ε)-multiplicative approximation to the
optimal low-rank approximation cost at all times, i.e., Theorem 1.3. We first utilize online ridge-
leverage score sampling (Braverman et al., 2020) to sample k

ε ·polylog(ndM) rows of the stream S
of rows a1, . . . ,an on-the-fly, to form a stream S ′ consisting of reweighted rows b1, . . . ,bm of A
with m = k

ε ·polylog(ndM). By the guarantees of online ridge-leverage score sampling, to achieve
a (1+ ε)-approximation to the matrix A(t) consisting of the rows a1, . . . ,at, it suffices to achieve a
(1 + O (ε))-approximation to the matrix B(t′) consisting of the rows b1, . . . ,bt′ that have arrived
by time t. Note that since B is a submatrix of A, we have t′ ≤ t. Moreover, the rows of A that are
sampled into B are only increased by at most a poly(n) factor, so we can assume that the magnitude
of the entries is still bounded polynomially by n. Thus it suffices to perform consistent low-rank
approximation on the matrix B instead. Hence for the remainder of the discussion, we assume that
the stream length is k

ε · polylog(ndM) rather than n.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Relative error algorithm on reduced stream. We now describe our algorithm for (1 + ε)-
multiplicative relative error at all times of the stream of length k

ε ·polylog(ndM). At some time s in
the stream, we use the singular value decomposition of A(s) to compute the top k right singular val-
ues of A(s), which we then set to be our factor V(s). We can do this each time the optimal low-rank
approximation cost has increased by a multiplicative (1 +O (ε))-factor since the previous time we
set our factor to be V(s). We first discuss how to maintain a (1 + ε)-approximation with the desired
recourse in between the times at which the optimal low-rank approximation cost has increased by a
(1 + ε)-multiplicative factor.

Towards this goal, we perform casework on the contribution of the bottom
√
k singular values within

the top k right singular values of V(s). Namely, if
∑k

i=k−
√
k σ

2
i (A

(s)) is “small”, then intuitively,
the corresponding singular vectors can be replaced without substantially increasing the error. Hence
in this case, we can replace one of the bottom

√
k singular vectors with the new row each time a

new incoming row arrives. This procedure will incur
√
k total recourse over the next

√
k updates,

after which at time t we reset the factor to be the top k right singular vectors of the matrix A(t).
Therefore, we incur recourse O (k) across

√
k time steps.

On the other hand, if
∑k

i=k−
√
k σ

2
i (A

(s)) is “large”, then the optimal low-rank approximation fac-
tors cannot be projected away too much from these directions, since otherwise the optimal low-rank
approximation cost would significantly increase. Thus, we can simply choose the optimal set of
top right k singular vectors at each time, because there will be substantial overlap between the new
subspace and the old subspace. In particular, if we choose our threshold to be

∑k
i=k−

√
k σ

2
i (A

(s))

to be an O (ε)-factor of the optimal cost, then we show that incurring
√
k recourse will increase

the low-rank approximation cost by (1 + ε), which violates the assumption that we consider times
during which the optimal low-rank approximation cost has not increased by a (1+ ε)-multiplicative
factor. Therefore, the recourse is at most

√
k across each time.

In summary, between the times at which the optimal low-rank approximation cost has increased by
a (1 + ε)-multiplicative factor, we incur at most

√
k recourse for each time. Since the stream length

is k
ε · polylog(ndM), we then incur k1.5

ε · polylog(ndM) total recourse across these times, which
is our desired bound. It remains to bound the total recourse at times s when the optimal low-rank
approximation cost has increased by a (1+ε) multiplicative factor, as we reset our solution to be the
top k right singular values, incurring recourse k at each of these times. Because the Frobenius norm
is at most poly(ndM), a natural conclusion would be that the optimal low-rank approximation cost
can increase by a (1 + ε) multiplicative factor at most O

(
1
ε log(ndM)

)
times. Unfortunately, this

is not the case.

Anti-Hadamard matrices. Problematically, there exist constructions of anti-Hadamard integer
matrices, which have dimension n× d but optimal low-rank cost as small as exp(−O (k)). Hence,
the optimal cost can double O (k) times, thereby incurring total recourse O

(
k2.5

)
, which is unde-

sirably large. Instead, we show that when the optimal low-rank cost is exponentially small, then the
rank of the matrix must also be quite small, meaning that the recourse of our algorithm cannot be
as large as in the full-rank case. Namely, we generalize a result by Clarkson & Woodruff (2009)
to show that if an integer matrix A ∈ Zn×d has rank r > k and entries bounded in magnitude by
M , then its optimal low-rank approximation cost is at least (ndM2)−

k
r−k . Hence, we only need to

consider anti-Hadamard matrices when the rank is less than 2k.

Fortunately, when the rank is at most r < 2k, we can apply a more fine-grained analysis for the
above cases, since there are only r vectors spanning the row span, so the recourse in many of the
previous operations can be at most r − k. In particular, for r < k, we can simply maintain the
entire row span. We then argue that if the rank r of the matrix is between k + 2i and k + 2i+1, then
there can be at most O

(
1
ε

k
2i

)
epochs before the cost of the optimal low-rank approximation is at

least (ndM2)−100. Moreover, the recourse incurred by recomputing the top eigenspace is at most
r− k ≤ 2i+1, so that the total recourse for the times where the rank of the matrix is between k+ 2i

and k + 2i+1 is at most O
(
k
ε log(ndM)

)
. It then follows that the total recourse across all times

before the rank becomes at least 2k is at most O
(
k
ε log

2(ndM)
)
.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

A keen reader might ask whether k3/2 is best possible recourse for our algorithmic approach. To
that end, observe that if we change a large number of factors per update, then the total recourse will
increase. Let us suppose that there are roughly k updates, which is the size of the online projection-
cost preserving coreset. Now if we change r factors per update, then the total recourse will be at least
kr. On the other hand, if we change a smaller number of factors per update, then we will need to
recompute every k

r steps. Each recompute takes k recourse, for a total of k2

r overall recourse. Hence,
the maximum of the quantities kr and k2

r is minimized at r =
√
k, giving recourse kr = k2

r = k3/2.

