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Abstract
For researchers and practitioners in finance, find-
ing synergistic formulaic alphas is very important
but challenging. In this paper, we reconsider the
discovery of synergistic formulaic alphas from
the viewpoint of sequential decision-making, and
conceptualize the entire alpha discovery process
as a non-stationary and reward-sparse Markov de-
cision process. To overcome the challenges of
non-stationarity and reward-sparsity, we propose
the AlphaQCM method, a novel distributional re-
inforcement learning method designed to search
for synergistic formulaic alphas efficiently. The
AlphaQCM method first learns the Q function and
quantiles via a Q network and a quantile network,
respectively. Then, the AlphaQCM method ap-
plies the quantiled conditional moment method
to learn unbiased variance from the potentially
biased quantiles. Guided by the learned Q func-
tion and variance, the AlphaQCM method navi-
gates the non-stationarity and reward-sparsity to
explore the vast search space of formulaic alphas
with high efficacy. Empirical applications to real-
world datasets demonstrate that our AlphaQCM
method significantly outperforms its competitors,
particularly when dealing with large datasets com-
prising numerous stocks.

1. Introduction
Over the past decades, extensive research has investigated
the predictive power of historical stock information for
forecasting future returns, resulting in the development
of several well-known alphas, such as long-term momen-
tum (Jegadeesh & Titman, 1993) and short-term reversal (Je-
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gadeesh, 1990). Here, each alpha is a function that trans-
forms noisy historical stock data into signals for predicting
future stock returns. However, recent studies examining the
influence of investor behavior and psychology on price dy-
namics have uncovered the existence of subtle and intricate
alphas that are difficult to formalize using standard financial
methods (Barberis, 2018).

Most existing AI approaches surpass traditional methods
in this field by designing alphas through the use of sophis-
ticated machine learning (ML) models in an end-to-end
manner (Feng et al., 2019; Ding et al., 2020; Koa et al.,
2023). Intuitively, the well-trained ML models are effective
alphas, since they can transform stock data into predictive
signals. However, they are inherently complex and lack sim-
ple mathematical representations, leading to the so-called
non-formulaic alphas. Yet, the non-formulaic alphas have
trust issues due to their black-box nature, so they are not
widely adopted in the industry.

For dealing with the above trust issue, emerging literature
focuses on how to automatically discover a set of synergis-
tic formulaic alphas. The formulaic nature of these alphas
implies that they can be expressed by a simple formula, usu-
ally making them compact, interpretable, and generalizable;
meanwhile, their synergistic nature allows them to be com-
bined into a meta-alpha via some interpretable models (e.g.,
linear models). Finding these formulaic alphas typically is
based on the genetic programming (GP) method (Lin et al.,
2019a;b; Zhang et al., 2020; Cui et al., 2021). However, the
GP method has a vast search space, which scales exponen-
tially with the number of input features and operators.

To overcome the challenge of vast search space in the GP
method, the AlphaGen method (Yu et al., 2023) reformu-
lates the alpha discovery problem into the task of finding
an optimal policy for a specialized Markov decision pro-
cess (MDP), and then achieves this task via a reinforcement
learning (RL) algorithm. Although the AlphaGen method
shows state-of-the-art performance, it has two substantial
theory-practice gaps, resulting in the inefficient and unstable
alpha discovery procedure in practice. The first gap is an un-
addressed non-stationary issue (Lecarpentier & Rachelson,
2019), where the reward function in the MDP of interest
changes dynamically across decision episodes. This issue
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arises from the goal of collecting a set of synergistic formu-
laic alphas rather than a single formulaic alpha. The second
gap is how to accommodate the reward-sparse nature of the
considered MDP, as most discovered alphas are weak and
leads to zero rewards.

This paper contributes to the literature by introducing a
novel method, AlphaQCM, which addresses these theory-
practice gaps and presents a new RL solution to the alpha dis-
covery problem. Specifically, the AlphaQCM method first
leverages the IQN algorithm (Dabney et al., 2018a), to learn
the quantiles of cumulative discounted rewards, whereas
it studies the mean of cumulative discounted rewards via
the DQN algorithm (Mnih et al., 2015). Then, based on
the learned quantiles, the AlphaQCM method adopts the
quantiled conditional moments (QCM) method (Zhang &
Zhu, 2023) to estimate variance of cumulative discounted
rewards, which serves as a natural exploration bonus for the
mining agent’s action selection to relieve the issue of reward-
sparsity. Remarkably, the estimated variance from the QCM
method remains unbiased even if the estimated quantiles
are biased due to non-stationarity. Hence, by employing the
AlphaQCM method, we can alleviate the negative impacts
of non-stationarity and reward-sparsity, thereby achieving
a significantly better empirical performance in discovering
formulaic alphas. Our work clearly generalizes and ex-
tends the AlphaGen method and can be applied to other
non-stationary and/or reward-sparse environments.

We apply our AlphaQCM method to three real-world market
datasets to assess its empirical performance, together with
baseline methods such as the AlphaGen method and GP-
based methods. Extensive experimental results demonstrate
that the AlphaQCM method consistently achieves the best
performance, with Information Coefficient (IC) values of
8.49%, 9.55%, and 9.16% across the three datasets. Its su-
perior performance is particularly evident when the dataset
originates from a complex financial system. Finally, we con-
duct several ablation studies to investigate the contribution
of each component in the AlphaQCM method.

