Towards Unraveling and Improving Generalization in World Models

Anonymous Author(s) Affiliation Address email

Abstract

 World models have recently emerged as a promising approach for reinforcement learning (RL), as evidenced by its stimulating successes that world model based agents achieve state-of-the-art performance on a wide range of tasks in empirical studies. The primary goal of this study is to obtain a deep understanding of the mys- terious generalization capability of world models, based on which we devise new methods to enhance it further. Thus motivated, we develop a stochastic differential equation formulation by treating the world model learning as a stochastic dynamic system in the latent state space, and characterize the impact of latent representation errors on generalization, for both cases with zero-drift representation errors and with non-zero-drift representation errors. Our somewhat surprising findings, based on both theoretic and experimental studies, reveal that for the case with zero drift, modest latent representation errors can in fact function as implicit regularization and hence result in generalization gain. We further propose a Jacobian regulariza- tion scheme to mitigate the compounding error propagation effects of non-zero drift, thereby enhancing training stability and generalization. Our experimental results corroborate that this regularization approach not only stabilizes training but also accelerates convergence and improves performance on predictive rollouts.

1 Introduction

 Model-based reinforcement learning (RL) has emerged as a promising learning paradigm to improve sample efficiency by enabling agents to exploit a learned model for the physical environment. Notably, in recent works [\[14,](#page-9-0) [13,](#page-9-1) [15,](#page-9-2) [16,](#page-9-3) [21,](#page-10-0) [10,](#page-9-4) [32,](#page-10-1) [22\]](#page-10-2) on world models, an RL agent learns the latent dynamics model of the environment, based on the observations and action signals, and then optimizes the policy over the learned dynamics model. Different from conventional approaches, world-model based RL takes an *end-to-end learning* approach, where the building blocks (such as dynamics model, perception and action policy) are trained and optimized to achieve a single overarching goal, offering significant potential to improve generalization capability. For example, DreamerV2 and DreamerV3 achieve great progress in mastering diverse tasks involving continuous and discrete actions, image- based inputs, and both 2D and 3D environments, thereby facilitating robust learning across unseen task domains [\[14,](#page-9-0) [13,](#page-9-1) [15\]](#page-9-2). Recent empirical studies have also demonstrated the capacity of world models to generalize to unseen states in complex environments, such as autonomous driving [\[19\]](#page-9-5). Nevertheless, it remains not well understood when and how world models can generalize well in unseen environments.

 In this work, we aim to first obtain a deep understanding of the *generalization* capability of world models by examining the impact of *latent representation errors*, and then to devise new methods to enhance its generalization. While one may expect that optimizing a latent dynamics model (LDM) prior to training the task policy would minimize latent representation errors and hence can achieve better world model training, our somewhat surprising findings, based on both theoretical and empirical

perturbation $\alpha = 10$ $\alpha = 20$ $\alpha = 30$ $\beta = 25$ $\beta = 50$ $\beta = 75$ batch size					
			691.62 363.73 153.67 624.67 365.31 216.52		
16			830.39 429.62 213.78 842.26 569.42 375.61		
32		869.39 436.87 312.99		912.12 776.86 655.26	
64	754.47	440.44	80.24 590.41 255.2 119.62		

Table 1: Reward values on unseen perturbed states by rotation (α) or mask ($\beta\%$) with $\mathcal{N}(0.15, 0.5)$.

 studies, reveal that modest latent representation errors in the training phase may in fact be beneficial. In particular, the alternating training strategy for world model learning, which simultaneously refines both the LDM and the action policy, could actually bring generalization gain, because the modest latent representation errors (and the corresponding induced gradient estimation errors) could enable the world model to visit unseen states and thus lead to improved generalization capacities. For instance, as shown in Table [1,](#page-1-0) our experimental results suggest that moderate batch sizes (e.g., 16 or 32) appear to position the induced errors within a regime conferring notable generalization benefits, leading to higher generalization improvement, when compared to the cases with very small (e.g., 8) or large (e.g., 64) batch sizes.

 In a nutshell, *latent representation errors* incurred by latent encoders, if designed properly, may actually facilitate world model training and enhance generalization. This insight aligns with recent advances in deep learning, where noise injection schemes have been studied as a form of implicit regularization to enhance models' robustness. For instance, recent study [\[2\]](#page-9-6) analyzes the effects of introducing isotropic Gaussian noise at each layer of neural networks, identifying it as a form of implicit regularization. Another recent work [\[27\]](#page-10-3) explores the addition of zero-drift Brownian motion to RNN architectures, demonstrating its regularizing effects in improving network's stability against noise perturbations.

 We caution that *latent representation errors* in world models differ from the above noise injection schemes ([\[27,](#page-10-3) [2\]](#page-9-6)), in the following aspects: 1) Unlike the artificially injected noise only added in training, these errors are inherent in world models, leading to error propagation in the rollouts; 2) Unlike the controlled conditions of isotropic or zero-drift noise examined in prior studies, the errors in world models may not exhibit such well-behaved properties in the sense that the drift may be non-zero and hence biased; 3) additionally, in the iterative training of world models and agents, the error originating from the encoder affects the policy learning and agent exploration. In light of these observations, we develop a continuous-time stochastic differential equation (SDE) formulation by treating the world model learning as a stochastic dynamic system with stochastic latent states. This approach offers an insightful view on model errors as stochastic perturbation, enabling us to obtain an explicit characterization to quantify the impacts of the errors on world models' generalization capability. Our main contributions can be summarized as follows.

 • *Latent representation errors as implicit regularization:* Aiming to understand the generalization capability of world models and improve it further, we develop a continuous-time SDE formula- tion by treating the world model learning as a stochastic dynamic system in latent state space. Leveraging tools in stochastic calculus and differential geometry, we characterize the impact of latent representation errors on world models' generalization. Our findings reveal that under some technical conditions, modest latent representation errors can in fact function as implicit regularization and hence result in generalization gain.

- *Improving generalization in non-zero drift cases via Jacobian regularization:* For the case where latent representation errors exhibit non-zero drifts, we show that the additional bias term would degrade the implicit regulation and hence may make the learning unstable. We propose to add Jacobian regularization to mitigate the effects of non-zero-drift errors in training. Experimental studies are carried out to evaluate the efficacy of Jacobian regularization.
- *Reducing error propagation in predictive rollouts:* We explicitly characterize the effect of latent representation errors on predictive rollouts. Our experimental results corroborate that Jacobian regularization can reduce the impact of error propagation on rollouts, leading to enhanced prediction performance and accelerated convergence in tasks with longer time horizons.
- *Bounding Latent Representation Error:* We establish a novel bound on the latent representation error within CNN encoder-decoder architectures. To our knowledge, this is the first quantifiable

 bound applied to a learned latent representation model, and the analysis carries over to other architectures (e.g., ReLU) along the same line.

87 Notation. We use Einstein summation convention for succinctness, where $a_i b_i$ denotes $\sum_i a_i b_i$. We as denote functions in $\mathcal{C}^{k,\alpha}$ as being k-times differentiable with α -Hölder continuity. The Euclidean 89 norm of a vector is represented by $\|\cdot\|$, and the Frobenius norm of a matrix by $|\cdot|_F$; this notation 90 may occasionally extend to tensors. The notation x^i indicates the i^{th} coordinate of the vector x, and 91 A^{ij} the (i, j) -entry of the matrix A. Function composition is denoted by $f \circ g$, implying $f(g)$. For a 92 differentiable function $f : \mathbb{R}^n \to \mathbb{R}^m$, its Jacobian matrix is denoted by $\frac{\partial f}{\partial x} \in \mathbb{R}^{m \times n}$. Its gradient, 93 following conventional definitions, is denoted by ∇f . The constant C may represent different values in distinct contexts.

2 Related Work

 World model based RL. World models have demonstrated remarkable efficacy in visual control tasks across various platforms, including Atari [\[1\]](#page-9-7) and Minecraft [\[8\]](#page-9-8), as detailed in the studies by Hafner et al. [\[14,](#page-9-0) [13,](#page-9-1) [15\]](#page-9-2). These models typically integrate encoders and memory-augmented neural networks, such as RNNs [\[33\]](#page-10-4), to manage the latent dynamics. The use of variational autoencoders (VAE) [\[7,](#page-9-9) [23\]](#page-10-5) to map sensory inputs to a compact latent space was pioneered by Ha et al. [\[12\]](#page-9-10). Furthermore, the Dreamer algorithm [\[13,](#page-9-1) [16\]](#page-9-3) employs convolutional neural networks (CNNs) [\[24\]](#page-10-6) to enhance the processing of both hidden states and image embeddings, yielding models with improved predictive capabilities in dynamic environments.

 Continuous-time RNNs. The continuous-time assumption is standard for theoretical formulations of RNN models. Li et al. [\[26\]](#page-10-7) study the optimization dynamics of linear RNNs on memory decay. Chang et al. [\[4\]](#page-9-11) propose AntisymmetricRNN, which captures long-term dependencies through the control of eigenvalues in its underlying ODE. Chen et al. [\[5\]](#page-9-12) propose the symplectic RNN to model Hamiltonians. As continuous-time formulations can be discretized with Euler methods [\[4,](#page-9-11) [5\]](#page-9-12) (or with Euler-Maruyama methods if stochastic in [\[27\]](#page-10-3)) and yield similar insights, this step is often eliminated for brevity.

 Implicit regularization by noise injection in RNN. Studies on noise injection as a form of implicit regularization have gained traction, with Lim et al. [\[27\]](#page-10-3) deriving an explicit regularizer under small noise conditions, demonstrating bias towards models with larger margins and more stable dynamics. Camuto et al. [\[2\]](#page-9-6) examine Gaussian noise injections at each layer of neural networks. Similarly, Wei et al. [\[31\]](#page-10-8) provide analytic insights into the dual effects of dropout techniques.

3 Demystifying World Model: A Stochastic Differential Equation Approach

 As pointed out in [\[14,](#page-9-0) [13,](#page-9-1) [15,](#page-9-2) [16\]](#page-9-3), critical to the effectiveness of the world model representation is the stochastic design of its latent dynamics model. The model can be outlined by the following key 119 components: an encoder that compresses high dimensional observations s_t into a low-dimensional 120 latent state z_t (Eq[.1\)](#page-2-0), a sequence model that captures temporal dependencies in the environment (Eq[.2\)](#page-2-1), a transition predictor that estimates the next latent state (Eq[.3\)](#page-2-2), and a latent decoder that reconstructs observed information from the posterior (Eq[.4\)](#page-2-3):

$$
Latent Encoder: z_t \sim q_{enc}(z_t \mid h_t, s_t),
$$
\n⁽¹⁾

Sequence Model:
$$
h_t = f(h_{t-1}, z_{t-1}, a_{t-1}),
$$
 (2)

$$
transition \text{ Predictor: } \tilde{z}_t \sim p(\tilde{z}_t \mid h_t), \tag{3}
$$

$$
Latent Decoder: \tilde{s_t} \sim q_{dec}(\tilde{s_t} \mid h_t, \tilde{z_t})
$$
\n
$$
\tag{4}
$$

123 In this work, we consider a popular class of world models, including Dreamer and PlaNet, where $\{z, \}$ 124 \tilde{z}, \tilde{s} } have distributions parameterized by neural networks' outputs, and are Gaussian when the outputs 125 are known. It is worth noting that $\{z, \tilde{z}, \tilde{s}\}$ may not be Gaussian and are non-Gaussian in general. 126 This is because while z is conditional Gaussian, its mean and variance are random variables which 127 are learned by the encoder with s and h being the inputs, rendering that z is non-Gaussian due to the mixture effect. For this setting, we have a continuous-time formulation where the latent dynamics model can be interpreted as stochastic differential equations (SDEs) with coefficient functions of known inputs. Due to space limitation, we refer to Proposition [B.1](#page-15-0) in the Appendix for a more detailed treatment.

132 Consider a complete, filtered probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\in[0,T]}, \mathbb{P})$ where independent standard

133 Brownian motions $B_t^{\text{enc}}, B_t^{\text{pred}}, B_t^{\text{seq}}, B_t^{\text{dec}}$ are defined such that \mathcal{F}_t is their augmented filtration, and 134 $T \in \mathbb{R}$ as the time length of the task environment. We interpret the stochastic dynamics of LDM

¹³⁵ with latent representation errors through coupled SDEs representing continuous-time analogs of the ¹³⁶ discrete components:

Latent Encoder:
$$
d z_t = (q_{\text{enc}}(h_t, s_t) + \varepsilon \sigma(h_t, s_t)) dt + (\bar{q}_{\text{enc}}(h_t, s_t) + \varepsilon \bar{\sigma}(h_t, s_t)) dB_t^{\text{enc}},
$$
 (5)

Sequence Model:
$$
dh_t = f(h_t, z_t, \pi(h_t, z_t)) dt + \bar{f}(h_t, z_t, \pi(h_t, z_t)) dB_t^{\text{seq}}
$$
(6)

Transition Predictor: $d\,\tilde{z}_t = p(h_t)\,dt + \bar{p}(h_t)\,dB_t^{\text{pred}}$ $\,$, (7)

$$
\text{Latent Decoder: } d\,\tilde{s}_t = q_{\text{dec}}(h_t, \tilde{z}_t) \, dt + \bar{q}_{\text{dec}}(h_t, \tilde{z}_t) \, dB_t^{\text{dec}},\tag{8}
$$

137 where $\pi(h, \tilde{z})$ is a policy function as a local maximizer of value function and the stochastic process that is S_t is \mathcal{F}_t -adapted. Notice that f is often a zero function indicating that Equation [\(6\)](#page-3-0) is an ODE, ¹³⁹ as the sequence model is generally designed as deterministic. Generally, the coefficient functions 140 in dt and dB_t terms in SDEs are referred to as the *drift* and *diffusion* coefficients. Intuitively, the 141 diffusion coefficients here represent the stochastic model components. In Equation [\(5\)](#page-3-1), $\sigma(\cdot, \cdot)$ and 142 $\bar{\sigma}(\cdot,\cdot)$ denotes the drift and diffusion coefficients of the *latent representation errors*, respectively. 143 Both are assumed to be functions of hidden states h_t and task states s_t . In addition, ε indicates the ¹⁴⁴ magnitude of the error.

¹⁴⁵ Next, we impose standard assumptions on these SDEs [\(5\)](#page-3-1) - [\(8\)](#page-3-2) to guarantee the well-definedness of ¹⁴⁶ the solution to SDEs. For further technical details, we refer readers to fundamental works on SDEs in 147 the literature $(e.g., [30, 17])$ $(e.g., [30, 17])$ $(e.g., [30, 17])$ $(e.g., [30, 17])$.

148 Assumption 3.1. The drift coefficient functions q_{enc} , f, p and q_{dec} and the diffusion coefficient functions $\bar{q}_{\text{enc}}, \bar{p}$ and \bar{q}_{dec} are bounded and Borel-measurable over the interval $[0, T]$, and of class C^3 149 150 with bounded Lipschitz continuous partial derivatives. The initial values z_0 , h_0 , \tilde{z}_0 , \tilde{s}_0 are square-¹⁵¹ integrable random variables.

152 **Assumption 3.2.** σ and $\bar{\sigma}$ are bounded and Borel-measurable and are of class \mathcal{C}^3 with bounded 153 Lipschitz continuous partial derivatives over the interval $[0, T]$.

¹⁵⁴ 3.1 Latent Representation Errors in CNN Encoder-Decoder Networks

 As shown in the empirical studies with different batch sizes (Table [1\)](#page-1-0), the latent representation error would also enrich generalization when it is within a moderate regime. In this section, we show that the latent representation error, in the form of approximation error corresponding to widely used CNN encoder-decoder, could be made sufficiently small by finding appropriate CNN network configuration. In particular, this result provides theoretical justification to interpreting latent representation error as 160 stochastic perturbation in the dynamical system defined in Equations [\(5](#page-3-1) - [8\)](#page-3-2), as the error magnitude ε can be made sufficiently small by CNN network configuration.

162 Consider the state space $S \subset \mathbb{R}^{d_S}$ and the latent space \mathcal{Z} . Consider a state probability measure Q on 163 the state space S and a probability measure P on the latent space Z. As high-dimensional state space ¹⁶⁴ in image-based tasks frequently exhibit *intrinsic lower-dimensional geometric structure*, we adopt ¹⁶⁵ the latent manifold assumption, formally stated as follows:

166 **Assumption 3.3.** (Latent manifold assumption) For a positive integer k, there exists a d_M -167 dimensional $\mathcal{C}^{k,\alpha}$ submanifold M (with $\mathcal{C}^{k+3,\alpha}$ boundary) with Riemannian metric g and has 168 positive reach and also isometrically embedded in the state space $S \subset \mathbb{R}^{d_S}$ and $d_M \ll d_S$, where 169 the state probability measure is supported on. In addition, \dot{M} is a compact, orientable, connected ¹⁷⁰ manifold.

