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A B S T R A C T   

Species distribution modeling is a highly versatile tool for understanding the intricate relationship between 
environmental conditions and species occurrences. However, the available data often lacks information on 
confirmed species absence and is limited to opportunistically sampled, presence-only observations. To overcome 
this limitation, a common approach is to employ pseudo-absences, which are specific geographic locations 
designated as negative samples. While pseudo-absences are well-established for single-species distribution 
models, their application in the context of multi-species neural networks remains underexplored. Notably, the 
significant class imbalance between species presences and pseudo-absences is often left unaddressed. Moreover, 
the existence of different types of pseudo-absences (e.g., random and target-group background points) adds 
complexity to the selection process. Determining the optimal combination of pseudo-absences types is difficult 
and depends on the characteristics of the data, particularly considering that certain types of pseudo-absences can 
be used to mitigate geographic biases. In this paper, we demonstrate that these challenges can be effectively 
tackled by integrating pseudo-absences in the training of multi-species neural networks through modifications to 
the loss function. This adjustment involves assigning different weights to the distinct terms of the loss function, 
thereby addressing both the class imbalance and the choice of pseudo-absence types. Additionally, we propose a 
strategy to set these loss weights using spatial block cross-validation with presence-only data. We evaluate our 
approach using a benchmark dataset containing independent presence-absence data from six different regions 
and report improved results when compared to competing approaches.   

1. Introduction 

In a world where climate change and human activities increasingly 
threaten numerous species and their habitat, there is a growing need to 
understand the factors that determine the presence of a species at a 
specific geographic location. Addressing this need, species distribution 
models (SDMs) seek to unveil the complex relationship between envi-
ronmental conditions at a given location and the likelihood of a species 
occurring there (Elith and Leathwick, 2009; Franklin, 2010). In partic-
ular, SDMs are used to predict the geographic range of species, thereby 
playing a pivotal role in supporting conservation and restoration policies 
(Guisan et al., 2013; Sofaer et al., 2019). Developing reliable SDMs, 
however, presents several challenges, such as limited data availability 

and inherent selection bias within the observations used (Beck et al., 
2014; Mesaglio and Callaghan, 2021). One typical issue is the potential 
geographic bias arising from variations in sampling efforts across 
different areas (Kadmon et al., 2004). These limitations not only hinder 
the predictive accuracy of these models, but also impede their ability to 
generalize effectively to other regions (Elith et al., 2010). The scarcity of 
records for rare species further diminishes the significance of model 
predictions. 

Nevertheless, recent initiatives in community science, exemplified 
by platforms like iNaturalist,1 eBird,2 and Pl@ntNet,3 have revolutionized 
the field and consolidated large numbers of species records contributed 
by enthusiasts and experts alike. The iNaturalist platform, for instance, 
comprises an impressive collection of over 150 million species 
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observations spanning more than 400,000 species. These rich data re-
sources present tremendous opportunities to significantly enhance the 
performance of SDMs and address their aforementioned associated 
challenges (Botella et al., 2023; Teng et al., 2023). However, they 
frequently consist of presence-only (PO) observations, providing infor-
mation exclusively about the presence of species, while lacking any 
corresponding data regarding their absence (Elith et al., 2020; Pearce 
and Boyce, 2006). This disparity emerges from the difficulty of gath-
ering data on species absence, in contrast to the more opportunistic 
nature of recording species presence (Franklin, 2010). From a machine 
learning perspective, this constraint implies that only positive samples 
are at our disposal (Bekker and Davis, 2020). 

However, most statistical and machine learning techniques require 
the incorporation of negative samples to effectively discriminate be-
tween species’ presence and absence. Different methods have been 
devised to tackle this challenge, with one common approach being the 
use of pseudo-absences sampling. This technique involves designating 
selected geographic locations as negative samples, even though there is 
no guarantee that the environmental conditions at these locations are 
unfavorable habitats for the target species. These pseudo-absences, also 
known as background points or pseudo-negatives, are usually sampled 
uniformly across the geographic space (random background points) or 
among the presence locations of other species (target-group background 
points), aiming to account for the sampling bias within the presence data 
(Ponder et al., 2001, Phillips et 48 al., 2009, Botella et al., 2020). An 
illustration of these two types of pseudo-absences is provided in Fig. 1. 

Incorporating pseudo-absences into model training generally in-
volves combining them with the set of presence data (Valavi et al., 
2022). However, this approach raises important questions regarding the 
optimal quantity and type of these pseudo-absences, potentially leading 
to class imbalance issues between presences and pseudo-absences and 
biased predictions if not carefully managed. While several studies have 
addressed these questions (Barbet-Massin et al., 2012; Phillips et al., 
2009; Stokland et al., 2011), the answers tend to be context-dependent, 
making it difficult to establish general guidelines. This challenge is 
particularly pronounced for models that have not been the focus of these 
studies, as is the case with neural networks, the most popular family of 
methods of the recent wave of machine learning in ecology (Tuia et al., 
2022). 

We aim to bridge this gap since the use of neural networks and deep 
learning techniques stands as a promising and efficient approach for 
SDMs (Botella et al., 2023; Davis et al., 2023; Teng et al., 2023). These 

methods have shown significant advancements when applied to large 
datasets, often outperforming traditional machine learning techniques 
in various fields (Brown et al., 2020; Christin et al., 2019; Jumper et al., 
2021; Krizhevsky et al., 2012). A distinctive advantage of deep learning 
approaches lies in their inherent flexibility, enabling the simultaneous 
integration of diverse data types and the modeling of multiple species, a 
capability that is increasingly vital in ecological research. Recent 
research emphasizes the potential of deep learning methods in SDMs, 
showing performance that matches or exceeds traditional techniques. In 
particular, this improvement seems to extend to both presence-absence 
(Chen et al., 2016; Teng et al., 2023) and presence-only datasets (Botella 
et al., 2023; Deneu et al., 2021). 

In this study, we investigate how to adequately employ pseudo- 
absences with neural networks. Our emphasis lies on multi-species 
models, observing that the incorporation of pseudo-absences seam-
lessly aligns with the multi-label prediction capabilities of neural net-
works. This integration is achieved through a modification of the 
training loss function that is used to optimize the neural network pa-
rameters. Specifically, we enhance the full loss function proposed by 
Cole et al. (2023) by assigning appropriate weights within the loss 
function for presences and pseudo-absences. This adjustment addresses 
the class imbalance between pseudo-absences and presences and rec-
ognizes that some pseudo-absences can be more informative than others 
in some situations (Phillips et al., 2009). Since our loss function involves 
weights whose optimal values may vary depending on the dataset, we 
show how to tune them using presences-only data with spatial block 
cross-validation (Roberts et al., 2017). 

We assess the effectiveness of our approach using a well-established 
benchmark dataset in SDMs, which comprises data from six distinct 
regions (Elith et al., 2020). This dataset includes independent presence- 
absence data for model evaluation, marking our work as the first to 
assess different SDMs loss functions on presence-absence data. In addi-
tion, previous evaluations have predominantly focused on global scales. 
While crucial for establishing global biodiversity trends, finer distribu-
tion maps are essential for informing local conservation policies. The 
diverse regions considered in our study span various scales, from local to 
continental. Our approach not only exhibits superior performance 
compared to alternative methods for neural networks, especially when 
coupled with an effective cross-validation methodology, but also dem-
onstrates adaptability to accommodate the specific characteristics of 
diverse datasets. This includes addressing issues such as class imbalance 
and sampling bias. 