2. Background and Related Work
2.1. Formulaic Alpha

The formulaic alpha has an extensive search space of poten-
tial expressions due to the enormous operators and features
that are available for selection. Generally speaking, most
existing methods for discovering formulaic alphas can be
categorized into two classes: GP-based methods and RL-
based methods. In the past decade, the GP-based methods
have predominantly served as the mainstream to generate
formulaic alphas (Lin et al., 2019a;b; Zhang et al., 2020; Cui
et al., 2021). For example, the AlphaEvolve method (Cui
et al., 2021) evolves new alphas from existing ones using

the AutoML-Zero framework (Real et al., 2020), with the
IC employed as the fitness measure. However, the recent lit-
erature highlights the suboptimal performance of GP-based
methods in scenarios involving large populations (Petersen
et al., 2021), which are essential for alpha discovery due to
the complexity of considered financial market.

Conversely, as a RL-based method, the AlphaGen
method (Yu et al., 2023) firstly conceptualizes the alpha
discovery process as a MDP and employs an RL algorithm,
specifically the proximal policy optimization (PPO) algo-
rithm (Schulman et al., 2017), to discover a set of synergistic
alphas with high returns. Although the AlphaGen method
has significantly outperformed the previous GP-based meth-
ods, it has three notable shortcomings. First, due to the
reward-sparse nature of the alpha discovery MDP, the Alpha-
Gen method struggles to explore the search space efficiently.
Second, the AlphaGen method suffers from the issues re-
lated to sample efficiency and convergence performance, as
the alpha discovery MDP is clearly non-stationary. Third,
the AlphaGen method completely ignores the intricate dis-
tributional information within the observed expressions and
subsequent alpha construction, resulting in an inefficient
and unstable alpha discovery process.

2.2. Distributional Reinforcement Learning

Following the standard RL setting, the agent-environment in-
teractions are modeled as an MDP, (X ,A,P, γ,R), where
X and A are finite sets of states and actions, respec-
tively, P : X × A → P(X ) is the transition kernel,
γ ∈ [0, 1) is the discount factor, and the reward function
R : X × A → P(R) defines the distribution of rewards,
with P(A) being a random variable with support A.

At the t-th agent-environment interaction, the agent observes
state Xt ∼ P(X ), selects action At ∼ P(A), and sub-
sequently receives feedback from the environment in the
form of the next state Xt+1 ∼ P (· | Xt, At) and reward
Rt ∼ R (Xt, At). For a given policy π : X →P(A) and
At ∼ π(·|Xt), the discounted cumulative reward can be
represented by a random variable Zπ(x, a):

Zπ(x, a) =

∞∑
t=0

γt[R(Xt, At) | X0 = x,A0 = a]

=

∞∑
t=0

γt(Rt | X0 = x,A0 = a),

where (x, a) ∈ X ×A is a state-action pair1.

The ultimate goal of RL algorithms is to ascertain an op-
timal policy π∗, which maximizes the expectation of dis-

1In this paper, random variables are represented by uppercase
letters (e.g., Xt) and observations are represented by lowercase
letters (e.g., xt).
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counted cumulative rewards, also known as the Q function
Qπ(x, a) ≡ E[Zπ(x, a)]. A common way to obtain π∗ is
to find the unique fixed point Q∗ ≡ Qπ∗

of the Bellman
optimality operator T (Bellman, 1966), satisfying

Q∗(x, a) = T Q∗(x, a)

≡ E [Rt + γQ∗ (Xt+1, a
∗) | Xt = x,At = a] ,

where a∗ = argmaxa′∈AQ
∗ (Xt+1, a

′). In practice, Q∗ is
typically approximated by a parametric function, such as
the deep Q network (Mnih et al., 2015). However, the ma-
jority of RL algorithms only focus on the scalar expectation
Q∗(x, a), thereby overlooking the valuable distributional in-
formation arising from the potential randomness of optimal
policy and the stochasticity of considered environment.

To address this issue, the distributional RL (DRL) algo-
rithms concentrate on directly learning the distribution of
Zπ(x, a). Let Z∗ ≡ Zπ∗

denote the discounted cumulative
rewards with optimal policy π∗. To find π∗, the distribu-
tional Bellman optimality operator T D (Bellemare et al.,
2017) is defined as:

Z∗(x, a) = T DZ∗(x, a)

D
= Rt + γZ∗(Xt+1, a

∗) | Xt = x,At = a,
(1)

where a∗ = argmaxa′∈A E[Z∗(Xt+1, a
′)] and D

= denotes
the equality in probability laws.

In practice, it is common to parameterize Z∗ via the quantile
representation Zθ,τ (x, a), which is a mixture of K Dirac
distributions. Specifically,

Zθ,τ (x, a) =

K−1∑
k=0

(τk+1 − τk)δθk(x,a), (2)

where δz is a Dirac distribution centered at z ∈ R,
τ = (τ1, . . . , τK)′ is a vector of quantile levels satisfy-
ing 0 < τ1 < · · · < τK−1 < τK = 1, and θ =
{θ1, . . . , θK} is a set of functions. Moreover, we denote
θ(x, a) = (θ1(x, a), . . . , θK(x, a))′ ∈ RK for notation
simplicity, where θk(x, a) is the τ∗k -th quantile of Z∗(x, a)
with τ∗k = (τk+1 + τk)/2 and τ0 = 0.