171 Assumption 3.4. (Smoothness of state probability measure) Q is a probability measure supported on 172 M with its Radon-Nikodym derivative $q \in \mathcal{C}^{k,\alpha}(\mathcal{M}, \mathbb{R})$ w.r.t $\mu_{\mathcal{M}}$.

173 Let Z be a closed ball in $\mathbb{R}^{d,\mathcal{M}}$, that is $\{x \in \mathbb{R}^{d,\mathcal{M}} : \|x\| \leq 1\}$. P is a probability measure supported

on Z with its Radon-Nikodym derivative $p \in C^{k,\alpha}(\mathcal{Z}, \mathbb{R})$ w.r.t $\mu_{\mathcal{Z}}$. In practice, it is usually an easy-

¹⁷⁵ to-sample distribution such as uniform distribution which is determined by a specific encoder-decoder

¹⁷⁶ architecture choice.

Latent Representation Learning. We define the *latent representation learning* as to find encoder $g_{\text{enc}} : \mathcal{M} \to \mathcal{Z}$ and decoder $g_{\text{dec}} : \mathcal{Z} \to \mathcal{M}$ as maps that optimize the following objectives:

$$
\min_{g_{\text{enc}} \in \mathcal{G}} W_1(g_{\text{enc}_{\#}} Q, P); \qquad \min_{g_{\text{dec}} \in \mathcal{G}} W_1(Q, g_{\text{dec}_{\#}} P).
$$

177 Here, $g_{\text{enc}_{#}}Q$ and $g_{\text{dec}_{#}}P$ represent the pushforward measures of Q and P through the encoder 178 map g_{enc} and decoder map g_{dec} , respectively. The latent representation error is understood as the ¹⁷⁹ "difference" of pushforward measure by the encoder/decoder and target measure. Here, *to understand* 180 *the "scale" of the error* ε *in Equation* [\(5\)](#page-3-1), we use W_1 for the discrepancy between probability ¹⁸¹ *measures.* In particular, for Dreamer-type loss function that uses KL-divergence, we note that squared $182 \, W_1$ distance between two probability measures can be upper bounded by their KL-divergence up to 183 a constant [\[11\]](#page-9-14), implying that one could reasonably expect the W_1 distance to also decrease when ¹⁸⁴ KL-divergence is used in the model.

¹⁸⁵ CNN configuration. As a popular choice choice in encoder-decoder architecture is CNN, we 186 consider a general CNN function $f_{\text{CNN}} : \mathcal{X} \to \mathbb{R}$. Let f_{CNN} have L hidden layers, represented 187 as: for $x \in \mathcal{X}$, $f_{\text{CNN}}(x) := A_{L+1} \circ A_L \circ \cdots \circ A_2 \circ A_1(x)$, where A_i 's are either convolutional or downsampling operators. For convolutional layers, $A_i(x) = \sigma(W_i^c x + b_i^c)$, where $W_i^c \in \mathbb{R}^{d_i \times d_{i-1}}$ 188 189 is a structured sparse Toeplitz matrix from the convolutional filter $\{w_j^{(i)}\}_{j=0}^{s(i)}$ with filter length 190 $s(i) \in \mathbb{N}_+$, $b_i^c \in \mathbb{R}^{d_i}$ is a bias vector, and σ is the ReLU activation function. For downsampling 191 layers, $A_i(x) = D_i(x) = (x_{j m_i})_{j=1}^{\lfloor d_{i-1}/m_i \rfloor}$, where D_i : ℝ $d_i \times d_{i-1}$ is the downsampling operator 192 with scaling parameter $m_i \leq d_{i-1}$ in the i-th layer. We examine the class of functions represented by 193 CNNs, denoted by \mathcal{F}_{CNN} , defined as:

 $\mathcal{F}_{CNN} = \{f_{CNN} \text{ as in defined above with any choice of } A_i, i = 1, \ldots, L+1\}.$

- 194 For the specific definition of \mathcal{F}_{CNN} , we refer to [\[29\]](#page-10-10)'s (4), (5) and (6).
- 195 **Assumption 3.5.** Assume that M and Z are locally diffeomorphic, that is there exists a map 196 $F : \mathcal{M} \to \mathcal{Z}$ such that at every point x on M, $\det(d F(x)) \neq 0$.

¹⁹⁷ Theorem 3.6. *(Approximation Error of Latent Representation). Under Assumption [3.3,](#page-3-3) [3.4](#page-3-4) and [3.5,](#page-4-0)*

for $\theta \in (0,1)$, *let* $d_{\theta} := \mathcal{O}(d_{\mathcal{M}}\theta^{-2}\log \frac{d}{\theta})$. For positive integers M and N, there exists an encoder 199 g_{enc} and decoder $g_{dec} \in \mathcal{F}_{CNN}(L, S, W)$ *s.t.*

$$
W_1(g_{enc_{\#}}Q, P) \le d_{\mathcal{M}} C(NM)^{-\frac{2(k+1)}{d_{\theta}}}, \quad W_1(g_{dec_{\#}}P, Q) \le d_{\mathcal{M}} C(NM)^{-\frac{2(k+1)}{d_{\theta}}}.
$$

200 Theorem [3.6](#page-4-1) indicates that with an appropriate CNN configuration, the W_1 approximation error can be made to reside in a small region, as the best candidate within the function class is indeed capable of approximating the oracle encoder/decoder. In particular, this result indicates that the error magnitude ε in SDE [\(5\)](#page-3-1) can be assumed to be small. This allows us to apply the perturbation analysis of the dynamical system defined in Equations [\(5](#page-3-1) - [8\)](#page-3-2) in the following sections.

²⁰⁵ 3.2 Latent Representation Errors as Implicit Regularization towards Generalization

 In this section, we investigate the impact of latent representation errors on generalization, for the two cases with *zero drift* and *non-zero drift*, respectively. We show that under mild conditions, the *zero-drift* errors can function as a natural form of *implicit regularization*, promoting wider landscapes for improved robustness. Nevertheless, we caution that when latent representation errors have non-zero drift, it could lead to poor regularization with *unstable bias* and degrade world model's generalization, calling for explicit regularization.

212 To simplify the notation here, we consider the system equations, specifically Equations [\(5\)](#page-3-1), [\(6\)](#page-3-0) - [\(8\)](#page-3-2), 213 as one stochastic system. Let $x_t = (z_t, h_t, \tilde{z}_t, \tilde{s}_t)$ and $B_t = (B_t^{\text{enc}}, B_t^{\text{seq}}, B_t^{\text{pred}}, B_t^{\text{dec}})$:

$$
dx_t = (g(x_t, t) + \varepsilon \sigma(x_t, t)) dt + \sum_i \bar{g}_i(x_t, t) + \varepsilon \bar{\sigma}_i(x_t, t) dB_t^i,
$$
\n(9)

214 where g, and \bar{g}_i are structured accordingly for the respective components, employing the Einstein 215 summation convention for concise representation. For abuse of notation, $\sigma = (\sigma, 0, 0, 0), \bar{\sigma} =$ 216 $(\bar{\sigma}, 0, 0, 0)$. For a given error magnitude ε , we denote the solution to SDE [\(9\)](#page-4-2) as x_t^{ε} . Intuitively, x_t^{ε} is 217 the perturbed trajectory of the latent dynamics model. In particular, when $\varepsilon = 0$, indicating that the 218 absence of latent representation error in the model, the solution is denoted as x_t^0 .

²¹⁹ 3.2.1 The Case with Zero-drift Representation Errors

220 When the drift coefficient $\sigma = 0$, the latent representation errors correspond to a class of well-behaved ²²¹ stochastic processes. The following result translates the induced perturbation on the stochastic latent

- dynamics model's loss function $\mathcal L$ to a form of explicit regularization. We assume that $\mathcal L \in \mathcal C^2$ 222
- 223 and depends on z_t , h_t , \tilde{z}_t , \tilde{s}_t . Loss functions used in practical implementation, e.g. in DreamerV3,
- 224 reconstruction loss J_O , reward loss J_R , consistency loss J_D , all satisfy this condition.
- ²²⁵ Theorem 3.7. *(Explicit Effect Induced by Zero-Drift Representation Error) Under Assumptions* 226 [3.1](#page-3-5) and [3.2](#page-3-6) and considering a loss function $\mathcal{L} \in \mathcal{C}^2$, the explicit effects of the zero-drift error can be *zzz marginalized out as follows: as* $\varepsilon \to 0$,
-

$$
\mathbb{E}\mathcal{L}\left(x_t^{\varepsilon}\right) = \mathbb{E}\mathcal{L}(x_t^0) + \mathcal{R} + \mathcal{O}(\varepsilon^3),\tag{10}
$$

228 where the regularization term R is given by $R := \varepsilon \mathcal{P} + \varepsilon^2 (Q + \frac{1}{2} \mathcal{S})$, with

$$
\mathcal{P} := \mathbb{E}\,\nabla \mathcal{L}(x_t^0)^\top \Phi_t \sum_k \xi_t^k,\tag{11}
$$

$$
S := \mathbb{E} \sum_{k_1, k_2} (\Phi_t \xi_t^{k_1})^i \nabla^2 \mathcal{L}(x_t^0, t) (\Phi_t \xi_t^{k_2})^j,
$$
 (12)

$$
\mathcal{Q} := \mathbb{E}\,\nabla \mathcal{L}(x_t^0)^\top \Phi_t \int_0^t \Phi_s^{-1} \,\mathcal{H}^k(x_s^0, s) dB_t^k. \tag{13}
$$

229 *Square matrix* Φ_t *is the stochastic fundamental matrix of the corresponding homogeneous equation:*

$$
d\Phi_t = \frac{\partial \bar{g}_k}{\partial x}(x_t^0, t) \Phi_t dB_t^k, \quad \Phi(0) = I,
$$

- 230 and ξ_t^k is the shorthand for $\int_0^t \Phi_s^{-1} \bar{\sigma}_k(x_s^0, s) dB_t^k$. Additionally, $\mathcal{H}^k(x_s^0, s)$ is represented by for 231 $\sum_{k_1,k_2} \frac{\partial^2 \bar{g}_{k}}{\partial x^i \partial x^j} (x_s^0,s) \left(\xi_s^{k_1}\right)^i \left(\xi_s^{k_2}\right)^j.$
- ²³² The proof is relegated to Appendix [B](#page-15-1) in the Supplementary Materials.

233 When the loss $\mathcal L$ is convex, then its Hessian, $\nabla^2 \mathcal L$, is positive semi-definite, which ensures that the term S is non-negative. *The presence of this Hessian-dependent term* S*, under latent representation error, implies a tendency towards wider minima in the loss landscape.* Empirical results from [\[20\]](#page-9-15) indicates that wider minima correlate with improved robustness of implicit regularization during training. This observation also aligns with the theoretical insights in [\[27\]](#page-10-3) that the introduction of Brownian motion, which is indeed zero-drift by definition, in training RNN models promotes 239 robustness. We note that in addition, when the error $\bar{\sigma}_t(\cdot)$ is too small, the effect of term S as implicit regularization would not be as significant as desired. Intuitively, this insight resonates with the empirical results in Table [1](#page-1-0) that model's robustness gain is not significant when the error induced by small batch sizes is too small.

 We remark that the exact loss form treated here is simplified compared to that in the practical implementation of world models, which frequently depends on the probability density functions 245 (PDFs) of z_t , h_t , \tilde{z}_t , \tilde{s}_t . In principle, the PDE formulation corresponding to the PDFs of the perturbed x_t^{ϵ} can be derived from the Kolmogorov equation of the SDE [\(9\)](#page-4-2), and the technicality is more involved but can offer more direct insight. We will study this in future work.

²⁴⁸ 3.2.2 The Case with Non-Zero-Drift Representation Errors

²⁴⁹ In practice, latent representation errors may not always exhibit *zero drift* as in idealized noise-injection 250 schemes for deep learning ([\[27\]](#page-10-3), [\[2\]](#page-9-6)). When the drift coefficient σ is non-zero or a function of input 251 data h_t and s_t in general, the explicit regularization terms induced by the latent representation error 252 may lead to unstable bias in addition to the regularization term $\mathcal R$ in Theorem [3.7.](#page-5-0) With a slight abuse 253 of notation, we denote \bar{g}_0 as g from Equation [\(9\)](#page-4-2) for convenience.

²⁵⁴ Corollary 3.8. *(Additional Bias Induced by Non-Zero Drift Representation Error)*

255 Under Assumptions [3.1](#page-3-5) and [3.2](#page-3-6) and considering a loss function $\mathcal{L} \in \mathcal{C}^2$, the explicit effects of the 256 general form error can be marginalized out as follows as $\varepsilon \to 0$:

$$
\mathbb{E}\mathcal{L}\left(x_t^{\varepsilon}\right) = \mathbb{E}\mathcal{L}(x_t^0) + \mathcal{R} + \tilde{\mathcal{R}} + \mathcal{O}(\varepsilon^3),\tag{14}
$$

257 *where the additional bias term* $\tilde{\cal R}$ *is given by* $\tilde{\cal R} := \varepsilon \, \tilde{\cal P} + \varepsilon^2 \, \big(\tilde{\cal Q} + \tilde{\cal S} \big)$, with

$$
\tilde{\mathcal{P}} := \mathbb{E}\,\nabla \mathcal{L}(x_t^0)^\top \Phi_t \,\tilde{\xi}_t,\tag{15}
$$

$$
\tilde{\mathcal{Q}} := \mathbb{E}\,\nabla \mathcal{L}(x_t^0)^\top \Phi_t \int_0^t \Phi_s^{-1} \,\mathcal{H}^0(x_s^0, s) \, dt,\tag{16}
$$

$$
\tilde{\mathcal{S}} := \mathbb{E}\sum_{k} (\Phi_t \tilde{\xi}_t)^i \nabla^2 \mathcal{L}(x_t^0, t) \left(\Phi_t \xi_t^k\right)^j, \tag{17}
$$

258 and $\tilde{\xi}_t$ *being the shorthand for* $\int_0^t \Phi_s^{-1} \sigma_k(x_s^0, s) dt$.

259 The presence of the new bias term $\tilde{\mathcal{R}}$ implies that regularization effects of latent representation error 260 could be unstable. The presence of ζ in $\tilde{\mathcal{P}}, \tilde{\mathcal{Q}}$ and $\tilde{\mathcal{S}}$ induces a bias to the loss function with its 261 magnitude dependent on the error level $ε$, since $\hat{ξ}$ is a non-zero term influenced on the drift term 262 σ. This contrasts with the scenarios described in [\[27\]](#page-10-3) and [\[2\]](#page-9-6), where the noise injected for implicit ²⁶³ regularization follows a zero-mean Gaussian distribution. To modulate the regularization and bias 264 terms R and R respectively, we note that a common factor, the fundamental matrix Φ , can be bounded ²⁶⁵ by

$$
\mathbb{E}\sup_{t} \|\Phi_t\|_F^2 \le \sum_{k} C \exp\left(C \mathbb{E}\sup_{t} \left\|\frac{\partial g_k}{\partial x}(x_t^0, t)\right\|_F^2\right) \tag{18}
$$

²⁶⁶ which can be shown by using the Burkholder-Davis-Gundy Inequality and Gronwall's Lemma. 267 Based on this observation, we next propose a regularizer on input-output Jacobian norm $\|\frac{\partial g_k}{\partial x}\|_F$ that 268 could modulate the new bias term $\tilde{\mathcal{R}}$ for stabilized implicit regularization.

²⁶⁹ 4 Enhancing Predictive Rollouts via Jacobian Regularization

 In this section, we study the effects of latent representation errors on predictive rollouts using latent state transitions, which happen in the inference phase in world models. We then propose to use Jacobian regularization to enhance the quality of rollouts. In particular, we first obtain an upper bound of state trajectory divergence in the rollout due to the representation error. We show that the error effects on task policy's Q function can be controlled through model's input-output Jacobian norm.

 In world model learning, the task policy is optimized over the rollouts of dynamics model with the 276 initial latent state z_0 . Recall that latent representation error is introduced to z_0 when latent encoder encodes the initial state s_0 from task environment. Intuitively, the latent representation error would propagate under the sequence model and impact the policy learning, which would then affect the generalization capacity through increased exploration.