Fig. 1. Modeling species distributions often involves utilizing presence-only (PO) data, where information about species absences is unavailable. To apply machine 
learning techniques in such situations, pseudo-absences are used as a contrast to presence data. There are primarily two types of pseudo-absences: target-group 
background points and random background points. Target-group background points consist of presences of other species, sharing a similar sampling bias, while 
random background points are uniformly sampled within the area. In this paper, we emphasize the critical importance of how these different types are managed 
during training for optimal performance, especially when dealing with neural networks. We support our approach by evaluating it on an independent test set 
comprised of presence-absence (PA) data. 
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2. Background 

2.1. Pseudo-absences in single-species models 

Pseudo-absences were introduced as a means to train single-species 
models in situations where data on species absence is unavailable, as 
is the case with presence-only datasets (Pearce and Boyce, 2006). These 
pseudo-absences serve the essential purpose of creating a contrast with 
presence data, thus preventing the model from converging to a trivial 
solution where it predicts the presence of the species everywhere. 
Extensive research has delved into the integration of pseudo-absences in 
single-species modeling (Barbet-Massin et al., 2012; Jarnevich et al., 
2017; Senay et al., 2013; Wisz and Guisan, 2009). These studies pre-
dominantly center on fundamental questions related to the required 
quantity and the appropriate type of pseudo-absences. 

2.1.1. Quantity of pseudo-absences 
Conventional approaches sample a specific number of pseudo- 

absences, typically fixed (Elith et al., 2006) or relative to the number 
of available occurrences per species (Valavi et al., 2021). That said, the 
optimal number often depends on the model in use. For instance, in the 
case of Maxent (Phillips et al., 2006), incorporating a larger number of 
pseudo-absences is generally more advantageous, up to a saturation 
point (Phillips and Dudík, 2008). For classification models such as 
Random Forests, it is recommended to also sample a large number of 
pseudo-absences, but then to employ bootstrapping to ensure a balanced 
count of presences and pseudo-absences for each tree (Barbet-Massin 
et al., 2012; Valavi et al., 2021). 

2.1.2. Type of pseudo-absences 
Diverse methods exist for sampling pseudo-absences. The standard 

approach involves randomly selecting points within the study area, 
which we refer to as “random background points” throughout this paper. 
Some alternative approaches restrict the sampling of pseudo-absences to 
areas geographically distant from known presences (Barbet-Massin 
et al., 2012; Mateo et al., 2010). Another method focuses on the envi-
ronmental space, where a first habitat suitability map is constructed 
using presence data only and envelope modeling (Araújo and Peterson, 
2012), and pseudo-absences are drawn from areas predicted to have low 
suitability (Engler et al., 2004). Nonetheless, several studies have indi-
cated that these methods do not consistently outperform the random 
background point approach and may even amplify biases originating 
from the presence data (Lyu et al., 2022; Wisz and Guisan, 2009). 

Alternatively, the presences of other similar species can be used as 
pseudo-absences; these are referred to “target-group background points” 
in this context. This approach often shows significant improvement in 
performance compared to random background points sampling, partic-
ularly for datasets marked by substantial sampling bias (Phillips et al., 
2009; Ponder et al., 2001). Several factors contribute to the often su-
perior performance of these pseudo-absences, with a key factor being 
that target-group background points often incorporate a bias similar to 
that of the presences of the target species (Botella et al., 2020; Hertzog 
et al., 2014). This alignment of biases enables a finer discrimination 
between presence and absence. 

A visual example of the difference in distribution between the target- 
group and random background points is represented in the left side of 
Fig. 1. In practice, studies rely on either random background points or 
target-group background points, but seldom combine both. However, 
combining them may potentially enhance model performance, an aspect 
we investigate in this work. 

2.2. Pseudo-absences in multi-species neural network models 

In this section, our focus shifts towards modeling the distributions of 
multiple species simultaneously, often referred to as multi-species dis-
tribution models (Poggiato et al., 2021). In machine learning 

terminology, this corresponds to a multi-label classification task. This 
differs from the more conventional multi-class classification, where only 
one species would be assumed to be present at a given location. In the 
context of presence-only data, not only are we restricted to presence 
records, but we often have only one species occurrence record per 
location, as exemplified by datasets like iNaturalist. We essentially find 
ourselves in a situation described as single positive multi-label learning by 
Cole et al. (2021). In this setup, we have knowledge of one positive label 
(observed presence) and unknown labels for (usually all) other species. 
However, similar to single-species modeling, we still need to employ 
pseudo-absences to prevent the model from incorrectly predicting the 
presence of all species at every location. The simplest way to approach 
pseudo-absences in this case is to assume that the missing labels are 
absences. This approach, known as “assume negative”, corresponds to 
the definition of target-group background points. As target-group 
background points alone may not adequately cover the entire 
geographic area, it can be beneficial to include additional random 
background points. In the context of neural networks, an effective way 
to combine these two types of pseudo-absences is by adjusting the 
training loss function. 

In the field of machine learning, training a model often involves 
minimizing a loss function that quantifies the model’s error on training 
data. Generally, deep learning-based SDMs are trained with the binary 
cross-entropy loss (Benkendorf and Hawkins, 2020; Deneu et al., 2021; 
Zbinden et al., 2023; Zhang et al., 2022), with the target-group back-
ground points often used as the de facto negative samples when absence 
data is unavailable. Nevertheless, the loss function can be modified to 
reflect the specificities of the problem. In our case, we can adapt the loss 
function to inform the model about how pseudo-absences are integrated. 
This can be achieved by adjusting or assigning weights to the different 
components of the loss function. Recently, Cole et al. (2023) introduced 
the following full assume negative loss, designed to account for both 
target-group background points and random background points: 

L full(y, ŷ)= −
1
S
∑S

s=1

⎡

⎢
⎢
⎣1[ys=1]λlog(ŷs)
⏟̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅⏟

presences

+ 1[ys=0]log(1 − ŷs)
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
target− group background

+ log
(
1 − ŷʹ

s
)

⏟̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅⏟
random background

⎤

⎥
⎥
⎦

(1)  

where ys is 1 if species s is present (the species has been observed) and 0 
otherwise, ŷs denotes the predicted suitability score for species s 
(ranging from 0 to 1), ŷʹ

s represents the model’s prediction for species s 
at a random location, S is the number of species considered, and 1[⋅] is the 
indicator function, returning 1 if the condition inside the brackets is true 
and 0 otherwise. It is important to note that this loss function is defined 
for a single presence location, and therefore the overall loss for the entire 
training dataset is computed by averaging over all the presence locations 
in the training set. We observe that L full is composed of three distinct 
terms, each corresponding to a different type of sample. The first term 
addresses presences, favoring a high score for the species that is present, 
and is weighed by a coefficient λ to compensate for the relatively small 
impact of presences in the loss function. The second term represents 
target-group background points and assumes that species not observed 
are absent. Finally, the third term corresponds to random background 
points, where it is assumed that all species are absent. Consequently, 
L full effectively combines target-group and random background points 
in a straightforward, clear, and complementary manner. This combi-
nation enables informing the model about the spatial bias through the 
target-group background points, while retaining the advantage of using 
random background points to cover the entire region of interest. 