Needless to say, the formulation of Zθ,τ (x, a) depends on τ
and θ. As a pioneer work, the QRDQN algorithm (Dabney
et al., 2018b) adopts a fixed τ , and applies a multi-head
deep neural network to learn corresponding θk(x, a). Fur-
thermore, the IQN algorithm (Dabney et al., 2018a) con-
siders a random τ , while the FQF algorithm (Yang et al.,
2019) incorporates an additional neural network to learn the
optimal τ for each (x, a).

Accompanied by the quantile representation, the exist-
ing DRL algorithms first learn θ(x, a), and then estimate
Q∗(x, a) by directly taking the expectation of Zθ,τ (x, a).

Although the empirical evidence suggests that DRL algo-
rithms have the good performance with the desirable robust-
ness to variations in hyperparameters, several challenges
remain. The most critical challenge is the validity of the
estimated quantiles, raising a concern about the consistency
of Zθ,τ (x, a) and its moments. Specifically, the traditional
DRL algorithms show the unsatisfactory performance in
non-stationary and reward-sparse MDPs, which are com-
mon in practical scenarios (e.g., the alpha discovery MDP
discussed in this paper).

3. Methodology
In this paper, we consider a scenario involving N distinct
stocks with their prices and volume information. Our goal
is to find an optimal alpha pool F (i.e., a set of synergis-
tic formulaic alphas), which is effective for constructing a
predictive linear meta-alpha for future stock returns.

To be more specific, we assume that the alpha pool F
comprises at most P different formulaic alphas, labeled
as f1, . . . , fP . For p = 1, . . . , P , each fp is a function that
maps market data into alpha values, defined as follows:

αp,s = fp(Hs−1) ∈ RN ,

where Hs−1 includes historical information for N stocks
up to time s − 1, and αp,s is the vector of cross-sectional
alpha values. Then, the linear meta-alpha α̂s is defined as:

α̂s =

P∑
p=1

αp,sβ̂p ∈ RN ,

where β̂p ∈ R for p = 1, . . . , P is the linear coefficient (or
weight) for each alpha, and α̂s are expected to effectively
capture subsequent stock returns ys ∈ RN , thereby exhibit-
ing a high IC value2. To achieve this goal, we conceptualize
the alpha discovery process as a non-stationary and reward-
sparse MDP and propose the AlphaQCM method, a novel
and efficient DRL algorithm, to find the most effective F .

3.1. Representation of Formulaic Alpha

Before going further, we begin by introducing how to re-
formulate the alpha discovery problem into a sequential
decision-making task. Recall that each formulaic alpha
has a mathematical expression comprising operators and
features. These operators are broadly categorized into time-
series operators and cross-sectional operators (Kakushadze,
2016; Lin et al., 2019a;b). The time-series operators neces-
sitate data spanning multiple days, such as TsRank(Close,
d), which calculates the sequential ranking of the most re-
cent d closing prices for each stock. In contrast, the cross-
sectional operators manipulate single-day data, exemplified

2See Appendix A for more explanations.
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by Rank(Low), which computes the cross-sectional rank-
ing of low prices among N stocks. By combining these
two types of operators, the formulaic alphas exhibit high
nonlinearity, but are still interpretable for humans.

After specifying the operators used in the mathematical
expression, we further employ the Reverse Polish Notation
(RPN) method to represent the expression (i.e., the form of
fp). Figure 1 gives a specific illustrating example on the
RPN method. In this figure, the formulaic alpha “Alpha#4”
is encoded into a token sequence, where BEG and SEP
tokens indicate the beginning and ending of the expression,
respectively, and each feature or operator is denoted as a
token. The details of the available features and operators
are listed in Table B.5.

Figure 1. (a) Formulaic expression of Alpha#4 factor in
Kakushadze (2016). (b) Its expression tree. (c) Its RPN repre-
sentation.

Intuitively, the RPN representation can be viewed as a trajec-
tory, documenting the sequential actions taken by an agent,
when selecting which token to place at each position of for-
mula. As a result, the task of discovering formulaic alphas
can be regarded as a sequential decision-making problem
by designing a particular MDP.

3.2. Specification of MDP

After introducing the RPN representation, we specify the
alpha discovery MDP, as illustrated in Figure 2. Below, we
show each component in this MDP.

State and action. In accordance with the GP-based meth-
ods, the agent manipulates token sequences, prompting us
to consider a token-based state set X . Specifically, each
state observation xt ∈ X corresponds to a token sequence
representing the currently generated expression, with initial
state X0 ≡ x0 being the BEG token. To maintain the in-
terpretability of discovered alphas, we restrict any state to
have fewer than 20 tokens. Aligned with the design of state,
each action at ∈ A is a token. However, only a subset of A

Figure 2. Agent-environment interaction diagram.

is allowed to be taken for a specific xt3, since not all token
sequence are guaranteed to be the RPNs of valid formulaic
alphas.

Transition kernel. In this MDP, the transition kernel is
deterministic. Given xt and at, the environment feedbacks
the next state xt+1 by appending at to the end of xt, unless
at is the SEP token or xt has reached its maximum length.
In such cases, this episode of agent-environment interaction
terminates, and the environment presents x0 to the agent to
initiate a new episode.