²⁸⁰ Recall that the sequence model and the transition predictor are given as follows:

$$
d h_t = f(h_t, \tilde{z}_t, \pi(h_t, \tilde{z}_t)) dt, \quad d \tilde{z}_t = p(h_t) dt + \bar{p}(h_t) dB_t,
$$
\n
$$
(19)
$$

281 with random variables h_0 , $\tilde{z}_0 + \varepsilon$ as the initial values, respectively. In particular, ε is a random ²⁸² variable of proper dimension, representing the error from encoder introduced at the initial step. We ²⁸³ impose the standard assumption on the error to ensure the well-definedness of the SDEs.

²⁸⁴ Under Assumption [3.1,](#page-3-5) there exists a unique solution to the SDEs (for Equations [19](#page-6-0) with square-285 integrable ε), denoted as $(h_t^{\varepsilon}, z_t^{\varepsilon})$. In the case of no error introduced, i.e., $\varepsilon = 0$, we denote the 286 solution of the SDEs as (h_t^0, z_t^0) understood as the rollout under the absence of latent representation ²⁸⁷ error. To understand how to modulate impacts of the error in rollouts, our following result gives an 288 upper bound on the expected divergence between the perturbed rollout trajectory $(h_t^{\varepsilon}, z_t^{\varepsilon})$ and the 289 original (h_t^0, z_t^0) over the interval $[0, T]$.

²⁹⁰ Theorem 4.1. *(Bounding trajectory divergence) For a square-integrable random variable* ε*, let* 291 $\delta := \mathbb{E} \left\| \varepsilon \right\|$ and $d_{\varepsilon} := \mathbb{E} \sup_{t \in [0,T]} \left\| h^\varepsilon_t - h^0_t \right\|^2 + \left\| \tilde{z}^\varepsilon_t - \tilde{z}^0_t \right\|^2$. As $\delta \to 0$,

$$
d_{\varepsilon} \leq \delta C \left(\mathcal{J}_0 + \mathcal{J}_1 \right) + \delta^2 C \exp \left(\mathcal{H}_0 \left(\mathcal{J}_0 + \mathcal{J}_1 \right) \right) + \delta^2 C \exp \left(\mathcal{H}_1 \left(\mathcal{J}_0 + \mathcal{J}_1 \right) \right) + \mathcal{O}(\delta^3),
$$

292 where C is a constant dependent on T. \mathcal{J}_1 and \mathcal{J}_2 are Jacobian-related terms, and \mathcal{H}_1 and \mathcal{H}_2 are Hessian-²⁹³ *related terms.*

294 The Jacobian-related terms \mathcal{J}_1 and \mathcal{J}_2 are defined as $\mathcal{J}_0 := \exp(\mathcal{F}_h + \mathcal{F}_z + \mathcal{P}_h)$, $\mathcal{J}_1 := \exp(\bar{\mathcal{P}}_h)$; 295 the Hessian-related terms \mathcal{H}_0 and \mathcal{H}_1 are defined as $\mathcal{H}_0 := \mathcal{F}_{hh} + \mathcal{F}_{hz} + \mathcal{F}_{zh} + \mathcal{F}_{zz} + \mathcal{P}_{hh}, \mathcal{H}_1 := \overline{\mathcal{P}}_{hh}$ 296 where \mathcal{F}_h , \mathcal{F}_z are the expected sup Frobenius norm of Jacobians of f w.r.t h, z, respectively, and 297 $\mathcal{F}_{hh}, \mathcal{F}_{hz}, \mathcal{F}_{zh}, \mathcal{F}_{zz}$ are the corresponding expected sup Frobenius norm of second-order derivatives. ²⁹⁸ Other terms are similarly defined. A detailed description of all terms, can be found in Appendix [C.1.](#page-23-0) ²⁹⁹ Theorem [4.1](#page-6-1) correlates with the empirical findings in [\[14\]](#page-9-0) regarding the diminished predictive

300 accuracy of latent states \tilde{z}_t over the extended horizons. In particular, Theorem [4.1](#page-6-1) suggests that the ³⁰¹ expected divergence from error accumulation hinges on the expected error magnitude, the Jacobian 302 norms within the latent dynamics model and the horizon length T .

³⁰³ Our next result reveals how initial latent representation error influences the value function Q during ³⁰⁴ the prediction rollouts, which again verifies that the perturbation is dependent on expected error

305 magnitude, the model's Jacobian norms and the horizon length T :

306 **Corollary 4.2.** For a square-integrable ε , let $x_t := (h_t, z_t)$. Then, for any action $a \in A$, the ³⁰⁷ *following holds for value function* Q *almost surely:*

$$
Q(x_t^{\varepsilon}, a) = Q(x_t^0, a) + \frac{\partial}{\partial x} Q(x_t^0, a) \left(\varepsilon^i \partial_i x_t^0 + \frac{1}{2} \varepsilon^i \varepsilon^j \partial_{ij}^2 x_t^0 \right) + \frac{1}{2} (\varepsilon^i \partial_i x_t^0)^{\top} \frac{\partial^2}{\partial x^2} Q(x_t^0, a) (\varepsilon^i \partial_i x_t^0) + \mathcal{O}(\delta^3),
$$

308 as δ → 0, where stochastic processes $\partial_i x^0_t$, $\partial^2_{ij} x^0_t$ are the first and second derivatives of x^0_t w.r.t $ε$ ³⁰⁹ *and are bounded as follows:*

$$
\mathbb{E}\sup_{t\in[0,T]}\left\|\partial_{i} x_{t}^{0}\right\| \leq C\left(\mathcal{J}_{0}+\mathcal{J}_{1}\right),\,\mathbb{E}\sup_{t\in[0,T]}\left\|\partial_{i j}^{2} x_{t}^{0}\right\| \leq C\exp\left(\mathcal{H}_{0}\left(\mathcal{J}_{0}+\mathcal{J}_{1}\right)\right)+C\exp\left(\mathcal{H}_{1}\left(\mathcal{J}_{0}+\mathcal{J}_{1}\right)\right).
$$

³¹⁰ This corollary reveals that latent representation errors implicitly encourage exploration of unseen ³¹¹ states by inducing a stochastic perturbation in the value function, which again can be regularized ³¹² through a controlled Jacobian norm.

Jacobian Regularization against Non-Zero Drift. The above theoretical results have established a close connection of input-output Jacobian matrices with the stabilized generalization capacity of world models (shown in [18](#page-6-2) under non-zero drift form), and perturbation magnitude in predictive rollouts (indicated in the presence of Jacobian terms in Theorem [4.1](#page-6-1) and Corollary [4.2.](#page-7-0)) Based on this, we propose a regularizer on input-output Jacobian norm $\|\frac{\partial g_k}{\partial x}\|_F$ that could modulate $\tilde{\xi}$ (and in 318 addition ξ_k) for stabilized implicit regularization.

³¹⁹ The regularized loss function for LDM is defined as follows:

$$
\bar{\mathcal{L}}_{\text{dyn}} = \mathcal{L}_{\text{dyn}} + \lambda \left\| J_{\theta} \right\|_{F},\tag{20}
$$

320 where \mathcal{L}_{dyn} is the original loss function for dynamics model, J_{θ} denotes the data-dependent Jacobian 321 matrix associated with the θ -parameterized dynamics model, and λ is the regularization weight. ³²² Our empirical results in [5](#page-7-1) with an emphasis on sequential case align with the experimental findings ³²³ from [\[18\]](#page-9-16) that Jacobian regularization can enhance robustness against random and adversarial input ³²⁴ perturbation in machine learning models.

325 5 Experimental Studies

³²⁶ In this section, experiments are carried out over a number of tasks in Mujoco environments. Due to ³²⁷ space limitation, implementation details and additional results, including the standard deviation of ³²⁸ the trials, are relegated to Section [D](#page-26-0) in the Appendix.

³²⁹ Enhanced generalization to unseen noisy states. We investigated the effectiveness of Jacobian ³³⁰ regularization in model trained against a vanilla model during the inference phase with perturbed ³³¹ state images. We consider three types of perturbations: (1) Gaussian noise across the full image, 332 denoted as $\mathcal{N}(\mu_1, \sigma_1^2)$; (2) rotation; and (3) noise applied to a percentage of the image, $\mathcal{N}(\mu_2, \sigma_2^2)$. 333 (In Walker task, $\mu_1 = \mu_2 = 0.5, \sigma_2^2 = 0.15$; in Quadruped task, $\mu_1 = 0, \mu_2 = 0.05, \sigma_2^2 = 0.2$.) In each case of perturbations, we examine a collection of noise levels: (1) variance σ^2 from 0.05 to 335 0.55; (2) rotation degree α 20 and 30; and (3) masked image percentage $\beta\%$ from 25 to 75.

Figure 1: Generalization against increasing degree of perturbation.

It can be seen from Table [3](#page-8-0) and Figure [1](#page-7-2) that thanks to the adoption of Jacobian regularization in

training, the rewards (averaged over 5 trials) are higher compared to the baseline, indicating improved

generalization to unseen image states in all cases. The experimental results corroborate the findings

in Corollary [3.8](#page-5-1) that the regularized Jacobian norm could stabilize the induced implicit regularization.

Table 2: Evaluation on unseen states by various perturbation (Clean means without perturbation). $\lambda = 0.01$.

Robustness against encoder errors. Next, we focus on the effects of Jacobian regularization on controlling the error process to the latent states z during training. Since it is very challenging, if not impossible, to characterize the latent representation errors and hence the drift therein explicitly, we consider to evaluate the robustness against two exogenous error signals, namely (1) zero-drift 344 error with $\mu_t = 0, \sigma_t^2$ ($\sigma_t^2 = 5$ in Walker, $\sigma_t^2 = 0.1$ in Quadruped), and (2) non-zero-drift error 345 with $\mu_t \sim [0, 5], \sigma_t^2 \sim [0, 5]$ uniformly. Table [3](#page-8-0) shows that the model with regularization can consistently learn policies with high returns and also converges faster, compared to the vanilla case. This corroborates our theoretical findings in Corollary [3.8](#page-5-1) that the impacts of error to loss $\mathcal L$ can be controlled through the model's Jacobian norm.

				Zero drift, Walker Non-zero drift, Walker Zero drift, Quad Non-zero drift, Quad				
	300k	600k	300k	600k	600k	1.2M	1 M	2M
With Jacobian	666.2	966	905.7	912.4	439.8	889	348.3	958.7
Baseline	24.5	43.1	404.6	495	293.6	475.9	48.98	32.87

Table 3: Accumulated rewards under additional encoder errors. $\lambda = 0.01$.

 Faster convergence on tasks with extended horizon. We further evaluate the efficacy of Jacobian regularization in tasks with extended horizon, particularly by extending the horizon length in MuJoCo Walker from 50 to 100 steps. Table [4](#page-8-1) shows that the model with regularization converges significantly

faster (∼ 100K steps) than the case without Jacobian regularization in training. This corroborates

results in Theorem [4.1](#page-6-1) that regularizing the Jacobian norm can reduce error propagation.

Table 4: Accumulated rewards of Walker with extended horizon.

6 Conclusion

 In this study, we investigate the impacts of latent representation errors on the generalization capacity of world models. We utilize a stochastic differential equation formulation to characterize the effects of latent representation errors as implicit regularization, for both cases with zero-drift errors and with non-zero drift errors. We develop a Jacobian regularization scheme to address the compounding effects of non-zero drift, thereby enhancing training stability and generalization. Our empirical findings validate that Jacobian regularization improves the generalization performance, expanding the applicability of world models in complex, real-world scenarios. Future research is needed to investigate how stabilizing latent errors can enhance generalization across more sophisticated tasks for general non-zero drift cases.

 The broader social impact of our work resides in its potential to enhance the robustness and reliability of RL agents deployed in real-world applications. By improving the generalization capacities of world models, our work could contribute to the development of RL agents that perform consistently across diverse and unseen environments. This is particularly relevant in safety-critical domains such as autonomous driving, where reliable agents can provide intelligent and trustworthy decision-making.

References

- [1] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment: An evaluation platform for general agents. *Journal of Artificial Intelligence Research*, 47:253–279, 2013.
- 373 [2] Alexander Camuto, Matthew Willetts, Umut Simsekli, Stephen Roberts, and Chris Holmes. Explicit regularisation in gaussian noise injections, 2021.
- [3] Henri Cartan. *Differential calculus on normed spaces*. Createspace Independent Publishing Platform, North Charleston, SC, August 2017.
- [4] Bo Chang, Minmin Chen, Eldad Haber, and Ed H. Chi. Antisymmetricrnn: A dynamical system view on recurrent neural networks, 2019.
- [5] Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, and Léon Bottou. Symplectic recurrent neural networks, 2020.
- [6] Bernard Dacorogna and Jürgen Moser. On a partial differential equation involving the jacobian determinant. *Annales de l'I.H.P. Analyse non linéaire*, 7(1):1–26, 1990.
- [7] Carl Doersch. Tutorial on variational autoencoders. *arXiv preprint arXiv:1606.05908*, 2016.
- [8] Sean C Duncan. Minecraft, beyond construction and survival. 2011.
- [9] Lawrence Craig Evans and Ronald F Gariepy. *Measure theory and fine properties of functions, revised edition*. Textbooks in Mathematics. Apple Academic Press, Oakville, MO, April 2015.
- [10] C. Daniel Freeman, Luke Metz, and David Ha. Learning to predict without looking ahead: World models without forward prediction. *Thirty-third Conference on Neural Information Processing Systems (NeurIPS 2019)*, 2019.
- [11] Alison L. Gibbs and Francis Edward Su. On choosing and bounding probability metrics. *International Statistical Review / Revue Internationale de Statistique*, 70(3):419–435, 2002.
- [12] David Ha and Jürgen Schmidhuber. World models. *arXiv preprint arXiv:1803.10122*, 2018.
- [13] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning behaviors by latent imagination, 2020.
- [14] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James Davidson. Learning latent dynamics for planning from pixels. In *International conference on machine learning*, pages 2555–2565. PMLR, 2019.
- [15] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete world models, 2022.
- [16] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains through world models. *arXiv preprint arXiv:2301.04104*, 2023.
- [17] Paul Louis Hennequin, R. M. Dudley, H. Kunita, and F. Ledrappier. *Ecole d'ete de Probabilites de Saint-Flour XII-1982*. Springer-Verlag, 1984.
- [18] Judy Hoffman, Daniel A. Roberts, and Sho Yaida. Robust learning with jacobian regularization, 2019.
- [19] Anthony Hu, Lloyd Russell, Hudson Yeo, Zak Murez, George Fedoseev, Alex Kendall, Jamie Shotton, and Gianluca Corrado. Gaia-1: A generative world model for autonomous driving. *arXiv preprint arXiv:submit/1234567*, Sep 2023. Submitted on 29 Sep 2023.
- [20] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp minima, 2017.
- [21] Samuel Kessler, Mateusz Ostaszewski, Michał Bortkiewicz, Mateusz Zarski, Maciej Wołczyk, ˙ Jack Parker-Holder, Stephen J. Roberts, and Piotr Miłos. The effectiveness of world models for ´ continual reinforcement learning. *CoLLAs 2023*, 2023.
- [22] Kuno Kim, Megumi Sano, Julian De Freitas, Nick Haber, and Daniel Yamins. Active world model learning with progress curiosity. In *Proceedings of the 37th International Conference on Machine Learning (ICML)*, 2020.
- [23] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*, 2013.
- [24] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition. *Neural computation*, 1(4):541–551, 1989.
- [25] John M. Lee. *Introduction to Riemannian Manifolds*. Springer International Publishing, 2018.
- [26] Zhong Li, Jiequn Han, Weinan E, and Qianxiao Li. Approximation and optimization theory for linear continuous-time recurrent neural networks. *Journal of Machine Learning Research*, 23(42):1–85, 2022.
- [27] Soon Hoe Lim, N Benjamin Erichson, Liam Hodgkinson, and Michael W Mahoney. Noisy recurrent neural networks. *Advances in Neural Information Processing Systems*, 34:5124–5137, 2021.
- [28] Lynn Harold Loomis and Shlomo Sternberg. *Advanced calculus (revised edition)*. World Scientific Publishing, Singapore, Singapore, March 2014.
- [29] Guohao Shen, Yuling Jiao, Yuanyuan Lin, and Jian Huang. Approximation with cnns in sobolev space: with applications to classification. In *NeurIPS*, Oct 2022.
- [30] J. Michael Steele. *Stochastic calculus and Financial Applications*. Springer, 2001.
- [31] Colin Wei, Sham Kakade, and Tengyu Ma. The implicit and explicit regularization effects of dropout, 2020.
- [32] Philipp Wu, Alejandro Escontrela, Danijar Hafner, Pieter Abbeel, and Ken Goldberg. Day- dreamer: World models for physical robot learning. In *Proceedings of The 6th Conference on Robot Learning*, volume 205 of *PMLR*, pages 2226–2240, 2023.
- [33] Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A review of recurrent neural networks: Lstm cells and network architectures. *Neural computation*, 31(7):1235–1270, 2019.