2.2.1. Limitations of L full 
Primarily, this loss function fails to adequately address the issue of 

class imbalance within datasets. Two key aspects of class imbalance 
need to be tackled here: 
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1. There is often a disparity between the quantity of pseudo-absences 
required and the number of presences per species in typical data-
sets, often with a larger number of pseudo-absences. This imbalance 
can impede the effective training of machine learning models 
(Johnson and Khoshgoftaar, 2019) and has been shown to lead to 
suboptimal results for SDMs (Benkendorf et al., 2023). While the 
introduction of the weight λ, whose value is usually proportional to 
the number of species (Cole et al., 2023; Mac Aodha et al., 2019), 
aims to alleviate this issue, it does not address the second aspect 
described below.  

2. We have to ensure that each species is equally weighted within the 
loss function. The uniformity of λ across all species fails to account 
for variations in the number of presences among species. For 
example, Fig. 2a shows that a significantly higher number of re-
ported presences is available for some species, which results in a 
long-tailed distribution. In their work, Cole et al. (2023) address this 
issue by downsampling the presences for species with a large number 

of occurrences. However, this approach underutilizes available data, 
potentially leading to a decline in performance. 

In addition to the class imbalance issue, the target-group background 
points and random background points are assigned the same weight 
within L full. However, empirical studies suggest that target-group 
background points typically provide more valuable information than 
random ones (Botella et al., 2020; Phillips et al., 2009) when there is a 
significant bias in the presence data, as it is often the case with presence- 
only data (see Fig. 2b and Beck et al. (2014), Mesaglio and Callaghan 
(2021)). Ideally, the loss function should offer flexibility in determining 
the proportion of target-group background points relative to random 
background points, since this proportion is dependent on the specific 
dataset under consideration. Our method tackles all these aspects and 
proposes a new loss function, at the same time accounting for species 
observations imbalance, different types of pseudo-absences and their 
relative proportions. 

3. Methods 

We introduce a new loss function for SDMs, described in Section 3.1. 
This loss function incorporates dataset-dependent weights that get 
tailored to the specific characteristics of the data. In Section 3.2, we 
advocate for the use of block cross-validation to determine the optimal 
values of these weights. While the loss function is applicable to any deep 
learning method, we employ in our experiments a particular multi- 
species neural network model that is detailed in Section 3.3. Subse-
quently, we provide an overview of the dataset in use in Section 3.4, and 
elaborate on our evaluation methodology in Section 3.5. 

3.1. Full weighted loss function 

In light of the considerations discussed above, we propose an 
extension of L full. We refer to this new loss function as the full weighted 
loss function, defined as follows:   

The key distinction between L full and our new formulation lies in the 
introduction of weighting terms, with the addition of the coefficients ws, 
λ1, and λ2. We will now provide a detailed explanation of each of these 
weights. 

3.1.1. Species weights 
To address the class imbalance issues, we introduce the species 

weights denoted as ws. For each species s, the weight is defined as: 

ws =
n

np(s)
=

1
freq(s)

(3)  

where np(s) represents the number of presence records for species s and n 
is the total number of presence locations in the training set. We explore 
alternative definitions of ws in Section 4. In this formulation, ws corre-
sponds to the inverse of the frequency of species s. Weighting the spe-
cies’ presences this way ensures that the effective contribution of the 
presence records to the loss is equivalent for every species. Nevertheless, 

Fig. 2. Species occurrence records generally exhibit sampling biases, as depicted here by training presences in the dataset from Elith et al. (2020). (a) The number of 
presences per species follows a long-tailed distribution, with many species having only a limited number of available observations. To address this issue, we 
incorporate a species weight ws for each species in our loss function. (b) The geographic distribution of the presence records of all species shows varying biases across 
regions. We introduce the pseudo-absence weight λ2 to mitigate this bias. Additional plots for the remaining regions, not presented here, can be found in Appendix A. 

L full− weighted(y, ŷ) = −
1
S
∑S

s=1

⎡

⎢
⎢
⎣1[ys=1]λ1wslog(ŷs)
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

weighted presences

+1[ys=0]λ2
1

(

1 − 1
ws

)log(1 − ŷs)

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
weighted target− group background

+ (1 − λ2)log
(
1 − ŷʹ

s
)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
weighted random background

⎤

⎥
⎦. (2)   
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solely applying this weight to presences is insufficient to guarantee the 
unbiased treatment of all species by the model, as the number of target- 
group background points may be disproportionally high for species with 
few observations. Hence, to ensure that their contribution is consistent 
for every species, we also weight target-group background points with 
the following term: 

1
(

1 − 1
ws

) =
n

ntgbg(s)
=

1
1 − freq(s)

(4)  

where ntgbg(s) = n − np(s) denotes the number of target-group back-
ground points. Importantly, by weighting both presences and target- 
group background points, we guarantee that the individual contribu-
tions to the loss function of presences, target-group background points, 
and random background points in the training set are equivalent. In this 
way, we avoid assuming that the number of presences in the training set 
reflects the prevalence of the species, as prevalence cannot be deter-
mined solely from presence data (Hastie and Fithian, 2013). However, if 
additional information about prevalence is available, it can be inte-
grated by scaling the species prediction scores a posteriori, with the 
flexibility to scale differently for each species. 

3.1.2. Pseudo-absence weight 
We introduce the pseudo-absence weight λ2 as a way to indicate 

which type of pseudo-absence should have more importance in the 
learning process. Some studies have demonstrated that using target- 
group background points may lead to more accurate predictions 
(Botella et al., 2020; Phillips et al., 2009), but including a portion of 
random background points can be useful for covering the entire 
geographic area of interest (Cole et al., 2023; VanDerWal et al., 2009). 
With λ2 ∈ [0,1], our proposed loss modulates the emphasis between 
these two types of pseudo-absence. When λ2 = 0, only random back-
ground points are used, while λ2 = 1 means that only target-group 
background points are employed. The full loss of Cole et al. (2023) is 
equivalent to λ2 = 0.5, assuming an equal weight on target-group 
background points and random background points. 

3.1.3. Presence weight 
In addition, we introduce the presence weight λ1 as a means to adjust 

the weighting of the presences compared to the pseudo-absences. When 
λ1 > 1, more emphasis is placed on correctly classifying presences, 
whereas when λ1 < 1, the focus shifts to pseudo-absences. Notably, 
considering that presence data should be more reliable than pseudo- 
absences, a relatively higher value of λ1 can prove advantageous as it 
instructs the model to prioritize correctly classifying presences. This 
weight also makes L full-weighted a generalization of L full, enabling direct 
comparison. L full is recovered by setting λ1 = S/2, λ2 = 0.5, and 
removing the species weights ws. 