Recourse lower bound. Our lower bound construction that shows recourse Ω
(
k
ε log

n
k

)
is neces-

sary, corresponding to Theorem 1.4, is simple. We divide the stream into Θ
(
1
ε log

n
k

)
phases where

the optimal low-rank approximation cost increases by a multiplicative (1 + O (ε)) factor between
each phase. Moreover, the optimal solution to the i-th phase is orthogonal to the optimal solution
to the (i− 1)-th phase, so that depending on the parity of the phase i, the optimal solution is either
the first k elementary vectors, or the elementary vectors k + 1 through 2k. Therefore, a multiplica-
tive (1 + ε)-approximation at all times requires incurring Ω(k) recourse between each phase, which
shows the desired Ω

(
k
ε log

n
k

)
lower bound.

C ADDITIONAL RELATED WORK

We remark that there has been a flurry of recent work studying consistency for various problems.
The problem of consistent clustering was initialized by Lattanzi & Vassilvitskii (2017), who gave an
algorithm with recourse k2 · polylog(n) for k-clustering on insertion-only streams, i.e., the incre-
mental setting. This recourse bound was subsequently improved to k · polylog(n) by Fichtenberger
et al. (2021), while a version robust to outliers was presented by Guo et al. (2021). The approxima-
tion guarantee was also recently improved to (1 + ε) by Chan et al. (2025). A line of recent work
has studied k-clustering in the dynamic setting Lacki r⃝ et al. (2023); Bhattacharya et al. (2024);
Forster & Skarlatos (2025), where points may be inserted and deleted. Rather than k-clustering,
Cohen-Addad et al. (2022) studied consistency for correlation clustering, where edges are positively
or negatively labeled, and the goal is to form as many clusters as necessary to minimize the number
of negatively labeled edges within a cluster and the number of positively labeled edges between two
different clusters. For problems beyond clustering, a line of work has also focused on submodular
maximization (Jaghargh et al., 2019; Duetting et al., 2024; Dütting et al., 2024).

Consistent clustering. Another approach might be to adapt ideas from the consistent clustering
literature. In this setting, a sequence of points in Rd arrive one-by-one, and the goal is to maintain
a constant-factor approximation to the (k, z)-clustering cost, while minimizing the total recourse.
Here, the recourse incurred at a time t is the size of the symmetric difference between the clustering
centers selected at time t−1 and at time t. The only algorithm to achieve recourse subquadratic in k
is the algorithm by Fichtenberger et al. (2021), which attempts to create robust clusters at each time
by looking at geometric balls with increasing radius around each existing point to pick centers that
are less sensitive to possible future points. Unfortunately, such a technique utilizes the geometric
properties implicit in the objective of k-clustering and it is not obvious what the corresponding
analogues should be for low-rank approximation.

D RECOURSE LOWER BOUND

In this section, we prove our recourse lower bound. The main idea is to simply partition the data
stream into Θ

(
1
ε log

n
k

)
phases, so that the optimal low-rank approximation cost increases by a

multiplicative (1 + O (ε))-factor between each phase. We also design the input matrix so that the
optimal solution to the i-th phase is orthogonal to the optimal solution to the (i−1)-th phase. Hence,
depending on the parity of the phase i, the optimal solution is either the first k elementary vectors,
or the elementary vectors k + 1 through 2k and thus a (1 + ε)-approximation at all times requires
incurring Ω(k) recourse between each phase, which shows the desired Ω

(
k
ε log

n
k

)
lower bound.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Theorem 1.4. For any parameter ε > logn
n , there exists a sequence of rows x1, . . . ,xn ∈ Rd

such that any algorithm that produces a (1 + ε)-approximation to the cost of the optimal low-rank
approximation at all times must have consistency cost Ω

(
k
ε log

n
k

)
.

Proof. We divide the stream into Θ
(
1
ε log

n
k

)
phases. Let C > 2 be some parameter that we shall

set. If i is odd, then in the i-th phase, we add (1 + ε)i copies of the elementary vectors e1, . . . , ek.
If i is even, then in the i-th phase, we add (1+Cε)i copies of the elementary vectors ek+1, . . . , e2k.
Note that since there are Θ

(
1
ε log

n
k

)
phases and each phase inserts (1 + Cε)i copies of k rows,

then the total number of copies of each row inserted is at most O (n) 2k for the correct fixing of the
constant in the Θ(·) notation, and thus there are at most n rows overall.

We remark that by construction, after the i-th phase, the optimal rank-k approxi-
mation is the elementary vectors e1, . . . , ek if i is odd and the elementary vectors
ek+1, . . . , e2k if i is even. In particular, by the Eckart-Young-Mirsky theorem, i.e., The-
orem 3.1, after the i-th phase, the optimal rank-k approximation to the underlying ma-
trix induces cost k ·

(
(1 + Cε)2 + (1 + Cε)4 + . . .+ (1 + Cε)i−1

)
if i is odd and k ·(

(1 + Cε) + (1 + Cε)3 + . . .+ (1 + Cε)i−1
)

if i is even. Note that both of these quantities are
at most 2k(1 +Cε)i−1. Thus for the time t after an odd phase i, a matrix M of rank-k factors must
satisfy

∥X(t) −X(t)M†M∥2F ≤ 2εk(1 + Cε)i−1,

in order to be a (1 + ε)-approximation to the optimal low-rank cost.