Supplementary Materials In this appendix, we provide the supplementary materials supporting the findings of the main paper on the latent representation of latent representations in world models. The organization is as follows: • In Section [A,](#page-12-0) we provide proof on showing the approximation capacity of CNN encoder- decoder architecture in latent representation of world models. • In Section [B,](#page-15-1) we provide proof on implicit regularization of zero-drift errors and additional effects of non-zero-drift errors by showing a proposition on the general form.

- In Section [C,](#page-23-1) we provide proof on showing the effects of non-zero-drift errors during predictive rollouts by again showing a result on the general form.
- In Section [D,](#page-26-0) we provide additional results and implementation details on our empirical studies.

⁴⁵³ A Approximation Power of Latent Representation with CNN Encoder and ⁴⁵⁴ Decoder

455 To mathematically describe this *intrinsic lower-dimensional geometric structure*, for an integer $k > 0$ 456 and $\alpha \in (0, 1]$, we consider the notion of smooth manifold (in the $\mathcal{C}^{k,\alpha}$ sense), formally defined by

457 **Definition A.1** ($\mathcal{C}^{k,\alpha}$ manifold). A $\mathcal{C}^{k,\alpha}$ manifold M of dimension n is a topological manifold (i.e. 458 a topological space that is locally Euclidean, with countable basis, and Hausdorff) that has a $\mathcal{C}^{k,\alpha}$ 459 structure Ξ that is a collection of coordinate charts $\{U_\alpha, \psi_\alpha\}_{\alpha \in A}$ where U_α is an open subset of M, 460 $\psi_{\alpha}: U_{\alpha} \to V_{\alpha} \subseteq \mathbb{R}^n$ such that

461 ● $\bigcup_{\alpha \in A} U_{\alpha} \supseteq M$, meaning that the the open subsets form an open cover,

• Each chart ψ_{α} is a diffeomorphism that is a smooth map with smooth inverse (in the $\mathcal{C}^{k,\alpha}$ ⁴⁶³ sense),

• Any two charts are $\mathcal{C}^{k,\alpha}$ -compatible with each other, that is for all $\alpha_1, \alpha_2 \in A$, $\psi_{\alpha_1} \circ \psi_{\alpha_2}^{-1}$: 465 $\psi_{\alpha_2}(U_{\alpha_1}\cap U_{\alpha_2})\to \psi_{\alpha_1}(U_{\alpha_1}\cap U_{\alpha_2})$ is $\mathcal{C}^{k,\alpha}$.

466 Intuitively, a $\mathcal{C}^{k,\alpha}$ manifold is a generalization of Euclidean space by allowing additional spaces with ⁴⁶⁷ nontrivial global structures through a collection of charts that are diffeomorphisms mapping open ⁴⁶⁸ subsets from the manifold to open subsets of euclidean space. For technical utility, the defined charts ⁴⁶⁹ allow to transfer most familiar real analysis tools to the manifold space. For more references, see ⁴⁷⁰ [\[25\]](#page-10-11).

Definition A.2 (Riemannian volume form). Let X be a smooth, oriented d-dimensional manifold 472 with Riemannian metric g. A volume form $dvol_M$ is the canonical volume form on X if for any point $x \in \mathcal{X}$, for a chosen local coordinate chart $(x_1, ..., x_d)$, $dvol_{\mathcal{M}} = \sqrt{\det g_{ij}} dx_1 \wedge ... \wedge dx_d$, where $g_{ij}(x) := g\left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}\right)(x).$

475 Then the induced volume measure by the canonical volume form $dvol_{\mathcal{X}}$ is denoted as $\mu_{\mathcal{X}}$, defined 476 by $\mu_{\mathcal{X}} : A \mapsto \int_A dvol_{\mathcal{X}}$, for any Borel-measurable subset A on the space X. For more references, ⁴⁷⁷ see [\[9\]](#page-9-17).

⁴⁷⁸ We recall the latent representation problem defined in the main paper.

479 Consider the state space $S \subset \mathbb{R}^{d_S}$ and the latent space \mathcal{Z} . Consider a state probability measure Q on 480 the state space S and a probability measure P on the latent space \mathcal{Z} .

481 Assumption A.3. (Latent manifold assumption) For a positive integer k, there exists a $d_{\mathcal{M}}$ -482 dimensional $\mathcal{C}^{k,\alpha}$ submanifold M (with $\mathcal{C}^{k+3,\alpha}$ boundary) with Riemannian metric g and has 483 positive reach and also isometrically embedded in the state space $S \subset \mathbb{R}^{d_S}$ and $d_M \ll d_S$, where 484 the state probability measure is supported on. In addition, M is a compact, orientable, connected ⁴⁸⁵ manifold.

486 Assumption A.4. (Smoothness of state probability measure) Q is a probability measure supported 487 on M with its Radon-Nikodym derivative $q \in C^{k,\alpha}(\mathcal{M}, \mathbb{R})$ w.r.t $\mu_{\mathcal{M}}$.

488 Let Z be a closed ball in $\mathbb{R}^{d,\mathcal{M}}$, that is $\{x \in \mathbb{R}^{d,\mathcal{M}} : \|x\| \leq 1\}$. P is a probability measure supported 489 on Z with its Radon-Nikodym derivative $p \in C^{k,\alpha}(\mathcal{Z}, \mathbb{R})$ w.r.t $\mu_{\mathcal{Z}}$.

490 We consider a general CNN function $f_{\text{CNN}} : \mathcal{X} \to \mathbb{R}$. Let f_{CNN} have L hidden layers, represented as:

$$
f_{\text{CNN}}(x) = A_{L+1} \circ A_L \circ \cdots \circ A_2 \circ A_1(x), \quad x \in \mathcal{X},
$$

491 where A_i 's are either convolutional or downsampling operators. For convolutional layers,

$$
A_i(x) = \sigma(W_i^c x + b_i^c),
$$

492 where W_i^c ∈ $\mathbb{R}^{d_i \times d_{i-1}}$ is a structured sparse Toeplitz matrix from the convolutional filter $\{w_j^{(i)}\}_{j=0}^{s(i)}$

493 with filter length $s(i) \in \mathbb{N}_+$, $b_i^c \in \mathbb{R}^{d_i}$ is a bias vector, and σ is the ReLU activation function.

⁴⁹⁴ For downsampling layers,

$$
A_i(x) = D_i(x) = (x_{j m_i})_{j=1}^{\lfloor d_{i-1}/m_i \rfloor},
$$

Figure 2: *Latent Representation Problem*: The left and right denote the manifold M with lower dim $d_{\mathcal{M}}$ embedded in a larger Euclidean space, with latent space Z a $d_{\mathcal{M}}$ -dimensional ball in middle. Encoder and decoder as maps respectively pushing forward Q to P and P to Q.

495 where $D_i: \mathbb{R}^{d_i \times d_{i-1}}$ is the downsampling operator with scaling parameter $m_i \leq d_{i-1}$ in the *i*-th ⁴⁹⁶ layer. The convolutional and downsampling operations are elaborated in Appendix [63]. We examine 497 the class of functions represented by CNNs, denoted by \mathcal{F}_{CNN} , defined as:

 $\mathcal{F}_{CNN} = \{f_{CNN} \text{ as in defined above with any choice of } A_i, i = 1, \ldots, L+1\}.$

⁴⁹⁸ For more details in the definitions of CNN functions, we refer to [\[29\]](#page-10-10).

Assumption A.5. Assume that M and Z are locally diffeomorphic, that is there exists a map 500 $F : \mathcal{M} \to \mathcal{Z}$ such that at every point x on M, $\det(d F(x)) \neq 0$.

⁵⁰¹ Theorem A.6. *(Approximation Error of Latent Representation). Under Assumption [A.3,](#page-12-1) [A.4](#page-12-2) and* α *[A.5,](#page-13-0) for* $\theta \in (0,1)$, *let* $d_{\theta} = \mathcal{O}(d_{\mathcal{M}}\theta^{-2}\log\frac{d}{\theta})$ *. For positive integers M* and N, there exists an 503 *encoder* g_{enc} *and decoder* $g_{dec} \in \mathcal{F}_{CNN}(L, S, \tilde{W})$ *s.t.*

$$
W_1(g_{enc_{\#}}Q, P) \le d_{\mathcal{M}}C(NM)^{-\frac{2(k+1)}{d_{\theta}}},
$$

$$
W_1(g_{dec_{\#}}P, Q) \le d_{\mathcal{M}}C(NM)^{-\frac{2(k+1)}{d_{\theta}}}.
$$

⁵⁰⁴ The primary challenge to show Theorem [A.6](#page-13-1) is in demonstrating the existence of oracle encoder and 505 decoder maps. These maps, denoted as $g_{\text{enc}}^* : \mathcal{M} \to \mathcal{Z}$ and $g_{\text{dec}}^* : \mathcal{Z} \to \mathcal{M}$ respectively, must satisfy

$$
g_{\text{enc}}^* \# Q = P, \quad g_{\text{dec}}^* \# P = Q. \tag{21}
$$

506 and importantly they have the proper smoothness guarantee, namely g_{enc}^* ∈ $\mathcal{C}^{k+1,\alpha}(\mathcal{M},\mathcal{Z})$ and ⁵⁰⁷ g_{dec}^* ∈ $\mathcal{C}^{k+1,\alpha}(\mathcal{Z},\mathcal{M})$. Proposition [A.7](#page-13-2) shows the existence of such oracle map(s).

508 **Proposition A.7** ($\mathcal{C}^{k,\alpha}$, compact). Let \mathcal{M}, \mathcal{N} be compact, oriented d-dimensional Riemannian δ ₅₀₉ *manifolds with* $\mathcal{C}^{k+3,\alpha}$ *boundary with the volume measure* $\mu_{\mathcal{M}}$ *and* $\mu_{\mathcal{N}}$ *respectively. Let* Q , P *be distributions supported on* M, N *respectively with their* C k,α ⁵¹⁰ *density functions* q, p*, that is* Q, P *are 511 probability measures supported on* M , N *with their Radon-Nikodym derivatives* $q \in C^{k,\alpha}(\mathcal{M}, \mathbb{R})$ *siz* w.r.t $\mu_{\mathcal{M}}$ and $p \in C^{k,\alpha}(\mathcal{N},\mathbb{R})$ w.r.t $\mu_{\mathcal{N}}$. Then, there exists a $C^{k+1,\alpha}$ map $g : \mathcal{N} \to \mathcal{M}$ such that 513 *the pushforward measure* $g_{\#}P = Q$, that is for any measurable subset $A \in \mathcal{B}(\mathcal{M})$, $Q(A) =$ 514 $P(g^{-1}(A)).$

Froof. (*Proposition [A.7](#page-13-2)*) Let $\omega := p dvol_\mathcal{N}$, then ω is a $\mathcal{C}^{k,\alpha}$ volume form on N, as $p \in \mathcal{C}^{k,\alpha}$ and for 516 any point $x \in \mathcal{N}$, we have $p(x) > 0$. In addition, $\int_{\mathcal{N}} \omega = \int_{\mathcal{N}} p \, dvol_{\mathcal{N}} = \int_{\mathcal{N}} p \, d\mu_{\mathcal{N}} = P(\mathcal{N}) = 1$. 517 Similarly, let $\eta := q dvol_{\mathcal{M}}$ a $\mathcal{C}^{k,\alpha}$ volume form on $\mathcal M$ and $\int_{\mathcal{M}} \eta = 1$. 518

519 Let $F : \mathcal{N} \to \mathcal{M}$ be an orientation-preserving local diffeomorphism, we then have $\det(dF) > 0$ 520 everywhere on N .

521 As N is compact and M is connected by assumption, F is a covering map, that is for every point $x \in M$, there exists an open neighborhood U_x of x and a discrete set \hat{D}_x such that $F^{-1}(\hat{U}) =$ $\Box_{\alpha\in D}V_{\alpha}\subset \mathcal{N}$ and $F|_{V_{\alpha}}=V_{\alpha}\to U$ is a diffeomorphism. Furthermore, $|D_x|=|D_y|$ for any points $x, y \in \mathcal{M}$. In addition, $|D_x|$ is finite from the compactness of N.

525 Let $\bar{\eta}$ be the pushforward of ω via F, defined by for any point $x \in M$ and a neighborhood U_x ,

$$
\bar{\eta}(x) := \frac{1}{|D_x|} \sum_{\alpha \in D_x} \left(F \big|_{V_\alpha} \right)^* \omega \big|_{V_\alpha}.
$$
\n(22)

526 $\bar{\eta}$ is well-defined as it is not dependent on the choice of neighborhoods and the sum and $\frac{1}{|D_x|}$ are always finite. Furthermore, $\bar{\eta}$ is a $\mathcal{C}^{k,\alpha}$ volume form on \mathcal{M} , as $p \circ \left(F \big|_{V_{\alpha}} \right)$ 527 always finite. Furthermore, $\bar{\eta}$ is a $\mathcal{C}^{k,\alpha}$ volume form on M, as $p \circ (F|_{V}^{-1})$ is $\mathcal{C}^{k,\alpha}$. 528

Notice that $F|_{V_{\alpha}}$ ⁻¹ is orientation-preserving as det $dF|_{V_{\alpha}}$ $^{-1} = \frac{1}{1}$ $\left. \det d \, F \right|_{V_{\alpha}}$ 529 Notice that $F|_{V}$ is orientation-preserving as det $dF|_{V}$ $\frac{1}{dF} = \frac{1}{dF} > 0$ everywhere on V_{α} . In addition, F V_{α} is proper, as for any compact subset TV of $y\mathbf{v}$, TV is closed, and as $I|_{V_{\alpha}}$ $^{-1}$ is proper: as for any compact subset K of N, K is closed; and as F −1 530 is continuous, the preimage of K via $F|_{V_{\alpha}}$ 531 is continuous, the preimage of K via $F|_V^{-1}$ a closed subset of M which is compact, then the preimage of K must also be compact. Hence, $F|_{V_{\alpha}}$ $^{-1}$ is proper. As every $F|_{V_{\alpha}}$ 532 preimage of K must also be compact. Hence, $F|_V^{-1}$ is proper. As every $F|_V^{-1}$ is proper, orientation-preserving and surjective, then $c := \deg(F|_{V_{\alpha}})$ 533 orientation-preserving and surjective, then $c := \deg(F|_V^{-1}) = 1$. 534 Then, $\int_{\mathcal{M}} \bar{\eta} = c \int_{\mathcal{N}} \omega = 1$.

535

536 As we have shown that η and $\bar{\eta} \in C^{k,\alpha}$ and $\int_{\mathcal{M}} \bar{\eta} = \int_{\mathcal{M}} \eta$, by [\[6\]](#page-9-18), there exists a diffeomorphism 537 $\psi : \mathcal{M} \to \mathcal{M}$ fixing on the boundary such that $\psi^* \eta = \bar{\eta}$, where $\psi, \psi^{-1} \in \mathcal{C}^{k+1,\alpha}$. 538 Let $g := \psi \circ F$, then it holds that $g^* \eta = (\psi \circ F)^* \eta = F^* \circ \psi^* \eta = F^* \overline{\eta} = \omega$.

539 Then, for any measurable subset A on the manifold M, we verify that $Q(A) = \int_A \eta$ 540 $\int_{g^{-1}(A)} g^* \eta = \int_{g^{-1}(A)} \omega = \int_{g^{-1}(A)} p \, d\text{\rm vol}_\mathcal{N} = \int_{g^{-1}(A)} p \, d\mu_\mathcal{N} = P(g^{-1}(A)).$ 541

Hence, we have shown the existence by an explicit construction. As $\psi \in C^{k+1,\alpha}$, and $F \in C^{\infty}$, then 543 we have $q \in \mathcal{C}^{k+1,\alpha}$. П

⁵⁴⁴ We are now ready to show Theorem [A.6](#page-13-1) with the existence of oracle map and the low-dimensional ⁵⁴⁵ approximation results from [\[29\]](#page-10-10).