3.2. Tuning loss weights 

Our full weighted loss function includes the weights λ1 and λ2, whose 
optimal values are data-dependent and, as hyperparameters, require 
careful tuning. In machine learning, hyperparameter values are typically 

determined through cross-validation, involving the partitioning of the 
training data and designating a portion as the validation set. The se-
lection of hyperparameter values, or equivalently the selection of the 
model, is then based on the performance on this validation set. However, 
constructing an effective validation set with presence-only data is 
challenging, as evaluating model performance with such data may lead 
to choosing a model that makes biased predictions (El-Gabbas and 
Dormann, 2018). To alleviate this issue, we employ spatial block cross- 
validation (Roberts et al., 2017; Valavi et al., 2023), which involves 
spatially splitting the presence observations into training and validation 
sets. This approach makes it difficult for the model to perform well on 
the validation set, favoring models capable of generalizing to unseen 
areas (Smith et al., 2021). This is particularly important since presence- 
only data often exhibits biases towards specific areas, and we need to 
assess the model’s ability to counter them. 

Hence, we perform k-fold block cross-validation, dividing the region 
of interest into 5 × 5 geospatial blocks and assigning them to k distinct 
folds, such that each fold contains approximately the same number of 
presence observations. We choose k = 5, resulting in that for each 
partition, the model is trained on 80% of the presences and validated on 
the remaining 20%. This procedure is equivalent to the spatial blocks 
based on rows and columns of Valavi et al. (2018), and is illustrated in 
Fig. 3. The model is then evaluated on each fold and the results are 
averaged. The model with the best performance, determined here by the 
mean AUC (Area Under the receiver operating characteristic Curve) over 
all the species, is selected. The target-group background points are used 
as pseudo-absences to compute the AUC on the validation set, similarly 
to Valavi et al. (2023). 

3.3. Model and training details 

We adopt a configuration similar to the multi-species model pre-
sented in Zbinden et al. (2023). Instead of developing individual models 
for each species, we train a single multi-layer perceptron (MLP) model for 
each region (details about the six regions considered are given in Section 
3.4). These models predict suitability scores for every species within the 
region following a multi-label classification approach. MLPs are a type 
of neural network consisting of multiple layers of fully-connected neu-
rons with non-linear activation functions between layers (Gorishniy 
et al., 2021), enabling them to capture complex interactions among the 
input environmental covariates. This architecture is well-suited for the 
tabular format of the dataset in use (see Section 3.4). For the model and 
training hyperparameters, we stick to standard values (Gorishniy et al., 
2021; Mac Aodha et al., 2019), while also incorporating recent ad-
vancements in deep learning to enhance performance. Specifically, our 
MLP architecture consists of four layers, each containing 512 neurons 
and connected with residual connections (He et al., 2016). We employ 
batch normalization (Ioffe and Szegedy, 2015) and the Rectified Linear 
Unit (ReLU) activation function in all layers except the final one, where 
instead a sigmoid function is used to enable multi-label classification. 
The model is trained with a batch size of 256 for 30 epochs using the 
AdamW optimizer (Loshchilov and Hutter, 2017). Both the weight decay 
and learning rate are set to 0.0001. Additionally, we employ a learning 
rate scheduler with exponential decay of 0.95, and introduce dropout 

Fig. 3. k-fold block cross-validation (Roberts et al., 2017) is used to find the optimal value of the pseudo-absence weight λ2. It involves the spatial partitioning of 
presence observations into the training and validation sets, comprising respectively 80% and 20% of the samples. The presence records considered here pertain to the 
Swiss region of the dataset described in Section 3.4. 
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(Srivastava et al., 2014) with a probability of 0.01. 

3.4. Dataset 

We use the benchmark dataset from Elith et al. (2020), which com-
prises occurrence data for 226 anonymized species from six regions 
around the world: Australian Wet Tropic (AWT), Canada (CAN), New 
South Wales (NSW), New Zealand (NZ), South America (SA), and 
Switzerland (SWI). Recently made public, this dataset has already been 
employed to evaluate and compare different methods (Elith et al., 2006; 
Valavi et al., 2022), as well as for conducting analyses of target-group 
background points (Phillips et al., 2009). The training set consists of 
opportunistically sampled presence-only data, while the test set is built 
with full presence-absence data for each species (Fig. 1, right). As pre-
dictors, the dataset contains a varying set of 10 to 13 environmental 
covariates for each region, including both climatic and pedological 
variables (see Elith et al. (2020) for a full description). 

This dataset is also representative of the biases and challenges often 
encountered when training SDMs. Notably, the number of presences per 
species follows a long-tail distribution, as illustrated in Fig. 2a. Addi-
tionally, the geographic distribution is often biased, particularly in 
certain areas of some regions. For instance, as observed in Fig. 2b and 
quantified by Phillips et al. (2009), there is a substantial bias in the 
distribution of presences for the AWT and CAN regions, while NZ ex-
hibits less bias. Finally, some regions encompass species belonging to 
different biological groups, such as plants or birds. While previous 
studies used only presences of species within the same group as target- 
group background points (Phillips et al., 2009; Ponder et al., 2001), 
for simplicity we utilize all species within each region to train our 
models. As a result, we have a total of six models, one for each region. 

3.5. Evaluation and baselines 

We compare our approach with various other prediction methods 
and loss functions. Firstly, we examine the different loss functions pro-
posed by Cole et al. (2023). The L full presented in Section 2.2 is a 
combination of two losses: the SSDL (same species, different location) 
loss, which exclusively uses the random background points and pres-
ences, and the SLDS (same location, different species) loss, which only 
uses the target-group background points and presences. Notably, our full 
weighted loss generalizes these three loss functions by appropriately 
setting the λ1 and λ2 weights. Specifically, L full-weighted is similar to the 
SSDL loss when λ1 = S and λ2 = 0, the SLDS loss corresponds to λ1 = S 
and λ2 = 1, and the full loss is equivalent when λ1 = S/2 and λ2 = 0.5. In 
each case, no species weights are applied. We then train the multi- 
species model defined in Section 3.3 on these loss functions. For 
completeness, in Appendix B, we also discuss and evaluate other ma-
chine learning loss functions commonly used in similar settings, 

particularly the categorical cross-entropy loss, which has been employed 
in previous SDMs studies (Deneu et al., 2021; Zhang et al., 2022). 

Additionally, we include results for the Maxent and Boosting 
Regression Trees models from Phillips et al. (2009), which were trained 
on the same dataset, but with target-group background points only. 
Maxent is the conventional approach to SDMs (Phillips et al., 2006), 
while the Boosting Regression Trees model represents one of the existing 
tree-based approaches that perform well in modeling species distribu-
tions (Valavi et al., 2021). However, both these approaches necessitate 
the creation of one model per species, resulting in the management of 
226 independent models. 

