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Abstract

World models have recently emerged as a promising approach for reinforcement1

learning (RL), as evidenced by its stimulating successes that world model based2

agents achieve state-of-the-art performance on a wide range of tasks in empirical3

studies. The primary goal of this study is to obtain a deep understanding of the mys-4

terious generalization capability of world models, based on which we devise new5

methods to enhance it further. Thus motivated, we develop a stochastic differential6

equation formulation by treating the world model learning as a stochastic dynamic7

system in the latent state space, and characterize the impact of latent representation8

errors on generalization, for both cases with zero-drift representation errors and9

with non-zero-drift representation errors. Our somewhat surprising findings, based10

on both theoretic and experimental studies, reveal that for the case with zero drift,11

modest latent representation errors can in fact function as implicit regularization12

and hence result in generalization gain. We further propose a Jacobian regulariza-13

tion scheme to mitigate the compounding error propagation effects of non-zero14

drift, thereby enhancing training stability and generalization. Our experimental15

results corroborate that this regularization approach not only stabilizes training but16

also accelerates convergence and improves performance on predictive rollouts.17

1 Introduction18

Model-based reinforcement learning (RL) has emerged as a promising learning paradigm to improve19

sample efficiency by enabling agents to exploit a learned model for the physical environment. Notably,20

in recent works [14, 13, 15, 16, 21, 10, 32, 22] on world models, an RL agent learns the latent21

dynamics model of the environment, based on the observations and action signals, and then optimizes22

the policy over the learned dynamics model. Different from conventional approaches, world-model23

based RL takes an end-to-end learning approach, where the building blocks (such as dynamics model,24

perception and action policy) are trained and optimized to achieve a single overarching goal, offering25

significant potential to improve generalization capability. For example, DreamerV2 and DreamerV326

achieve great progress in mastering diverse tasks involving continuous and discrete actions, image-27

based inputs, and both 2D and 3D environments, thereby facilitating robust learning across unseen28

task domains [14, 13, 15]. Recent empirical studies have also demonstrated the capacity of world29

models to generalize to unseen states in complex environments, such as autonomous driving [19].30

Nevertheless, it remains not well understood when and how world models can generalize well in31

unseen environments.32

In this work, we aim to first obtain a deep understanding of the generalization capability of world33

models by examining the impact of latent representation errors, and then to devise new methods to34

enhance its generalization. While one may expect that optimizing a latent dynamics model (LDM)35

prior to training the task policy would minimize latent representation errors and hence can achieve36

better world model training, our somewhat surprising findings, based on both theoretical and empirical37

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



batch size
perturbation

α = 10 α = 20 α = 30 β = 25 β = 50 β = 75

8 691.62 363.73 153.67 624.67 365.31 216.52
16 830.39 429.62 213.78 842.26 569.42 375.61
32 869.39 436.87 312.99 912.12 776.86 655.26
64 754.47 440.44 80.24 590.41 255.2 119.62

Table 1: Reward values on unseen perturbed states by rotation (α) or mask (β%) with N (0.15, 0.5).

studies, reveal that modest latent representation errors in the training phase may in fact be beneficial.38

In particular, the alternating training strategy for world model learning, which simultaneously refines39

both the LDM and the action policy, could actually bring generalization gain, because the modest40

latent representation errors (and the corresponding induced gradient estimation errors) could enable41

the world model to visit unseen states and thus lead to improved generalization capacities. For42

instance, as shown in Table 1, our experimental results suggest that moderate batch sizes (e.g., 16 or43

32) appear to position the induced errors within a regime conferring notable generalization benefits,44

leading to higher generalization improvement, when compared to the cases with very small (e.g., 8)45

or large (e.g., 64) batch sizes.46

In a nutshell, latent representation errors incurred by latent encoders, if designed properly, may47

actually facilitate world model training and enhance generalization. This insight aligns with recent48

advances in deep learning, where noise injection schemes have been studied as a form of implicit49

regularization to enhance models’ robustness. For instance, recent study [2] analyzes the effects of50

introducing isotropic Gaussian noise at each layer of neural networks, identifying it as a form of51

implicit regularization. Another recent work [27] explores the addition of zero-drift Brownian motion52

to RNN architectures, demonstrating its regularizing effects in improving network’s stability against53

noise perturbations.54

We caution that latent representation errors in world models differ from the above noise injection55

schemes ([27, 2]), in the following aspects: 1) Unlike the artificially injected noise only added in56

training, these errors are inherent in world models, leading to error propagation in the rollouts; 2)57

Unlike the controlled conditions of isotropic or zero-drift noise examined in prior studies, the errors58

in world models may not exhibit such well-behaved properties in the sense that the drift may be59

non-zero and hence biased; 3) additionally, in the iterative training of world models and agents, the60

error originating from the encoder affects the policy learning and agent exploration. In light of these61

observations, we develop a continuous-time stochastic differential equation (SDE) formulation by62

treating the world model learning as a stochastic dynamic system with stochastic latent states. This63

approach offers an insightful view on model errors as stochastic perturbation, enabling us to obtain64

an explicit characterization to quantify the impacts of the errors on world models’ generalization65

capability. Our main contributions can be summarized as follows.66

• Latent representation errors as implicit regularization: Aiming to understand the generalization67

capability of world models and improve it further, we develop a continuous-time SDE formula-68

tion by treating the world model learning as a stochastic dynamic system in latent state space.69

Leveraging tools in stochastic calculus and differential geometry, we characterize the impact70

of latent representation errors on world models’ generalization. Our findings reveal that under71

some technical conditions, modest latent representation errors can in fact function as implicit72

regularization and hence result in generalization gain.73

• Improving generalization in non-zero drift cases via Jacobian regularization: For the case where74

latent representation errors exhibit non-zero drifts, we show that the additional bias term would75

degrade the implicit regulation and hence may make the learning unstable. We propose to add76

Jacobian regularization to mitigate the effects of non-zero-drift errors in training. Experimental77

studies are carried out to evaluate the efficacy of Jacobian regularization.78

• Reducing error propagation in predictive rollouts: We explicitly characterize the effect of latent79

representation errors on predictive rollouts. Our experimental results corroborate that Jacobian80

regularization can reduce the impact of error propagation on rollouts, leading to enhanced81

prediction performance and accelerated convergence in tasks with longer time horizons.82

• Bounding Latent Representation Error: We establish a novel bound on the latent representation83

error within CNN encoder-decoder architectures. To our knowledge, this is the first quantifiable84
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bound applied to a learned latent representation model, and the analysis carries over to other85

architectures (e.g., ReLU) along the same line.86

Notation. We use Einstein summation convention for succinctness, where aibi denotes
∑

i aibi. We87

denote functions in Ck,α as being k-times differentiable with α-Hölder continuity. The Euclidean88

norm of a vector is represented by ∥ · ∥, and the Frobenius norm of a matrix by | · |F ; this notation89

may occasionally extend to tensors. The notation xi indicates the ith coordinate of the vector x, and90

Aij the (i, j)-entry of the matrix A. Function composition is denoted by f ◦ g, implying f(g). For a91

differentiable function f : Rn → Rm , its Jacobian matrix is denoted by ∂f
∂x ∈ Rm×n. Its gradient,92

following conventional definitions, is denoted by ∇f . The constant C may represent different values93

in distinct contexts.94

2 Related Work95

World model based RL. World models have demonstrated remarkable efficacy in visual control96

tasks across various platforms, including Atari [1] and Minecraft [8], as detailed in the studies by97

Hafner et al. [14, 13, 15]. These models typically integrate encoders and memory-augmented neural98

networks, such as RNNs [33], to manage the latent dynamics. The use of variational autoencoders99

(VAE) [7, 23] to map sensory inputs to a compact latent space was pioneered by Ha et al. [12].100

Furthermore, the Dreamer algorithm [13, 16] employs convolutional neural networks (CNNs) [24] to101

enhance the processing of both hidden states and image embeddings, yielding models with improved102

predictive capabilities in dynamic environments.103

Continuous-time RNNs. The continuous-time assumption is standard for theoretical formulations104

of RNN models. Li et al. [26] study the optimization dynamics of linear RNNs on memory decay.105

Chang et al. [4] propose AntisymmetricRNN, which captures long-term dependencies through the106

control of eigenvalues in its underlying ODE. Chen et al. [5] propose the symplectic RNN to model107

Hamiltonians. As continuous-time formulations can be discretized with Euler methods [4, 5] (or with108

Euler-Maruyama methods if stochastic in [27]) and yield similar insights, this step is often eliminated109

for brevity.110

Implicit regularization by noise injection in RNN. Studies on noise injection as a form of implicit111

regularization have gained traction, with Lim et al. [27] deriving an explicit regularizer under small112

noise conditions, demonstrating bias towards models with larger margins and more stable dynamics.113

Camuto et al. [2] examine Gaussian noise injections at each layer of neural networks. Similarly, Wei114

et al. [31] provide analytic insights into the dual effects of dropout techniques.115

3 Demystifying World Model: A Stochastic Differential Equation Approach116

As pointed out in [14, 13, 15, 16], critical to the effectiveness of the world model representation is117

the stochastic design of its latent dynamics model. The model can be outlined by the following key118

components: an encoder that compresses high dimensional observations st into a low-dimensional119

latent state zt (Eq.1), a sequence model that captures temporal dependencies in the environment120

(Eq.2), a transition predictor that estimates the next latent state (Eq.3), and a latent decoder that121

reconstructs observed information from the posterior (Eq.4):122

Latent Encoder: zt ∼ qenc(zt |ht, st), (1)
Sequence Model: ht = f(ht−1, zt−1, at−1), (2)

Transition Predictor: z̃t ∼ p(z̃t |ht), (3)
Latent Decoder: s̃t ∼ qdec(s̃t |ht, z̃t) (4)

In this work, we consider a popular class of world models, including Dreamer and PlaNet, where {z,123

z̃, s̃} have distributions parameterized by neural networks’ outputs, and are Gaussian when the outputs124

are known. It is worth noting that {z, z̃, s̃} may not be Gaussian and are non-Gaussian in general.125

This is because while z is conditional Gaussian, its mean and variance are random variables which126

are learned by the encoder with s and h being the inputs, rendering that z is non-Gaussian due to the127

mixture effect. For this setting, we have a continuous-time formulation where the latent dynamics128

model can be interpreted as stochastic differential equations (SDEs) with coefficient functions of129

known inputs. Due to space limitation, we refer to Proposition B.1 in the Appendix for a more130

detailed treatment.131
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Consider a complete, filtered probability space (Ω, F , {Ft}t∈[0,T ], P ) where independent standard132

Brownian motions B enc
t , B pred

t , B seq
t , B dec

t are defined such that Ft is their augmented filtration, and133

T ∈ R as the time length of the task environment. We interpret the stochastic dynamics of LDM134

with latent representation errors through coupled SDEs representing continuous-time analogs of the135

discrete components:136

Latent Encoder: d zt = (qenc(ht, st) + ε σ(ht, st)) dt+ (q̄enc(ht, st) + ε σ̄(ht, st)) dB
enc
t , (5)

Sequence Model: d ht = f(ht, zt, π(ht, zt)) dt+ f̄(ht, zt, π(ht, zt)) dB
seq
t (6)

Transition Predictor: d z̃t = p(ht) dt+ p̄(ht) dB
pred
t , (7)

Latent Decoder: d s̃t = qdec(ht, z̃t) dt+ q̄dec(ht, z̃t) dB
dec
t , (8)

where π(h, z̃) is a policy function as a local maximizer of value function and the stochastic process137

st is Ft-adapted. Notice that f̄ is often a zero function indicating that Equation (6) is an ODE,138

as the sequence model is generally designed as deterministic. Generally, the coefficient functions139

in dt and dBt terms in SDEs are referred to as the drift and diffusion coefficients. Intuitively, the140

diffusion coefficients here represent the stochastic model components. In Equation (5), σ(·, ·) and141

σ̄(·, ·) denotes the drift and diffusion coefficients of the latent representation errors, respectively.142

Both are assumed to be functions of hidden states ht and task states st. In addition, ε indicates the143

magnitude of the error.144

Next, we impose standard assumptions on these SDEs (5) - (8) to guarantee the well-definedness of145

the solution to SDEs. For further technical details, we refer readers to fundamental works on SDEs in146

the literature (e.g.,[30, 17]).147

Assumption 3.1. The drift coefficient functions qenc, f, p and qdec and the diffusion coefficient148

functions q̄enc, p̄ and q̄dec are bounded and Borel-measurable over the interval [0, T ], and of class C3149

with bounded Lipschitz continuous partial derivatives. The initial values z0, h0, z̃0, s̃0 are square-150

integrable random variables.151

Assumption 3.2. σ and σ̄ are bounded and Borel-measurable and are of class C3 with bounded152

Lipschitz continuous partial derivatives over the interval [0, T ].153

3.1 Latent Representation Errors in CNN Encoder-Decoder Networks154

As shown in the empirical studies with different batch sizes (Table 1), the latent representation error155

would also enrich generalization when it is within a moderate regime. In this section, we show that156

the latent representation error, in the form of approximation error corresponding to widely used CNN157

encoder-decoder, could be made sufficiently small by finding appropriate CNN network configuration.158