Reward. The key component of the alpha discovery process
is the design of reward. Intuitively, the reward is expected
to quantify the contribution of the newly discovered formu-
laic alpha on the current alpha pool F , which consists of
at most P different formulaic alphas collected in previous
episodes. As in Yu et al. (2023), we set rt = 0 for any
incomplete token sequence, as the formulaic alpha is only
partially formed. Once the token sequence is completed,
xt is parsed into a formulaic alpha. If the parsed alpha is
invalid, rt = −1; otherwise, the formulaic alpha is evalu-
ated by the environment through the following steps: (1)
The new formulaic alpha is added to alpha pool to create an
extended alpha pool; (2) A linear model is fitted based on
the extended alpha pool to select up to P principal formulaic
alphas with the most significant contribution, and the alpha
pool is updated accordingly; (3) The meta-alpha is obtained
based on the updated alpha pool and the fitted linear model;
(4) The reward rt is calculated by the increase in IC of the
meta-alpha based on the updated alpha pool compared to
that based on previous alpha pool. See Algorithm 1 for more
details.

Discount factor. Although long alphas tend to lack gen-
eralizability and interpretability, they often are more so-
phisticated and predictive for stock trends. Considering

3For example, a time delta token must be followed by a time-
series operator. See Appendix C of Yu et al. (2023) for more details
on this aspect.
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Algorithm 1 Pseduo code for calculating rt.
Input: training samples {(Hs−1,ys)}, new alpha fnew,
and alpha set F = {f1, f2, . . . , fP∗}
Output: updated alpha set F∗ and reward rt
# Calculate alpha values and normalize them
fP∗+1 ← fnew
αp,s ← fp(Hs−1) for p = 1, . . . , P ∗ + 1

αp,s ← αp,s−Mean(αp,s)
Std(αp,s)

for p = 1, . . . , P ∗ + 1

# Fit a linear model based on the extended alpha pool
As ← [α1,s, . . . ,αP∗+1,s] ∈ RN×(P∗+1)

β̂ ← argminβ
∑

s ∥ys −Asβ∥2 ∈ RP∗+1

# Obtain the updated alpha pool and meta-alpha
if P ∗ + 1 ≤ P then
F∗ ← {f1, . . . , fP∗+1}
α̂s ← Asβ̂ ∈ RN

else
p̄← argminp |β̂p|, where β̂ = (β̂1, . . . , β̂P∗+1)

′

F∗ ← {f1, . . . , fp̄−1, fp̄+1, . . . , fP∗+1}
α̂s ← Asβ̂ −αp̄,sβ̂p̄ ∈ RN

end if
# Calculate IC based on F∗ and reward rt
IC(F∗)← Mean(Corr(α̂s,ys))
rt ← IC(F∗)− IC(F)
Return F∗ and rt

this trade-off, we restrict the max length of episode in state
setting and hence set γ = 1.

Non-stationarity. Since the reward function varies across
episodes (with different formulaic alphas collected by the al-
pha pool), the alpha discovery MDP is clearly non-stationary.
Specifically, when the agent discovers a new formulaic al-
pha that proves to be effective (as indicated by a high re-
ward from the environment), the environment incorporates
this formulaic alpha into the alpha pool. In the subsequent
episode, the similar formulaic alphas to the recently col-
lected one tend to earn little reward, since the alpha pool
has been updated to capture the predictive information re-
lated to this type of alpha. As a result, once the alpha pool
is updated, the reward function of the MDP changes, ne-
cessitating numerous agent-environment interactions and
extensive training to re-learn it.

Reward-sparsity. In addition to the non-stationarity, the
alpha discovery MDP exhibits reward-sparsity from two
perspectives. First, the reward can only be non-zero when
the episode ends (i.e., when a new formulaic alpha is gen-
erated); otherwise, it must be zero. Second, due to the low
signal-to-noise ratio of market datasets, most discovered
alphas are meaningless and not beneficial to the alpha pool,
leading to zero rewards. Consequently, there are numerous
zero rewards in the transitions, resulting in an inefficient
and unstable training process for the agent.

3.3. AlphaQCM

To solve the issues of non-stationarity and reward-sparsity
in alpha discovery MDP, our AlphaQCM method employs
the QCM method (Zhang & Zhu, 2023) to learn an unbiased
variance of rewards. This variance is further used as a bonus
to guide the agent in exploring the environment, thereby
improving the agent’s training efficiency. Below, we outline
the core modules of our AlphaQCM method.

3.3.1. QCM

We begin with introducing how to learn variance from quan-
tiles via the QCM method, which can be extended to most
existing DRL frameworks. Recall that the goal of a DRL
algorithm is to model the discounted cumulative reward
Z∗(x, a) with its quantiles θk(x, a) for k = 1, . . . ,K, as in
(2). According to the Cornish-Fisher expansion (Cornish
& Fisher, 1938), the quantiles of Z∗(x, a) are linked to its
moments as follows:

θk(x, a) = Q∗(x, a) +Φ′
kδ(x, a) + ωk(x, a), (3)

where Φk = (ϕk, ϕ
2
k − 1, ϕ3k − 3ϕk)

′ and

δ(x, a) =
(√

h(x, a),

√
h(x, a)s(x, a)

6
,√

h(x, a) [k(x, a)− 3]

24

)′
.