All the different methods are evaluated on the presence-absence test 
set by computing the Area Under the receiver operating characteristic 
Curve (AUC) for each species and then calculating the mean across all 
species per region. We opt for AUC due to its widespread use in SDMs 
and its general high agreement with independent testing data (Kono-
walik and Nosol, 2021), as well as to avoid binarizing predictions. For 
completeness, we still compute the correlation and the area under the 
precision-recall gain curve (Flach and Kull, 2015), as done in Valavi 
et al. (2022), and include these metrics in the Appendix (see Table C.7 
and Table C.8). Finally, we report the average performance over ten 
different random seeds to add statistical significance. 

4. Results and discussion 

We first compare our approach to the other baselines, and then 
perform ablation studies to understand the role played by every weight 
in the loss function. 

4.1. Comparison with other approaches 

The full weighted loss Lfull-weighted is compared to the methods and 
loss functions in Table 1 on the test set of the Elith et al. (2020) dataset. 
We evaluate the loss functions introduced in Cole et al. (2023) and 
observe that the use of target-group background points (SLDS loss) 
consistently yields superior results compared to using random back-
ground points (SSDL loss). Additionally, considering both types of 
pseudo-absences enhances performance in four out of six regions (Full 
loss). In comparison, our approach, which incorporates species weights 
and where the pseudo-absence weight λ2 is set to 0.8 to put more weight 
on the target-group background points, achieves slightly superior results 
on average than the full loss. Moreover, fine-tuning the value λ2 through 
block cross-validation leads to additional improvements in the CAN 
region. Notably, these results are achieved without the need for specific 
λ1 values. This superior performance is also visible in the correlation (see 
Table C.7) and the area under the precision-recall gain curve (see 
Table C.8) metrics. Ultimately, the single-species models exhibit a per-
formance range comparable to that of our approach but still showcase a 

Table 1 
Comparison of the mean AUC over the species of our approach to other works. Our loss generalizes the losses proposed by (Cole et al., 2023). The best mean AUC for 
each column, achieved across the different loss functions, is highlighted in bold, whereas the best mean AUC obtained from single-species models is underlined.   

AWT CAN NSW NZ SA SWI avg 

Cole et al. (2023) losses 
SSDL loss, i.e., λ1 = S and λ2 = 0 0.673 0.542 0.691 0.731 0.800 0.801 0.706 
SLDS loss, i.e., λ1 = S and λ2 = 1 0.689 0.724 0.709 0.737 0.807 0.845 0.752 
Full loss, i.e., λ1 = S/2 and λ2 = 0.5 0.698 0.673 0.723 0.742 0.814 0.836 0.748  

Full weighted loss (ours) 
λ1 = 1 and λ2 = 0.8, with ws 0.704 0.696 0.719 0.741 0.815 0.836 0.752 
λ1 = 1 and fine-tuned λ2, with ws 0.704 0.714 0.719 0.741 0.815 0.838 0.755  

Single-species (Phillips et al., 2009) 
Maxent 0.732 0.716 0.741 0.738 0.798 0.837 0.760 
BRT 0.700 0.728 0.738 0.740 0.792 0.842 0.757  
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slight advantage. 

4.2. Loss weights 

We next conduct ablation studies to understand the role of each 
weight in our loss function. We adjust each of the three weights in 
question, one at a time, and keep the other weights at their base values, 
which are λ1 = 1, λ2 = 0.8, and ws = 1/freq(s). 

4.2.1. Species weights 
We start by assessing the impact of the species weights ws, as pre-

sented in Table 2. We compare its influence with a scenario in which no 
species weights are considered, and also test different values of ws. Our 
observations reveal a significant improvement when incorporating 
species weights, with positive effects evident in four out of six regions, 
resulting in a higher overall average improvement. Particularly, regions 
NSW and NZ show substantial increases, effectively addressing the 
challenge posed by the long-tail distribution of presences for these two 
regions (see Fig. 2a). Alternative approaches involving the square root 
or clamping low frequency at 0.05 produce comparable, albeit slightly 
less accurate results on average. Furthermore, the left panel of Fig. 4 
illustrates that incorporating species weights is especially advantageous 
for species with fewer presence records, with diminishing benefits as the 
number of presence records increases. 

Finally, with the inclusion of the species weights, the addition of the 
presence weight λ1 to the presences, as in L full, is no longer necessary, as 
demonstrated by the results in Table C.5 in the Appendix. Indeed, the 
improvements resulting from varying the value of λ1 become only 
marginal. 

4.2.2. Pseudo-absence weight 
In Table 3, we explore the impact of varying the ratio of target-group 

background points to the pseudo-absences using the weighting param-
eter λ2. As previously observed in Table 1, the incorporation of target- 
group background points consistently leads to improvements, extend-
ing the observation of Phillips et al. (2009) to neural networks. When 
examining the overall performance across datasets, employing either 

only target-group background points (λ2 = 1)or a percentage of 80% 
(λ2 = 0.8) tends to produce the best outcomes, although the optimal 
proportion varies from one region to another. Specifically, for the three 
regions NSW, NZ, and SA, performance improvements level off for λ2 
values exceeding 0.6. This suggests that the ideal ratio of target-group 
background points is dependent on the specific data characteristics of 
each region. In particular, this dependency is linked to the sampling 
bias, as quantified by Phillips et al. (2009). Regions such as AWT, CAN, 
and SWI, which exhibit more pronounced sampling bias, benefit more 
from the inclusion of target-group background points compared to other 
regions. Consequently, employing a block cross-validation procedure to 
ascertain the optimal value of λ2 for each region proves to be beneficial, 
as visible in the final row of Table 3. This procedure identifies the 
optimal λ2 value for three out of the six regions, with the performances 
of the remaining regions closely approaching the best mean AUC 
achievable. This leads to a higher average performance across the 
regions. 

In the right panel of Fig. 4, we present the AUCs obtained when using 
only target-group background points (λ2 = 1) versus using only random 
background points (λ2 = 0) for each species. Points above the diagonal 
black line indicate species where the use of target-group background 
points leads to a higher AUC than using random background points, and 

Table 2 
Different values for the species weights ws, with λ1 = 1 and λ2 = 0.8. ws is required to address the strong class imbalance between presences and pseudo-absences. The 
clamp operation here restricts low frequencies to a minimum threshold of 0.05. The best mean AUC obtained for each column is highlighted in bold.   

AWT CAN NSW NZ SA SWI avg 

no species weights 0.653 0.719 0.652 0.702 0.741 0.840 0.718 
ws = 1/freq(s) 0.704 0.696 0.719 0.741 0.815 0.836 0.752 
ws = 1/clamp(freq(s) ) 0.700 0.698 0.718 0.738 0.813 0.837 0.751 
ws = 1/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
freq(s)

√ 0.697 0.704 0.710 0.737 0.799 0.839 0.748  

Fig. 4. Left: Impact on the AUC when using the species weight ws in the loss function, grouped by the number of presences records in the training set. The gain of 
employing ws is more pronounced for species with fewer presence records. Right: Impact on the AUC when using random (λ2 = 0) or target-group (λ2 = 1) 
background points, with every symbol representing a species. While many species benefit from using only target-group background points, not all do. 

Table 3 
Varying the value of the pseudo-absence weight λ2 has a notable impact on the 
mean AUC over the species. The results presented in the last row are obtained 
using block cross-validation, where λ2 is selected based on the performance on 
the validation set. In each result, the species weight ws is employed, while λ1 is 
fixed to 1. The best mean AUC in each column is highlighted in bold.   