In particular, this result provides theoretical justification to interpreting latent representation error as159

stochastic perturbation in the dynamical system defined in Equations (5 - 8), as the error magnitude ε160

can be made sufficiently small by CNN network configuration.161

Consider the state space S ⊂ RdS and the latent space Z . Consider a state probability measure Q on162

the state space S and a probability measure P on the latent space Z . As high-dimensional state space163

in image-based tasks frequently exhibit intrinsic lower-dimensional geometric structure, we adopt164

the latent manifold assumption, formally stated as follows:165

Assumption 3.3. (Latent manifold assumption) For a positive integer k, there exists a dM-166

dimensional Ck,α submanifold M (with Ck+3,α boundary) with Riemannian metric g and has167

positive reach and also isometrically embedded in the state space S ⊂ RdS and dM << dS , where168

the state probability measure is supported on. In addition, M is a compact, orientable, connected169

manifold.170

Assumption 3.4. (Smoothness of state probability measure) Q is a probability measure supported on171

M with its Radon-Nikodym derivative q ∈ Ck,α(M,R) w.r.t µM.172

Let Z be a closed ball in RdM , that is {x ∈ RdM : ∥x∥ ≤ 1 }. P is a probability measure supported173

on Z with its Radon-Nikodym derivative p ∈ Ck,α(Z,R) w.r.t µZ . In practice, it is usually an easy-174

to-sample distribution such as uniform distribution which is determined by a specific encoder-decoder175

architecture choice.176

Latent Representation Learning. We define the latent representation learning as to find encoder
genc : M → Z and decoder gdec : Z → M as maps that optimize the following objectives:

min
genc∈G

W1
(
genc# Q, P

)
; min

gdec∈G
W1

(
Q, gdec# P

)
.
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Here, genc# Q and gdec# P represent the pushforward measures of Q and P through the encoder177

map genc and decoder map gdec, respectively. The latent representation error is understood as the178

“difference" of pushforward measure by the encoder/decoder and target measure. Here, to understand179

the "scale" of the error ε in Equation (5), we use W1 for the discrepancy between probability180

measures. In particular, for Dreamer-type loss function that uses KL-divergence, we note that squared181

W1 distance between two probability measures can be upper bounded by their KL-divergence up to182

a constant [11], implying that one could reasonably expect the W1 distance to also decrease when183

KL-divergence is used in the model.184

CNN configuration. As a popular choice choice in encoder-decoder architecture is CNN, we185

consider a general CNN function fCNN : X → R. Let fCNN have L hidden layers, represented186

as: forx ∈ X , fCNN(x) := AL+1 ◦ AL ◦ · · · ◦ A2 ◦ A1(x), where Ai’s are either convolutional or187

downsampling operators. For convolutional layers, Ai(x) = σ(W c
i x+ bci ), where W c

i ∈ Rdi×di−1188

is a structured sparse Toeplitz matrix from the convolutional filter {w(i)
j }s(i)j=0 with filter length189

s(i) ∈ N+, bci ∈ Rdi is a bias vector, and σ is the ReLU activation function. For downsampling190

layers, Ai(x) = Di(x) = (xjmi)
⌊di−1/mi⌋
j=1 , where Di : Rdi×di−1 is the downsampling operator191

with scaling parameter mi ≤ di−1 in the i-th layer. We examine the class of functions represented by192

CNNs, denoted by FCNN, defined as:193

FCNN = {fCNN as in defined above with any choice of Ai, i = 1, . . . , L+ 1}.
For the specific definition of FCNN, we refer to [29]’s (4), (5) and (6).194

Assumption 3.5. Assume that M and Z are locally diffeomorphic, that is there exists a map195

F : M → Z such that at every point x on M, det(dF (x)) ̸= 0.196

Theorem 3.6. (Approximation Error of Latent Representation). Under Assumption 3.3, 3.4 and 3.5,197

for θ ∈ (0, 1), let dθ := O(dMθ−2 log d
θ ). For positive integers M and N , there exists an encoder198

genc and decoder gdec ∈ FCNN(L, S,W ) s.t.199

W1(genc#Q,P ) ≤ dMC(NM)
− 2(k+1)

dθ , W1(gdec#P,Q) ≤ dMC(NM)
− 2(k+1)

dθ .

Theorem 3.6 indicates that with an appropriate CNN configuration, the W1 approximation error can200

be made to reside in a small region, as the best candidate within the function class is indeed capable of201

approximating the oracle encoder/decoder. In particular, this result indicates that the error magnitude202

ε in SDE (5) can be assumed to be small. This allows us to apply the perturbation analysis of the203

dynamical system defined in Equations (5 - 8) in the following sections.204

3.2 Latent Representation Errors as Implicit Regularization towards Generalization205

In this section, we investigate the impact of latent representation errors on generalization, for the206

two cases with zero drift and non-zero drift, respectively. We show that under mild conditions,207

the zero-drift errors can function as a natural form of implicit regularization, promoting wider208

landscapes for improved robustness. Nevertheless, we caution that when latent representation errors209

have non-zero drift, it could lead to poor regularization with unstable bias and degrade world model’s210

generalization, calling for explicit regularization.211

To simplify the notation here, we consider the system equations, specifically Equations (5), (6) - (8),212

as one stochastic system. Let xt = (zt, ht, z̃t, s̃t) and Bt = (B enc
t , B seq

t , B pred
t , B dec

t ):213

d xt = (g(xt, t) + ε σ(xt, t)) dt+
∑
i

ḡi(xt, t) + ε σ̄i(xt, t) dB
i
t, (9)

where g, and ḡi are structured accordingly for the respective components, employing the Einstein214

summation convention for concise representation. For abuse of notation, σ = (σ, 0, 0, 0), σ̄ =215

(σ̄, 0, 0, 0). For a given error magnitude ε, we denote the solution to SDE (9) as xεt . Intuitively, xεt is216

the perturbed trajectory of the latent dynamics model. In particular, when ε = 0, indicating that the217

absence of latent representation error in the model, the solution is denoted as x0t .218

3.2.1 The Case with Zero-drift Representation Errors219

When the drift coefficient σ = 0, the latent representation errors correspond to a class of well-behaved220

stochastic processes. The following result translates the induced perturbation on the stochastic latent221
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dynamics model’s loss function L to a form of explicit regularization. We assume that L ∈ C2222

and depends on zt, ht, z̃t, s̃t. Loss functions used in practical implementation, e.g. in DreamerV3,223

reconstruction loss JO, reward loss JR, consistency loss JD, all satisfy this condition.224

Theorem 3.7. (Explicit Effect Induced by Zero-Drift Representation Error) Under Assumptions225

3.1 and 3.2 and considering a loss function L ∈ C2, the explicit effects of the zero-drift error can be226

marginalized out as follows: as ε→ 0,227

EL (xε
t ) = EL(x0

t ) +R+O(ε3), (10)
where the regularization term R is given by R := εP + ε2

(
Q+ 1

2
S
)
, with228

P :=E∇L(x0
t )

⊤Φt

∑
k

ξkt , (11)

S :=E
∑
k1,k2

(Φtξ
k1
t )i∇2L(x0

t , t) (Φtξ
k2
t )j , (12)

Q :=E∇L(x0
t )

⊤Φt

∫ t

0

Φ−1
s Hk(x0

s, s)dB
k
t . (13)

Square matrix Φt is the stochastic fundamental matrix of the corresponding homogeneous equation:229

dΦt =
∂ḡk
∂x

(x0
t , t)Φt dB

k
t , Φ(0) = I,

and ξkt is the shorthand for
∫ t

0
Φ−1

s σ̄k(x
0
s, s)dB

k
t . Additionally, Hk(x0s, s) is represented by for230 ∑

k1,k2

∂2ḡk
∂xi∂xj (x

0
s, s)

(
ξk1
s

)i (
ξk2
s

)j
.231

The proof is relegated to Appendix B in the Supplementary Materials.232

When the loss L is convex, then its Hessian, ∇2L, is positive semi-definite, which ensures that the233

term S is non-negative. The presence of this Hessian-dependent term S , under latent representation234

error, implies a tendency towards wider minima in the loss landscape. Empirical results from [20]235

indicates that wider minima correlate with improved robustness of implicit regularization during236

training. This observation also aligns with the theoretical insights in [27] that the introduction237

of Brownian motion, which is indeed zero-drift by definition, in training RNN models promotes238

robustness. We note that in addition, when the error σ̄t(·) is too small, the effect of term S as implicit239

regularization would not be as significant as desired. Intuitively, this insight resonates with the240

empirical results in Table 1 that model’s robustness gain is not significant when the error induced by241

small batch sizes is too small.242

We remark that the exact loss form treated here is simplified compared to that in the practical243

implementation of world models, which frequently depends on the probability density functions244

(PDFs) of zt, ht, z̃t, s̃t. In principle, the PDE formulation corresponding to the PDFs of the perturbed245

xεt can be derived from the Kolmogorov equation of the SDE (9), and the technicality is more involved246

but can offer more direct insight. We will study this in future work.247

3.2.2 The Case with Non-Zero-Drift Representation Errors248

In practice, latent representation errors may not always exhibit zero drift as in idealized noise-injection249

schemes for deep learning ([27], [2]). When the drift coefficient σ is non-zero or a function of input250

data ht and st in general, the explicit regularization terms induced by the latent representation error251

may lead to unstable bias in addition to the regularization term R in Theorem 3.7. With a slight abuse252

of notation, we denote ḡ0 as g from Equation (9) for convenience.253

Corollary 3.8. (Additional Bias Induced by Non-Zero Drift Representation Error)254

Under Assumptions 3.1 and 3.2 and considering a loss function L ∈ C2, the explicit effects of the255

general form error can be marginalized out as follows as ε→ 0:256

EL (xε
t ) = EL(x0

t ) +R+ R̃+O(ε3), (14)

where the additional bias term R̃ is given by R̃ := ε P̃ + ε2
(
Q̃+ S̃

)
, with257

P̃ :=E∇L(x0
t )

⊤Φt ξ̃t, (15)

Q̃ :=E∇L(x0
t )

⊤Φt

∫ t

0

Φ−1
s H0(x0

s, s) dt, (16)

S̃ :=E
∑
k

(Φtξ̃t)
i∇2L(x0

t , t) (Φtξ
k
t )

j , (17)
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and ξ̃t being the shorthand for
∫ t

0
Φ−1

s σk(x
0
s, s)dt.258

The presence of the new bias term R̃ implies that regularization effects of latent representation error259

could be unstable. The presence of ξ̃ in P̃ , Q̃ and S̃ induces a bias to the loss function with its260

magnitude dependent on the error level ε, since ξ̃ is a non-zero term influenced on the drift term261

σ. This contrasts with the scenarios described in [27] and [2], where the noise injected for implicit262

regularization follows a zero-mean Gaussian distribution. To modulate the regularization and bias263

terms R and R̃ respectively, we note that a common factor, the fundamental matrix Φ, can be bounded264

by265

E sup
t

∥Φt∥2
F ≤

∑
k

C exp

(
C E sup

t

∥∥∥∥∂gk

∂x
(x

0
t , t)

∥∥∥∥2

F

)
(18)

which can be shown by using the Burkholder-Davis-Gundy Inequality and Gronwall’s Lemma.266

Based on this observation, we next propose a regularizer on input-output Jacobian norm ∥∂gk
∂x ∥F that267

could modulate the new bias term R̃ for stabilized implicit regularization.268

4 Enhancing Predictive Rollouts via Jacobian Regularization269

In this section, we study the effects of latent representation errors on predictive rollouts using latent270

state transitions, which happen in the inference phase in world models. We then propose to use271

Jacobian regularization to enhance the quality of rollouts. In particular, we first obtain an upper bound272

of state trajectory divergence in the rollout due to the representation error. We show that the error273

effects on task policy’s Q function can be controlled through model’s input-output Jacobian norm.274

In world model learning, the task policy is optimized over the rollouts of dynamics model with the275

initial latent state z0. Recall that latent representation error is introduced to z0 when latent encoder276

encodes the initial state s0 from task environment. Intuitively, the latent representation error would277

propagate under the sequence model and impact the policy learning, which would then affect the278

generalization capacity through increased exploration.279

Recall that the sequence model and the transition predictor are given as follows:280

d ht = f(ht, z̃t, π(ht, z̃t)) dt, d z̃t = p(ht)dt+ p̄(ht) dBt, (19)

with random variables h0, z̃0 + ε as the initial values, respectively. In particular, ε is a random281

variable of proper dimension, representing the error from encoder introduced at the initial step. We282

impose the standard assumption on the error to ensure the well-definedness of the SDEs.283

Under Assumption 3.1, there exists a unique solution to the SDEs (for Equations 19 with square-284

integrable ε), denoted as (hεt , z
ε
t ). In the case of no error introduced, i.e., ε = 0, we denote the285

solution of the SDEs as (h0t , z
0
t ) understood as the rollout under the absence of latent representation286

error. To understand how to modulate impacts of the error in rollouts, our following result gives an287

upper bound on the expected divergence between the perturbed rollout trajectory (hεt , z
ε
t ) and the288

original (h0t , z
0
t ) over the interval [0, T ].289

Theorem 4.1. (Bounding trajectory divergence) For a square-integrable random variable ε, let290

δ := E ∥ε∥ and dε := E supt∈[0,T ]