Froof. (*Theorem [A.6](#page-13-1)*) For encoder, from Proposition [A.7,](#page-13-2) there exists an $\mathcal{C}^{k+1,\alpha}$ oracle map g : 547 $\mathcal{M} \to \mathcal{Z}$ such that the pushforward measure $g_{\#}Q = P$. Then,

$$
W_1((g_{\text{enc}})_{\#}Q, P) = W_1((g_{\text{enc}})_{\#}Q, g_{\#}Q)
$$

\n
$$
= \sup_{f \in \text{Lip}_1(\mathcal{Z})} \left| \int_{\mathcal{Z}} f(y) d((g_{\text{enc}})_{\#}Q) - \int_{\mathcal{Z}} f(y) d(g_{\#}Q) \right|
$$

\n
$$
\leq \sup_{f \in \text{Lip}_1(\mathcal{Z})} \int_{\mathcal{M}} |f \circ g_{\text{enc}}(x) - f \circ g(x)| dQ
$$

\n
$$
\leq \int_{\mathcal{M}} ||g_{\text{enc}}(x) - g(x)|| dQ
$$

\n
$$
\leq d_{\mathcal{M}} C(NM)^{-\frac{2(k+1)}{d_{\theta}}},
$$

548 where the last inequality follows from the special case $\rho = 0$ of Theorem 2.4 in [\[29\]](#page-10-10).

549 Similarly, for decoder, from Proposition [A.7,](#page-13-2) there exists an $\mathcal{C}^{k+1,\alpha}$ oracle map $\bar{g}: \mathcal{Z} \to \mathcal{M}$ such

550 that the pushforward measure $\bar{g}_{\#}P = Q$.

$$
W_1((g_{\text{dec}})_\#P, Q) = W_1((g_{\text{dec}})_\#P, \bar{g}_\#P)
$$

\n
$$
\leq \int_Z ||g_{\text{dec}}(y) - \bar{g}(y)|| \ dP
$$

\n
$$
\leq d_{\mathcal{M}} C(NM)^{-\frac{2(k+1)}{d_{\theta}}}.
$$

551

⁵⁵² B Explicit Regularization of Latent Representation Error in World Model ⁵⁵³ Learning

 We recall the SDEs for latent dynamics model defined in the main paper. Consider a complete, 555 filtered probability space $(\Omega, \tilde{\mathcal{F}}, \{\mathcal{F}_t\}_{t\in[0,T]}, \mathbb{P})$ where independent standard Brownian motions $B_t^{\text{enc}}, B_t^{\text{pred}}, B_t^{\text{seq}}, B_t^{\text{dec}}$ are defined such that \mathcal{F}_t is their augmented filtration, and $T \in \mathbb{R}$ as the time length of the task environment. We consider the stochastic dynamics of LDM through the following coupled SDEs after error perturbation:

$$
d z_t = (q_{\rm enc}(h_t, s_t) + \sigma(h_t, s_t)) dt + (\bar{q}_{\rm enc}(h_t, s_t) + \bar{\sigma}(h_t, s_t)) dB_t^{\rm enc}, \qquad (23)
$$

$$
d h_t = f(h_t, z_t, \pi(h_t, z_t)) dt + \bar{f}(h_t, z_t, \pi(h_t, z_t)) dB_t^{\text{seq}}
$$
\n(24)

$$
d\,\tilde{z}_t = p(h_t) \, dt + \bar{p}(h_t) \, dB_t^{\text{pred}},\tag{25}
$$

$$
d\tilde{s}_t = q_{\text{dec}}(h_t, \tilde{z}_t) dt + \bar{q}_{\text{dec}}(h_t, \tilde{z}_t) dB_t^{\text{dec}},\tag{26}
$$

559 where $\pi(h, \tilde{z})$ is a policy function as a local maximizer of value function and the stochastic process 560 s_t is \mathcal{F}_t -adapted.

⁵⁶¹ As discussed in the main paper, our analysis applies to a common class of world models that uses 562 Gaussian distributions parameterized by neural networks' outputs for z , \tilde{z} , \tilde{s} . Their distributions are ⁵⁶³ not non-Gaussian in general.

 For example, as z is conditional Gaussian and its mean and variance are random variables which are 565 learned by the encoder from r.v.s s and h as inputs, thus rendering z non-Gaussian. However, z is indeed Gaussian when the inputs are known. Under this conditional Gaussian class of world models, to see that the continuous formulation of latent dynamics model can be interrupted as SDEs, one notices that SDEs with coefficient functions of known inputs are indeed Gaussian, matching to this class of world models. Formally, in the context of z without latent representation error:

⁵⁷⁰ Proposition B.1. *(Latent states SDE with known inputs is Gaussian)*

571 *For the latent state process* $z_{t \in [0,T]}$ *without error,*

$$
dz_t = q_{enc}(h_t, s_t) dt + \bar{q}_{enc}(h_t, s_t)) dB_t^{enc},
$$
\n
$$
(27)
$$

 572 *with zero initial value. Given known* $h_{t \in [0,T]}$ *and* $s_{t \in [0,T]}$ *, the process* z_t *is a Gaussian process.*

Furthermore, for any $t \in [0,T]$, z_t *follows a Gaussian distribution with mean* $\mu_t = \int_0^t q_{enc}(h_s, s_s) ds$

- 574 and variance $\sigma_t^2 = \int_0^t \bar{q}_{enc}(h_s, s_s)^2 ds$.
- ⁵⁷⁵ *Proof.* Proof follows from Proposition 7.6 in [\[30\]](#page-10-9).

 \Box

⁵⁷⁶ Next, we recall our assumptions from the main text:

577 **Assumption B.2.** The drift coefficient functions q_{enc} , f, p and q_{dec} and the diffusion coefficient functions $\bar{q}_{\text{enc}}, \bar{p}$ and \bar{q}_{dec} are bounded and Borel-measurable over the interval $[0, T]$, and of class C^3 578 579 with bounded Lipschitz continuous partial derivatives. The initial values z_0 , h_0 , \tilde{z}_0 , \tilde{s}_0 are square-⁵⁸⁰ integrable random variables.

- **Assumption B.3.** σ and $\bar{\sigma}$ are bounded and Borel-measurable and are of class \mathcal{C}^3 with bounded 582 Lipschitz continuous partial derivatives over the interval $[0, T]$.
- ⁵⁸³ One of our main results is the following:
- ⁵⁸⁴ Theorem B.4. *(Explicit Regularization Induced by Zero-Drift Representation Error)*
- 585 *Under Assumption [B.2](#page-15-2) and [B.3](#page-15-3) and considering a loss function* $\mathcal{L} \in \mathcal{C}^2$ *, the explicit effects of the* ⁵⁸⁶ *zero-drift error can be marginalized out as follows:*

$$
\mathbb{E}\,\mathcal{L}\,(x_t^{\varepsilon}) = \mathbb{E}\,\mathcal{L}(x_t^0) + \mathcal{R} + \mathcal{O}(\varepsilon^3),\tag{28}
$$

- 587 $as \varepsilon \to 0$, where the regularization term $\mathcal R$ is given by $\mathcal R := \varepsilon \mathcal P + \varepsilon^2 \left(\mathcal Q + \frac{1}{2} \mathcal S \right)$.
- ⁵⁸⁸ *Each term of* R *is as follows:*

$$
\mathcal{P} := \mathbb{E}\,\nabla \mathcal{L}(x_t^0)^\top \Phi_t \sum_k \xi_t^k,\tag{29}
$$

$$
\mathcal{Q} := \mathbb{E}\,\nabla \mathcal{L}(x_t^0)^\top \Phi_t \int_0^t \Phi_s^{-1} \,\mathcal{H}^k(x_s^0, s) dB_t^k,\tag{30}
$$

$$
S := \mathbb{E} \sum_{k_1, k_2} (\Phi_t \xi_t^{k_1})^i \nabla^2 \mathcal{L}(x_t^0, t) (\Phi_t \xi_t^{k_2})^j,
$$
 (31)

 589 *where square matrix* Φ_t *is the stochastic fundamental matrix of the corresponding homogeneous* ⁵⁹⁰ *equation:*

$$
d\Phi_t = \frac{\partial \bar{g}_k}{\partial x}(x_t^0, t) \Phi_t dB_t^k, \quad \Phi(0) = I,
$$

591 and ξ_t^k is as the shorthand for $\int_0^t \Phi_s^{-1} \bar{\sigma}_k(x_s^0,s) dB_t^k$. Additionally, ${\cal H}^k(x_s^0,s)$ is represented by for 592 $\sum_{k_1,k_2} \frac{\partial^2 \bar{g}_{k}}{\partial x^i \partial x^j} (x_s^0,s) \left(\xi_s^{k_1}\right)^i \left(\xi_s^{k_2}\right)^j.$

⁵⁹³ Before proving Theorem [B.4,](#page-15-4) we first show Proposition [B.5](#page-16-0) on the general case of perturbation to the ⁵⁹⁴ stochastic system. Consider the following perturbed system given by

$$
dx_{t} = (g_{0}(x_{t}, t) + \varepsilon \eta_{0}(x_{t}, t)) dt + \sum_{k=1}^{m} (g_{k}(x_{t}, t) + \varepsilon \eta_{k}(x_{t}, t)) dB_{t}^{k}
$$
(32)

- 595 with initial values $x(0) = x_0$,
- 596 **Proposition B.5.** Suppose that f is a real-valued function that is C^2 . Then it holds that, with 597 *probability 1, as* $\varepsilon \to 0$ *, for* $t \in [0, T]$ *,*

$$
f(x_t^{\varepsilon}) = f(x_t^0) + \varepsilon \nabla f(x_t^0)^\top \partial_{\varepsilon} x_t^0 + \varepsilon^2 \left(\nabla f(x_t^0)^\top \partial_{\varepsilon}^2 x_t^0 + \frac{1}{2} \partial_{\varepsilon} x_t^0^\top \nabla^2 f(x_t^0) \partial_{\varepsilon} x_t^0 \right) + \mathcal{O}(\varepsilon^3),
$$
\n(33)

598 *where the stochastic process* x_t^0 *is the solution to SDE* [32](#page-16-1) *with* $\varepsilon = 0$ *, with its first and second-order* 599 *derivatives w.r.t* ε *denoted as* $\partial_{\varepsilon} x_{t}^{0}, \partial_{\varepsilon}^{2} x_{t}^{0}$.

 $_{600}$ Furthermore, it holds that $\partial_\varepsilon\, x^0_t$, $\partial_\varepsilon^2\, x^0_t$ satisfy the following SDEs with probability 1,

$$
d\,\partial_{\varepsilon}x_t^0 = \left(\frac{\partial g_k}{\partial x}\left(x_t^0, t\right)\partial_{\varepsilon}x_t^0 + \eta_k\left(x_t^0, t\right)\right)dB_t^k,
$$

\n
$$
d\,\partial_{\varepsilon}^2x_t = \left(\Psi_k\left(\partial_{\varepsilon}x_t^0, x_t^0, t\right) + 2\frac{\partial \eta_k}{\partial x}\left(x_t^0, t\right)\partial_{\varepsilon}x_t^0 + \frac{\partial g_k}{\partial x}\left(x_t^0, t\right)\partial_{\varepsilon}^2x_t^0\right)dB_t^k,
$$
\n(34)

 δ ⁶¹ with initial values $\partial_{\varepsilon} x(0) = 0, \partial_{\varepsilon}^{2} x(0) = 0$, where

$$
\Psi_k : (\partial_{\varepsilon} x, x, t) \mapsto \partial_{\varepsilon} x^i \frac{\partial g_k}{\partial x^i \partial x^j} (x, t) \partial_{\varepsilon} x^j,
$$

602 *for* $k = 0, 1, ..., m$.

⁶⁰³ *Proof.* We first apply the stochastic version of perturbation theory to SDE [32.](#page-16-1) For brevity, we will 604 write t as B_t^0 and use Einstein summation convention. Hence, SDE [32](#page-16-1) is rewritten as

$$
dx_t = \gamma_k^{\varepsilon} (x_t, t) \, dB_t^k,\tag{35}
$$

- 605 with initial value $x(0) = x_0$.
- ⁶⁰⁶ Step 1: We begin with the corresponding systems to derive the SDEs that characterize $\partial_{\varepsilon} x_t^{\varepsilon}$ and $\partial_{\varepsilon}^2 x_t^{\varepsilon}$.

⁶⁰⁷ Our main tool is an important result on smoothness of solutions w.r.t. initial data from Theorem 3.1 ⁶⁰⁸ from Section 2 in [\[17\]](#page-9-13).

609 For $\partial_{\varepsilon} x$, consider the SDEs

$$
dx_t = \gamma_k^{\varepsilon} (x_t, t) dB_t^k, \nd\varepsilon_t = 0,
$$
\n^(*)

610 with initial values $x_{(0)} = x_0$, $\varepsilon(0) = \varepsilon$. From an application of Theorem 3.1 from Section 2 in [\[17\]](#page-9-13) 611 on [*,](#page-16-2) we have $\partial_{\varepsilon} x$ that satisfies the following SDE with probability 1:

$$
d\,\partial_{\varepsilon}x_t = (\alpha_k^{\varepsilon}(x_t, t)\,\partial_{\varepsilon}x_t + \eta_k(x_t, t))\,dB_t^k,\tag{36}
$$

612 with initial value $\partial_{\varepsilon} x_0 = 0 \in \mathbb{R}^n$, with probability 1, where x_t is the solution to Equation [\(35\)](#page-16-3) and 613 the functions α_k^{ε} are given by

$$
\alpha_k^{\varepsilon} : (x,t) \mapsto \frac{\partial g_k}{\partial x^j} (x,t) + \varepsilon \frac{\partial \eta_k}{\partial x^j} (x,t) ,
$$

614 where $k = 0, ..., m$.

615 To characterize $\partial_{\varepsilon}^2 x_t$, consider the following SDEs

$$
d x_t = \gamma_k^{\varepsilon} (x_t, t) dB_t^k,
$$

\n
$$
d \partial_{\varepsilon} x_t = (\alpha_k^{\varepsilon} (x_t, t) \partial_{\varepsilon} x_t + \eta_k (x_t, t)) dB_t^k,
$$

\n
$$
d \varepsilon_t = 0,
$$
\n
$$
(**)
$$

616 with initial value $x(0) = x_0$, $\partial_{\varepsilon} x(0) = 0$, $\varepsilon(0) = \varepsilon$.

617 From a similar application of Theorem 3.1 from Section 2 in [\[17\]](#page-9-13), the second derivative $\partial^2_{\varepsilon} x$ satisfies ⁶¹⁸ the following SDE with probability 1:

$$
d\,\partial_{\varepsilon}^{2}\,x_{t} = \left(\beta_{k}^{\varepsilon}\left(\partial_{\varepsilon}x_{t}, x_{t}, t\right) + 2\frac{\partial\,\eta_{k}}{\partial x}\left(x_{t}, t\right)\partial_{\varepsilon}\,x_{t} + \alpha_{k}^{\varepsilon}\left(x_{t}, t\right)\partial_{\varepsilon}^{2}x_{t}\right) dB_{t}^{k},\tag{37}
$$

619 with initial value $\partial_{\varepsilon}^2 x(0) = 0 \in \mathbb{R}^n$, where $\partial_{\varepsilon} x_t$ is the solution to Equation[\(36\)](#page-17-0), $x(t)$ is the solution ⁶²⁰ to Equation [\(35\)](#page-16-3), and the functions

$$
\text{621} \quad \beta_k^{\varepsilon} : (\partial_{\varepsilon} x, x, t) \mapsto \partial_{\varepsilon} x^{j} \left(\frac{\partial g_k^i}{\partial x^l \partial x^j}(x, t) + \varepsilon \frac{\partial \eta_k^i}{\partial x^l \partial x^j}(x, t) \right) \partial_{\varepsilon} x^l \text{, where } k = 0, \dots, m.
$$

622 When $\varepsilon = 0$ in the obtained SDEs [\(35\)](#page-16-3), [\(36\)](#page-17-0) and [\(37\)](#page-17-1), the corresponding solutions of which are 623 $x_t^0, \partial_\varepsilon x_t^0, \partial_\varepsilon^2 x_t^0$, we now have the following:

$$
dx_t^0 = g_k\left(x_t^0, t\right) dB_t^k,\tag{38}
$$

$$
d\,\partial_{\varepsilon}\,x_t^0 = \left(\frac{\partial g_k}{\partial x}\left(x_t^0, t\right)\partial_{\varepsilon}\,x^0 + \eta_k\left(x_t^0, t\right)\right) dB_t^k,\tag{39}
$$

$$
d\partial_{\varepsilon}^{2} x_{t}^{0} = \left(\Psi_{k}\left(\partial_{\varepsilon} x_{t}^{0}, x_{t}^{0}, t\right) + 2\frac{\partial \eta_{k}}{\partial x}\left(x_{t}^{0}, t\right)\partial_{\varepsilon} x_{t}^{0} + \frac{\partial g_{k}}{\partial x}\left(x_{t}^{0}, t\right)\partial_{\varepsilon}^{2} x_{t}^{0}\right) dB_{t}^{k},\tag{40}
$$

624 with initial values $x(0) = x_0, \partial_{\varepsilon} x(0) = 0, \partial_{\varepsilon}^2 x(0) = 0$. In particular, $\Psi_k := \beta_k^0$ is given by

$$
(\partial_{\varepsilon} x, x, t) \mapsto \partial_{\varepsilon} x^i \frac{\partial g_k}{\partial x^i \partial x^i} (x, t) \partial_{\varepsilon} x^j.
$$

 s_{25} *Step 2*: For the next step, we show that the solutions $x_t^0, \partial_s x_t^0, \partial_\varepsilon^2 x_t^0$ are indeed bounded by proving ⁶²⁶ the following lemma [B.6:](#page-17-2)

Lemma B.6.

$$
\mathbb{E}\sup_{t\in[0,T]}\left\|x_t^0\right\|^2, \mathbb{E}\sup_{t\in[0,T]}\left\|\partial_{\varepsilon} x_t^0\right\|^2, and \mathbb{E}\sup_{t\in[0,T]}\left\|\partial_{\varepsilon}^2 x_t^0\right\|^2 are bounded.
$$

 627 *Proof.* To simplify the notations, we take the liberty to write constants as C and notice that C is not ⁶²⁸ necessarily identical in its each appearance.