AWT CAN NSW NZ SA SWI avg 

λ2=0 0.651 0.547 0.685 0.731 0.804 0.794 0.702 
λ2=0.2 0.673 0.600 0.710 0.740 0.812 0.814 0.725 
λ2=0.4 0.691 0.634 0.720 0.743 0.815 0.824 0.738 
λ2=0.6 0.702 0.665 0.722 0.743 0.816 0.831 0.746 
λ2=0.8 0.704 0.696 0.719 0.741 0.815 0.836 0.752 
λ2=1 0.696 0.714 0.713 0.738 0.811 0.838 0.752 
λ2 found by cv 0.704 0.714 0.719 0.741 0.815 0.838 0.755  
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Fig. 5. Focus on three distinct (anonymized) species, labeled as can12, can15, and sa29. Each species is represented by its respective training set, test set, and 
prediction maps. These visualizations illustrate the role and impact of different values for the pseudo-absence weight λ2 on the prediction maps generated by 
the model. 
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vice versa. Many species, especially in the CAN region, benefit from 
using target-group background points, with some achieving a boost as 
high as 0.5 points AUC. However, this trend is not present for all species; 
some obtain lower performance when using only target-group back-
ground points instead of random background points. In particular, 
within the same geographic region, species exhibit varied responses, 
highlighting that the optimal value of λ2 can vary even within a single 
region, depending on the species. 

To gain a concrete understanding of how the choice of λ2 influences 
prediction maps, we present maps for three distinct species, each with 
varying values of λ2—ranging from 0 (no target-group background 
points) to 1 (only target-group background points). The selection of 
these three species aims at explicitly showcasing the heterogeneous 
response to λ2. Specifically, the more widely distributed species can12 
from Canada significantly benefits from including target-group back-
ground points, whereas the more specialized can15 species suffers from 
relying on target-group background points only. This observation aligns 
with the findings of Ranc et al. (2017) and Botella et al. (2020), which 
conclude that generalist widely-distributed species gain more from 
target-group background points compared to specialized species. 
Notably, the can15 species exhibits a distribution closely mirroring the 
distribution of presences of all species, heavily biased towards the south 
(as depicted in the panel showing presences and target-group back-
ground points only). Consequently, the model struggles to distinguish 
between target-group background points and presences, resulting in 
predicted scores hovering around 0.5 for the entire map. Finally, we 
note that the differences in prediction maps are not always strong, as 
illustrated by the sa29 species. In this case, the distinction lies more in 
the magnitude of the predictions, although the southeast region is not 
accurately predicted when using only target-group background points. 

5. Future work 

We present several potential extensions to our approach. Firstly, our 
loss function offers the flexibility to include as many random back-
ground points as desired, as they are appropriately weighted. This 
flexibility allows one to choose the spatial extent covered by random 
background points that is optimal (VanDerWal et al., 2009), without 
being constrained by a specific number. In particular, it enables the 
sampling of additional random background points in an area that has 
been considered unsuitable, for example, based on expert knowledge or 
biological information, as demonstrated by Chapman et al. (2019). 
Random background points could also be selectively sampled from 
subareas within the region of interest, such as those distant from known 
presences (Iturbide et al., 2015; Mateo et al., 2010). Moreover, presence- 
only data often contains only a single species record per location. In this 
situation, our approach can be effectively combined with methods that 
aggregate nearby species presences, such as Kellenberger et al. (2022). 

Furthermore, we observed in Fig. 4 (right) and Fig. 5 that different 
species within the same region may have different optimal values for the 
hyperparameter λ2. Consequently, setting distinct λ2 values per species 
could improve model performance. In particular, higher values of λ2 
could be set for known generalist species, especially if there is a strong 
sampling bias. While the evaluation in this study focused on multi- 
species neural networks, it is straightforward to adapt our loss func-
tion to single-species neural networks by removing the summation over 
species and retaining only the species of interest. 

We chose to use the benchmark dataset from Elith et al. (2020) due to 
its established reputation in SDMs and its inclusion of PA data to eval-
uate models trained on PO data. However, the tabular format of this 
dataset typically reduces the performance of neural networks (Borisov 
et al., 2022; Grinsztajn et al., 2022). Our results align with this limita-
tion, as non-neural network approaches demonstrated comparable or 
even slightly superior performance compared to our method. Never-
theless, certain studies suggest that deep learning-based SDMs can sur-
pass traditional machine learning methods by incorporating diverse data 

types (Botella et al., 2023; Teng et al., 2023; Zhang et al., 2022). As a 
result, we intend to expand this research to datasets involving various 
types of data, such as environmental rasters, satellite images, or time 
series data, as exemplified by the GeoLifeCLEF 2023 dataset (Botella 
et al., 2023). An interesting avenue to explore is whether the behavior of 
the full weighted loss function remains consistent across various neural 
network architectures, including more complex models such as con-
volutional neural networks (Krizhevsky et al., 2012) or Transformers 
(Vaswani et al., 2017). 

6. Conclusion 

Employing deep learning methods for SDMs represents a promising 
approach to processing the substantial volume of new ecological data 
emerging from community science. The prevalence of presence-only 
observations, a common format for such datasets, poses a challenge 
due to the absence of information about the non-occurrence of species. 
To tackle this fundamental issue, pseudo-absences are frequently 
employed as contrasting samples to the presence observations. In this 
paper, we introduced a unified and flexible approach to integrating 
different types and quantities of pseudo-absences when using multi- 
species neural networks. This is achieved through the introduction of 
a novel loss function tailored to the specific characteristics of the data-
sets, effectively addressing challenges such as geographic biases and 
class imbalance issues. The training of multi-species neural networks 
with our proposed loss function yielded superior performance compared 
to previous approaches. Notably, our models performed similarly to 
Maxent on an independent test set consisting of both presence and 
absence data from diverse regions while maintaining the convenience of 
having a single model per region. Our study also sheds light on the 
intricate relationship between the type of pseudo-absence and the 
spatial bias of observations, emphasizing the importance of considering 
this factor in model development. By providing a comprehensive solu-
tion to the incorporation of pseudo-absences, our work opens avenues 
for further refinement and enhancement of multi-species neural network 
models, ultimately supporting more accurate and reliable predictions in 
ecological research and conservation efforts. 
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Data availability 
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com/eceo-epfl/SDM-full-weighted-loss  

Appendix A. Additional dataset details 

We provide the maps of the geographic distribution of the presence records for all species (Fig. A.6), along with the distribution of the number of 
presence records per species (Fig. A.7) for all regions. For additional details about the dataset, refer to Elith et al. (2020).

Fig. A.6. The geographic distribution of the presence records of all species within each region of the dataset in use (Elith et al., 2020). The intensity of the sampling 
bias varies significantly from one region to another. 

Fig. A.7. Distribution of the number of presence records per species in each region of the dataset in use Elith et al. (2020). The distributions typically exhibit a long- 
tailed pattern, with many species observed only a few times, while a few others are observed more frequently. 