∥∥hε
t − h0

t

∥∥2
+

∥∥z̃εt − z̃0t
∥∥2

. As δ → 0,291

dε ≤ δ C (J0 + J1) + δ2 C exp (H0 (J0 + J1)) + δ2 C exp (H1 (J0 + J1)) +O(δ3),

where C is a constant dependent on T. J1 and J2 are Jacobian-related terms, and H1 and H2 are Hessian-292

related terms.293

The Jacobian-related terms J1 and J2 are defined as J0 := exp (Fh + Fz + Ph) , J1 := exp
(
P̄h

)
;294

the Hessian-related terms H0 and H1 are defined as H0 := Fhh+Fhz+Fzh+Fzz+Phh,H1 := P̄hh,295

where Fh, Fz are the expected sup Frobenius norm of Jacobians of f w.r.t h, z, respectively, and296

Fhh,Fhz,Fzh,Fzz are the corresponding expected sup Frobenius norm of second-order derivatives.297

Other terms are similarly defined. A detailed description of all terms, can be found in Appendix C.1.298

Theorem 4.1 correlates with the empirical findings in [14] regarding the diminished predictive299

accuracy of latent states z̃t over the extended horizons. In particular, Theorem 4.1 suggests that the300

expected divergence from error accumulation hinges on the expected error magnitude, the Jacobian301

norms within the latent dynamics model and the horizon length T .302
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Our next result reveals how initial latent representation error influences the value function Q during303

the prediction rollouts, which again verifies that the perturbation is dependent on expected error304

magnitude, the model’s Jacobian norms and the horizon length T :305

Corollary 4.2. For a square-integrable ε, let xt := (ht, zt). Then, for any action a ∈ A, the306

following holds for value function Q almost surely:307

Q(xε
t , a) =Q(x0

t , a) +
∂

∂x
Q(x0

t , a)

(
εi∂i x

0
t +

1

2
εi εj ∂2

ij x
0
t

)
+

1

2
(εi ∂i x

0
t )

⊤ ∂2

∂x2
Q(x0

t , a) (ε
i ∂i x

0
t ) +O(δ3),

as δ → 0, where stochastic processes ∂i x0t , ∂2ij x
0
t are the first and second derivatives of x0t w.r.t ε308

and are bounded as follows:309

E sup
t∈[0,T ]

∥∥∂i x
0
t

∥∥ ≤ C (J0 + J1) , E sup
t∈[0,T ]

∥∥∂2
ij x

0
t

∥∥ ≤ C exp (H0 (J0 + J1)) + C exp (H1 (J0 + J1)) .

This corollary reveals that latent representation errors implicitly encourage exploration of unseen310

states by inducing a stochastic perturbation in the value function, which again can be regularized311

through a controlled Jacobian norm.312

Jacobian Regularization against Non-Zero Drift. The above theoretical results have established313

a close connection of input-output Jacobian matrices with the stabilized generalization capacity of314

world models (shown in 18 under non-zero drift form), and perturbation magnitude in predictive315

rollouts (indicated in the presence of Jacobian terms in Theorem 4.1 and Corollary 4.2.) Based on316

this, we propose a regularizer on input-output Jacobian norm ∥∂gk
∂x ∥F that could modulate ξ̃ ( and in317

addition ξk) for stabilized implicit regularization.318

The regularized loss function for LDM is defined as follows:319

L̄dyn = Ldyn + λ ∥Jθ∥F , (20)

where Ldyn is the original loss function for dynamics model, Jθ denotes the data-dependent Jacobian320

matrix associated with the θ-parameterized dynamics model, and λ is the regularization weight.321

Our empirical results in 5 with an emphasis on sequential case align with the experimental findings322

from [18] that Jacobian regularization can enhance robustness against random and adversarial input323

perturbation in machine learning models.324

5 Experimental Studies325

In this section, experiments are carried out over a number of tasks in Mujoco environments. Due to326

space limitation, implementation details and additional results, including the standard deviation of327

the trials, are relegated to Section D in the Appendix.328

Enhanced generalization to unseen noisy states. We investigated the effectiveness of Jacobian329

regularization in model trained against a vanilla model during the inference phase with perturbed330

state images. We consider three types of perturbations: (1) Gaussian noise across the full image,331

denoted as N (µ1, σ
2
1) ; (2) rotation; and (3) noise applied to a percentage of the image, N (µ2, σ

2
2).332

(In Walker task, µ1 = µ2 = 0.5, σ2
2 = 0.15; in Quadruped task, µ1 = 0, µ2 = 0.05, σ2

2 = 0.2.) In333

each case of perturbations, we examine a collection of noise levels: (1) variance σ2 from 0.05 to334

0.55; (2) rotation degree α 20 and 30; and (3) masked image percentage β% from 25 to 75.335

Figure 1: Generalization against increasing degree of perturbation.
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It can be seen from Table 3 and Figure 1 that thanks to the adoption of Jacobian regularization in336

training, the rewards (averaged over 5 trials) are higher compared to the baseline, indicating improved337

generalization to unseen image states in all cases. The experimental results corroborate the findings338

in Corollary 3.8 that the regularized Jacobian norm could stabilize the induced implicit regularization.339

full, N (µ1, σ
2
1) rotation, +α◦ mask β%, N (µ2, σ

2
2)

clean σ2
1 = 0.35 σ2

1 = 0.5 α = 20 α = 30 β = 50 β = 75
With Jacobian (Walker) 967.12 742.32 618.98 423.81 226.04 725.81 685.49

Baseline (Walker) 966.53 615.79 333.47 391.65 197.53 583.41 446.74
With Jacobian (Quad) 971.98 269.78 242.15 787.63 610.53 321.55 304.92

Baseline (Quad) 967.91 207.33 194.08 681.03 389.41 222.22 169.58
Table 2: Evaluation on unseen states by various perturbation (Clean means without perturbation).
λ = 0.01.

Robustness against encoder errors. Next, we focus on the effects of Jacobian regularization on340

controlling the error process to the latent states z during training. Since it is very challenging, if341

not impossible, to characterize the latent representation errors and hence the drift therein explicitly,342

we consider to evaluate the robustness against two exogenous error signals, namely (1) zero-drift343

error with µt = 0, σ2
t (σ2

t = 5 in Walker, σ2
t = 0.1 in Quadruped), and (2) non-zero-drift error344

with µt ∼ [0, 5], σ2
t ∼ [0, 5] uniformly. Table 3 shows that the model with regularization can345

consistently learn policies with high returns and also converges faster, compared to the vanilla case.346

This corroborates our theoretical findings in Corollary 3.8 that the impacts of error to loss L can be347

controlled through the model’s Jacobian norm.348

Zero drift, Walker Non-zero drift, Walker Zero drift, Quad Non-zero drift, Quad
300k 600k 300k 600k 600k 1.2M 1M 2M

With Jacobian 666.2 966 905.7 912.4 439.8 889 348.3 958.7
Baseline 24.5 43.1 404.6 495 293.6 475.9 48.98 32.87

Table 3: Accumulated rewards under additional encoder errors. λ = 0.01.

Faster convergence on tasks with extended horizon. We further evaluate the efficacy of Jacobian349

regularization in tasks with extended horizon, particularly by extending the horizon length in MuJoCo350

Walker from 50 to 100 steps. Table 4 shows that the model with regularization converges significantly351

faster (∼ 100K steps) than the case without Jacobian regularization in training. This corroborates352

results in Theorem 4.1 that regularizing the Jacobian norm can reduce error propagation.353

Walker 100 len (increased from original 50 len)
Num steps 100k 200k 280k

With Jacobian (λ = 0.05) 639.1 936.3 911.1
With Jacobian (λ = 0.1) 537.5 762.6 927.7

Baseline 582.3 571.2 886.6
Table 4: Accumulated rewards of Walker with extended horizon.

6 Conclusion354

In this study, we investigate the impacts of latent representation errors on the generalization capacity355

of world models. We utilize a stochastic differential equation formulation to characterize the effects356

of latent representation errors as implicit regularization, for both cases with zero-drift errors and357

with non-zero drift errors. We develop a Jacobian regularization scheme to address the compounding358

effects of non-zero drift, thereby enhancing training stability and generalization. Our empirical359

findings validate that Jacobian regularization improves the generalization performance, expanding360

the applicability of world models in complex, real-world scenarios. Future research is needed to361

investigate how stabilizing latent errors can enhance generalization across more sophisticated tasks362

for general non-zero drift cases.363

The broader social impact of our work resides in its potential to enhance the robustness and reliability364

of RL agents deployed in real-world applications. By improving the generalization capacities of world365

models, our work could contribute to the development of RL agents that perform consistently across366

diverse and unseen environments. This is particularly relevant in safety-critical domains such as367

autonomous driving, where reliable agents can provide intelligent and trustworthy decision-making.368
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Explicit regularisation in gaussian noise injections, 2021.374

[3] Henri Cartan. Differential calculus on normed spaces. Createspace Independent Publishing375

Platform, North Charleston, SC, August 2017.376

[4] Bo Chang, Minmin Chen, Eldad Haber, and Ed H. Chi. Antisymmetricrnn: A dynamical system377

view on recurrent neural networks, 2019.378

[5] Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, and Léon Bottou. Symplectic recurrent neural379

networks, 2020.380

[6] Bernard Dacorogna and Jürgen Moser. On a partial differential equation involving the jacobian381

determinant. Annales de l’I.H.P. Analyse non linéaire, 7(1):1–26, 1990.382

[7] Carl Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016.383

[8] Sean C Duncan. Minecraft, beyond construction and survival. 2011.384

[9] Lawrence Craig Evans and Ronald F Gariepy. Measure theory and fine properties of functions,385

revised edition. Textbooks in Mathematics. Apple Academic Press, Oakville, MO, April 2015.386

[10] C. Daniel Freeman, Luke Metz, and David Ha. Learning to predict without looking ahead:387

World models without forward prediction. Thirty-third Conference on Neural Information388

Processing Systems (NeurIPS 2019), 2019.389

[11] Alison L. Gibbs and Francis Edward Su. On choosing and bounding probability metrics.390

International Statistical Review / Revue Internationale de Statistique, 70(3):419–435, 2002.391

[12] David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.392

[13] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:393

Learning behaviors by latent imagination, 2020.394

[14] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and395

James Davidson. Learning latent dynamics for planning from pixels. In International conference396

on machine learning, pages 2555–2565. PMLR, 2019.397

[15] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with398

discrete world models, 2022.399

[16] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains400

through world models. arXiv preprint arXiv:2301.04104, 2023.401

[17] Paul Louis Hennequin, R. M. Dudley, H. Kunita, and F. Ledrappier. Ecole d’ete de Probabilites402

de Saint-Flour XII-1982. Springer-Verlag, 1984.403

[18] Judy Hoffman, Daniel A. Roberts, and Sho Yaida. Robust learning with jacobian regularization,404

2019.405

[19] Anthony Hu, Lloyd Russell, Hudson Yeo, Zak Murez, George Fedoseev, Alex Kendall, Jamie406

Shotton, and Gianluca Corrado. Gaia-1: A generative world model for autonomous driving.407

arXiv preprint arXiv:submit/1234567, Sep 2023. Submitted on 29 Sep 2023.408

[20] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping409

Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp minima,410

2017.411

10



[21] Samuel Kessler, Mateusz Ostaszewski, Michał Bortkiewicz, Mateusz Żarski, Maciej Wołczyk,412
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Supplementary Materials442

In this appendix, we provide the supplementary materials supporting the findings of the main paper443

on the latent representation of latent representations in world models. The organization is as follows:444

• In Section A, we provide proof on showing the approximation capacity of CNN encoder-445

decoder architecture in latent representation of world models.446

• In Section B, we provide proof on implicit regularization of zero-drift errors and additional447

effects of non-zero-drift errors by showing a proposition on the general form.448

• In Section C, we provide proof on showing the effects of non-zero-drift errors during449

predictive rollouts by again showing a result on the general form.450

• In Section D, we provide additional results and implementation details on our empirical451

studies.452
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A Approximation Power of Latent Representation with CNN Encoder and453

Decoder454

To mathematically describe this intrinsic lower-dimensional geometric structure, for an integer k > 0455

and α ∈ (0, 1], we consider the notion of smooth manifold (in the Ck,α sense), formally defined by456

Definition A.1 (Ck,α manifold). A Ck,α manifold M of dimension n is a topological manifold (i.e.457

a topological space that is locally Euclidean, with countable basis, and Hausdorff) that has a Ck,α458

structure Ξ that is a collection of coordinate charts {Uα, ψα}α∈A where Uα is an open subset of M,459

ψα : Uα → Vα ⊆ Rn such that460

•
⋃

α∈A Uα ⊇ M, meaning that the the open subsets form an open cover,461

• Each chart ψα is a diffeomorphism that is a smooth map with smooth inverse (in the Ck,α462

sense),463

• Any two charts are Ck,α-compatible with each other, that is for all α1, α2 ∈ A, ψα1
◦ ψ−1

α2
:464

ψα2
(Uα1

∩ Uα2
) → ψα1

(Uα1
∩ Uα2

) is Ck,α.465

Intuitively, a Ck,α manifold is a generalization of Euclidean space by allowing additional spaces with466

nontrivial global structures through a collection of charts that are diffeomorphisms mapping open467

subsets from the manifold to open subsets of euclidean space. For technical utility, the defined charts468

allow to transfer most familiar real analysis tools to the manifold space. For more references, see469