Let E(1) = e1 ◦ . . . ◦ ek and E(2) = ek+1 ◦ . . . ◦ e2k. For any constant C > 100, it follows that
M must have squared mass at least k(1 − 2ε) onto E(1) to be a (1 + ε)-approximation to the cost
of the optimal low-rank approximation to X(t), i.e., ∥M(E(1))⊤E(1)∥2F ≥ k(1 − 2ε) for the time
t immediately following an odd phase i. By similar reasoning, M must have squared mass at least
k(1−2ε) onto E(2) to be a (1+ε)-approximation to the cost of the optimal low-rank approximation
to X(t) for the time t immediately following an odd phase i. However, because E(1) and E(2)

are disjoint, then it follows that M must have recourse Ω(k) between each phase. Since there are
Ω
(
1
ε log

n
k

)
phases, then the total recourse must be Ω

(
k
ε log

n
k

)
.

E MISSING PROOFS FROM SECTION 2

Algorithm 4 Additive error algorithm for low-rank approximation with low recourse

Input: Rows a1, . . . ,an of input matrix A ∈ Rn×d with integer entries bounded in magnitude by
M , error parameter ε > 0

Output: Additive ε · ∥A(t)∥2F error to the cost of the optimal low-rank approximation at all times
1: C ← 0
2: for each row at do
3: if ∥A(t)∥2F ≥ (1 + ε) · C then
4: V← RECLUSTER(A(t), k)
5: C ← ∥A(t)∥2F
6: end if
7: Return V
8: end for

We show correctness of Algorithm 4 at all times:

Lemma E.1. Let A(t) be the first t rows of A and let V(t) be the output of Algorithm 4 at
time t. Let OPTt be the cost of the optimal low-rank approximation at time t. Then ∥A(t) −
A(t)(V(t))⊤V(t)∥2F ≤ OPTt + ε · ∥A(t)∥2F .

It then remains to bound the recourse of Algorithm 4:
Lemma E.2. The recourse of Algorithm 4 is at most O

(
k
ε log(ndM)

)
.

Theorem 1.1 then follows from Lemma E.1 and Lemma E.2.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Lemma E.1. Let A(t) be the first t rows of A and let V(t) be the output of Algorithm 4 at
time t. Let OPTt be the cost of the optimal low-rank approximation at time t. Then ∥A(t) −
A(t)(V(t))⊤V(t)∥2F ≤ OPTt + ε · ∥A(t)∥2F .

Proof. Let s be the time at which V(t−1) was first set, so that V(t−1) = V(s) are the top k right
singular vectors of A(s). Therefore, ∥A(s) −A(s)(V(s))⊤V(s)∥2F = OPTs. Hence,

∥A(t) −A(t)(V(t))⊤V(t)∥2F = ∥A(s) −A(s)(V(t))⊤V(t)∥2F +

t∑
i=s+1

∥ai − ai(V
(t))⊤V(t)∥2F

= ∥A(s) −A(s)(V(s))⊤V(s)∥2F +

t∑
i=s+1

∥ai − ai(V
(t))⊤V(t)∥2F

= OPTs +

t∑
i=s+1

∥ai − ai(V
(t))⊤V(t)∥22.

Note that since (V(t))⊤V(t) is a projection operator, then the length of ai cannot increase after
being projected onto the row span of V(t), so that ∥ai − ai(V

(t))⊤V(t)∥22 ≤ ∥ai∥22. Therefore,

∥A(t) −A(t)(V(t))⊤V(t)∥2F = OPTs +

t∑
i=s+1

∥ai − ai(V
(t))⊤V(t)∥22

≤ OPTs +

t∑
i=s+1

∥ai∥22

≤ OPTs + ε · ∥A(s)∥2F ,

where the last inequality is due to Line 3 of Algorithm 4. Finally, by the monotonicity of the optimal
low-rank approximation cost with additional rows, we have that OPTs ≤ OPTt and thus,

∥A(t) −A(t)(V(t))⊤V(t)∥2F ≤ OPTt + ε · ∥A(s)∥2F ,

as desired.

Lemma E.2. The recourse of Algorithm 4 is at most O
(
k
ε log(ndM)

)
.

Proof. Since each entry of A is an integer bounded in magnitude by at most M , then the squared
Frobenius norm of A is at most (nd)M2. Moreover, each entry of A is an integer bounded, the first
time it is nonzero, the squared Frobenius norm must be at least 1. Hence, the squared Frobneius
norm of A can increase by a factor of (1 + ε) at most log(1+ε)(nd)M

2 = O
(
1
ε log(ndM)

)
from

the first time it is nonzero. Each time t it does so, we recompute the right singular values of A(t)

to be the set of factors V(t). Thus the recourse incurred at these times is at most O
(
k
ε log(ndM)

)
.

For all other times, we retain the same choice of the factors. Hence the desired claim follows.

We now show that the optimal rank k subspace incurs at most constant recourse under rank one
perturbations.

Lemma 2.1. Let A(t−1) ∈ R(t−1)×d and A(t) ∈ Rt×d such that A(t) is A(t−1) with the row At

appended. Let V∗
t−1 and V∗

t be the optimal rank-k subspaces (the span of the top k right singular
vectors) of A(t−1) and A(t), respectively. Then Recourse(V∗

t−1,V
∗
t) ≤ 8.

Proof. The recourse between two subspaces is defined as the squared Frobenius norm of the dif-
ference between their corresponding orthogonal projection matrices. We first consider the co-
variance matrices induced by the optimal rank-k subspaces. Namely, consider the covariance
matrices Bt−1 = (A∗

(t−1))
⊤A∗

(t−1) and Bt = (A(t))⊤A(t). Then we have the relationship
Bt = Bt−1 + A⊤

t A, i.e., Bt is obtained from Bt−1 by a rank-1 positive semi-definite (PSD)
update. By the Eckart-Young theorem, c.f., Theorem 3.1, the subspace V∗

t is the span of the top k
eigenvectors of Bt, and similarly for V∗

t−1 and Bt−1.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

We next consider the intersection of the eigenspaces of Bt and Bt−1. We first aim to show that the
dimension of the intersection of the two subspaces is at least k − 1, i.e., dim(V∗

t−1 ∩V∗
t) ≥ k − 1.