(1) We first show that $\mathbb{E} \sup_{t \in [0,T]} ||x_t^0||$ 629 (1) We first show that $\mathbb{E} \sup_{t \in [0,T]} ||x_t^0||^2$ is bounded.

From Equation [\(38\)](#page-17-3), we have that

$$
x_t^0 = x_0 + \int_0^t g_k(x_\tau, \tau) dB_\tau^k.
$$

⁶³⁰ By Jensen's inequality. it holds that

$$
\mathbb{E} \sup_{t \in [0,T]} \|x_t\|^2 \le C \mathbb{E} \|x_0\|^2 + C \mathbb{E} \sup_{t \in [0,T]} \left\| \int_0^t g_k(x_\tau^0, \tau) \, dB_\tau^k \right\|^2. \tag{41}
$$

- 631 For the second term on the right hand side, it is a sum over k from 0 to m by Einstein notation.
- 632 For $k = 0$, recall that we write t as B_t^0 :

$$
\mathbb{E}\sup_{t\in[0,T]}\left\|\int_0^t g_0\left(x_\tau^0,\tau\right)d\tau\right\|^2 \le C \mathbb{E}\sup_{t\in[0,T]}t\int_0^t \left\|g_0\left(x_\tau^0,\tau\right)\right\|^2 d\tau,\tag{i}
$$

$$
\leq C \mathbb{E} \sup_{t \in [0,T]} \int_0^t C \left(1 + \left\|x_\tau^0\right\|\right)^2 d\tau,\tag{ii}
$$

$$
\leq C + C \int_0^T \mathbb{E} \sup_{s \in [0,\tau]} ||x_s^0||^2 d\tau,
$$
 (iii)

- ⁶³³ where we used Jensen's inequality, the assumption on the linear growth, the inequality property of
- ⁶³⁴ sup and Fubini's theorem, respectively.
- 635 For k is equal to $1, \ldots, m$,

$$
\mathbb{E}\sup_{t\in[0,T]}\left\|\int_0^t g_1\left(x_{\tau,\tau}^0,\tau\right)dB_\tau\right\|^2 \le C \mathbb{E}\int_0^T \left\|g_1\left(x_{\tau}^0,\tau\right)\right\|^2 d\tau,\tag{iv}
$$

$$
\leq C + C \int_0^T \mathbb{E} \sup_{s \in [0,\tau]} \|x_s^0\| d\tau,
$$
 (v)

636 where (iv) holds from the Burkholder-Davis-Gundy inequality as $\int_0^t g_k(x_\tau^0, \tau) dB_\tau$ is a continuous 637 local martingale with respect to the filtration \mathcal{F}_t ; and then one can obtain (v) by following a similar

⁶³⁸ reasoning of (ii) and (iii).

Hence, now from the previous inequality [\(41\)](#page-18-0),

$$
\mathbb{E} \sup_{t \in [0,T]} \|x_t^0\|^2 \le \mathbb{E} \|x_0\|^2 + C + C \int_0^T \mathbb{E} \sup_{s \in [0,\tau]} \|x_s^0\| d\tau.
$$

By the Gronwall's lemma, it holds true that

$$
\mathbb{E}\sup_{t\in[0,T]}\left\|x_t^0\right\|^2\leq \left(C\,\mathbb{E}\left\|x_0\right\|^2+C\right)\exp(C).
$$

- As x_0 is square-integrable by assumption, therefore we have shown that $\mathbb{E} \sup_{t \in [0,T]} ||x_t^0||$ 639 As x_0 is square-integrable by assumption, therefore we have shown that $\mathbb{E} \sup_{t \in [0,T]} ||x_t^0||^2$ is ⁶⁴⁰ bounded.
- 641 (2) We then show that $\mathbb{E} \sup_{t \in [0,T]} ||\partial_{\varepsilon} x_t^0||^2$ is also bounded.

From the SDE [\(39\)](#page-17-4), as we have derived that

$$
\partial_{\varepsilon} x_t^0 = \int_0^t \frac{\partial g_k}{\partial x} \left(x_\tau^0, \tau \right) \partial_{\varepsilon} x_\tau^0 + \eta_k \left(x_\tau^0, \tau \right) d B_\tau^k,
$$

then we have

$$
\mathbb{E}\sup_{t\in[0,\tau]}\left\|\partial_{\varepsilon} x_t^0\right\|^2 \leq C \mathbb{E}\sup_{t\in[0,\tau]}\left\|\int_0^t \frac{\partial g_k}{\partial x}\left(x_\tau^0, \tau\right)\partial_{\varepsilon} x_\tau^0\,dB_\tau^k\right\|^2 + C \mathbb{E}\sup_{t\in[0,T]}\left\|\int_0^t \eta_k\left(x_\tau^0, \tau\right)dB_\tau^k\right\|^2.
$$

642 For $k = 0$, we have

$$
\mathbb{E}\sup_{t\in[0,T]}\left\|\int_0^t\frac{\partial g_0}{\partial x}\left(x_\tau^0,\tau\right)\partial_\varepsilon x_\tau^0 dt\right\|^2 + \mathbb{E}\sup_{t\in[0,T]}\left\|\int_0^t\eta_0\left(x_\tau^0,\tau\right)d\tau\right\|^2,\tag{vi}
$$

$$
\leq C \mathbb{E} \sup_{t \in [0,T]} \int_0^t \left\| \frac{\partial g_0}{\partial x} \left(x_\tau^0, t \right) \right\|^2 \left\| \partial_\varepsilon x_\tau^0 \right\|^2 d\tau + C \mathbb{E} \sup_{t \in [0,T]} \int_0^t \left\| \eta_0 \left(x_\tau^0, \tau \right) \right\|^2 d\tau, \tag{vii}
$$

$$
\leq C \mathbb{E} \sup_{s \in [0,T]} \left\| \frac{\partial g_0}{\partial x} \left(x_s^0, s \right) \right\|_{t \in [0,T]}^2 \int_0^t \left\| \partial_\varepsilon x_\tau^0 \right\|^2 d\tau + C \mathbb{E} \sup_{t \in [0,T]} \int_0^t C \left(1 + \left\| x_\tau^0 \right\| \right)^2 d\tau,
$$

\n
$$
\leq C + C \mathbb{E} \sup_{t \in [0,T]} \int_0^t \left\| \partial_\varepsilon x_\tau^0 \right\|^2 d\tau + C \mathbb{E} \sup_{t \in [0,T]} \int_0^t \left\| x_\tau^0 \right\|^2 d\tau,
$$

\n
$$
\leq C + C \int_0^T \mathbb{E} \sup_{s \in [0,\tau]} \left\| \partial_\varepsilon x_s^0 \right\|^2 d\tau + C \mathbb{E} \sup_{t \in [0,T]} \left\| x_t^0 \right\|^2,
$$

\n
$$
\leq C + C \int_0^T \mathbb{E} \sup_{s \in [0,\tau]} \left\| \partial_\varepsilon x_s^0 \right\|^2 d\tau + C \mathbb{E} \sup_{t \in [0,T]} \left\| x_t^0 \right\|^2,
$$
 (viii)

⁶⁴³ where to get to (vi), we used Jensen's inequality; for (vii), we used the linear growth assumption an 644 η_0 , then we obtain (viii) by as derivatives of function g_0 are bounded by assumption. 645 Similarly, for $k = 1, ..., m$,

$$
C \mathbb{E} \sup_{t \in [0,T]} \left\| \int_0^t \frac{\partial g_1}{\partial x^i} (x_\tau^0, \tau) \, \partial_\varepsilon \, x_\tau^0 dB_\tau \right\|^2 + C \mathbb{E} \sup_{t \in [0,T]} \left\| \int_0^t \eta_1 (x_\tau^0, \tau) \, dB_\tau \right\|^2,
$$

$$
\leq C \mathbb{E} \int_0^T \left\| \frac{\partial g_1}{\partial x} (x_\tau^0, \tau) \right\|^2 \left\| \partial_\varepsilon \, x_\tau^0 \right\|^2 d\tau + C \mathbb{E} \int_0^T \left\| \eta_1 (x_\tau^0, \tau) \right\|^2 d\tau, \tag{ix}
$$

$$
\leq C + C \int_0^T \mathbb{E} \sup_{s \in [0,\tau]} ||\partial_{\varepsilon} x_s^0||^2 d\tau + C \mathbb{E} \sup_{t \in [0,T]} ||x_t^0||^2,
$$
 (x)

 646 where we obtain (ix) by the Burkholder-Davis-Gundy inequality and (x) by following similar steps as

⁶⁴⁷ have shown in (vii) and (viii).

⁶⁴⁸ We are now ready to sum up each term to acquire a new inequality:

$$
\mathbb{E}\sup_{t\in[0,T]}\left\|\partial_{\varepsilon} x_t^0\right\|^2 \leq C + C \mathbb{E}\sup_{t\in[0,T]}\left\|x_t^0\right\|^2 + C \int_0^T \mathbb{E}\sup_{s\in[0,\tau]}\left\|\partial_{\varepsilon} x_s^0\right\|^2 d\tau.
$$

⁶⁴⁹ By Gronwall's lemma, we have that

$$
\mathbb{E} \sup_{t \in [0,T]} \left\| \partial_{\varepsilon} x_t^0 \right\|^2 \le \left(C + C \mathbb{E} \sup_{t \in [0,T]} \left\| x_t^0 \right\|^2 \right) \exp(C).
$$

 \Box

As it is previously shown that $\mathbb{E} \sup_{t \in [0,\tau]} ||x^{\circ}(t)||^2$ is bounded, it is clear that $\mathbb{E} \sup_{t \in [0,T]} ||\partial_{\varepsilon} x_t^0||$ 2 650 ⁶⁵¹ is bounded too.

(3) From similar steps, one can also show that $\mathbb{E} \sup_{t \in [0,T]}$ $\left\Vert \partial_{\varepsilon}^{2}\,x_{t}^{0}\right\Vert$ 652 (3) From similar steps, one can also show that $\mathbb E \sup \left\| \partial_{\varepsilon}^2 x_t^0 \right\|^2$ is bounded.

653 *Step 3*: Having shown that $x_t^0, \partial_\varepsilon x_t^0, \partial_\varepsilon^2 x_t^0$ are bounded, we proceed to bound the remainder term by ⁶⁵⁴ proving the following lemma.

Lemma B.7. *For a given* $\varepsilon \in \mathbb{R}$ *, let*

$$
\mathcal{R}^{\varepsilon} := (t,\omega) \mapsto \frac{1}{\varepsilon^3} \left(x^{\varepsilon}(t,\omega) - x^0(t,\omega) - \varepsilon \partial_{\varepsilon} x^0(t,\omega) - \varepsilon^2 \partial_{\varepsilon}^2 x^0(t,\omega) \right),
$$

 ϵ ₆₅₅ *where the stochastic process* x_t^{ϵ} *is the solution to Equation [\(32\)](#page-16-1). Then it holds true that*

$$
\mathbb{E}\sup_{t\in[0,T]}\|\mathcal{R}^{\varepsilon}(t)\|^2 \text{ is bounded.}
$$

Proof. The main strategy of this proof is to first rewrite $\varepsilon^3 \mathcal{R}^{\varepsilon}$ as the sum of some simpler terms and then to bound each term. To simplify the notation, we denote $\tilde{x}_t^{\varepsilon}$ as $x_t^0 + \varepsilon \partial_{\varepsilon} x_t^0 + \varepsilon^2 \partial_{\varepsilon}^2 x_t^0$. For $k = 0, \ldots, n$, we define the following terms:

$$
\theta_k(t) := \int_0^t g_k(x_\tau^\varepsilon, \tau) - g_k(\tilde{x}_\tau^\varepsilon, \tau) dB_\tau^k,
$$

\n
$$
\varphi_k(t) := \int_0^t g_k(\tilde{x}_\tau^\varepsilon, \tau) - g_k(x_\tau^\varepsilon, \tau) - \varepsilon \frac{\partial g_k}{\partial x}(x_\tau^\varepsilon, \tau) \partial_\varepsilon x_\tau^\varepsilon - \varepsilon^2 \Psi_k(\partial_\varepsilon x_\tau^\varepsilon, x_\tau^\varepsilon, \tau) - \varepsilon^2 \frac{\partial g_k}{\partial x^i}(x_\tau^\varepsilon, \tau) \partial_\varepsilon^2 x_\tau^\varepsilon dB_\tau^k
$$

\n
$$
\sigma_k(t) := -\varepsilon \int_0^t \eta_k(x_\tau^\varepsilon, \tau) + 2\varepsilon \frac{\partial \eta}{\partial x}(x_\tau^\varepsilon, \tau) \partial_\varepsilon x_\tau^\varepsilon dB_\tau^k.
$$

656 Hence, we have $\varepsilon^3 \mathcal{R}^\varepsilon(t) = \sum_{k=0}^1 \theta_k(t) + \varphi_k(t) + \sigma_k(t)$. 657 For $\theta_k(t)$, we have

$$
\mathbb{E} \sup_{t \in [0,T]} \left\| \theta_k(t) \right\|^2 \le C \mathbb{E} \sup_{t \in [0,T]} \int_0^t \left\| g_k\left(x_\varphi^\varepsilon, e\right) - g_k\left(\tilde{x}_\varphi^\varepsilon, \tau\right) \right\|^2 d\tau, \tag{i}
$$

$$
\leq C \int_0^T \mathbb{E} \sup_{t \in [0, \tan]} \|x_t^{\varepsilon} - \tilde{x}_t^{\varepsilon}\|^2 d\tau,
$$
 (ii)

,

$$
\leq C \int_0^T \mathbb{E} \sup_{t \in [0,\tau]} \|\mathcal{R}^{\varepsilon}(t)\|^2 d\tau,
$$
\n⁽ⁱⁱⁱ⁾

658 where to obtain (i) we used Jensen's inequality when $k = 0$ and by the Burkholder-Davis-Gundy 659 inequality when $k = 1$, used the Lipschitz condition of g_k to obtain (ii), and for (iii), it is because 660 $\varepsilon^3 \mathcal{R}^\varepsilon(t) = \tilde{x}_t^\varepsilon - x_t^\varepsilon$.