[25].470

Definition A.2 (Riemannian volume form). Let X be a smooth, oriented d-dimensional manifold471

with Riemannian metric g. A volume form dvolM is the canonical volume form on X if for any point472

x ∈ X , for a chosen local coordinate chart (x1, ..., xd), dvolM =
√

det gij dx1 ∧ ... ∧ dxd, where473

gij(x) := g ( ∂
∂xi

, ∂
∂xj

)(x).474

Then the induced volume measure by the canonical volume form dvolX is denoted as µX , defined475

by µX : A 7→
∫
A
dvolX , for any Borel-measurable subset A on the space X . For more references,476

see [9].477

We recall the latent representation problem defined in the main paper.478

Consider the state space S ⊂ RdS and the latent space Z . Consider a state probability measure Q on479

the state space S and a probability measure P on the latent space Z .480

Assumption A.3. (Latent manifold assumption) For a positive integer k, there exists a dM-481

dimensional Ck,α submanifold M (with Ck+3,α boundary) with Riemannian metric g and has482

positive reach and also isometrically embedded in the state space S ⊂ RdS and dM << dS , where483

the state probability measure is supported on. In addition, M is a compact, orientable, connected484

manifold.485

Assumption A.4. (Smoothness of state probability measure) Q is a probability measure supported486

on M with its Radon-Nikodym derivative q ∈ Ck,α(M,R) w.r.t µM.487

Let Z be a closed ball in RdM , that is {x ∈ RdM : ∥x∥ ≤ 1 }. P is a probability measure supported488

on Z with its Radon-Nikodym derivative p ∈ Ck,α(Z,R) w.r.t µZ .489

We consider a general CNN function fCNN : X → R. Let fCNN have L hidden layers, represented as:490

fCNN(x) = AL+1 ◦AL ◦ · · · ◦A2 ◦A1(x), x ∈ X ,

where Ai’s are either convolutional or downsampling operators. For convolutional layers,491

Ai(x) = σ(W c
i x+ bci ),

where W c
i ∈ Rdi×di−1 is a structured sparse Toeplitz matrix from the convolutional filter {w(i)

j }s(i)j=0492

with filter length s(i) ∈ N+, bci ∈ Rdi is a bias vector, and σ is the ReLU activation function.493

For downsampling layers,494

Ai(x) = Di(x) = (xjmi
)
⌊di−1/mi⌋
j=1 ,
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Figure 2: Latent Representation Problem: The left and right denote the manifold M with lower dim
dM embedded in a larger Euclidean space, with latent space Z a dM-dimensional ball in middle.
Encoder and decoder as maps respectively pushing forward Q to P and P to Q.

where Di : Rdi×di−1 is the downsampling operator with scaling parameter mi ≤ di−1 in the i-th495

layer. The convolutional and downsampling operations are elaborated in Appendix [63]. We examine496

the class of functions represented by CNNs, denoted by FCNN, defined as:497

FCNN = {fCNN as in defined above with any choice of Ai, i = 1, . . . , L+ 1}.

For more details in the definitions of CNN functions, we refer to [29].498

Assumption A.5. Assume that M and Z are locally diffeomorphic, that is there exists a map499

F : M → Z such that at every point x on M, det(dF (x)) ̸= 0.500

Theorem A.6. (Approximation Error of Latent Representation). Under Assumption A.3, A.4 and501

A.5, for θ ∈ (0, 1), let dθ = O(dMθ−2 log d
θ ). For positive integers M and N , there exists an502

encoder genc and decoder gdec ∈ FCNN(L, S,W ) s.t.503

W1(genc#Q,P ) ≤ dMC(NM)
− 2(k+1)

dθ ,

W1(gdec#P,Q) ≤ dMC(NM)
− 2(k+1)

dθ .

The primary challenge to show Theorem A.6 is in demonstrating the existence of oracle encoder and504

decoder maps. These maps, denoted as g∗enc : M → Z and g∗dec : Z → M respectively, must satisfy505

g∗enc#Q = P, g∗dec# P = Q. (21)

and importantly they have the proper smoothness guarantee, namely g∗enc ∈ Ck+1,α(M,Z) and506

g∗dec ∈ Ck+1,α(Z,M). Proposition A.7 shows the existence of such oracle map(s).507

Proposition A.7 (Ck,α, compact). Let M,N be compact, oriented d-dimensional Riemannian508

manifolds with Ck+3,α boundary with the volume measure µM and µN respectively. Let Q, P be509

distributions supported on M, N respectively with their Ck,α density functions q, p, that is Q, P are510

probability measures supported on M, N with their Radon-Nikodym derivatives q ∈ Ck,α(M,R)511

w.r.t µM and p ∈ Ck,α(N ,R) w.r.t µN . Then, there exists a Ck+1,α map g : N → M such that512

the pushforward measure g#P = Q, that is for any measurable subset A ∈ B(M), Q(A) =513

P (g−1(A)).514

Proof. (Proposition A.7) Let ω := p dvolN , then ω is a Ck,α volume form on N , as p ∈ Ck,α and for515

any point x ∈ N , we have p(x) > 0. In addition,
∫
N ω =

∫
N p dvolN =

∫
N p dµN = P (N ) = 1.516

Similarly, let η := q dvolM a Ck,α volume form on M and
∫
M η = 1.517

518

Let F : N → M be an orientation-preserving local diffeomorphism, we then have det(dF ) > 0519

everywhere on N .520

As N is compact and M is connected by assumption, F is a covering map, that is for every point521

x ∈ M, there exists an open neighborhood Ux of x and a discrete set Dx such that F−1(U) =522

⊔α∈D Vα ⊂ N and F |Vα
= Vα → U is a diffeomorphism. Furthermore, |Dx| = |Dy| for any points523

x, y ∈ M. In addition, |Dx| is finite from the compactness of N .524
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Let η̄ be the pushforward of ω via F , defined by for any point x ∈ M and a neighborhood Ux,525

η̄(x) :=
1

|Dx|
∑

α∈Dx

(
F
∣∣
Vα

−1
)∗
ω
∣∣
Vα
. (22)

η̄ is well-defined as it is not dependent on the choice of neighborhoods and the sum and 1
|Dx| are526

always finite. Furthermore, η̄ is a Ck,α volume form on M, as p ◦
(
F
∣∣
Vα

−1
)

is Ck,α.527

528

Notice that F
∣∣
Vα

−1
is orientation-preserving as det dF

∣∣
Vα

−1
= 1

det dF
∣∣
Vα

> 0 everywhere on Vα.529

In addition, F
∣∣
Vα

−1
is proper: as for any compact subset K of N , K is closed; and as F

∣∣
Vα

−1
530

is continuous, the preimage of K via F
∣∣
Vα

−1
a closed subset of M which is compact, then the531

preimage of K must also be compact. Hence, F
∣∣
Vα

−1
is proper. As every F

∣∣
Vα

−1
is proper,532

orientation-preserving and surjective, then c := deg(F
∣∣
Vα

−1
) = 1.533

Then,
∫
M η̄ = c

∫
N ω = 1.534

535

As we have shown that η and η̄ ∈ Ck,α and
∫
M η̄ =

∫
M η, by [6], there exists a diffeomorphism536

ψ : M → M fixing on the boundary such that ψ∗η = η̄, where ψ,ψ−1 ∈ Ck+1,α.537

Let g := ψ ◦ F , then it holds that g∗η = (ψ ◦ F )∗η = F ∗ ◦ ψ∗η = F ∗η̄ = ω.538

Then, for any measurable subset A on the manifold M, we verify that Q(A) =
∫
A
η =539 ∫

g−1(A)
g∗η =

∫
g−1(A)

ω =
∫
g−1(A)

p dvolN =
∫
g−1(A)

p dµN = P (g−1(A)).540

541

Hence, we have shown the existence by an explicit construction. As ψ ∈ Ck+1,α, and F ∈ C∞, then542

we have g ∈ Ck+1,α.543

We are now ready to show Theorem A.6 with the existence of oracle map and the low-dimensional544

approximation results from [29].545

Proof. (Theorem A.6) For encoder, from Proposition A.7, there exists an Ck+1,α oracle map g :546

M → Z such that the pushforward measure g#Q = P . Then,547

W1((genc)#Q , P ) =W1((genc)#Q , g#Q)

= sup
f∈Lip1(Z)

∣∣∣∣∫
Z
f(y) d((genc)#Q)−

∫
Z
f(y) d(g#Q)

∣∣∣∣
≤ sup

f∈Lip1(Z)

∫
M

|f ◦ genc(x)− f ◦ g(x)| dQ

≤
∫
M

∥genc(x)− g(x)∥ dQ

≤ dMC(NM)
− 2(k+1)

dθ ,

where the last inequality follows from the special case ρ = 0 of Theorem 2.4 in [29].548

Similarly, for decoder, from Proposition A.7, there exists an Ck+1,α oracle map ḡ : Z → M such549

that the pushforward measure ḡ#P = Q.550

W1((gdec)#P , Q) =W1((gdec)#P , ḡ#P )

≤
∫
Z
∥gdec(y)− ḡ(y)∥ dP

≤ dMC(NM)
− 2(k+1)

dθ .

551
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B Explicit Regularization of Latent Representation Error in World Model552

Learning553

We recall the SDEs for latent dynamics model defined in the main paper. Consider a complete,554

filtered probability space (Ω, F , {Ft}t∈[0,T ], P ) where independent standard Brownian motions555

B enc
t , B pred

t , B seq
t , B dec

t are defined such that Ft is their augmented filtration, and T ∈ R as the time556

length of the task environment. We consider the stochastic dynamics of LDM through the following557

coupled SDEs after error perturbation:558

d zt = (qenc(ht, st) + σ(ht, st)) dt+ (q̄enc(ht, st) + σ̄(ht, st)) dB
enc
t , (23)

d ht = f(ht, zt, π(ht, zt)) dt+ f̄(ht, zt, π(ht, zt)) dB
seq
t (24)

d z̃t = p(ht) dt+ p̄(ht) dB
pred
t , (25)

d s̃t = qdec(ht, z̃t) dt+ q̄dec(ht, z̃t) dB
dec
t , (26)

where π(h, z̃) is a policy function as a local maximizer of value function and the stochastic process559

st is Ft-adapted.560

As discussed in the main paper, our analysis applies to a common class of world models that uses561

Gaussian distributions parameterized by neural networks’ outputs for z, z̃, s̃. Their distributions are562

not non-Gaussian in general.563

For example, as z is conditional Gaussian and its mean and variance are random variables which are564

learned by the encoder from r.v.s s and h as inputs, thus rendering z non-Gaussian. However, z is565

indeed Gaussian when the inputs are known. Under this conditional Gaussian class of world models,566

to see that the continuous formulation of latent dynamics model can be interrupted as SDEs, one567

notices that SDEs with coefficient functions of known inputs are indeed Gaussian, matching to this568

class of world models. Formally, in the context of z without latent representation error:569

Proposition B.1. (Latent states SDE with known inputs is Gaussian)570

For the latent state process zt∈[0,T ] without error,571

d zt = qenc(ht, st) dt+ q̄enc(ht, st))dB
enc
t , (27)

with zero initial value. Given known ht∈[0,T ] and st∈[0,T ], the process zt is a Gaussian process.572

Furthermore, for any t ∈ [0, T ], zt follows a Gaussian distribution with mean µt =
∫ t

0
qenc(hs, ss)ds573

and variance σ2
t =

∫ t

0
q̄enc(hs, ss)

2ds.574

Proof. Proof follows from Proposition 7.6 in [30].575

Next, we recall our assumptions from the main text:576

Assumption B.2. The drift coefficient functions qenc, f, p and qdec and the diffusion coefficient577

functions q̄enc, p̄ and q̄dec are bounded and Borel-measurable over the interval [0, T ], and of class C3578

with bounded Lipschitz continuous partial derivatives. The initial values z0, h0, z̃0, s̃0 are square-579

integrable random variables.580

Assumption B.3. σ and σ̄ are bounded and Borel-measurable and are of class C3 with bounded581

Lipschitz continuous partial derivatives over the interval [0, T ].582

One of our main results is the following:583

Theorem B.4. (Explicit Regularization Induced by Zero-Drift Representation Error)584

Under Assumption B.2 and B.3 and considering a loss function L ∈ C2, the explicit effects of the585

zero-drift error can be marginalized out as follows:586

EL (xεt ) = EL(x0t ) +R+O(ε3), (28)
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as ε→ 0, where the regularization term R is given by R := εP + ε2
(
Q+ 1

2 S
)
.587

Each term of R is as follows:588

P :=E∇L(x0t )⊤Φt

∑
k

ξkt , (29)

Q :=E∇L(x0t )⊤Φt

∫ t

0

Φ−1
s Hk(x0s, s)dB

k
t , (30)

S :=E
∑
k1,k2

(Φtξ
k1
t )i∇2L(x0t , t) (Φtξ

k2
t )j , (31)

where square matrix Φt is the stochastic fundamental matrix of the corresponding homogeneous589

equation:590

dΦt =
∂ḡk
∂x

(x0t , t) Φt dB
k
t , Φ(0) = I,

and ξkt is as the shorthand for
∫ t

0
Φ−1

s σ̄k(x
0
s, s)dB

k
t . Additionally, Hk(x0s, s) is represented by for591 ∑

k1,k2

∂2ḡk
∂xi∂xj (x

0
s, s)