Specifically, ϕk is the τ∗k -th quantile of standard Gaussian
distribution, Q∗(x, a), h(x, a), s(x, a), and k(x, a) denote
the mean, variance, skewness, and kurtosis of Z∗(x, a),
respectively, and ωk(x, a) represents the expansion error.

In practice, the true value of θk(x, a) in (3) is unknown. Al-
though the estimated quantile θ̂k(x, a) is expected to oscil-
late around θk(x, a), it is always biased due to the presence
of non-stationarity. Therefore, substituting θk(x, a) with
θ̂k(x, a) in (3) yields the following expression:

θ̂k(x, a) = ζ(x, a) +Q∗(x, a)

+Φ′
kδ(x, a) + εk(x, a), (4)

where ζ(x, a) and εk(x, a) represent the deterministic bias
and stochastic residual, arising from the presence of both
non-stationarity and expansion error, respectively.

Clearly, (4) can be interpreted as a linear regression model,
where θ̂k(x, a) and Φk serve as the observable response and
regressor, respectively, while ζ(x, a) + Q∗(x, a), δ(x, a)
and εk(x, a) correspond to the intercept, regression coeffi-
cients, and residual, respectively.

With K samples {(θ̂k(x, a),Φk)} in hand, we can obtain
the ordinary least square (OLS) estimators ĥ(x, a), ŝ(x, a),
and k̂(x, a) by solving the above linear regression model
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(4). Under some mild conditions4, the consistency of these
moment estimators is guaranteed by:

Proposition 3.1. Suppose that Assumptions C.1 and C.2
hold. Then, ĥ(x, a)

p−→ h(x, a), ŝ(x, a)
p−→ s(x, a) and

k̂(x, a)
p−→ k(x, a) as K → ∞, where

p−→ denotes con-
vergence in probability.

Although the MDP is non-stationary, ĥ(x, a) remains
unbiased, whereas there is no such guarantee for the
vanilla quantile-based variance estimator5, even in station-
ary MDPs (Bellemare et al., 2023). As mentioned in Mavrin
et al. (2019), ĥ(x, a) captures both parametric and intrinsic
uncertainties, which can be attributed to non-stationarity
and reward-sparsity, respectively. Using ĥ(x, a) as an ex-
ploration bonus, our agent tends to explore the most uncer-
tain states, which also lead to the most informative expe-
riences for overcoming the challenges of non-stationarity
and reward-sparsity. By training on these informative expe-
riences, the agent mitigates the negative impacts of reward
sparsity and non-stationarity as much as possible and effi-
ciently learns from the dynamic environment.

Lastly, it should be noted that we cannot estimate Q∗(x, a)
using the QCM method, since the estimated intercept cor-
responds to ζ(x, a) +Q∗(x, a) in (4), making ζ(x, a) and
Q∗(x, a) are unidentifiable. Therefore, we use a separate
RL algorithm to learn Q∗(x, a). In such a non-stationary
MDP, the traditional DRL algorithms yield biased Q esti-
mates, as they estimate Q∗(x, a) by directly taking expec-
tation of Zθ̂,τ (x, a). This biased Q issue in non-stationary
MDPs is somewhat inevitable, but using the QCM method
can alleviate the negative impacts from non-stationarity.
The underlying reason is that using QCM method enhances
training efficiency, regardless of whether the bias caused
by non-stationarity exists. By improving training efficiency,
the agent requires fewer agent-environment interactions and
less training time to re-approximate Q∗(x, a).

3.3.2. DRL BACKBONE

After showing how to use the QCM method to obtain vari-
ance from quantiles, we elaborate on the backbone used
to estimate the quantiles and Q function. In this paper, we
adopt the IQN algorithm (Dabney et al., 2018a) to learn the
quantiles, and apply the DQN algorithm (Mnih et al., 2015)
to learn the Q function.

Specifically, when the agent observes xt from the environ-
ment, τ is sampled from the uniform distribution over (0, 1),
and it is subsequently fed into the quantile network together
with xt. In this network, a τ -embedding network ν(·) trans-
forms τ into embeddings, a LSTM feature extractor ψ(·)

4See Appendix C for more details.
5The vanilla quantile-based variance estimator is defined in

Appendix D.

encodes the token sequence xt into a vector representation,
and a fully-connected head FC(·) produces the quantiles:

Θ̂(xt) = FC(ψ(xt)⊙ ν(τ )) ∈ R|A|×K ,

where Θ̂(xt) includes θ̂k(xt, a) for a ∈ A and k =

1, . . . ,K. With Θ̂(xt) in hand, ĥ(xt, a) can be computed
via the QCM method for a ∈ A. Then, the agent selects an
exploratory action at to enhance training efficiency:

at = argmax
a∈A

[
Q̂(xt, a) + λ

√
ĥ(xt, a)

]
, (5)

where Q̂(x, a) is computed by the Q network of the DQN
algorithm6, and λ is a tuning parameter to control the degree
of risk-preference. See Figure 3 for a visual illustration.

In this paper, the Q network employs separate LSTM feature
extractor and fully-connected head to transform the xt into
Q values:

Q̂(xt) = FC(ψ(xt)) ∈ R|A|,

where Q̂(xt) includes Q̂(xt, a) for a ∈ A.