Let Sa be the subspace orthogonal to At, so that Sa = {v ∈ Rd : Atv = 0} and dim(Sa) = d− 1.
Consider the intersection W = V∗

t−1 ∩ Sa. By the properties of subspace dimensions:

dim(W) = dim(V∗
t−1) + dim(Sa)− dim(Vt−1 ∩ Sa).

Since dim(bV ∗
t−1) = k, dim(Sa) = d− 1, and dim(V∗

t−1 ∩ Sa) ≤ d, we have:

dim(W) ≥ k + (d− 1)− d = k − 1.

Now we analyze the properties of vectors in W. Let w ∈W. Since w ∈ Sa, we have Atw = 0.
Observe that

Btw = (Bt−1 +A⊤
t At)w = Bt−1w +A⊤

t (Atw) = Bt−1w.

Hence, W is a subspace contained in both Bt−1 and Bt.

Let λ1 ≥ . . . ≥ λd be the eigenvalues of Bt−1, and µ1 ≥ . . . ≥ µd be the eigenvalues of Bt. Since
Bt is a rank-1 PSD update of Bt−1, the eigenvalues interlace by Theorem A.3:

µ1 ≥ λ1 ≥ µ2 ≥ λ2 ≥ . . . ≥ µk ≥ λk ≥ µk+1 ≥ λk+1

Since W ⊆ V∗t− 1, the subspace W is spanned by eigenvectors of Bt−1 corresponding to eigen-
values λ1, . . . , λk. Because Btw = Bt−1w for w ∈ W , these are also eigenvectors of Bt with
the same eigenvalues. Since λk ≥ µk+1, the eigenvalues associated with the subspace W are
greater than or equal to the (k + 1)-th eigenvalue of Bt. Thus, W must be a subspace of the
top-(k + 1) eigenspace of Bt. Therefore, W ⊆ V∗

t−1 ∩ (V∗
t ∪ {u}), where u is the eigenvec-

tor of Bt corresponding to eigenvalue µk+1. Since dim(W) ≥ k − 1, we have established that
dim(V∗

t−1 ∩V∗
t) ≥ k − 2.

Now, let Pt−1 and Pt be the orthogonal projection matrices onto V∗
t−1 and V∗

t , respectively. Let
Wint = V∗

t−1∩V∗
t and Pshared be the projection onto Wint. If dim(Wint) = k, then V∗t− 1 = V∗

t

and so the recourse is ∥Pt −Pt−1∥2F = 0.

Otherwise, if dim(Wint) = 1, we can decompose the orthogonal projection matrices as:

Pt−1 = Pshared + u1u
⊤
1 , P∗t = Pshared + u2u

⊤
2 ,

where u1,u2 are unit vectors orthogonal to Wint. The recourse is ∥Pt −Pt−1∥2F . Thus, we have

Pt −Pt−1 = (Pshared + u2u
⊤
2)− (Pshared + u1u

⊤
1) = u2u

⊤
2 − u1u

⊤
1 ,

so that by generalized triangle inequality,

Recourse(Pt,Pt−1) ≤ 2∥u1u
⊤
1 ∥2F + 2∥u2u

⊤
2 ∥2F .

Since u1 and u2 are unit vectors, then we have Recourse(Pt,Pt−1) ≤ 4. The same proof with four
unit vectors shows that if dim(Wint) = 2, then Recourse(Pt,Pt−1) ≤ 8.

Finally, we remark that due to the simplicity of rank-one perturbations, any algorithm that maintains
the SVD only needs to perform a rank-one update to the SVD, which takes timeO

(
(n+ d)k + k3

)
for a matrix with dimensions at most n× d Brand (2006).

F MISSING PROOFS FROM SECTION 3

Lemma 3.3. Consider a time s during which c is reset to 0. Suppose HEAVY is set to FALSE at
time s and c is not reset to 0 within the next r steps, for r ≤

√
k. Let V(t) be the output of V at time

t. Then V(t) provides a
(
1 + ε

2

)
-approximation to the cost of the optimal low-rank approximation

of A(t) for all t ∈ [s, s+ r].

Proof. Consider ∥A(t) −A(t)(V(t))⊤V(t)∥2F . Let V(t′) be the matrix V(s) with the t− s vectors
corresponding to the smallest t − s singular values of A(s) instead being replaced with the rows
as+1, . . . ,at. By optimality of v, we have

∥A(t) −A(t)(V(t))⊤V(t)∥2F ≤ ∥A(t) −A(t)(V(t′))⊤V(t′)∥2F .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Since at ∈ V(t′) for all t ∈ [s, s+
√
k], then we have

∥A(t) −A(t)(V(t′))⊤V(t′)∥2F = ∥A(s) −A(s)(V(t′))⊤V(t′)∥2F .
In other words, the rows as+1, . . . ,at cannot contribute to the low-rank approximation cost of
V(t′) because they are contained within the span of V(t′). It remains to upper bound ∥A(s) −
A(s)(V(t′))⊤V(t′)∥2F . We have

C =

d∑
i=k+1

σ2
i (As) = ∥A(s) −A(s)(V(s))⊤V(s)∥2F

and
∑k

i=k−
√
k σ

2
i (As) <

ε
3 ·C since HEAVY is set to FALSE. Note that since t ∈ [s, s+

√
k], then

A(t′) contains the top k −
√
k singular vectors of A(s). Therefore, it follows that

∥A(s)−A(s)(V(t′))⊤V(t′)∥2F ≤ ∥A(s)−A(s)(V(s))⊤V(s)∥2F +

k∑
i=k−

√
k

σ2
i (As) ≤

(
1 +

ε

3

)
·C.