(
ξk1
s

)i (
ξk2
s

)j
.592

Before proving Theorem B.4, we first show Proposition B.5 on the general case of perturbation to the593

stochastic system. Consider the following perturbed system given by594

d xt = (g0 (xt, t) + ε η0 (xt, t)) dt+

m∑
k=1

(gk (xt, t) + ε ηk (xt, t)) dB
k
t (32)

with initial values x(0) = x0,595

Proposition B.5. Suppose that f is a real-valued function that is C2. Then it holds that, with596

probability 1, as ε→ 0, for t ∈ [0, T ],597

f (xεt ) = f
(
x0t
)
+ε∇f

(
x0t
)⊤
∂ε x

0
t +ε

2
(
∇f

(
x0t
)⊤
∂2εx

0
t +

1

2
∂ε x

0
t
⊤∇2f

(
x0t
)
∂ε x

0
t

)
+O

(
ε3
)
,

(33)
where the stochastic process x0t is the solution to SDE 32 with ε = 0, with its first and second-order598

derivatives w.r.t ε denoted as ∂ε x0t , ∂
2
ε x

0
t .599

Furthermore, it holds that ∂ε x0t , ∂
2
ε x

0
t satisfy the following SDEs with probability 1,600

d ∂εx
0
t =

(
∂gk
∂x

(
x0t , t

)
∂εx

0
t + ηk

(
x0t , t

))
dBk

t ,

d ∂2εxt =

(
Ψk

(
∂εx

0
t , x

0
t , t
)
+ 2

∂ηk
∂x

(
x0t , t

)
∂εx

0
t +

∂gk
∂x

(
x0t , t

)
∂2εx

0
t

)
dBk

t ,

(34)

with initial values ∂ε x(0) = 0, ∂2ε x(0) = 0, where601

Ψk : (∂ε x, x, t) 7→ ∂ε x
i ∂gk
∂xi∂xj

(x, t)∂ε x
j ,

for k = 0, 1, ...,m.602

Proof. We first apply the stochastic version of perturbation theory to SDE 32. For brevity, we will603

write t as B0
t and use Einstein summation convention. Hence, SDE 32 is rewritten as604

dxt = γεk (xt, t) dB
k
t , (35)

with initial value x(0) = x0.605

Step 1: We begin with the corresponding systems to derive the SDEs that characterize ∂ε xεt and ∂2ε x
ε
t .606

Our main tool is an important result on smoothness of solutions w.r.t. initial data from Theorem 3.1607

from Section 2 in [17].608

For ∂ε x, consider the SDEs609

d xt = γεk (xt, t) dB
k
t , (*)

d εt = 0,
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with initial values x(0) = x0, ε(0) = ε. From an application of Theorem 3.1 from Section 2 in [17]610

on *, we have ∂ε x that satisfies the following SDE with probability 1:611

d ∂εxt = (αε
k (xt, t) ∂εxt + ηk (xt, t)) dB

k
t , (36)

with initial value ∂εx0 = 0 ∈ Rn, with probability 1, where xt is the solution to Equation (35) and612

the functions αε
k are given by613

αε
k : (x, t) 7→ ∂gk

∂xj
(x, t) + ε

∂ηk
∂xj

(x, t) ,

where k = 0, ..., m.614

To characterize ∂2ε xt, consider the following SDEs615

d xt = γεk (xt, t) dB
k
t , (**)

d ∂ε xt = (αε
k (xt, t) ∂ε xt + ηk (xt, t)) dB

k
t ,

d εt = 0,

with initial value x(0) = x0, ∂ε x(0) = 0, ε(0) = ε.616

From a similar application of Theorem 3.1 from Section 2 in [17], the second derivative ∂2ε x satisfies617

the following SDE with probability 1:618

d ∂2ε xt =

(
βε
k (∂εxt, xt, t) + 2

∂ ηk
∂x

(xt, t) ∂ε xt + αε
k (xt, t) ∂

2
εxt

)
dBk

t , (37)

with initial value ∂2ε x(0) = 0 ∈ Rn, where ∂ε xt is the solution to Equation(36), x(t) is the solution619

to Equation (35), and the functions620

βε
k : (∂ε x, x, t) 7→ ∂ε x

j
(

∂gi
k

∂xl∂xj (x, t) + ε
∂ηi

k

∂xl∂xj (x, t)
)
∂ε x

l, where k = 0, ..., m.621

When ε = 0 in the obtained SDEs (35), (36) and (37), the corresponding solutions of which are622

x0t , ∂ε x
0
t , ∂

2
ε x

0
t , we now have the following:623

d x0t = gk
(
x0t , t

)
dBk

t , (38)

d ∂ε x
0
t =

(
∂gk
∂x

(
x0t , t

)
∂ε x

0 + ηk
(
x0t , t

))
dBk

t , (39)

d ∂2ε x
0
t =

(
Ψk

(
∂ε x

0
t , x

0
t , t
)
+ 2

∂ηk
∂x

(
x0t , t

)
∂ε x

0
t +

∂gk
∂x

(
x0t , t

)
∂2ε x

0
t

)
dBk

t , (40)

with initial values x(0) = x0, ∂ε x(0) = 0, ∂2ε x(0) = 0. In particular, Ψk := β0
k is given by624

(∂εx, x, t) 7→ ∂εx
i ∂gk
∂xi∂xi

(x, t)∂εx
j .

Step 2: For the next step, we show that the solutions x0t , ∂s x
0
t , ∂

2
ε x

0
t are indeed bounded by proving625

the following lemma B.6:626

Lemma B.6.
E sup

t∈[0,T ]

∥∥x0t∥∥2 , E sup
t∈[0,T ]

∥∥∂ε x0t∥∥2 , and E sup
t∈[0,T ]

∥∥∂2ε x0t∥∥2 are bounded.

Proof. To simplify the notations, we take the liberty to write constants as C and notice that C is not627

necessarily identical in its each appearance.628

(1) We first show that E supt∈[0,T ]

∥∥x0t∥∥2 is bounded.629

From Equation (38), we have that

x0t = x0 +

∫ t

0

gk (xτ , τ) dB
k
τ .
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By Jensen’s inequality. it holds that630

E sup
t∈[0,T ]

∥xt∥2 ≤ C E ∥x0∥2 + C E sup
t∈[0,T ]

∥∥∥∥∫ t

0

gk
(
x0τ , τ

)
dBk

τ

∥∥∥∥2 . (41)

For the second term on the right hand side, it is a sum over k from 0 to m by Einstein notation.631

For k = 0, recall that we write t as B0
t :632

E sup
t∈[0,T ]

∥∥∥∥∫ t

0

g0
(
x0τ , τ

)
dτ

∥∥∥∥2 ≤C E sup
t∈[0,T ]

t

∫ t

0

∥∥g0 (x0τ , τ)∥∥2 dτ, (i)

≤C E sup
t∈[0,T ]

∫ t

0

C
(
1 +

∥∥x0τ∥∥)2 dτ, (ii)

≤C + C

∫ T

0

E sup
s∈[0,τ ]

∥∥x0s∥∥2 dτ, (iii)

where we used Jensen’s inequality, the assumption on the linear growth, the inequality property of633

sup and Fubini’s theorem, respectively.634

For k is equal to 1, . . . ,m,635

E sup
t∈[0,T ]

∥∥∥∥∫ t

0

g1
(
x0τ,τ , τ

)
dBτ

∥∥∥∥2 ≤C E
∫ T

0

∥∥g1 (x0τ , τ)∥∥2 dτ, (iv)

≤C + C

∫ T

0

E sup
s∈[0,τ ]

∥∥x0s∥∥ dτ, (v)

where (iv) holds from the Burkholder-Davis-Gundy inequality as
∫ t

0
gk
(
x0τ , τ

)
dBτ is a continuous636

local martingale with respect to the filtration Ft; and then one can obtain (v) by following a similar637

reasoning of (ii) and (iii).638

Hence, now from the previous inequality (41),

E sup
t∈[0,T ]

∥∥x0t∥∥2 ≤ E ∥x0∥2 + C + C

∫ T

0

E sup
s∈[0,τ ]

∥∥x0s∥∥ dτ.
By the Gronwall’s lemma, it holds true that

E sup
t∈[0,T ]

∥∥x0t∥∥2 ≤
(
C E ∥x0∥2 + C

)
exp(C).

As x0 is square-integrable by assumption, therefore we have shown that E supt∈[0,T ]

∥∥x0t∥∥2 is639

bounded.640

(2) We then show that E sup
t∈[0,T ]

||∂ε x0t ||2 is also bounded.641

From the SDE (39), as we have derived that

∂ε x
0
t =

∫ t

0

∂gk
∂x

(
x0τ , τ

)
∂ε x

0
τ + ηk

(
x0τ , τ

)
dBk

τ ,

then we have

E sup
t∈[0,τ ]

∥∥∂ε x0t∥∥2 ≤ C E sup
t∈[0,τ ]

∥∥∥∥∫ t

0

∂gk
∂x

(
x0τ , τ

)
∂ε x

0
τ dB

k
τ

∥∥∥∥2 + C E sup
t∈[0,T ]

∥∥∥∥∫ t

0

ηk
(
x0τ , τ

)
dBk

τ

∥∥∥∥2 .
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For k = 0, we have642

E sup
t∈[0,T ]

∥∥∥∥∫ t

0

∂g0
∂x

(
x0τ , τ

)
∂ε x

0
τdt

∥∥∥∥2 + E sup
t∈[0,T ]

∥∥∥∥∫ t

0

η0
(
x0τ , τ

)
dτ

∥∥∥∥2 , (vi)

≤C E sup
t∈[0,T ]

∫ t

0

∥∥∥∥∂g0∂x (x0τ , t)
∥∥∥∥2 ∥∥∂ε x0τ∥∥2 dτ + CE sup

t∈[0,T ]

∫ t

0

∥∥η0 (x0τ , τ)∥∥2 dτ, (vii)

≤C E sup
s∈[0,T ]

∥∥∥∥∂g0∂x (x0s, s)
∥∥∥∥2 sup

t∈[0,T ]

∫ t

0

∥∥∂ε x0τ∥∥2 dτ + C E sup
t∈[0,T ]

∫ t

0

C
(
1 +

∥∥x0τ∥∥)2 dτ,
≤C + C E sup

t∈[0,T ]

∫ t

0

∥∥∂ε x0τ∥∥2 dτ + C E sup
t∈[0,T ]

∫ t

0

∥∥x0τ∥∥2 dτ, (viii)

≤C + C

∫ T

0

E sup
s∈[0,τ ]

∥∥∂ε x0s∥∥2 dτ + C E sup
t∈[0,T ]

∥∥x0t∥∥2 ,
where to get to (vi), we used Jensen’s inequality; for (vii), we used the linear growth assumption an643

η0, then we obtain (viii) by as derivatives of function g0 are bounded by assumption.644

Similarly, for k = 1, ..., m,645

C E sup
t∈[0,T ]

∥∥∥∥∫ t

0

∂g1
∂xi

(
x0τ , τ

)
∂ε x

0
τdBτ

∥∥∥∥2 + C E sup
t∈[0,T ]

∥∥∥∥∫ t

0

η1
(
x0τ , τ

)
dBτ

∥∥∥∥2 ,
≤C E

∫ T

0

∥∥∥∥∂g1∂x (x0τ , τ)
∥∥∥∥2 ∥∥∂ε x0τ∥∥2 dτ + C E

∫ T

0

∥∥η1 (x0τ , τ)∥∥2 dτ, (ix)

≤C + C

∫ T

0

E sup
s∈[0,τ ]

||∂ε x0s||2dτ + C E sup
t∈[0,T ]

||x0t ||2, (x)

where we obtain (ix) by the Burkholder-Davis-Gundy inequality and (x) by following similar steps as646

have shown in (vii) and (viii).647

We are now ready to sum up each term to acquire a new inequality:648

E sup
t∈[0,T ]

∥∥∂ε x0t∥∥2 ≤C + C E sup
t∈[0,T ]

∥∥x0t∥∥2 + C

∫ T

0

E sup
s∈[0,τ ]

∥∥∂ε x0s∥∥2 dτ.
By Gronwall’s lemma, we have that649

E sup
t∈[0,T ]

∥∥∂ε x0t∥∥2 ≤

(
C + C E sup

t∈[0,T ]

∥∥x0t∥∥2
)
exp(C).

As it is previously shown that E supt∈[0,τ ] ∥x◦(t)∥
2 is bounded, it is clear that E supt∈[0,T ]

∥∥∂ε x0t∥∥2650

is bounded too.651

(3) From similar steps, one can also show that E sup
t∈[0,T ]

∥∥∂2ε x0t∥∥2 is bounded.652

Step 3: Having shown that x0t , ∂ε x
0
t , ∂

2
ε x

0
t are bounded, we proceed to bound the remainder term by653

proving the following lemma.654

Lemma B.7. For a given ε ∈ R, let

Rε := (t, ω) 7→ 1

ε3
(
xε(t, ω)− x0(t, ω)− ε∂εx

0(t, ω)− ε2∂2ε x
0(t, ω)

)
,

where the stochastic process xεt is the solution to Equation (32). Then it holds true that655

E sup
t∈[0,T ]

∥Rε(t)∥2 is bounded.
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Proof. The main strategy of this proof is to first rewrite ε3Rε as the sum of some simpler terms and
then to bound each term. To simplify the notation, we denote x̃εt as x0t + ε∂ε x

0
t + ε2 ∂2εx

0
t .