Moreover, the quantile network is trained using the quantile
temporal difference error (Dabney et al., 2018a) , while the
Q network is trained with the squared temporal difference
errors (Mnih et al., 2015). To save space, more technical
details and hyperparameters used in our AlphaQCM method
are specified in Appendix E, while some unmentioned tech-
nical details are consistent with the backbones.

4. Experiments
Since Yu et al. (2023) is the most closely related work, our
experiments are also conducted on Chinese A-share stock
market datasets to capture the 20-day future stock returns.
To evaluate the impact of the complexity of the considered
financial system on performance, we consider three different
stock pools: (1) the largest 300 stocks (CSI 300), (2) the
largest 500 stocks (CSI 500), and (3) all stocks (Market)
listed on the Shanghai and Shenzhen Stock Exchanges . As
one might expect, the more stocks involved in the dataset,
the more challenging it becomes to discover synergistic
formulaic alphas, as the system becomes more complex and
chaotic. Moreover, each dataset is split chronologically into
a training set (2010/01/01 to 2019/12/31), a validation set
(2020/01/01 to 2020/12/31), and a test set (2021/01/01 to
2022/12/31).

We consider the following four kinds of baseline methods
for comparison:

6Recall that, for a certain x, some actions are invalid, as men-
tioned in Section 3.2. Hence, we set the Q̂(x, a) = −∞ for these
invalid actions to mask them.
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Figure 3. An illustration of action selection in our AlphaQCM framework.

(1) Alpha101 (human-designed formulaic alphas): Fix
the alpha pool as the formulaic alphas provided by
Kakushadze (2016), and fit a linear model to form a
mega-alpha.

(2) MLP, XGBoost, LightGBM (ML-based non-
formulaic alphas): Use the MLP model, XGBoost
model, or LightGBM model to form a mega-alpha.

(3) GP w/o filter, GP w/ filter (GP-based formulaic al-
phas): Use the GP method to generate expressions
and apply top-P performing alphas without or with a
mutual IC filter to form a mega-alpha.

(4) PPO w/ filter, AlphaGen (RL-based formulaic al-
phas): Use the PPO with a mutual IC filter or Alpha-
Gen method to find the optimal alpha pool and then
form a linear mega-alpha.

To account for the effect of stochasticity in the training pro-
cess, we evaluate each indeterministic experimental combi-
nation with 10 different random seeds. More details about
these baseline methods are provided in Appendix F.

Following the existing literature (Yu et al., 2023; Cui et al.,
2021; Lin et al., 2019a;b), we choose the IC as the most
important metric to evaluate the out-of-sample performance.
See Appendix A for the definition of IC.

The source code and related source of this work are
available at https://github.com/ZhuZhouFan/
AlphaQCM for reproducibility.

4.1. Impact of Methods

We first assess how the alpha-generating methods affect
the out-of-sample performance of the formed meta-alphas.
For a fair comparison, we regard P (alpha pool size) as
a hyperparameter and choose it based on performance on
the validation set. Table 1 reports the means and standard

deviations of IC values across eight different methods in
CSI 300, CSI 500, and Market datasets. From this table, we
can draw the following conclusions:

(1) Our AlphaQCM method with the highest IC value out-
performs all competitors, regardless of the stock pool con-
sidered. Moreover, the AlphaGen method, which is the
most closely related baseline method, ranks second. The
advantage of the AlphaQCM method over the AlphaGen
method becomes more significant as the number of stocks
in the dataset increases. This superior performance may
be attributed to the fact that the AlphaGen method totally
ignores the non-stationary and reward-sparse issues, while
these issues become more pronounced as the the concerned
system becomes more complex and chaotic.

(2) For the GP method, incorporating the mutual IC filter im-
proves its performance in the CSI 300 and CSI 500 datasets
but results in worse performance in the Market dataset. This
finding highlights the limitation of using the mutual IC filter
to find synergistic formulaic alphas when a large number
of stocks are involved, as commonly observed in modern
portfolio selection.

(3) The machine learning methods slightly underperform
the Alpha101 method in the CSI 300 and CSI 500 datasets,
while they outperform the Alpha101 method in the Mar-
ket dataset, with the exception of the MLP method. This
observation suggests that when facing big data, the formu-
laic alphas discovered by human experts may lose their
advantage over the non-formulaic alphas. However, the RL-
based methods surpass both human experts and machine
learning methods, with the discovered alphas remaining
interpretable.

4.2. Impact of QCM Method and DRL Backbones

One of our key contributions is using the QCM method
to overcome the challenges of non-stationarity and reward-
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Table 1. Out-of-sample IC values across different methods.
CSI 300 CSI 500 Market

Method Mean Std Mean Std Mean Std

Alpha101 3.44% - 4.38% - 3.15% -

MLP 1.99% 0.24% 2.72% 0.65% 2.81% 0.72%
XGBoost 3.19% 0.81% 4.31% 0.96% 4.07% 1.22%

LightGBM 2.93% 0.76% 4.16% 0.81% 4.28% 0.93%

GP w/o filter 2.01% 1.46% 1.79% 1.62% 1.32% 2.01%
GP w/ filter 3.71% 2.01% 4.52% 1.93% 0.84% 2.27%

PPO w/ filter 1.14% 1.71% 0.98% 1.36% 2.15% 1.86%
AlphaGen 8.13% 0.94% 8.08% 1.23% 6.04% 1.78%

AlphaQCM 8.49% 1.03% 9.55% 1.16% 9.16% 1.61%

sparsity. To see it, we consider two competitors below:

1. No variance: Fix λ = 0 in (5) to remove the impact
of variance in action selection, meaning that the QCM
method has no effect in the training process.