Since the cost of the optimal low-rank approximation of A(t) is at least the cost of the optimal low-
rank approximation of A(s) for t > s, then V(t) provides a

(
1 + ε

3

)
-approximation to the cost of

the optimal low-rank approximation of A(t) for all t ∈ [s, s+
√
k].

Lemma 3.6. Suppose HEAVY is set to FALSE at time s and c is reset to 0 at time s. If c is not reset
to 0 within the next r steps, for r ≤

√
k, then

∑s+r
i=s+1 Recourse(V

(s),V(s−1)) ≤ r.

Proof. Let s be a time during which c is reset to 0 and HEAVY is set to FALSE. Then for the next
r steps, each time a new row is received, then Algorithm 2 replaces a row of V with the new row.
Thus, the recourse is at most r.

Lemma 3.4. Consider a time t during which HEAVY is set to TRUE. Let V(t) be the output
of V at time t. Then V(t) provides a

(
1 + ε

2

)
-approximation to the cost of the optimal low-rank

approximation of A(t).

Proof. Let OPT =
∑d

i=k+1 σ
2(At). We have two cases. Either ∥A(t) −

A(t)(V(t−1))⊤V(t−1)∥2F ≥
(
1 + ε

2

)
·OPT or ∥A(t)−A(t)(V(t−1))⊤V(t−1)∥2F <

(
1 + ε

2

)
·OPT.

In the former case, V(t−1) is already a
(
1 + ε

2

)
-approximation to the cost of the optimal low-rank

approximation of A(t) and the algorithm sets V(t) = V(t−1), so that V(t) is also a
(
1 + ε

2

)
-

approximation to the cost of the optimal low-rank approximation of A(t).

In the latter case, the algorithm sets V(t) to be the output of RECLUSTER(A(t), k), i.e., the top k
eigenvectors of A(t), in which case ∥A(t) −A(t)(V(t))⊤V(t)∥2F = OPT. Thus in both cases, V(t)

provides a
(
1 + ε

2

)
-approximation to the cost of the optimal low-rank approximation of A(t).

Lemma 3.5. At all times t ∈ [n], Algorithm 2 provides a
(
1 + ε

2

)
-approximation to the cost of the

optimal low-rank approximation of A(t).

Proof. Let V(t) be the output of V at time t. We first consider the times t where c is not reset to zero
and HEAVY is set to FALSE. By Lemma 3.3, the output V(t) is provides a

(
1 + ε

2

)
-approximation

to the cost of the optimal low-rank approximation of A(t) at these times.

We next consider the times t where c is not reset to zero and HEAVY is set to TRUE. By Lemma 3.4,
the output V(t) is provides a

(
1 + ε

2

)
-approximation to the cost of the optimal low-rank approxima-

tion of A(t) at these times.

Finally, we consider the times t where c is reset to zero. At these times, the algorithm sets V(t)

to be the output of RECLUSTER(A(t), k), i.e., the top k eigenvectors of A, in which case ∥A(t) −
A(t)(V(t))⊤V(t)∥2F = OPT. Therefore, Algorithm 2 provides a

(
1 + ε

2

)
-approximation to the cost

of the optimal low-rank approximation of A(t) at all times t ∈ [n].

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

We next bound the recourse between epochs when the bottom
√
k singular values of the top k do

not contribute significant mass.

Lemma F.1. Consider a time t during which HEAVY is set to TRUE. Let V(t) be the output of V at
time t. Suppose V(t−1) fails to be a

(
1 + ε

2

)
-approximation to the optimal low-rank approximation

cost. Then Recourse(V(t),V(t−1)) ≤
√
k.

Proof. Let s be the most recent time at which HEAVY was set to TRUE, so that s ≤ t− 1. Let V(s)

denote the top k right singular vectors of A(s) and note that by condition of HEAVY being set to
TRUE,

k∑
i=k−

√
k

σ2
i (V

(s)) ≥ ε

3
· ∥A(s) −A(s)(V(s))⊤V(s)∥2F .

Now, let r be the time at which V(t−1) was first set, so that V(t−1) are the top k right singular
vectors of A(r). Since r ≥ s, then by the interlacing of singular values, i.e., Theorem A.3, we have
that

σi(V
(r)) ≥ σi(V

(s)),

for all i ∈ [d]. Therefore,

k∑
i=k−

√
k

σ2
i (V

(r)) ≥ ε

3
· ∥A(s) −A(s)(V(s))⊤V(s)∥2F ,

since all singular values are by definition non-negative.

Suppose by way of contradiction that we have

Recourse(V(t),V(t−1)) = Recourse(V(t),V(r)) >
√
k.

Then at least
√
k singular vectors for V(t−1) have been displaced and thus by the min-max theorem,

i.e., Theorem A.2,

∥A(t) −A(t)(V(t))⊤V(t)∥2F > ∥A(r) −A(s)(V(s))⊤V(s)∥2F +

k∑
i=k−

√
k

σ2
i (V

(r))

≥
(
1 +

ε

3

)
· ∥A(s) −A(s)(V(s))⊤V(s)∥2F .

Furthermore, because V(t) is the top k right singular vectors of A(t), then ∥A(t) −
A(t)(V(t))⊤V(t)∥2F is the cost of the optimal low-rank approximation at time t. In other words,
the optimal low-rank approximation cost at time t would be larger than

(
1 + ε

3

)
· ∥A(s) −

A(s)(V(s))⊤V(s)∥2F .