For k = 0, .., n, we define the following terms:

θk(t) :=

∫ t

0

gk (x
ε
τ , τ)− gk (x̃

ε
τ , τ) dB

k
τ ,

φk(t) :=

∫ t

0

gk (x̃
ε
τ , τ)− gk

(
x0τ , τ

)
− ε

∂gk
∂x

(
x0τ , τ

)
∂ε x

0
τ − ε2Ψk

(
∂ε x

0
τ , x

0
τ , τ
)
− ε2

∂gk
∂xi

(
x0τ , τ

)
∂2ε x

0
τdB

k
τ ,

σk(t) := −ε
∫ t

0

ηk
(
x0τ , τ

)
+ 2ε

∂η

∂x

(
x0τ , τ

)
∂ε x

0
τdB

k
τ .

Hence, we have ε3Rε(t) =
∑1

k=0 θk(t) + φk(t) + σk(t).656

For θk(t), we have657

E sup
t∈[0,T ]

∥θk(t)∥2 ≤ C E sup
t∈[0,T ]

∫ t

0

∥∥gk (xεφ, e)− gk
(
x̃εφ, τ

)∥∥2 dτ, (i)

≤ C

∫ T

0

E sup
t∈[0,tau]

∥xεt − x̃εt∥
2
dτ, (ii)

≤ C

∫ T

0

E sup
t∈[0,τ ]

∥Rε(t)∥2 dτ, , (iii)

where to obtain (i) we used Jensen’s inequality when k = 0 and by the Burkholder-Davis-Gundy658

inequality when k = 1, used the Lipschitz condition of gk to obtain (ii), and for (iii), it is because659

ε3Rε(t) = x̃εt − xεt .660

We note that from Taylor’s theorem, for any s ∈ [0, t], k = 0, 1, there exists some εs ∈ (0, ε) s.t.661

gk (x̃
ε
s, s)− gk

(
x0s, s

)
− ε

∂gk
∂x

(
x0s, s

)
∂εx

0
s = ε2

∂gk
∂x

(x̃εss ) ∂2ε x
0
s + ε2Ψ

(
∂ε x

0
s, x̃

εs
s , s

)
. (42)

For φk(t), we have662

E sup
t∈[0,T ]

∥φk(t)∥2

≤C E sup
t∈[0,T ]

∫ t

0

∥∂gk
∂x

(x̃εss ) ∂2ε x
0
s +Ψk

(
∂ε x

0
s, x̃

εs
s , s

)
− ∂gk

∂x

(
x0s
)
∂2ε x

0
s −Ψk

(
∂ε x

0
s, x

0
s, s
)
∥2ds,

(iv)

≤ C E sup
t∈[0,T ]

∫ t

0

∥∥∥∥∂gk∂x (x̃εss )− ∂gk
∂x

(
x0s
)∥∥∥∥2 ∥∥∂2ε x0s∥∥2 + ∥∥Ψk

(
∂εx

0
s, x̃s, s

)
−Ψk

(
∂εx

0
s, x

0
s, s
)∥∥2 ds,

(v)

≤C E sup
t∈[0,T ]

∫ t

0

∥∥x̃εss − x0s
∥∥2 (C +

∥∥∂2ε x0s∥∥2) ds, (vi)

≤C E sup
t∈[0,T ]

∫ t

0

∥∥ε∂ε x0s + ε2∂2ε x
0
s

∥∥2 (C +
∥∥∂2ε x0s∥∥2) ds,

≤C

(
E sup

t∈[0,T ]

∥∥∂ε x0s∥∥2) + E sup
t∈[0,T ]

∥∥∂2ε x0s∥∥2)
)(

C + E sup
t∈[0,T ]

∥∥∂2ε x0s∥∥2
)
, (vii)

where for (iv), we used Equation (42) and Jensen’s inequality for k = 0 and the Burkholder-Davis-663

Gundy inequality for k = 1; to obtain (v), we applied Jensen’s equality; we then derived (vi) from664

the Lipschitz conditions of gk and Ψk; and finally another application of Jensen’s inequality gives665

(vii) which is bounded as a result from the Lemma B.6.666

667
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For σk(t),668

sup
t∈[0,T ]

∥σ0(t)∥2 ≤C ε

∫ T

0

E sup
s∈[0,t]

∥∥ηk (x0s, s)∥∥2 + CE sup
s∈[0,t]

∥∥∥∥∂ηk∂x (x0s, s)
∥∥∥∥2 ∥∥∂ε x0s∥∥2 dt, (ix)

≤C

∫ T

0

C

(
1 + E sup

s∈[0,t]

∥∥x0s∥∥2
)

+ CE sup
t∈[0,T ]

∥∥∥∥∂ηk∂x (x0t , t)
∥∥∥∥2 ∫ T

0

E sup
s∈[0,t]

∥∥∂εx0s∥∥2 dt,
(x)

≤ c+ C E sup
t

∈ [0, T ]
∥∥x0s∥∥2 + C E sup

t∈[0,T ]

∥∥∥∥∂η∂x (x0t , t)
∥∥∥∥2 E sup

t∈[0,T ]

∥∥∂εx0t∥∥2 ,
(xi)

where we obtained (ix) by Jensen’s inequality when k = 0 and by Burkholder-Davis-Gundy inequality669

when k = 1, and (x) by the linear growth assumption on ηk; one can see that (xi) is bounded by670

recalling the Lemma B.6 and the assumption that ηk has bounded derivatives.671

Hence, by Jensen’s inequality and Gronwall’s lemma, we have672

E sup
t∈[0,T ]

∥Rε(t)∥2 ≤C

K∑
k=0

E sup
t∈[0,T ]

∥θk(t)∥2 + E sup
t∈[0,T ]

∥φk(t)∥2 + E sup
t∈[0,T ]

∥σk(t)∥2 ,

≤C + C

∫ T

0

E sup
t∈[0,τ ]

∥Rε(t)∥2 dτ,

≤C exp (C) .

Therefore, E sup ∥Rε(t)∥2 is bounded.673

674

Finally, it is now straightforward to show Equation (33) by applying a second-order Taylor expansion675

on f
(
x0t + ε∂εx

0
t + ε2∂2εx

0
t +ε3Rε(t)

)
.676

677

We are now ready to show Theorem 3.7. One notes that Corollary 3.8 directly follows from the result678

too.679

Proof. (Theorem 3.7) From Proposition B.5, it is noteworthy to point out that the derived SDEs (34)680

for ∂ε x0t and ∂2ε x
0
t are vector-valued general linear SDEs. With some steps of derivations, one can681

express the solutions as:682

∂ε x
0
t =Φt

∫ t

0

Φ−1
s

(
η0(x

0
s, s)−

m∑
k=1

∂gk
∂x

(x0s, s)ηk(x
0
s, s)

)
ds+ Φt

∫ t

0

Φ−1
s ηk(x

0
s, s)dB

k
s (a)

∂2ε x
0
t =Φt

∫ t

0

Φ−1
s

(
Ψ0(x

0
s, ∂ε x

0
s, s) + 2

∂η0
∂x

(x0s, s)∂ε x
0
s

−
m∑

k=1

∂gk
∂x

(x0s, s)
(
Ψk(x

0
s, ∂ε x

0
s, s) + 2

∂ηk
∂x

(x0s, s)∂ε x
0
s)
))

ds,

+Φt

∫ t

0

Φ−1
s

m∑
k=1

(
Ψk(x

0
s, ∂ε x

0
s, s) + 2

∂ηk
∂x

(x0s, s)∂ε x
0
s

)
dBk

s , (b)

where n× n matrix Φt is the fundamental matrix of the corresponding homogeneous equation:683

dΦt =
∂gk
∂x

(x0t , t) Φt dB
k
t , (43)

with initial value684

Φ(0) = I. (44)
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It is worthy to note that the fundamental matrix Φt is non-deterministic and when ∂gi
∂x and ∂gj

∂x685

commutes, Φt has explicit solution686

Φt = exp

(∫ t

0

∂gk
∂x

(x0s, s)dB
k
s − 1

2

∫ t

0

∂gk
∂x

(x0s, s)
∂gk
∂x

(x0s, s)
⊤ds

)
. (45)

Having obtained the explicit solutions, one can plug in corresponding terms and obtain the results of687

Theorem 3.7) after a Taylor expansion of the loss function L.688
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C Error Accumulation During the Inference Phase and its Effects to Value689

Functions690

Theorem C.1. (Error accumulation due to initial representation error )691

Let δ := E ∥ε∥ and dε := E supt∈[0,T ]

∥∥hεt − h0t
∥∥2 + ∥∥z̃εt − z̃0t

∥∥2. It holds that as δ → 0,692

dε ≤ δ C (J0 + J1) + δ2 C (exp (H0 (J0 + J1)) + exp (H1 (J0 + J1))) +O(δ3), (46)
where693

J0 =exp (Fh + Fz + Ph) , J1 = exp
(
P̄h

)
,

H0 =Fhh + Fhz + Fzh + Fzz + Phh, H1 = P̄hh
694

Fh =C E sup
t∈[0,T ]

∥∥∥∥∂f∂h +
∂f

∂a
∂hρ

∥∥∥∥2
F

, Fz = C E sup
t∈[0,T ]

∥∥∥∥∂f∂z +
∂f

∂a
∂zρ

∥∥∥∥2
F

,

Ph =C E sup
t∈[0,T ]

∥∥∥∥∂p∂h
∥∥∥∥2
F

, P̄h = C E sup
t∈[0,T ]

∥∥∥∥∂p̄∂h
∥∥∥∥2
F

,

Fhh =C E sup
t∈[0,T ]

∥∥∥∥∂2f∂h2
+

∂2f

∂h∂a
∂hρ+

∂f

∂a
∂2hhρ

∥∥∥∥2
F

,

Fhz =C E sup
t∈[0,T ]

∥∥∥∥ ∂2f∂h∂z
+

∂2f

∂z∂a
∂hρ+

∂f

∂a
∂2zhρ

∥∥∥∥2
F

Fzh =C E sup
t∈[0,T ]

∥∥∥∥ ∂2f∂h∂z
+

∂2f

∂h∂a
∂zρ+

∂f

∂a
∂2hzρ

∥∥∥∥2
F

Fzz =C E sup
t∈[0,T ]

∥∥∥∥∂2f∂z2
+

∂2f

∂z∂a
∂zρ+

∂f

∂a
∂2zzρ

∥∥∥∥2
F

,

Phh =C E sup
t∈[0,T ]

∥∥∥∥∂2p∂h2

∥∥∥∥2
F

, P̄hh = C E sup
t∈[0,T ]

∥∥∥∥∂2p̄∂h2

∥∥∥∥2
F

,

where for brevity, when functions always have inputs (z̃0t , h
0
t , t), we adopt the shorthand to write, for695

example, f(z̃0t , h
0
t , t) as f .696

Before proving the main result C.1, we first show the general case of perturbation in initial values.697

Consider the following general system with noise at the initial value:698

dxt = g0 (xt, t) dt+ gk (xt, t) dB
k
t , (47)

x(0) = x0 + ε, (48)

where the initial perturbation ε ∈ Rn × Ω. As gk are C2,α
g functions, by the classical result on the699

existence and the uniqueness of solution to SDE, there exists a unique solution to Equation (47),700

denoted as xεt or xε(t).701

To simplify the notation, we write ∂i xεt := ∂xε(t)
∂xi , ∂2ij x

ε
t =

∂2xε
t

∂xi∂xj , for i, j = 1, . . . , n that are,702

respectively, the first and second-order derivatives of the solution xε(t) w.r.t. the changes in the703

corresponding coordinates of the initial value. When ε = 0 ∈ Rn, we denote the solutions to704

Equation (47) as x0t with its first and second derivatives ∂i x0t , ∂
2
ij x

0
t , respectively.705

Proposition C.2. Let δ := E ∥ε∥, it holds that706

E sup
t∈[0,T ]

∥∥xεt − x0t
∥∥2 ≤

∑
k=0,1

C δ

(
C E sup

t∈[0,T ]

∥∥∥∥∂gk∂x (x0t , t)

∥∥∥∥2
F

)
(49)

+ C δ2 exp

C E sup
t∈[0,T ]

∥∥∥∥∂2gk∂x2
(x0t , t)

∥∥∥∥2
F

∑
k̄=0,1

exp

(
C E sup

t∈[0,T ]

∥∥∥∥∂gk̄∂x (x0t , t)

∥∥∥∥2
F

)+O(δ3),

(50)
as δ → 0.707
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Proof. Similar to the previous section, for notational convenience, we write t as B0
t and employs708

Einstein summation notation. Hence, Equation (47) can be shorten as709

dxt = gk (xt, t) dB
k
t , (51)

with initial values x(0) = x0 + ε.710

To begin, we find the SDEs that characterize ∂i xεt and ∂2ij x
ε
t , for i, j = 1, ..., n.711

For ∂i xεt , we apply Theorem 3.1 from Section 2 in [17] on Equation (51) and ∂i xεt satisfy the712

following SDE with probability 1,713

d∂i x
ε
t =

∂gk
∂x

(xεt , t) ∂i x
ε
tdB

k
t (52)

with initial value ∂ixε0 to be the unit vector ei = (0, 0, . . . , 1, . . . , 0) that is all zeros except one in714

the ith coordinate.715

For ∂2ij x
ε
t , we again apply Theorem 3.1 from Section 2 in [17] on the SDE (52) and obtain that ∂2ijx

ε
b716

satisfy the following SDE with probability 1,717

d∂2ij x
ε
t = Ψk (x

ε
t , ∂i x

ε
t , t) ∂

2
ij x

ε
tdB

k
t , (53)

with the initial value ∂ij xε(0) = ej , where718

Ψk : Rd × Rd × [0, T ] → Rd×d, (x, ∂i x, t) 7→
(

∂2glk
∂xu∂xv

(xεt , t)

)
l,u,v

∂i x
v.