661 We note that from Taylor's theorem, for any $s \in [0, t]$, $k = 0, 1$, there exists some $\varepsilon_s \in (0, \varepsilon)$ s.t.

$$
g_k\left(\tilde{x}_s^{\varepsilon},s\right) - g_k\left(x_s^0,s\right) - \varepsilon \frac{\partial g_k}{\partial x}\left(x_s^0,s\right)\partial_{\varepsilon}x_s^0 = \varepsilon^2 \frac{\partial g_k}{\partial x}\left(\tilde{x}_s^{\varepsilon_s}\right)\partial_{\varepsilon}^2 x_s^0 + \varepsilon^2 \Psi\left(\partial_{\varepsilon}x_s^0,\tilde{x}_s^{\varepsilon_s},s\right). \tag{42}
$$

662 For $\varphi_k(t)$, we have

$$
\mathbb{E} \sup_{t \in [0,T]} \|\varphi_k(t)\|^2
$$
\n
$$
\leq C \mathbb{E} \sup_{t \in [0,T]} \int_0^t \|\frac{\partial g_k}{\partial x} \left(\tilde{x}_s^{\varepsilon_s}\right) \partial_{\varepsilon}^2 x_s^0 + \Psi_k \left(\partial_{\varepsilon} x_s^0, \tilde{x}_s^{\varepsilon_s}, s\right) - \frac{\partial g_k}{\partial x} \left(x_s^0\right) \partial_{\varepsilon}^2 x_s^0 - \Psi_k \left(\partial_{\varepsilon} x_s^0, x_s^0, s\right) \|^2 ds,
$$
\n(iv)

$$
\leq C \mathbb{E} \sup_{t \in [0,T]} \int_0^t \left\| \frac{\partial g_k}{\partial x} \left(\tilde{x}_s^{\varepsilon_s} \right) - \frac{\partial g_k}{\partial x} \left(x_s^0 \right) \right\|^2 \left\| \partial_{\varepsilon}^2 x_s^0 \right\|^2 + \left\| \Psi_k \left(\partial_{\varepsilon} x_s^0, \tilde{x}_s, s \right) - \Psi_k \left(\partial_{\varepsilon} x_s^0, x_s^0, s \right) \right\|^2 ds,
$$
\n(v)

$$
\leq C \mathbb{E} \sup_{t \in [0,T]} \int_0^t \left\| \tilde{x}_s^{\varepsilon_s} - x_s^0 \right\|^2 \left(C + \left\| \partial_\varepsilon^2 x_s^0 \right\|^2 \right) ds,\tag{vi}
$$

$$
\leq C \mathbb{E} \sup_{t \in [0,T]} \int_0^t \left\| \varepsilon \partial_{\varepsilon} x_s^0 + \varepsilon^2 \partial_{\varepsilon}^2 x_s^0 \right\|^2 \left(C + \left\| \partial_{\varepsilon}^2 x_s^0 \right\|^2 \right) ds,
$$

\n
$$
\leq C \left(\mathbb{E} \sup_{t \in [0,T]} \left\| \partial_{\varepsilon} x_s^0 \right\|^2 \right) + \mathbb{E} \sup_{t \in [0,T]} \left\| \partial_{\varepsilon}^2 x_s^0 \right\|^2 \right) \left(C + \mathbb{E} \sup_{t \in [0,T]} \left\| \partial_{\varepsilon}^2 x_s^0 \right\|^2 \right),
$$
 (vii)

663 where for (iv), we used Equation [\(42\)](#page-20-0) and Jensen's inequality for $k = 0$ and the Burkholder-Davis-664 Gundy inequality for $k = 1$; to obtain (v), we applied Jensen's equality; we then derived (vi) from 665 the Lipschitz conditions of g_k and Ψ_k ; and finally another application of Jensen's inequality gives ⁶⁶⁶ (vii) which is bounded as a result from the Lemma [B.6.](#page-17-2) 667

668 For $\sigma_k(t)$,

$$
\sup_{t\in[0,T]} \|\sigma_0(t)\|^2 \leq C \,\varepsilon \int_0^T \mathbb{E} \sup_{s\in[0,t]} \|\eta_k(x_s^0,s)\|^2 + C \mathbb{E} \sup_{s\in[0,t]} \left\|\frac{\partial \eta_k}{\partial x}(x_s^0,s)\right\|^2 \|\partial_{\varepsilon} x_s^0\|^2 dt, \quad \text{(ix)}
$$
\n
$$
\leq C \int_0^T C \left(1 + \mathbb{E} \sup_{s\in[0,t]} \|x_s^0\|^2\right) + C \mathbb{E} \sup_{t\in[0,T]} \left\|\frac{\partial \eta_k}{\partial x}(x_t^0,t)\right\|^2 \int_0^T \mathbb{E} \sup_{s\in[0,t]} \|\partial_{\varepsilon} x_s^0\|^2 dt,
$$
\n
$$
\leq c + C \mathbb{E} \sup_t \in [0,T] \|x_s^0\|^2 + C \mathbb{E} \sup_{t\in[0,T]} \left\|\frac{\partial \eta_k}{\partial x}(x_t^0,t)\right\|^2 \mathbb{E} \sup_{t\in[0,T]} \|\partial_{\varepsilon} x_t^0\|^2,
$$
\n
$$
(x)
$$
\n
$$
(xi)
$$

- 669 where we obtained (ix) by Jensen's inequality when $k = 0$ and by Burkholder-Davis-Gundy inequality 670 when $k = 1$, and (x) by the linear growth assumption on η_k ; one can see that (xi) is bounded by 671 recalling the Lemma [B.6](#page-17-2) and the assumption that η_k has bounded derivatives.
- ⁶⁷² Hence, by Jensen's inequality and Gronwall's lemma, we have

$$
\mathbb{E} \sup_{t \in [0,T]} \left\| \mathcal{R}^{\varepsilon}(t) \right\|^{2} \leq C \sum_{k=0}^{K} \mathbb{E} \sup_{t \in [0,T]} \left\| \theta_{k}(t) \right\|^{2} + \mathbb{E} \sup_{t \in [0,T]} \left\| \varphi_{k}(t) \right\|^{2} + \mathbb{E} \sup_{t \in [0,T]} \left\| \sigma_{k}(t) \right\|^{2},
$$

$$
\leq C + C \int_{0}^{T} \mathbb{E} \sup_{t \in [0,\tau]} \left\| \mathcal{R}^{\varepsilon}(t) \right\|^{2} d\tau,
$$

$$
\leq C \exp(C).
$$

673 Therefore, $\mathbb{E}\sup ||\mathcal{R}^{\varepsilon}(t)||^2$ is bounded.

674

⁶⁷⁵ Finally, it is now straightforward to show Equation [\(33\)](#page-16-4) by applying a second-order Taylor expansion on f x 0 ^t + ε∂εx 0 ^t + ε 2∂ 2 εx 0 ^t +ε ³R^ε (t) ⁶⁷⁶ . \Box

677

⁶⁷⁸ We are now ready to show Theorem [3.7.](#page-5-0) One notes that Corollary [3.8](#page-5-1) directly follows from the result ⁶⁷⁹ too.

⁶⁸⁰ *Proof.* (*Theorem [3.7](#page-5-0)*) From Proposition [B.5,](#page-16-0) it is noteworthy to point out that the derived SDEs [\(34\)](#page-16-5) δ ₆₈₁ for $\partial_{\varepsilon} x_t^0$ and $\partial_{\varepsilon}^2 x_t^0$ are vector-valued general linear SDEs. With some steps of derivations, one can ⁶⁸² express the solutions as:

$$
\partial_{\varepsilon} x_{t}^{0} = \Phi_{t} \int_{0}^{t} \Phi_{s}^{-1} \left(\eta_{0}(x_{s}^{0}, s) - \sum_{k=1}^{m} \frac{\partial g_{k}}{\partial x}(x_{s}^{0}, s) \eta_{k}(x_{s}^{0}, s) \right) ds + \Phi_{t} \int_{0}^{t} \Phi_{s}^{-1} \eta_{k}(x_{s}^{0}, s) dB_{s}^{k} \quad (a)
$$

$$
\partial_{\varepsilon}^{2} x_{t}^{0} = \Phi_{t} \int_{0}^{t} \Phi_{s}^{-1} \left(\Psi_{0}(x_{s}^{0}, \partial_{\varepsilon} x_{s}^{0}, s) + 2 \frac{\partial \eta_{0}}{\partial x}(x_{s}^{0}, s) \partial_{\varepsilon} x_{s}^{0} \right. \left. - \sum_{k=1}^{m} \frac{\partial g_{k}}{\partial x}(x_{s}^{0}, s) \left(\Psi_{k}(x_{s}^{0}, \partial_{\varepsilon} x_{s}^{0}, s) + 2 \frac{\partial \eta_{k}}{\partial x}(x_{s}^{0}, s) \partial_{\varepsilon} x_{s}^{0} \right) \right) ds,
$$

$$
+ \Phi_{t} \int_{0}^{t} \Phi_{s}^{-1} \sum_{k=1}^{m} \left(\Psi_{k}(x_{s}^{0}, \partial_{\varepsilon} x_{s}^{0}, s) + 2 \frac{\partial \eta_{k}}{\partial x}(x_{s}^{0}, s) \partial_{\varepsilon} x_{s}^{0} \right) dB_{s}^{k}, \tag{b}
$$

683 where $n \times n$ matrix Φ_t is the fundamental matrix of the corresponding homogeneous equation:

$$
d\Phi_t = \frac{\partial g_k}{\partial x}(x_t^0, t) \Phi_t dB_t^k, \tag{43}
$$

⁶⁸⁴ with initial value

$$
\Phi(0) = I. \tag{44}
$$

 \Box

685 It is worthy to note that the fundamental matrix Φ_t is non-deterministic and when $\frac{\partial g_i}{\partial x}$ and $\frac{\partial g_j}{\partial x}$ commutes, Φ_t has explicit solution

$$
\Phi_t = \exp\left(\int_0^t \frac{\partial g_k}{\partial x}(x_s^0, s) dB_s^k - \frac{1}{2} \int_0^t \frac{\partial g_k}{\partial x}(x_s^0, s) \frac{\partial g_k}{\partial x}(x_s^0, s)^\top ds\right).
$$
 (45)

687 Having obtained the explicit solutions, one can plug in corresponding terms and obtain the results of 688 Theorem 3.7) after a Taylor expansion of the loss function \mathcal{L} .

⁶⁸⁸ *Theorem [3.7](#page-5-0)*) after a Taylor expansion of the loss function L.

⁶⁸⁹ C Error Accumulation During the Inference Phase and its Effects to Value ⁶⁹⁰ Functions

⁶⁹¹ Theorem C.1. *(Error accumulation due to initial representation error)*

$$
\text{692} \quad \text{Let } \delta := \mathbb{E} \left\| \varepsilon \right\| \text{ and } d_{\varepsilon} := \mathbb{E} \sup_{t \in [0,T]} \left\| h_t^{\varepsilon} - h_t^0 \right\|^2 + \left\| \tilde{z}_t^{\varepsilon} - \tilde{z}_t^0 \right\|^2. \text{ It holds that as } \delta \to 0,
$$

 $d_{\varepsilon} \leq \delta C \left(\mathcal{J}_0 + \mathcal{J}_1 \right) + \delta^2 C \left(\exp \left(\mathcal{H}_0 \left(\mathcal{J}_0 + \mathcal{J}_1 \right) \right) + \exp \left(\mathcal{H}_1 \left(\mathcal{J}_0 + \mathcal{J}_1 \right) \right) \right) + \mathcal{O}(\delta^3)$ (46) ⁶⁹³ *where*

$$
\mathcal{J}_0 = \exp\left(\mathcal{F}_h + \mathcal{F}_z + \mathcal{P}_h\right), \, \mathcal{J}_1 = \exp\left(\bar{\mathcal{P}}_h\right), \mathcal{H}_0 = \mathcal{F}_{hh} + \mathcal{F}_{hz} + \mathcal{F}_{zh} + \mathcal{F}_{zz} + \mathcal{P}_{hh}, \, \mathcal{H}_1 = \bar{\mathcal{P}}_{hh}
$$

694

$$
\mathcal{F}_h = C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial f}{\partial h} + \frac{\partial f}{\partial a} \partial_h \rho \right\|_F^2, \quad \mathcal{F}_z = C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial f}{\partial z} + \frac{\partial f}{\partial a} \partial_z \rho \right\|_F^2
$$
\n
$$
\mathcal{P}_h = C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial p}{\partial h} \right\|_F^2, \quad \bar{\mathcal{P}}_h = C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial \bar{p}}{\partial h} \right\|_F^2,
$$
\n
$$
\mathcal{F}_{hh} = C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial^2 f}{\partial h^2} + \frac{\partial^2 f}{\partial h \partial a} \partial_h \rho + \frac{\partial f}{\partial a} \partial_{hh}^2 \rho \right\|_F^2,
$$
\n
$$
\mathcal{F}_{hz} = C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial^2 f}{\partial h \partial z} + \frac{\partial^2 f}{\partial z \partial a} \partial_h \rho + \frac{\partial f}{\partial a} \partial_{zh}^2 \rho \right\|_F^2
$$
\n
$$
\mathcal{F}_{zh} = C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial^2 f}{\partial h \partial z} + \frac{\partial^2 f}{\partial h \partial a} \partial_z \rho + \frac{\partial f}{\partial a} \partial_{hz}^2 \rho \right\|_F^2
$$
\n
$$
\mathcal{F}_{zz} = C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial^2 f}{\partial z^2} + \frac{\partial^2 f}{\partial z \partial a} \partial_z \rho + \frac{\partial f}{\partial a} \partial_{zz}^2 \rho \right\|_F^2,
$$
\n
$$
\mathcal{P}_{hh} = C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial^2 p}{\partial h^2} \right\|_F^2, \quad \bar{\mathcal{P}}_{hh} = C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial^2 \bar{p}}{\
$$

 ϵ ₅₉₅ where for brevity, when functions always have inputs (\tilde{z}_t^0,h_t^0,t) , we adopt the shorthand to write, for 696 *example,* $f(\tilde{z}_t^0, h_t^0, t)$ *as* f .

⁶⁹⁷ Before proving the main result [C.1,](#page-23-0) we first show the general case of perturbation in initial values. ⁶⁹⁸ Consider the following general system with noise at the initial value:

$$
dx_t = g_0(x_t, t) dt + g_k(x_t, t) dB_t^k,
$$
\n(47)

,

$$
x(0) = x_0 + \varepsilon,\tag{48}
$$

699 where the initial perturbation $\varepsilon \in \mathbb{R}^n \times \Omega$. As g_k are $\mathcal{C}_g^{2,\alpha}$ functions, by the classical result on the

⁷⁰⁰ existence and the uniqueness of solution to SDE, there exists a unique solution to Equation [\(47\)](#page-23-2), 701 denoted as x_t^{ε} or $x^{\varepsilon}(t)$.

702 To simplify the notation, we write $\partial_i x_i^{\varepsilon} := \frac{\partial x^{\varepsilon}(t)}{\partial x^i}, \partial_{ij}^2 x_i^{\varepsilon} = \frac{\partial^2 x_i^{\varepsilon}}{\partial x^i \partial x^j}$, for $i, j = 1, ..., n$ that are, τ ²⁰³ respectively, the first and second-order derivatives of the solution $x^{\epsilon}(t)$ w.r.t. the changes in the zo4 corresponding coordinates of the initial value. When $\varepsilon = 0 \in \mathbb{R}^n$, we denote the solutions to 705 Equation [\(47\)](#page-23-2) as x_t^0 with its first and second derivatives $\partial_i x_t^0, \partial_{ij}^2 x_t^0$, respectively.

706 **Proposition C.2.** *Let* $\delta := \mathbb{E} ||\varepsilon||$ *, it holds that*

$$
\mathbb{E} \sup_{t \in [0,T]} \left\| x_t^{\varepsilon} - x_t^0 \right\|^2 \le \sum_{k=0,1} C \delta \left(C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial g_k}{\partial x} (x_t^0, t) \right\|_F^2 \right)
$$
\n
$$
+ C \delta^2 \exp \left(C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial^2 g_k}{\partial x^2} (x_t^0, t) \right\|_F^2 \sum_{\bar{k}=0,1} \exp \left(C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial g_{\bar{k}}}{\partial x} (x_t^0, t) \right\|_F^2 \right) + \mathcal{O}(\delta^3),
$$
\n(50)

707 *as* $\delta \to 0$.