2. Vanilla variance: Replace ĥ(x, a) in (5) with the
vanilla quantile-based variance estimator defined in
Appendix D.

Moreover, since our AlphaQCM method relies on the DRL
backbone employed to learn quantiles, a natural question
arises: which type of DRL backbone is more effective for
alpha mining? To answer it, we alter the AlphaQCM method
by choosing the QRDQN algorithm (Dabney et al., 2018b)
as the backbone, which serves as another benchmark.

Table 2 reports the results of the conducted ablation study.
From this table, we observe that regardless of the backbone
employed, using the QCM variance always earns the highest
IC value, whereas the action selection based on the vanilla
variance results in better performance than that based on no
variance only in CSI 500 and Market datasets. Addition-
ally, from the viewpoint of convergence performance, using
variance to encourage exploration consistently brings lower
standard deviations of IC values. These findings imply that
using variance for exploration enhances training efficiency
and convergence performance in the alpha discovery MDP,
and at the same time, a better quality of variance estimation
leads to a better empirical performance.

We also find that the IQN algorithm outperforms the
QRDQN algorithm in most cases, except for no variance
in Market dataset and vanilla variance in CSI 500 dataset.
However, the differences in performance between the IQN
and QRDQN backbones are marginal in these two excep-
tions. These empirical results demonstrate the superior per-
formance of using the IQN algorithm as the backbone for the
AlphaQCM method compared to the QRDQN algorithm.

Table 2. Out-of-sample IC values across different action selection
criteria and DRL backbones.

CSI 300 CSI 500 Market

Variance Mean Std Mean Std Mean Std

Panel A: QRDQN as backbone

No 6.96% 1.64% 8.54% 1.56% 7.06% 1.92%
Vanilla 6.14% 1.23% 8.80% 1.34% 7.60% 1.17%
QCM 7.59% 0.81% 9.08% 1.07% 9.12% 1.74%

Panel B: IQN as backbone

No 7.17% 2.40% 8.58% 1.47% 7.04% 1.82%
Vanilla 6.16% 1.73% 8.75% 1.03% 8.42% 1.59%
QCM 8.49% 1.03% 9.55% 1.16% 9.16% 1.61%

4.3. Impact of Domain Knowledge

Until now, the AlphaQCM method has discovered formu-
laic alphas in a completely data-driven manner, neglecting
the valuable insights offered by economic experts in the
field of alpha discovery. One potential approach to incorpo-
rate the domain knowledge of experts into our AlphaQCM
algorithm is to encode the formulaic alphas proposed in
Kakushadze (2016) into token sequences and initialize the
replay memory with these corresponding trajectories7. In
other words, we restrict the agent to first learn from the
formulaic alphas discovered by human experts and then find
new alphas in a data-driven way.

To check whether the domain knowledge enhances the ef-
ficiency of the AlphaQCM method, we report the perfor-
mance of AlphaQCM method with and without domain
knowledge in Table 3. From this table, we observe that
there is some initial gain when the AlphaQCM method
leverages domain knowledge, as the AlphaQCM method
with domain knowledge outperforms the one without do-
main knowledge in Panels A and B. However, with more
agent-environment interactions and training as in Panels C
and D, the AlphaQCM method in a completely data-driven
manner achieves higher IC values. This is perhaps because
the agent with domain knowledge is prone to fall into local
optima by imitating the experts. Hence, to achieve bet-
ter final performance, we suggest applying the AlphaQCM
method without domain knowledge.

4.4. Impact of Stock Market

To show the generalizability of our AlphaQCM method, we
conduct additional experiments using the U.S. stock market
dataset, specifically the largest 500 stocks (S&P 500). All

7For example, as in Figure 1, we encode the mathematical
expression of “Alpha#4” into its RPN representation, which is a
token sequence basically. Then, the generating process of this
token sequence is regarded as a trajectory for agent-environment
interactions, which are used to initiate the replay memory.

8



AlphaQCM: Alpha Discovery with Distributional Reinforcement Learning

Table 3. Out-of-sample IC values of the AlphaQCM method with
or without domain knowledge.

CSI 300 CSI 500 Market

Domain Mean Std Mean Std Mean Std

Panel A: After 10% Training

w/ 4.93% 0.71% 5.76% 0.68% 6.02% 0.92%
w/o 4.27% 1.75% 5.68% 1.51% 5.87% 1.34%

Panel B: After 20% Training

w/ 6.32% 1.29% 7.01% 1.77% 6.85% 1.44%
w/o 5.54% 0.78% 6.43% 1.38% 6.43% 2.83%

Panel C: After 50% Training

w/ 6.41% 1.47% 7.15% 1.22% 7.33% 1.56%
w/o 6.82% 1.35% 7.57% 2.12% 7.48% 1.84%

Panel D: After 100% Training

w/ 8.17% 1.17% 8.96% 1.51% 8.60% 1.23%
w/o 8.49% 1.03% 9.55% 1.16% 9.16% 1.61%

experimental settings, except for the stock selection, remain
consistent with those in Table 1.