For the next step, we show that with probability 1, the following holds719

xεt = x0t + εi ∂i x
0
t +

1

2
εiεj ∂2ij x

0
t +O

(
ε3
)
, (54)

as ∥ε∥ → 0.720

One can follow the similar steps of proofs for Lemma (B.6) and (B.7) in the previous section to show721

that E supt∈[0,T ]

∥∥x0t∥∥2 , E supt∈[0,T ]

∥∥∂ix0t∥∥2 , E supt∈[0,T ]

∥∥∂2ijx0t∥∥2 and the remainder term are722

bounded. Hence, Equation (54) holds with probability 1.723

724

Indeed, for E supt∈[0,T ]

∥∥∂i x0t∥∥2, it holds that725

E sup
t∈[0,T ]

∥∥∂i x0t∥∥2 ≤C ∥ei∥2 +
∑
k=0,1

E sup
t∈[0,T ]

C

∫ t

0

∥∥∥∥∂gk∂x (x0s, s)

∥∥∥∥2
F

∥∂i xs∥2 ds (55)

≤
∑
k=0,1

C exp

(
C E sup

t∈[0,T ]

∥∥∥∥∂gk∂x (x0t , t)

∥∥∥∥2
F

)
. (56)

Similarly, for E supt∈[0,T ]

∥∥∂2ij x0t∥∥2, it holds that726

E sup
t∈[0,T ]

∥∥∂2ij x0t∥∥2 ≤C ∥ei∥2 +
∑
k=0,1

E sup
t∈[0,T ]

C

∫ t

0

∥∥∥∥∂2gk∂x2
(x0s, s)

∥∥∥∥2
F

∥∥∂i x0s∥∥2 ∥∥∂2ij x0s∥∥2 ds
(57)

≤C

1∑
k=0

exp

(
C E sup

t∈[0,T ]

∥∥∥∥∂2gk∂x2
(x0t , t)

∥∥∥∥2
F

∥∥∂i x0t∥∥2
)

(58)

≤C
∑
k=0,1

exp

(
C E sup

t∈[0,T ]

∥∥∥∥∂2gk∂x2
(x0t , t)

∥∥∥∥2
F

exp

(
C E sup

t∈[0,T ]

∥∥∥∥∂gk∂x (x0t , t)

∥∥∥∥2
F

))
.

(59)

Therefore, we could obtain the proposition by applying Jensen’s inequality to Equation (54) and727

plugging with 56 and 57.728
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Now we are ready to prove Theorem C.1. We note that one could then obtain Corollary 4.2 without729

much more effort by a standard application of Taylor’s theorem.730

Proof. (Proof for Theorem C.1)731

At (ht, z̃t, π(ht, z̃t)), where the local optimal policy π(ht, z̃t), denoted as a∗t , there exists an open732

neighborhood V ⊆ A of a∗t such that a∗t is the local maximizer for Q(ht, z̃t, ·) by definition.733

Then, ∂Q
∂a (ht, z̃t, a

∗
t ) = 0, and ∂2Q

∂a2 (ht, z̃t, a) is negative definite. As ∂2Q
∂a2 is non-degenerate in the734

neighborhood V , by the implicit function theorem, there exists a neighborhood U × V of (ht, z̃t, a∗t )735

such that there exists a C2 map ρ : U → V such that ∂Q
∂a (h, z̃, ρ(h, z̃)) = 0 and ρ(h, z̃) is the736

local maximizer of Q(h, z̃, ·) for any h, z̃ ∈ U . Furthermore, we have that ∂h ρ = −∂2Q
∂a2

−1
∂2Q
∂a∂h .737

Similarly, other first-terms and second-order terms ∂zρ, ∂2zzρ, ∂
2
zhρ, ∂

2
hzρ, ∂

2
hhρ can be explicitly738

expressed without much additional effort (e.g., in [28], [3]).739

The rest of the proof is easy to see after plugging in the corresponding terms from Proposition740

C.2.741
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D Experimental Details742

In this section, we provide additional details and results beyond thoese in the main paper.743

D.1 Model Implementation and Training744

Our baseline is based on the DreamerV2 Tensorflow implementation. Our theoretical and empirical745

results should not matter on the choice of specific version; so we chose DreamerV2 as its codebase746

implementation is simpler than V3. We incorporated a computationally efficient approximation of747

the Jacobian norm for the sequence model, as detailed in [18], using a single projection. During our748

experiments, all models were trained using the default hyperparameters (see Table 5) for the MuJoCo749

tasks. The training was conducted on an NVIDIA A100 and a GTX 4090, with each session lasting750

less than 15 hours.751

Hyperparameter Value
eval_every 1e4
prefill 1000
train_every 5
rssm.hidden 200
rssm.deter 200
model_opt.lr 3e-4
actor_opt.lr 8e-5
replay_capacity 2e6
dataset_batch 16
precision 16
clip_rewards tanh
expl_behavior greedy
encoder_cnn_depth 48
decoder_cnn_depth 48
loss_scales_kl 1.0
discount 0.99
jac_lambda 0.01

Table 5: Hyperparameters for DreamerV2 model.
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D.2 Additional Results on Generalization on Perturbed States752

In this experiment, we investigated the effectiveness of Jacobian regularization in model trained753

against a baseline during the inference phase with perturbed state images. We consider three types of754

perturbations: (1) Gaussian noise across the full image, denoted as N (µ1, σ
2
1) ; (2) rotation; and (3)755

noise applied to a percentage of the image, N (µ2, σ
2
2). (In Walker task, µ1 = µ2 = 0.5, σ2

2 = 0.15;756

in Quadruped task, µ1 = 0, µ2 = 0.05, σ2
2 = 0.2.) In each case of perturbations, we examine a757

collection of noise levels: (1) variance σ2 from 0.05 to 0.55; (2) rotation degree α 20 and 30; and (3)758

masked image percentage β% from 25 to 75.759

D.3 Walker Task760

β% mask, N (0.5, 0.15) mean (with Jac.) stdev (with Jac.) mean (baseline) stdev (baseline)
25% 882.78 28.57199976 929.778 10.13141451
30% 878.732 40.92085898 811.198 7.663919934
35% 856.32 37.56882045 799.98 29.75286097
40% 804.206 47.53578989 688.382 43.21310246
45% 822.97 80.36907477 601.862 42.49662057
50% 725.812 43.87836335 583.418 76.49237076
55% 768.68 50.71423045 562.574 59.88315135
60% 730.864 23.37324967 484.038 90.38940234
65% 696.936 65.26307708 516.936 41.44549462
70% 687.346 70.9078686 411.922 45.85808832
75% 685.492 63.22171723 446.74 40.66898799

Table 6: Walker. Mean and standard deviation of accumulated rewards under masked perturbation of
increasing percentage.

full, N (0.5, σ2) mean (with Jac.) stdev (with Jac.) mean (baseline) stdev (baseline)
0.05 894.594 39.86907737 929.778 40.91
0.10 922.854 27.28533819 811.198 98.79
0.15 941.512 16.47165049 799.98 106.01
0.20 840.706 66.12470628 688.382 70.78
0.25 811.764 75.06276427 601.862 83.65
0.30 779.504 53.29238107 583.418 173.59
0.35 807.996 34.35949621 562.574 79.30
0.40 751.986 85.20137722 484.038 112.43
0.45 663.578 60.18862658 516.936 90.25
0.50 618.982 61.10094983 411.922 116.94
0.55 578.62 64.25840684 446.74 84.44

Table 7: Walker. Mean and standard deviation of accumulated rewards under Gaussian perturbation
of increasing variance.

rotation, α◦ mean (with Jac.) stdev (with Jac.) mean (baseline) stdev (baseline)
20 423.81 12.90174678 391.65 35.33559636
30 226.04 23.00445979 197.53 15.26706914

Table 8: Walker. Mean and standard deviation of accumulated rewards under rotations.
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D.4 Quardruped Task761

β% mask, N (0.5, 0.15) mean (with Jac.) stdev (with Jac.) mean (baseline) stdev (baseline)
25% 393.242 41.10002579 361.764 81.41175179
30% 384.11 20.70463958 333.364 101.7413185
35% 354.222 53.14855379 306.972 16.02275164
40% 329.404 39.1193856 266.088 51.20298351
45% 360.662 36.86801622 281.342 47.85950867
50% 321.556 27.66758085 222.222 22.0668251
55% 300.258 31.44931987 203.578 14.38754218
60% 321 18.42956321 217.98 23.81819368
65% 304.62 20.75493676 209.238 47.14895407
70% 301.166 18.2485583 193.514 60.83781004
75% 304.92 18.63214963 169.58 30.83637462

Table 9: Quadruped. Mean and standard deviation of accumulated rewards under masked perturbation
of increasing percentage.

full, N (0, σ2) mean (with Jac.) stdev (with Jac.) mean (baseline) stdev (baseline)
0.10 416.258 20.87925573 326.74 40.30425536
0.15 308.218 24.26432093 214.718 15.7782198
0.20 314.29 44.73612075 218.756 35.41520832
0.25 293.02 24.29582269 190.78 26.22250465
0.30 269.778 21.83423047 207.336 39.1071161
0.35 282.046 13.55303767 217.048 29.89589972
0.40 273.814 19.81361476 190.208 59.61166975
0.45 267.18 17.5276068 195.606 18.91137964
0.50 268.838 29.45000543 194.082 26.76677642
0.55 252.54 22.516283 150.786 24.53362855

Table 10: Quadruped. Mean and standard deviation of accumulated rewards under Gaussian pertur-
bation of increasing variance.

rotation, α◦ mean (with Jac.) stdev (with Jac.) mean (baseline) stdev (baseline)
20 787.634 101.5974723 681.032 133.7507948
30 610.526 97.74499159 389.406 61.5997198

Table 11: Quadruped. Mean and standard deviation of accumulated rewards under rotations.
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D.5 Additional Results on Robustness against Encoder Errors762

In this experiment, we evaluate the robustness of model trained with Jacobian regularization against763

two exogenous error signals (1) zero-drift error with µt = 0, σ2
t (σ2

t = 5 in Walker, σ2
t = 0.1 in764

Quadruped), and (2) non-zero-drift error with µt ∼ [0, 5], σ2
t ∼ [0, 5] uniformly. λweight of Jacobian765

regularization is 0.01. In this section, we included plot results of both evaluation and training scores.766

D.5.1 Walker Task767

Under the Walker task, Figures 3 and 4 show that model with regularization is significantly less768

sensitive to perturbations in latent state zt compared to the baseline model without regularization.769

This empirical observation supports our theoretical findings in Corollary 3.8, which assert that the770

impact of latent representation errors on the loss function L can be effectively controlled by regulating771

the model’s Jacobian norm.

Figure 3: Walker. Eval (left) and train scores (right) under latent error process µt = 0, σ2
t = 5

.
772

Figure 4: Walker. Eval (left) and train scores (right) under latent error process µt ∼ [0, 5], σ2
t ∼ [0, 5].
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D.5.2 Quadruped Task773

Under the Quadruped task,we initially examined a smaller latent error process (µt = 0, σ2
t = 0.1) and774

observed that the model with Jacobian regularization converged significantly faster, even though the775

adversarial effects on the model without regularization were less severe (Figure 5). When considering776

the more challenging latent error process (µt ∼ [0, 5], σ2
t ∼ [0, 5]), we noted that the regularized777

model remained significantly less sensitive to perturbations in latent state zt, whereas the baseline778

model struggled to learn (Figure 6). These empirical observations reinforce our theoretical findings779

in Corollary 3.8, demonstrating that regulating the model’s Jacobian norm effectively controls the780

impact of latent representation errors.

Figure 5: Quad. Eval (left) and train scores (right) under latent error process µt = 0, σ2
t = 0.1.

Figure 6: Quad. Eval (left) and train scores (right) under latent error process µt ∼ [0, 5], σ2
t ∼ [0, 5].

781
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D.6 Additional Results on Faster convergence on tasks with extended horizon.782

In this experiment, we evaluate the efficacy of Jacobian regularization in extended horizon tasks,783

specifically by increasing the horizon length in MuJoCo Walker from 50 to 100 steps. We tested two784

regularization weights λ = 0.1 and λ = 0.05. Figure 7 demonstrates that models with regularization785

converge faster, with λ = 0.05 achieving convergence approximately 100,000 steps ahead of the786

model without Jacobian regularization. This supports the findings in Theorem 4.1, indicating that787

regularizing the Jacobian norm can reduce error propagation, especially over longer time horizons.

Figure 7: Extended horizon Walker task. Eval (left) and train scores (right).