708 *Proof.* Similar to the previous section, for notational convenience, we write t as B_t^0 and employs ⁷⁰⁹ Einstein summation notation. Hence, Equation [\(47\)](#page-23-2) can be shorten as

$$
dx_t = g_k(x_t, t) dB_t^k,
$$
\n(51)

- 710 with initial values $x(0) = x_0 + \varepsilon$.
- 711 To begin, we find the SDEs that characterize $\partial_i x_i^{\varepsilon}$ and $\partial_{ij}^2 x_i^{\varepsilon}$, for $i, j = 1, ..., n$.
- ⁷¹² For $\partial_i x_i^{\varepsilon}$, we apply Theorem 3.1 from Section 2 in [\[17\]](#page-9-13) on Equation [\(51\)](#page-24-0) and $\partial_i x_i^{\varepsilon}$ satisfy the ⁷¹³ following SDE with probability 1,
	- $d\partial_i x_t^{\varepsilon} = \frac{\partial g_k}{\partial x} (x_t^{\varepsilon}, t) \partial_i x_t^{\varepsilon} dB_t^k$ (52)
- 714 with initial value $\partial_i x_0^{\varepsilon}$ to be the unit vector $e_i = (0, 0, \ldots, 1, \ldots, 0)$ that is all zeros except one in 715 the i^{th} coordinate.
- For $\partial_{ij}^2 x_i^{\varepsilon}$, we again apply Theorem 3.1 from Section 2 in [\[17\]](#page-9-13) on the SDE [\(52\)](#page-24-1) and obtain that $\partial_{ij}^2 x_5^{\varepsilon}$ satisfy the following SDE with probability 1, 716

$$
d\partial_{ij}^2 x_t^{\varepsilon} = \Psi_k \left(x_t^{\varepsilon}, \partial_i x_t^{\varepsilon}, t \right) \partial_{ij}^2 x_t^{\varepsilon} d B_t^k, \tag{53}
$$

718 with the initial value $\partial_{ij} x^{\varepsilon}(0) = e_j$, where

$$
\Psi_k: \mathbb{R}^d \times \mathbb{R}^d \times [0, T] \to \mathbb{R}^{d \times d}, (x, \partial_i x, t) \mapsto \left(\frac{\partial^2 g_k^l}{\partial x^u \partial x^v}(x_t^{\varepsilon}, t)\right)_{l, u, v} \partial_i x^v.
$$

⁷¹⁹ For the next step, we show that with probability 1, the following holds

$$
x_t^{\varepsilon} = x_t^0 + \varepsilon^i \, \partial_i \, x_t^0 + \frac{1}{2} \, \varepsilon^i \varepsilon^j \, \partial_{ij}^2 \, x_t^0 + O\left(\varepsilon^3\right),\tag{54}
$$

- 720 as $\|\varepsilon\| \to 0$.
- ⁷²¹ One can follow the similar steps of proofs for Lemma [\(B.6\)](#page-17-2) and [\(B.7\)](#page-19-0) in the previous section to show
- that $\mathbb{E} \sup_{t \in [0,T]} ||x_t^0||$ ², $\mathbb{E} \sup_{t \in [0,T]} ||\partial_i x_t^0||$ ², $\mathbb{E} \sup_{t \in [0,T]} ||\partial_{ij}^2 x_t^0||$ 722 that $\mathbb{E} \sup_{t \in [0,T]} ||x_t^0||^2$, $\mathbb{E} \sup_{t \in [0,T]} ||\partial_i x_t^0||^2$, $\mathbb{E} \sup_{t \in [0,T]} ||\partial_{i,i}^2 x_t^0||^2$ and the remainder term are ⁷²³ bounded. Hence, Equation [\(54\)](#page-24-2) holds with probability 1.
- 724

Indeed, for $\mathbb{E} \sup_{t \in [0,T]} \left\| \partial_i x_t^0 \right\|$ 725 Indeed, for $\mathbb{E} \sup_{t \in [0,T]} ||\partial_i x_t^0||^2$, it holds that

$$
\mathbb{E} \sup_{t \in [0,T]} \left\| \partial_i x_t^0 \right\|^2 \le C \left\| e_i \right\|^2 + \sum_{k=0,1} \mathbb{E} \sup_{t \in [0,T]} C \int_0^t \left\| \frac{\partial g_k}{\partial x} (x_s^0, s) \right\|_F^2 \left\| \partial_i x_s \right\|^2 ds \tag{55}
$$

$$
\leq \sum_{k=0,1} C \exp \left(C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial g_k}{\partial x} (x_t^0, t) \right\|_F^2 \right). \tag{56}
$$

Similarly, for $\mathbb{E} \sup_{t \in [0,T]} \left\| \partial_{ij}^2 x_t^0 \right\|$ 726 Similarly, for $\mathbb{E} \sup_{t \in [0,T]} ||\partial_{ij}^2 x_t^0||^2$, it holds that

 \tilde{a}

$$
\mathbb{E} \sup_{t \in [0,T]} \left\| \partial_{ij}^2 x_t^0 \right\|^2 \le C \left\| e_i \right\|^2 + \sum_{k=0,1} \mathbb{E} \sup_{t \in [0,T]} C \int_0^t \left\| \frac{\partial^2 g_k}{\partial x^2} (x_s^0, s) \right\|_F^2 \left\| \partial_i x_s^0 \right\|^2 \left\| \partial_{ij}^2 x_s^0 \right\|^2 ds \tag{57}
$$

$$
\leq C \sum_{k=0}^{1} \exp\left(C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial^2 g_k}{\partial x^2} (x_t^0, t) \right\|_F^2 \left\| \partial_i x_t^0 \right\|^2 \right) \tag{58}
$$

$$
\leq C \sum_{k=0,1} \exp\left(C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial^2 g_k}{\partial x^2} (x_t^0, t) \right\|_F^2 \exp\left(C \mathbb{E} \sup_{t \in [0,T]} \left\| \frac{\partial g_k}{\partial x} (x_t^0, t) \right\|_F^2\right)\right).
$$
\n(59)

⁷²⁷ Therefore, we could obtain the proposition by applying Jensen's inequality to Equation [\(54\)](#page-24-2) and ⁷²⁸ plugging with [56](#page-24-3) and [57.](#page-24-4) □ ⁷²⁹ Now we are ready to prove Theorem [C.1.](#page-23-0) We note that one could then obtain Corollary [4.2](#page-7-0) without ⁷³⁰ much more effort by a standard application of Taylor's theorem.

⁷³¹ *Proof.* (Proof for Theorem [C.1\)](#page-23-0)

732 At $(h_t, \tilde{z}_t, \pi(h_t, \tilde{z}_t))$, where the local optimal policy $\pi(h_t, \tilde{z}_t)$, denoted as a_t^* , there exists an open 733 neighborhood $V \subseteq A$ of a_t^* such that a_t^* is the local maximizer for $Q(h_t, \tilde{z}_t, \cdot)$ by definition. 734 Then, $\frac{\partial Q}{\partial a}(h_t, \tilde{z}_t, a_t^*) = 0$, and $\frac{\partial^2 Q}{\partial a^2}(h_t, \tilde{z}_t, a)$ is negative definite. As $\frac{\partial^2 Q}{\partial a^2}$ is non-degenerate in the 735 neighborhood V, by the implicit function theorem, there exists a neighborhood $U \times V$ of $(h_t, \tilde{z}_t, a_t^*)$ 736 such that there exists a C^2 map $\rho: U \to V$ such that $\frac{\partial Q}{\partial a}(h, \tilde{z}, \rho(h, \tilde{z})) = 0$ and $\rho(h, \tilde{z})$ is the *n*₂₇ local maximizer of $Q(h, \tilde{z}, \cdot)$ for any $h, \tilde{z} \in U$. Furthermore, we have that $\partial_h \rho = -\frac{\partial^2 Q}{\partial a^2}^{-1} \frac{\partial^2 Q}{\partial a \partial h}$. local maximizer of $Q(h, \tilde{z}, \cdot)$ for any $h, \tilde{z} \in U$. Furthermore, we have that $\partial_h \rho = -\frac{\partial^2 Q}{\partial a^2}$ 738 Similarly, other first-terms and second-order terms $\partial_z \rho$, $\partial_{zz}^2 \rho$, $\partial_{zh}^2 \rho$, $\partial_{hz}^2 \rho$, $\partial_{hh}^2 \rho$ can be explicitly ⁷³⁹ expressed without much additional effort (e.g., in [\[28\]](#page-10-12), [\[3\]](#page-9-19)). ⁷⁴⁰ The rest of the proof is easy to see after plugging in the corresponding terms from Proposition ⁷⁴¹ [C.2.](#page-23-3) \Box

⁷⁴² D Experimental Details

⁷⁴³ In this section, we provide additional details and results beyond thoese in the main paper.

⁷⁴⁴ D.1 Model Implementation and Training

 Our baseline is based on the DreamerV2 Tensorflow implementation. Our theoretical and empirical results should not matter on the choice of specific version; so we chose DreamerV2 as its codebase implementation is simpler than V3. We incorporated a computationally efficient approximation of the Jacobian norm for the sequence model, as detailed in [\[18\]](#page-9-16), using a single projection. During our experiments, all models were trained using the default hyperparameters (see Table [5\)](#page-26-1) for the MuJoCo tasks. The training was conducted on an NVIDIA A100 and a GTX 4090, with each session lasting less than 15 hours.

Hyperparameter	Value
eval_every	1e4
prefill	1000
train_every	5
rssm.hidden	200
rssm.deter	200
model_opt.lr	$3e-4$
actor_opt.lr	$8e-5$
replay_capacity	2e6
dataset batch	$\overline{16}$
precision	$\overline{16}$
clip_rewards	tanh
expl_behavior	greedy
encoder_cnn_depth	48
decoder_cnn_depth	48
loss_scales_kl	1.0
discount	0.99
jac lambda	$\overline{0.0}1$

Table 5: Hyperparameters for DreamerV2 model.

⁷⁵² D.2 Additional Results on Generalization on Perturbed States

⁷⁵³ In this experiment, we investigated the effectiveness of Jacobian regularization in model trained ⁷⁵⁴ against a baseline during the inference phase with perturbed state images. We consider three types of 755 perturbations: (1) Gaussian noise across the full image, denoted as $\mathcal{N}(\mu_1, \sigma_1^2)$; (2) rotation; and (3) 756 noise applied to a percentage of the image, $\mathcal{N}(\mu_2, \sigma_2^2)$. (In Walker task, $\mu_1 = \mu_2 = 0.5, \sigma_2^2 = 0.15$; 757 in Quadruped task, $\mu_1 = 0, \mu_2 = 0.05, \sigma_2^2 = 0.2$.) In each case of perturbations, we examine a 758 collection of noise levels: (1) variance σ^2 from 0.05 to 0.55; (2) rotation degree α 20 and 30; and (3) 759 masked image percentage $\beta\%$ from 25 to 75.

⁷⁶⁰ D.3 Walker Task

$\beta\%$ mask, $\mathcal{N}(0.5, 0.15)$	mean (with Jac.)	stdev (with Jac.)	mean (baseline)	stdev (baseline)
25%	882.78	28.57199976	929.778	10.13141451
30%	878.732	40.92085898	811.198	7.663919934
35%	856.32	37.56882045	799.98	29.75286097
40%	804.206	47.53578989	688.382	43.21310246
45%	822.97	80.36907477	601.862	42.49662057
50%	725.812	43.87836335	583.418	76.49237076
55%	768.68	50.71423045	562.574	59.88315135
60%	730.864	23.37324967	484.038	90.38940234
65%	696.936	65.26307708	516.936	41.44549462
70%	687.346	70.9078686	411.922	45.85808832
75%	685.492	63.22171723	446.74	40.66898799

Table 6: *Walker.* Mean and standard deviation of accumulated rewards under masked perturbation of increasing percentage.

full, $\mathcal{N}(0.5, \sigma^2)$	mean (with Jac.)	stdev (with Jac.)	mean (baseline)	stdev (baseline)
0.05	894.594	39.86907737	929.778	40.91
0.10	922.854	27.28533819	811.198	98.79
0.15	941.512	16.47165049	799.98	106.01
0.20	840.706	66.12470628	688.382	70.78
0.25	811.764	75.06276427	601.862	83.65
0.30	779.504	53.29238107	583.418	173.59
0.35	807.996	34.35949621	562.574	79.30
0.40	751.986	85.20137722	484.038	112.43
0.45	663.578	60.18862658	516.936	90.25
0.50	618.982	61.10094983	411.922	116.94
0.55	578.62	64.25840684	446.74	84.44

Table 7: *Walker.* Mean and standard deviation of accumulated rewards under Gaussian perturbation of increasing variance.

rotation. α°	mean (with Jac.)	stdey (with Jac.)	mean (baseline)	stdev (baseline)
20	423.81	12.90174678	391.65	35.33559636
30	226.04	23.00445979	197.53	15.26706914

Table 8: *Walker.* Mean and standard deviation of accumulated rewards under rotations.

⁷⁶¹ D.4 Quardruped Task

$\beta\%$ mask, $\mathcal{N}(0.5, 0.15)$	mean (with Jac.)	stdev (with Jac.)	mean (baseline)	stdev (baseline)
25%	393.242	41.10002579	361.764	81.41175179
30%	384.11	20.70463958	333.364	101.7413185
35%	354.222	53.14855379	306.972	16.02275164
40%	329.404	39.1193856	266.088	51.20298351
45%	360.662	36.86801622	281.342	47.85950867
50%	321.556	27.66758085	222.222	22.0668251
55%	300.258	31.44931987	203.578	14.38754218
60%	321	18.42956321	217.98	23.81819368
65%	304.62	20.75493676	209.238	47.14895407
70%	301.166	18.2485583	193.514	60.83781004
75%	304.92	18.63214963	169.58	30.83637462

Table 9: *Quadruped.* Mean and standard deviation of accumulated rewards under masked perturbation of increasing percentage.

full, $\mathcal{N}(0, \sigma^2)$	mean (with Jac.)	stdev (with Jac.)	mean (baseline)	stdev (baseline)
0.10	416.258	20.87925573	326.74	40.30425536
0.15	308.218	24.26432093	214.718	15.7782198
0.20	314.29	44.73612075	218.756	35.41520832
0.25	293.02	24.29582269	190.78	26.22250465
0.30	269.778	21.83423047	207.336	39.1071161
0.35	282.046	13.55303767	217.048	29.89589972
0.40	273.814	19.81361476	190.208	59.61166975
0.45	267.18	17.5276068	195.606	18.91137964
0.50	268.838	29.45000543	194.082	26.76677642
0.55	252.54	22.516283	150.786	24.53362855

Table 10: *Quadruped.* Mean and standard deviation of accumulated rewards under Gaussian perturbation of increasing variance.

rotation. α°	mean (with Jac.)	stdev (with Jac.)	mean (baseline) stdev (baseline)	
20	787.634	101.5974723	681.032	133.7507948
30	610.526	97.74499159	389.406	61.5997198

Table 11: *Quadruped.* Mean and standard deviation of accumulated rewards under rotations.

D.5 Additional Results on Robustness against Encoder Errors

 In this experiment, we evaluate the robustness of model trained with Jacobian regularization against 764 two exogenous error signals (1) zero-drift error with $\mu_t = 0, \sigma_t^2$ ($\sigma_t^2 = 5$ in Walker, $\sigma_t^2 = 0.1$ in α ₇₆₅ Quadruped), and (2) non-zero-drift error with $\mu_t \sim [0, 5]$, $\sigma_t^2 \sim [0, 5]$ uniformly. λ weight of Jacobian regularization is 0.01. In this section, we included plot results of both evaluation and training scores.

D.5.1 Walker Task

Under the Walker task, Figures [3](#page-29-0) and [4](#page-29-1) show that model with regularization is significantly less

 sensitive to perturbations in latent state z_t compared to the baseline model without regularization. This empirical observation supports our theoretical findings in Corollary [3.8,](#page-5-1) which assert that the

 impact of latent representation errors on the loss function $\mathcal L$ can be effectively controlled by regulating the model's Jacobian norm.

Figure 3: *Walker.* Eval (left) and train scores (right) under latent error process $\mu_t = 0, \sigma_t^2 = 5$.

Figure 4: *Walker.* Eval (left) and train scores (right) under latent error process $\mu_t \sim [0, 5], \sigma_t^2 \sim [0, 5]$.

D.5.2 Quadruped Task

774 Under the Quadruped task, we initially examined a smaller latent error process ($\mu_t = 0, \sigma_t^2 = 0.1$) and observed that the model with Jacobian regularization converged significantly faster, even though the adversarial effects on the model without regularization were less severe (Figure [5\)](#page-30-0). When considering the more challenging latent error process $(\mu_t \sim [0, 5], \sigma_t^2 \sim [0, 5])$, we noted that the regularized model remained significantly less sensitive to perturbations in latent state z_t , whereas the baseline model struggled to learn (Figure [6\)](#page-30-1). These empirical observations reinforce our theoretical findings in Corollary [3.8,](#page-5-1) demonstrating that regulating the model's Jacobian norm effectively controls the impact of latent representation errors.

Figure 5: *Quad*. Eval (left) and train scores (right) under latent error process $\mu_t = 0, \sigma_t^2 = 0.1$.

Figure 6: *Quad.* Eval (left) and train scores (right) under latent error process $\mu_t \sim [0, 5], \sigma_t^2 \sim [0, 5]$.

⁷⁸² D.6 Additional Results on Faster convergence on tasks with extended horizon.

⁷⁸³ In this experiment, we evaluate the efficacy of Jacobian regularization in extended horizon tasks, ⁷⁸⁴ specifically by increasing the horizon length in MuJoCo Walker from 50 to 100 steps. We tested two 785 regularization weights $\lambda = 0.1$ and $\lambda = 0.05$. Figure [7](#page-31-0) demonstrates that models with regularization 786 converge faster, with $\lambda = 0.05$ achieving convergence approximately 100,000 steps ahead of the

⁷⁸⁷ model without Jacobian regularization. This supports the findings in Theorem [4.1,](#page-6-1) indicating that regularizing the Jacobian norm can reduce error propagation, especially over longer time horizons.

Figure 7: *Extended horizon Walker task*. Eval (left) and train scores (right).

788

NeurIPS Paper Checklist