On the other hand, since s and t are in the same epoch, then

∥A(s) −A(s)(V(s))⊤V(s)∥2F ≤ ∥A(t) −A(t)(V(t))⊤V(t)∥2F ≤
(
1 +

ε

4

)
∥A(s) −A(s)(V(s))⊤V(r)∥2F ,

which is a contradiction. Hence, it follows that Recourse(V(t),V(t−1)) ≤
√
k.

Lemma F.2. Suppose A ∈ Zn×d is an integer matrix with rank r > k and entries bounded in mag-
nitude by M . Then the cost of the optimal low-rank approximation to A is at least (ndM2)−

k
r−k .

Proof. Let A ∈ Zn×d be an integer matrix with rank r > k and entries bounded in magnitude
by M . Suppose without loss of generality that n ≥ d. Let σ1 ≥ . . . ≥ σd ≥ 0 be the singular
values of A and let λ1 ≥ . . . ≥ λd ≥ 0 be the corresponding eigenvalues of A⊤A. Let p(λ) =
λd−r

∏
i∈[r](λ− λi). Note that since the entries of A are all integers, then the entries of A⊤A are

all integers and thus the coefficients of p(λ) are all integers. In particular, since the coefficient of
λd−r in p(λ) is the product of the nonzero eigenvalues of A⊤A, then

∏r
i=1 λi ≥ 1. Since λi = σ2

i

and σi ≥ 0 for all i ∈ [d], we also have
∏r

i=1 σi ≥ 1.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Moreover, the squared Frobenius norm satisfies
d∑

i=1

λi =

d∑
i=1

σ2
i = ∥A∥2F ≤ ndM2.

Thus, λi ≤ ndM2 for all i ∈ [d]. Hence,

λr−k
k+1 ≥

r∏
i=k+1

λi ≥
1

(ndM2)k

r∏
i=1

λi ≥
1

(ndM2)k
.

Thus we have λk+1 ≥ (ndM2)−
k

r−k . It follows that the optimal low-rank approximation cost is√√√√ d∑
i=k+1

λi ≥ λk+1 ≥ (ndM2)−
k

r−k .

Lemma 3.7. Suppose HEAVY is set to TRUE at time t and c is not reset to 0 within the next r steps,
for r ≤ k. Then

∑t+r
i=t+1 Recourse(V

(t),V(t−1)) ≤ r
√
k.

Proof. By Lemma F.1, we have Recourse(V(t),V(t−1)) ≤
√
k for all i ∈ [t + 1, t + r]. Thus the

total recourse is at most r
√
k.

We analyze the total recourse during times when we reset the counter c because the cost of the
optimal low-rank approximation has doubled.

Lemma F.3. Let T be the set of times at which c is set to 0 because
∑d

i=k+1 σ
2
i (At) ≥ 2C. Then∑

t∈T Recourse(V(t),V(t−1)) ≤ O
(
k
ε log

2(ndM)
)
.

Proof. We define times τ1 < τ2 and decompose T into the times before τ1, the times between
τ1 and τ2, and the times after τ2. Formally, let t0 be the first time at which the optimal low-rank
approximation cost is nonzero, i.e., the first time at which the input matrix has rank k + 1. Let
T0 be the optimal low-rank approximation cost at time t0. Define each epoch i to be the times
during which the cost of the optimal low-rank approximation is at least

(
1 + ε

4

)i · T0 and less than(
1 + ε

4

)i+1 · T0.

Let τ1 be the first time the input matrix has rank k+1. Observe that before time τ1, we can maintain
the entire row span of the matrix by adding each new linearly independent row to the low-rank
subspace, thus preserving the optimal low-rank approximation cost at all times. This process incurs
recourse at most k in total before time τ1.

Next, let τ2 be the first time such that the input matrix has rank at most 2k. We analyze the re-
course between times τ1 and τ2. By Lemma F.2, the cost of the optimal low-rank approximation
to a matrix with integer entries bounded by M and rank r is at least (ndM2)−

k
r−k . Thus if the

rank r of the matrix is at least k + 2i and less than k + 2i+1, then the cost of the optimal low-rank
approximation is at least (ndM2)−

k

2i . Thus there can be at most O
(
1
ε

k
2i

)
epochs before the cost

of the optimal low-rank approximation is at least (ndM2)−100. Let j be the index of any epoch
during which the cost of the optimal low-rank approximation exceeds (ndM2)−

k

2i . Since the total
dimension of the span of the rows of A that have arrived by epoch j is r, then the recourse in-
curred by recomputing the top eigenspace is at most O (r − k) = O

(
2i
)
. Since there can be at

most O
(
1
ε

k
2i log(ndM)

)
epochs before the cost of the optimal low-rank approximation is at least

(ndM2)−100, then the consistency cost for the times where the rank of the matrix is at least k + 2i

and less than k + 2i+1 is at most O
(
k
ε log(ndM)

)
. Thus the total consistency cost between times

τ1 and τ2 is
∑log k

i=0 O
(
k
ε log(ndM)

)
= O

(
k
ε log

2(ndM)
)
.

Note that after time τ2, the cost of the optimal low-rank approximation is at least (ndM2)−100.
Since the squared Frobenius norm is at most ndM2, then the low-rank cost is also at most ndM2.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Thus there can be at most O
(
1
ε log(ndM)

)
epochs after time τ2. Each epoch incurs recourse O (k)

due to recomputing the top eigenspace of the prefix of A that has arrived at that time. Thus the total
recourse due to the set T of times after τ2 is O

(
k
ε log(ndM)

)
.

In summary, we can decompose T into the times before τ1, the times between τ1 and τ2, and the
times after τ2. The total recourse at times t ∈ T before τ1 is at most O (k). The total recourse
at times t ∈ T between times τ1 and τ2 is at most O

(
k
ε log

2(ndM)
)
. The total recourse at times

t ∈ T after time τ2 is at most O (k log(ndM)). Hence, the total recourse of times t ∈ T is at most
O
(
k
ε log

2(ndM)
)
.