Appendix B. Comparison with other ML losses 

In this section, we discuss and compare the full weighted loss to other losses commonly used by the machine learning community to address similar 
setups. 

Cross-entropy loss. Previous studies applying deep learning approaches to SDMs have frequently employed the categorical cross-entropy (CE) loss 
function (Deneu et al., 2021; Zhang et al., 2022). However, conceptually, we argue that the CE loss may not be well-suited for the specific multi-species 
setup we are dealing with. This is because a single location can accommodate an arbitrary number of species, whereas the CE loss assumes the presence 
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of only one species per location, thereby introducing score dependencies between species. Furthermore, it may exacerbate issues related to data bias, 
as it tends to favor species that are more prevalent in the training dataset and penalize rare species. It is also noteworthy that the CE loss implicitly 
considers target-group background points (and no random background points), as it pits species classes against each other via the softmax operation, 
preventing an all-one prediction. Nevertheless, given the common usage of the CE loss, we include in Table B.4 the performance results obtained using 
it. We note that while the CE loss yields good and comparable performance in certain regions, namely CAN, NSW, and NZ, its performance is 
considerably worse in others and on average. Additionally, weighting the CE by the inverse frequency improves performance in the AWT region, but 
decreases performance in other regions. 

Focal loss. The focal loss function was originally introduced to mitigate class imbalance in object detection (Lin et al., 2017), and works by down- 
weighting already well-classified samples. Although initially designed for multi-class classification, it can be adapted to multi-label classification. 
Therefore, we evaluate this loss function in two settings: one combined with the cross-entropy loss and the other combined with our full weighted loss 
function. However, we observe in Table B.4 that neither of these settings leads to an improvement in performance. 

LDAM loss. The Label-Distribution-Aware Margin (LDAM) loss function was introduced to mitigate class imbalance in multi-class classification by 
regularizing the minority classes more strongly, encouraging larger margins for these classes (Cao et al., 2019). It has been employed by Estopinan 
et al. (2022) to train SDMs with deep learning. As shown in Table B.4, the performance of this loss function is similar to the CE loss, since it is based on 
and therefore inherits the same issues described above. 

DB loss. Unlike the focal and LDAM loss functions, the Distribution-Balanced (DB) loss function was specifically designed for the multi-label 
classification setting (Wu et al., 2020). It incorporates considerations of label co-occurrences and aims to mitigate the over-suppression of negative 
labels to address class imbalance effectively. Based on the hyperparameters values used in Wu et al. (2020), we vary λ while setting α = 0.1, β = 10,
μ = 0.2, and κ = 0. However, the performance is lower than that of other baselines on average (Table B.4). 

Entmax loss. Zhou et al. (2022) introduced the Entropy-Maximization (Entmax) loss function to tackle the particular setting of single positive 
multi-label learning encountered with presence-only observations (see Section 2.2). It has previously been tested by Cole et al. (2023), and similarly, 
we observe lower performance than the baselines, as shown in Table B.4.  

Table B.4 
Mean AUC performance of other alternative ML loss functions. The performance is averaged over 10 random seeds.   

AWT CAN NSW NZ SA SWI avg 

CE 0.663 0.718 0.716 0.741 0.796 0.827 0.744 
weighted CE 0.670 0.706 0.714 0.736 0.795 0.816 0.739 
Focal CE (γ = 0.5) 0.663 0.718 0.716 0.741 0.796 0.827 0.744 
Focal CE (γ = 1) 0.663 0.718 0.716 0.741 0.796 0.827 0.744 
Focal CE (γ = 2) 0.662 0.718 0.716 0.741 0.795 0.826 0.743 
Focal CE (γ = 5) 0.660 0.719 0.715 0.741 0.794 0.824 0.742 
Focal full weighted (γ = 0.5) 0.680 0.684 0.682 0.729 0.773 0.836 0.731 
Focal full weighted (γ = 1) 0.686 0.682 0.696 0.734 0.787 0.835 0.737 
Focal full weighted (γ = 2) 0.689 0.678 0.705 0.735 0.800 0.832 0.740 
Focal full weighted (γ = 5) 0.682 0.665 0.699 0.723 0.805 0.825 0.733 
LDAM (C = 0.1) 0.663 0.718 0.716 0.741 0.796 0.827 0.744 
LDAM (C = 1) 0.662 0.718 0.716 0.741 0.797 0.828 0.744 
LDAM (C = 10) 0.648 0.719 0.709 0.738 0.799 0.831 0.741 
DB loss (λ = 3) 0.669 0.704 0.679 0.716 0.769 0.835 0.729 
DB loss (λ = 5) 0.668 0.698 0.679 0.710 0.776 0.829 0.727 
Entmax (α = 0.01) 0.665 0.687 0.710 0.740 0.796 0.817 0.736 
Entmax (α = 0.05) 0.680 0.697 0.699 0.719 0.810 0.823 0.738 
Entmax (α = 0.1) 0.676 0.683 0.688 0.703 0.808 0.819 0.729 
Full weighted (λ2 = 0.5) 0.698 0.650 0.721 0.744 0.816 0.828 0.743 
Full weighted (λ2 = 0.8) 0.704 0.696 0.719 0.741 0.815 0.836 0.752 
Full weighted (λ2 = 1) 0.696 0.714 0.713 0.738 0.811 0.838 0.752  

Appendix C. Additional results 

Presence weight. In Table C.5, we evaluate the impact of the presence weight λ1 on performance. Notably, the performance changes from 
variations in the value of λ1 are minor, suggesting that the species weights adequately address the class imbalance between presences and pseudo- 
absences.  

Table C.5 
Adjusting the value of the presence weight λ1 has a minimal impact on the mean AUC over the species, indicating that the species weights ws effectively address class 
imbalance issues. λ2 is fixed at 0.8 and ws is used. The best mean AUC in each column is highlighted in bold.   

AWT CAN NSW NZ SA SWI avg 

λ1=0.1 0.709 0.701 0.701 0.734 0.784 0.837 0.744 
λ1=0.25 0.705 0.696 0.714 0.739 0.805 0.836 0.749 
λ1=0.5 0.702 0.695 0.718 0.740 0.812 0.836 0.751 
λ1=1 0.704 0.696 0.719 0.741 0.815 0.836 0.752 
λ1=2 0.704 0.698 0.719 0.743 0.814 0.837 0.752 
λ1=4 0.703 0.699 0.718 0.743 0.812 0.838 0.752 
λ1=10 0.695 0.696 0.712 0.737 0.806 0.840 0.748  

Block cross-validation. We explore the effectiveness of employing spatial block cross-validation in determining the optimal value for the pseudo- 
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absence weight λ2. We compare this approach with traditional cross-validation methods, including plain cross-validation (randomly splitting presence 
data) and species-stratified cross-validation, where the proportion of presences is maintained for each species in each subset (Sechidis et al., 2011). 
During this process, we include the target-group background points associated with the presences in the validation set, along with (optionally) an 
equivalent number of random background points. The objective is then to identify the λ2 value that maximizes the average validation AUC across folds. 
This is achieved through a grid search for λ2, exploring its values within the set {0,0.2, 0.4,0.6, 0.8, 1}. 