788
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is low or images are taken in low lighting. Or a speech-to-text system might not be828

used reliably to provide closed captions for online lectures because it fails to handle829

technical jargon.830

• The authors should discuss the computational efficiency of the proposed algorithms831

and how they scale with dataset size.832

• If applicable, the authors should discuss possible limitations of their approach to833

address problems of privacy and fairness.834

• While the authors might fear that complete honesty about limitations might be used by835

reviewers as grounds for rejection, a worse outcome might be that reviewers discover836

limitations that aren’t acknowledged in the paper. The authors should use their best837

judgment and recognize that individual actions in favor of transparency play an impor-838

tant role in developing norms that preserve the integrity of the community. Reviewers839

will be specifically instructed to not penalize honesty concerning limitations.840

3. Theory Assumptions and Proofs841
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Question: For each theoretical result, does the paper provide the full set of assumptions and842

a complete (and correct) proof?843

Answer: [Yes]844

Justification: For each of our theoretical results, we state the assumptions required in both845

the main text and the provided appendix. We provide the full proofs of all of our theoretical846

results in Sections A, B and C in Appendix,847

Guidelines:848

• The answer NA means that the paper does not include theoretical results.849

• All the theorems, formulas, and proofs in the paper should be numbered and cross-850

referenced.851

• All assumptions should be clearly stated or referenced in the statement of any theorems.852

• The proofs can either appear in the main paper or the supplemental material, but if853

they appear in the supplemental material, the authors are encouraged to provide a short854

proof sketch to provide intuition.855

• Inversely, any informal proof provided in the core of the paper should be complemented856

by formal proofs provided in appendix or supplemental material.857

• Theorems and Lemmas that the proof relies upon should be properly referenced.858

4. Experimental Result Reproducibility859

Question: Does the paper fully disclose all the information needed to reproduce the main ex-860

perimental results of the paper to the extent that it affects the main claims and/or conclusions861

of the paper (regardless of whether the code and data are provided or not)?862

Answer: [Yes]863

Justification: The full source code required to reproduce the experimental results is included864

in the submission.865

Guidelines:866

• The answer NA means that the paper does not include experiments.867

• If the paper includes experiments, a No answer to this question will not be perceived868

well by the reviewers: Making the paper reproducible is important, regardless of869

whether the code and data are provided or not.870

• If the contribution is a dataset and/or model, the authors should describe the steps taken871

to make their results reproducible or verifiable.872

• Depending on the contribution, reproducibility can be accomplished in various ways.873

For example, if the contribution is a novel architecture, describing the architecture fully874

might suffice, or if the contribution is a specific model and empirical evaluation, it may875

be necessary to either make it possible for others to replicate the model with the same876

dataset, or provide access to the model. In general. releasing code and data is often877

one good way to accomplish this, but reproducibility can also be provided via detailed878

instructions for how to replicate the results, access to a hosted model (e.g., in the case879

of a large language model), releasing of a model checkpoint, or other means that are880

appropriate to the research performed.881

• While NeurIPS does not require releasing code, the conference does require all submis-882

sions to provide some reasonable avenue for reproducibility, which may depend on the883

nature of the contribution. For example884

(a) If the contribution is primarily a new algorithm, the paper should make it clear how885

to reproduce that algorithm.886

(b) If the contribution is primarily a new model architecture, the paper should describe887

the architecture clearly and fully.888

(c) If the contribution is a new model (e.g., a large language model), then there should889

either be a way to access this model for reproducing the results or a way to reproduce890

the model (e.g., with an open-source dataset or instructions for how to construct891

the dataset).892

(d) We recognize that reproducibility may be tricky in some cases, in which case893

authors are welcome to describe the particular way they provide for reproducibility.894

In the case of closed-source models, it may be that access to the model is limited in895
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some way (e.g., to registered users), but it should be possible for other researchers896

to have some path to reproducing or verifying the results.897

5. Open access to data and code898

Question: Does the paper provide open access to the data and code, with sufficient instruc-899

tions to faithfully reproduce the main experimental results, as described in supplemental900

material?901

Answer: [Yes]902

Justification: Our task environments Walker and Quardruped are from open source package903

MuJoCo. Our baseline implementation is from open source codebase DreamerV2. Our904

implementation of Jacobian regularization has a full description in Section D.1.905

Guidelines:906

• The answer NA means that paper does not include experiments requiring code.907

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/908

public/guides/CodeSubmissionPolicy) for more details.909

• While we encourage the release of code and data, we understand that this might not be910

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not911

including code, unless this is central to the contribution (e.g., for a new open-source912

benchmark).913

• The instructions should contain the exact command and environment needed to run to914

reproduce the results. See the NeurIPS code and data submission guidelines (https:915

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.916

• The authors should provide instructions on data access and preparation, including how917

to access the raw data, preprocessed data, intermediate data, and generated data, etc.918

• The authors should provide scripts to reproduce all experimental results for the new919

proposed method and baselines. If only a subset of experiments are reproducible, they920

should state which ones are omitted from the script and why.921

• At submission time, to preserve anonymity, the authors should release anonymized922

versions (if applicable).923

• Providing as much information as possible in supplemental material (appended to the924

paper) is recommended, but including URLs to data and code is permitted.925

6. Experimental Setting/Details926

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-927

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the928

results?929

Answer: [Yes]930

Justification: We state the hyperparameters used in Table 5. The perturbations we considered931

is fully described in the experiment section form the main text.932

Guidelines:933

• The answer NA means that the paper does not include experiments.934

• The experimental setting should be presented in the core of the paper to a level of detail935

that is necessary to appreciate the results and make sense of them.936

• The full details can be provided either with the code, in appendix, or as supplemental937

material.938

7. Experiment Statistical Significance939

Question: Does the paper report error bars suitably and correctly defined or other appropriate940

information about the statistical significance of the experiments?941

Answer: [Yes]942

Justification: While our work is predominantly theoretical, we conducted 5 random trials for943

each perturbation degree and type. For additional results including standard deviation of944

trials, see Section D.945

Guidelines:946
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• The answer NA means that the paper does not include experiments.947

• The authors should answer "Yes" if the results are accompanied by error bars, confi-948

dence intervals, or statistical significance tests, at least for the experiments that support949

the main claims of the paper.950

• The factors of variability that the error bars are capturing should be clearly stated (for951

example, train/test split, initialization, random drawing of some parameter, or overall952

run with given experimental conditions).953

• The method for calculating the error bars should be explained (closed form formula,954

call to a library function, bootstrap, etc.)955

• The assumptions made should be given (e.g., Normally distributed errors).956

• It should be clear whether the error bar is the standard deviation or the standard error957

of the mean.958

• It is OK to report 1-sigma error bars, but one should state it. The authors should959

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis960

of Normality of errors is not verified.961

• For asymmetric distributions, the authors should be careful not to show in tables or962

figures symmetric error bars that would yield results that are out of range (e.g. negative963

error rates).964

• If error bars are reported in tables or plots, The authors should explain in the text how965

they were calculated and reference the corresponding figures or tables in the text.966

8. Experiments Compute Resources967

Question: For each experiment, does the paper provide sufficient information on the com-968

puter resources (type of compute workers, memory, time of execution) needed to reproduce969

the experiments?970

Answer: [Yes]971

Justification: Relevant computing information is provided in Section D.1.972

Guidelines:973

• The answer NA means that the paper does not include experiments.974

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,975

or cloud provider, including relevant memory and storage.976

• The paper should provide the amount of compute required for each of the individual977

experimental runs as well as estimate the total compute.978

• The paper should disclose whether the full research project required more compute979

than the experiments reported in the paper (e.g., preliminary or failed experiments that980

didn’t make it into the paper).981

9. Code Of Ethics982

Question: Does the research conducted in the paper conform, in every respect, with the983

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?984

Answer: [Yes]985

Justification: This work conforms with the NeurIPS Code of Ethics.986

Guidelines:987

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.988

• If the authors answer No, they should explain the special circumstances that require a989

deviation from the Code of Ethics.990

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-991

eration due to laws or regulations in their jurisdiction).992

10. Broader Impacts993

Question: Does the paper discuss both potential positive societal impacts and negative994

societal impacts of the work performed?995

Answer: [NA]996

Justification: The work is of theoretical nature and has no societal impact of the work997

performed.998
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Guidelines:999

• The answer NA means that there is no societal impact of the work performed.1000

• If the authors answer NA or No, they should explain why their work has no societal1001

impact or why the paper does not address societal impact.1002

• Examples of negative societal impacts include potential malicious or unintended uses1003

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1004

(e.g., deployment of technologies that could make decisions that unfairly impact specific1005

groups), privacy considerations, and security considerations.1006

• The conference expects that many papers will be foundational research and not tied1007

to particular applications, let alone deployments. However, if there is a direct path to1008

any negative applications, the authors should point it out. For example, it is legitimate1009

to point out that an improvement in the quality of generative models could be used to1010

generate deepfakes for disinformation. On the other hand, it is not needed to point out1011

that a generic algorithm for optimizing neural networks could enable people to train1012

models that generate Deepfakes faster.1013

• The authors should consider possible harms that could arise when the technology is1014

being used as intended and functioning correctly, harms that could arise when the1015

technology is being used as intended but gives incorrect results, and harms following1016

from (intentional or unintentional) misuse of the technology.1017

• If there are negative societal impacts, the authors could also discuss possible mitigation1018

strategies (e.g., gated release of models, providing defenses in addition to attacks,1019

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1020

feedback over time, improving the efficiency and accessibility of ML).1021

11. Safeguards1022

Question: Does the paper describe safeguards that have been put in place for responsible1023

release of data or models that have a high risk for misuse (e.g., pretrained language models,1024

image generators, or scraped datasets)?1025

Answer: [NA]1026

Justification: The paper poses no such risks as we do not have any released data or models.1027

Guidelines:1028

• The answer NA means that the paper poses no such risks.1029

• Released models that have a high risk for misuse or dual-use should be released with1030

necessary safeguards to allow for controlled use of the model, for example by requiring1031

that users adhere to usage guidelines or restrictions to access the model or implementing1032

safety filters.1033

• Datasets that have been scraped from the Internet could pose safety risks. The authors1034

should describe how they avoided releasing unsafe images.1035

• We recognize that providing effective safeguards is challenging, and many papers do1036

not require this, but we encourage authors to take this into account and make a best1037

faith effort.1038

12. Licenses for existing assets1039

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1040

the paper, properly credited and are the license and terms of use explicitly mentioned and1041

properly respected?1042

Answer: [Yes]1043

Justification: We cited the baseline implementation in Section D.1.1044

Guidelines:1045

• The answer NA means that the paper does not use existing assets.1046

• The authors should cite the original paper that produced the code package or dataset.1047

• The authors should state which version of the asset is used and, if possible, include a1048

URL.1049

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1050
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• For scraped data from a particular source (e.g., website), the copyright and terms of1051

service of that source should be provided.1052

• If assets are released, the license, copyright information, and terms of use in the1053

package should be provided. For popular datasets, paperswithcode.com/datasets1054

has curated licenses for some datasets. Their licensing guide can help determine the1055

license of a dataset.1056

• For existing datasets that are re-packaged, both the original license and the license of1057

the derived asset (if it has changed) should be provided.1058

• If this information is not available online, the authors are encouraged to reach out to1059

the asset’s creators.1060

13. New Assets1061

Question: Are new assets introduced in the paper well documented and is the documentation1062

provided alongside the assets?1063

Answer: [NA]1064

Justification: Our work is mostly of theoretical nature and does not release new assets.1065

Guidelines:1066

• The answer NA means that the paper does not release new assets.1067

• Researchers should communicate the details of the dataset/code/model as part of their1068

submissions via structured templates. This includes details about training, license,1069

limitations, etc.1070

• The paper should discuss whether and how consent was obtained from people whose1071

asset is used.1072

• At submission time, remember to anonymize your assets (if applicable). You can either1073

create an anonymized URL or include an anonymized zip file.1074

14. Crowdsourcing and Research with Human Subjects1075

Question: For crowdsourcing experiments and research with human subjects, does the paper1076

include the full text of instructions given to participants and screenshots, if applicable, as1077

well as details about compensation (if any)?1078

Answer: [NA]1079

Justification: This work does not involve crowdsourcing nor research with human subjects.1080

Guidelines:1081

• The answer NA means that the paper does not involve crowdsourcing nor research with1082

human subjects.1083

• Including this information in the supplemental material is fine, but if the main contribu-1084

tion of the paper involves human subjects, then as much detail as possible should be1085

included in the main paper.1086

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1087

or other labor should be paid at least the minimum wage in the country of the data1088

collector.1089

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1090

Subjects1091

Question: Does the paper describe potential risks incurred by study participants, whether1092

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1093

approvals (or an equivalent approval/review based on the requirements of your country or1094

institution) were obtained?1095

Answer: [NA]1096

Justification: This work does not involve crowdsourcing nor research with human subjects.1097

Guidelines:1098

• The answer NA means that the paper does not involve crowdsourcing nor research with1099

human subjects.1100

38

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)1101

may be required for any human subjects research. If you obtained IRB approval, you1102

should clearly state this in the paper.1103

• We recognize that the procedures for this may vary significantly between institutions1104

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1105

guidelines for their institution.1106

• For initial submissions, do not include any information that would break anonymity (if1107

applicable), such as the institution conducting the review.1108
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