Lemma 3.8. Let T be the set of times at which c is set to 0. Then
∑

t∈T Recourse(V(t),V(t−1)) ≤
O
(
n
√
k + k

ε log
2(ndM)

)
.

Proof. Note that c can only be reset for one of the three different following reasons:

(1) HEAVY = TRUE and c = k

(2) HEAVY = FALSE and c =
√
k

(3)
∑d

i=k+1 σ
2
i (At) ≥ 2C

In all three cases, the algorithm calls RECLUSTER(A, k), incurring recourse k. Observe that for a
matrix A with n rows, the counter c can exceed

√
k at most n√

k
times. Thus the first two cases can

occur at most n√
k

times, so the total recourse contributed by the first two cases is at most n
√
k.

It remains to consider the total recourse incurred over the steps where the cost of the optimal
low-rank approximation has at least doubled from the previous time C was set. By Lemma F.3,
the recourse from such times is at most O

(
k
ε log

2(ndM)
)
. Hence, the total recourse is at most

O
(
n
√
k + k

ε log
2(ndM)

)
.

Lemma 3.9. The total recourse of Algorithm 2 on an input matrix A ∈ Rn×d with integer entries
bounded in magnitude by M is O

(
n
√
k + k

ε log
2(ndM)

)
.

Proof. We first consider the times t where c is not reset to zero and HEAVY is set to FALSE By
Lemma 3.6, the recourse across any consecutive set of r of these steps is at most r. Thus over the
stream of n rows, the total recourse incurred across all steps where HEAVY is set to FALSE is at
most n.

We next consider the times t where c is not reset to zero and HEAVY is set to TRUE. By Lemma 3.7,
the recourse across any uninterrupted sequence of r these steps is at most r

√
k. Hence over the

stream of n rows, the total recourse incurred across all steps where HEAVY is set to TRUE is at
most n

√
k.

Finally, we consider the times t where c is reset to zero. By Lemma 3.8, the total recourse
incurred across all steps is at most O

(
n
√
k + k

ε log
2(ndM)

)
. Therefore, the total recourse is

O
(
n
√
k + k

ε log
2(ndM)

)
.

Lemma 3.10. Given an input matrix A ∈ Rn×d with integer entries bounded in magnitude by M ,
Algorithm 2 achieves a

(
1 + ε

2

)
-approximation to the cost of the optimal low-rank approximation

and achieves recourse O
(
n
√
k + k

ε log
2(ndM)

)
.

Proof. Note that correctness follows from Lemma 3.5 and the upper bound on recourse follows from
Lemma 3.9.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Theorem 1.3. Suppose A ∈ Zn×d is an integer matrix with entries bounded in magnitude by M .
There exists an algorithm that achieves a (1 + ε)-approximation to the cost of the optimal low-rank
approximation A at all times and achieves recourse k3/2

ε2 · polylog(ndM).

Proof. Let ε ∈
(
0, 1

100

)
. By Theorem 2.4, the optimal low-rank approximation to the rows of M

that have been sampled by a time t achieves a
(
1 + ε

10

)
-approximation to the cost of the optimal

low-rank approximation of A that have arrived at time t. Thus, it suffices to show that we provide
a
(
1 + ε

2

)
-approximation to the cost of the optimal low-rank approximation to the matrix M at

all times. Thus we instead consider a new stream consisting of the rows of M ∈ Rm×d, where
m = k

ε2 · polylog(ndM) and the entries of M are integers bounded in magnitude by M · poly(n).
Consider Algorithm 2 on input M. Correctness follows from Lemma 3.10, so it remains to repa-
rameterize the settings in Lemma 3.10 to analyze the total recourse. By Lemma 3.9, the to-
tal recourse on an input matrix A ∈ Rn×d with integer entries bounded in magnitude by M is
O
(
n
√
k + k

ε log
2(ndM)

)
. Thus for input matrix M with k

ε2 · polylog(ndM) rows and integer

entries bounded in magnitude by M · poly(n), the total recourse is k3/2

ε2 · polylog(ndM).

G ADDITIONAL EXPERIMENTS

In this section, we describe a number of additional empirical evaluations.

G.1 RANDOM SYNTHETIC DATASET

We generate a random synthetic dataset with 3000 rows and 4 columns with integer entries between
0 and 100 and subsequently normalized by column. We again compared the cost of the solution
output by Algorithm 4 with the cost of the optimal low-rank approximation for k = 1 across c =
(1 + ε) ∈ {1.1, 2.5, 5, 10, 100}. We summarize our results in Figure 3. In particular, we first plot in
Figure 3a the runtime of our algorithm. We then plot in Figure 3b the ratio of the cost of the solution
output by Algorithm 4 with the cost of the optimal low-rank approximation.

Similar to the skin segmentation and the rice datasets, our algorithm provides better approximation
to the optimal solution as c = (1 + ε) decreases from 100 to 1, with a number of spikes for a small
number of rows likely due to the optimal low-rank approximation cost being quite small compared to
the additive Frobenius error. Moreover, our results perform demonstrably better than the worst-case
theoretical guarantee, giving roughly a 2.5-approximation compared to the theoretical guarantee of
100-approximation.