Results in Table C.6 indicate that block cross-validation outperforms other approaches when both random and target-group background points are 
utilized. This is particularly effective in regions with significant sampling bias, such as AWT, CAN, and SWI. However, superior average performance is 
achieved by restricting the validation set to include only target-group background points, regardless of the validation method used. Notably, all 
methods converge on the same selection of λ2 values.  

Table C.6 
Mean AUC over the species for different methods employed to construct the validation set used to determine the optimal value of the pseudo-absence weight λ2. λ1 is 
fixed at 1, and ws is used. The best mean AUC in each column is underlined when both target-group and random background points are included in the validation set. 
When exclusively using target-group background points in the validation set, all methods converge on the selection of identical λ2 values.   

AWT CAN NSW NZ SA SWI avg 

target-group þ random 
plain 0.673 0.634 0.720 0.740 0.812 0.824 0.734 
species-stratified 0.691 0.634 0.720 0.740 0.815 0.824 0.737 
block 0.704 0.696 0.720 0.741 0.811 0.831 0.751  

target-group 
plain 0.704 0.714 0.719 0.741 0.815 0.838 0.755 
species-stratified 0.704 0.714 0.719 0.741 0.815 0.838 0.755 
block 0.704 0.714 0.719 0.741 0.815 0.838 0.755  

Additional metrics. In Tables C.7 and C.8, we present the mean correlation and the mean area under the precision-recall gain curve across species, 
respectively. The results are consistent across the different metrics. Remarkably, employing our full weighted loss with the fine-tuned value of λ2 
consistently yields the best average performances over the regions.  

Table C.7 
Mean Pearson correlation coefficient over the species. The best mean correlation in each column is highlighted in bold, while the second-best mean correlation is 
underlined.   

AWT CAN NSW NZ SA SWI avg 

Cole et al. (2023) losses 
SSDL loss, i.e., λ1 = S and λ2 = 0 0.253 0.037 0.156 0.168 0.285 0.208 0.184 
SLDS loss, i.e., λ1 = S and λ2 = 1 0.279 0.181 0.171 0.171 0.299 0.264 0.228 
Full loss, i.e., λ1 = S/2 and λ2 = 0.5 0.296 0.142 0.191 0.179 0.319 0.267 0.232  

Full weighted loss (ours) 
λ1 = 1 and λ2 = 0.8, no ws 0.226 0.178 0.119 0.144 0.238 0.310 0.203 
λ1 = 1 and λ2 = 0, with ws 0.223 0.042 0.153 0.171 0.296 0.222 0.184 
λ1 = 1 and λ2 = 0.2, with ws 0.254 0.091 0.179 0.179 0.311 0.249 0.210 
λ1 = 1 and λ2 = 0.4, with ws 0.279 0.117 0.189 0.182 0.318 0.264 0.225 
λ1 = 1 and λ2 = 0.6, with ws 0.296 0.137 0.191 0.182 0.320 0.274 0.233 
λ1 = 1 and λ2 = 0.8, with ws 0.300 0.158 0.187 0.179 0.318 0.280 0.237 
λ1 = 1 and λ2 = 1, with ws 0.290 0.172 0.180 0.176 0.314 0.283 0.236 
λ1 = 1 and fine-tuned λ2, with ws 0.300 0.172 0.187 0.179 0.318 0.283 0.240   

Table C.8 
Mean area under the precision-recall gain curve (AUPRG) over the species. The best mean AUPRG in each column is highlighted in bold, while the second-best mean 
AUPRG is underlined.   

AWT CAN NSW NZ SA SWI avg 

Cole et al. (2023) losses 
SSDL loss, i.e., λ1 = S and λ2 = 0 0.346 − 1.606 − 0.175 0.303 0.704 0.773 0.057 
SLDS loss, i.e., λ1 = S and λ2 = 1 0.411 − 0.333 0.006 0.321 0.700 0.854 0.327 
Full loss, i.e., λ1 = S/2 and λ2 = 0.5 0.410 − 0.552 0.203 0.404 0.721 0.833 0.337  

Full weighted loss (ours) 
λ1 = 1 and λ2 = 0.8, without ws 0.339 ¡0.036 − 0.300 − 0.451 0.602 0.846 0.167 
λ1 = 1 and λ2 = 0, with ws 0.291 − 1.267 − 0.107 0.320 0.690 0.759 0.114 
λ1 = 1 and λ2 = 0.2, with ws 0.340 − 1.057 0.123 0.355 0.710 0.800 0.212 
λ1 = 1 and λ2 = 0.4, with ws 0.385 − 0.782 0.186 0.374 0.722 0.816 0.284 
λ1 = 1 and λ2 = 0.6, with ws 0.427 − 0.629 0.202 0.384 0.728 0.829 0.324 
λ1 = 1 and λ2 = 0.8, with ws 0.456 − 0.430 0.166 0.388 0.730 0.839 0.358 

(continued on next page) 
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Table C.8 (continued )  

AWT CAN NSW NZ SA SWI avg 

λ1 = 1 and λ2 = 1, with ws 0.461 − 0.427 0.076 0.388 0.730 0.847 0.346 
λ1 = 1 and fine-tuned λ2, with ws 0.456 − 0.427 0.166 0.388 0.730 0.847 0.360  

Optimizing the full loss. The sole adjustable parameter of the losses proposed by Cole et al. (2023) is the λ value of the full loss function, which 
they set to 2048. In Table C.9, we show the performance variability of the full loss across different values of λ. Notably, simply using λ = 2048 results in 
relatively low performance in our experiments. Additionally, other values of λ also demonstrate inferior performance compared to our full weighted 
loss on average. Ultimately, setting λ to be proportionate to the number of species S yields satisfactory performance on average (last row of Table C.9).  

Table C.9 
Mean AUC performance of the L full loss with varying values of λ. S is the number of species, therefore the last line corresponds to our automatic tuning of λ. Note that 

the L full loss is equivalent to the L full− weighted loss when λ1 =
λ
2 

and λ2 = 0.5. The performance is averaged over 10 random seeds.  

λ AWT CAN NSW NZ SA SWI avg 

1 0.682 0.682 0.689 0.730 0.784 0.837 0.734 
2 0.690 0.677 0.707 0.737 0.803 0.836 0.742 
4 0.695 0.673 0.716 0.740 0.811 0.836 0.745 
8 0.697 0.675 0.721 0.741 0.814 0.836 0.747 
16 0.699 0.680 0.724 0.742 0.814 0.837 0.749 
32 0.695 0.684 0.725 0.745 0.811 0.837 0.749 
64 0.684 0.687 0.724 0.746 0.806 0.836 0.747 
128 0.672 0.688 0.723 0.744 0.799 0.834 0.743 
256 0.662 0.684 0.718 0.740 0.793 0.831 0.738 
512 0.654 0.675 0.711 0.733 0.789 0.825 0.731 
1024 0.649 0.660 0.702 0.727 0.786 0.817 0.723 
2048 0.647 0.640 0.695 0.721 0.785 0.807 0.716 
S 0.698 0.673 0.723 0.742 0.814 0.836 0.748  
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