(a) Runtime on random dataset (b) Approximations on random dataset

Fig. 3: Runtime and approximations on random dataset. Figure 3a considers k = 1, c = 10, while
Figure 3b considers k = 1, c = (1 + ε) ∈ {1.1, 2.5, 5, 10, 100}

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

(a) Runtime on SKIN dataset (b) Approximations for k = 1 (c) Approximations for k = 2

Fig. 4: Runtime and approximations on SKIN dataset. Figure 4a considers k = 1 and c = 1.1, while
Figure 4b considers k = 1, c = (1 + ε) ∈ {1.1, 2.5, 5, 10, 100} and Figure 4c considers k = 2,
c = (1 + ε) ∈ {1.1, 1.5, 2.5, 10}

G.2 SKIN SEGMENTATION DATASET

We evaluate Algorithm 4 on the Skin Segmentation (SKIN) dataset (Bhatt & Dhall, 2012) from
the UCI repository (Markelle Kelly, 1987), which is commonly used in benchmark comparison for
unsupervised learning tasks, e.g., (Borassi et al., 2020; Epasto et al., 2023; Woodruff et al., 2023).
The dataset consists of a total of 245057 face images encoded by B,G,R values, collected from the
Color FERET Image Database and the PAL Face Database from Productive Aging Laboratory from
the University of Texas at Dallas. The faces were collected from various age groups (young, middle,
and old), race groups (white, black, and asian), and genders. Among the dataset, 50859 images are
skin samples, while the other 194198 images are non-skin samples, and the task is to classify which
category each image falls under.

Experimental setup. For our experiments, we only considered the first 3000 skin images and
stripped the labels, so that the goal was to perform low-rank approximation on the B,G,R values of
the remaining skin images. As our theoretical guarantees ensure that the solution is changed a small
number of times, we compared the cost of the solution output by Algorithm 4 with the cost of the
optimal low-rank approximation. In particular, we computed the ratios of the two costs for k = 1
across c = (1 + ε) ∈ {1.1, 2.5, 5, 10, 100} and for k = 2 across c = (1 + ε) ∈ {1.1, 1.5, 2.5, 10},
even though the formal guarantees of Algorithm 4 involve upper bounding the additive error.

Results and discussion. In Figure 4, we plot the ratio of the cost of the solution output by Algo-
rithm 4 with the cost of the optimal low-rank approximation at each time over the duration of the
data stream. We then provide the central statistics, i.e., the mean, standard deviation, and maximum
for the ratio of across various values of k and accuracy parameters for the SKIN dataset in Table 2.

Our results show that as expected, our algorithm provides better approximation to the optimal solu-
tion as c = (1+ ε) decreases from 100 to 1. Once the optimal low-rank approximation cost became
sufficiently large, our algorithm achieved a good multiplicative approximation. Thus we believe the
main explanation for the spikes at the beginning of Figure 4c is due to the optimal low-rank approx-
imation cost being quite small compared to the additive Frobenius error. It is somewhat surpris-
ing that despite the worst-case theoretical guarantee that our algorithm should only provide a 100-
approximation, it actually performs significantly better, i.e., it provides roughly a 4-approximation.
Thus it seems our empirical evaluations provide a simple proof-of-concept demonstrating that our
theoretical worst-case guarantees can be even stronger in practice.

G.3 RICE DATASET

We next consider the RICE dataset (Rice) from the UCI repository (Markelle Kelly, 1987), where
the goal is to classify between 2 types of rice grown in Turkey. The first type of rice is the Osmancik
species, which has a large planting area since 1997, while the second type of rice is the Cammeo
species, which has been grown since 2014 (Rice). The dataset consists of a total of 3810 rice grain
images taken for the two species, with 7 morphological features were obtained for each grain of rice.
Specifically, the features are the area, perimeter, major axis length, minor axis length, eccentricity,
convex area, and the extent of the rice grain.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

k (1 + ε) Mean Std. Dev. Max

1

1.1 1.0006 0.0022 1.0383
2 1.0088 0.0479 1.7870
5 1.0374 0.1341 2.6038
10 1.1324 0.4167 4.8201
100 3.2971 0.4532 4.8201

2

1.1 1.0016 0.0069 1.1521
1.5 1.0148 0.1327 5.1533
2.5 1.0371 0.2430 5.2778
10 1.3175 0.9238 6.8602

Table 2: Average, standard deviation, and maximum for ratios of cost across various values of k and
accuracy parameters for SKIN dataset.

(a) Runtime on RICE (b) Approximations on RICE (c) Recourse on RICE

Fig. 5: Runtime and approximations on RICE dataset. Figure 5a considers k = 1, c = 10, while
Figure 5b and Figure 5c consider k = 1, c = (1 + ε) ∈ {1.1, 2.5, 5, 10, 100}

Evaluation summary. For our experiments, we performed low-rank approximation on the seven
provided features of the RICE dataset. We compared the cost of the solution output by Algo-
rithm 4 with the cost of the optimal low-rank approximation for k = 1 across c = (1 + ε) ∈
{1.1, 2.5, 5, 10, 100}. We summarize our results in Figure 5, plotting the runtime of our algorithm
in Figure 5a and the ratio of the cost of the solution output by Algorithm 4 with the cost of the
optimal low-rank approximation in Figure 5b.

Our results show that similar to the skin segmentation dataset, our algorithm provides better ap-
proximation to the optimal solution as c = (1 + ε) decreases from 100 to 1. Figure 5b again has
a number of spikes for a small number of rows likely due to the optimal low-rank approximation
cost being quite small compared to the additive Frobenius error. Furthermore, our results again
exhibit the somewhat surprising result that our algorithm provides a relatively good approximation
compared to the worst-case theoretical guarantee, i.e., our algorithm empirically provides roughly a
2-approximation despite the worst-case guarantees only providing a 100-approximation.

Finally, we note that, as anticipated, the recourse of our algorithm decreases as the required accuracy
of the factors decreases. This is because coarser factor representations require less frequent updates
as the matrix evolves.

26

	Introduction
	Our Contributions
	Related Work

	Simple Algorithms with Optimal Recourse
	Algorithm for Relative Error
	Empirical Evaluations
	Preliminaries
	Technical Overview
	Additional Related Work
	Recourse Lower Bound
	Missing Proofs from Section 2
	Missing Proofs from Section 3
	Additional Experiments
	Random synthetic dataset
	Skin segmentation dataset
	Rice dataset