The results, shown in Table 4, demonstrate that AlphaQCM
outperforms all competitors on both the CSI 500 and S&P
500 datasets, indicating its robustness across different mar-
ket conditions. However, most methods exhibit a decline
in IC performance on the S&P 500 dataset compared to
the CSI 500. This may be due to the greater efficiency of
the U.S. stock market, which is more sensitive to breaking
news, making it more challenging for models to capture
predictable stock trends from formulaic alphas.

Table 4. Out-of-sample IC values on CSI 500 and S&P 500
datasets.

CSI 500 S&P 500

Method Mean Std Mean Std

Alpha101 4.38% - 3.12% -

MLP 2.72% 0.65% 2.61% 0.49%
XGBoost 4.31% 0.96% 3.08% 0.67%

LightGBM 4.16% 0.81% 3.29% 0.56%

GP w/o filter 1.79% 1.62% 1.88% 1.29%
GP w/ filter 4.52% 1.93% 4.27% 1.39%

PPO w/ filter 0.98% 1.36% 2.03% 1.88%
AlphaGen 8.08% 1.23% 7.48% 0.77%

AlphaQCM 9.55% 1.16% 8.46% 0.89%

5. Conclusion
This paper proposes a novel DRL method, AlphaQCM, for
alpha discovery in the realm of big market data. Unlike
the existing methods in the literature, the key idea of the
AlphaQCM method relies on the unbiased estimation of

variance derived from potentially biased quantiles. This
approach enables the efficient alpha discovery in the non-
stationary and reward-sparse MDP. To implement the Al-
phaQCM method, we employ the IQN algorithm as the
backbone to obtain quantiles, while approximating the Q
function using the DQN algorithm. Through extensive ex-
periments on three real-world datasets, we demonstrate the
superior advantage of our AlphaQCM method over the pre-
vious state-of-the-art alpha discovery approaches. The abla-
tion studies further highlight the contribution of the QCM
method, the robustness of DRL backbone, parameter size,
and other settings8.

Overall, the AlphaQCM method serves as a powerful tool
for discovering synergistic formulaic alphas, with its su-
perior capability allowing for non-stationarity and reward-
sparsity in the alpha discovery process.
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A. Evaluation Metric for Alphas
To measure the performance of an alpha, it is a common practice to use the IC as the evaluation metric. For a given alpha
pool F , the IC for this alpha pool F is defined as:

IC(F) = Mean[Corr(α̂s,ys)] =
1

S

S∑
s=1

∑N
i=1(α̂i,s − ᾱs)(yi,s − ȳs)√∑N

i=1(α̂i,s − ᾱs)2
∑N

i=1(yi,s − ȳs)2
,

where {(α̂s,ys) : s = 1, . . . , S} is the sample of meta-alphas based on F and true returns {ys}, α̂i,s and yi,s are i-th
element of α̂s and ys, respectively,

ᾱs =
1

N

N∑
i=1

α̂i,s and ȳs =
1

N

N∑
i=1

yi,s.

Here, Corr(α̂s,ys) calculates the cross-sectional correlation to measure the predictive power of F at time s, while the
Mean operator is used to obtain a time-averaged result over the period containing all of S timepoints.

B. Available Features and Operators

Table B.5. Description of available features and operators.

Tokens Description

Features

Open/High/Low/Close/Vwap/Volume Opening/high/low/closing/vwap price or volume of stock i at time s.
Constant Number from {−30,−10,−5,−2,−1,−0.5,−0.01, 0.01, 0.5, 1, 2, 5, 10, 30}.
Time delta Integer from {10, 20, 30, 40, 50}, which is used in the time-series operators.

Time-series Operators

Ref (ui,s, d) Return the value of ui,s−d, where d is the time delta and ui,s is a feature of
stock i at time s.

TsRank (ui,s, d) Return the rank of ui,s among {ui,s, . . . , ui,s−d}
Mean/Med/Sum/Std/Var (ui,s, d) Return the mean/median/sum/standard deviation/variance of {ui,s, . . . , ui,s−d}.
Max/Min (ui,s, d) Return the maximum/minimum value of {ui,s, . . . , ui,s−d}.
WMA/EMA (ui,s, d) Return the weighted/exponentially weighted moving average of {ui,s, . . . ,

ui,s−d}.
Cov/Corr (ui,s, zi,s, d) Return the covariance/correlation between ui,s and zi,s based on samples

{(ui,s, zi,s) . . . , (ui,s−d, zi,s−d)}, where ui,s and zi,s are features of stock
i at time s.

Cross-sectional Operators

Sign (ui,s) Return 1 if the value of ui,s is positive, otherwise return 0.
Abs (ui,s) Return the absolute value of ui,s.
Log (ui,s) Return the logarithmic value of ui,s.
Rank (ui,s) Return the rank of ui,s among {u1,s, . . . , uN,s}.
Add/Sub/Mul/Div (ui,s, zi,s) Return the the result of adding/subtracting/multiplying/dividing ui,s and zi,s.
Greater/Less (ui,s, zi,s) Return the greater/less value of ui,s and zi,s.
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C. Asymptotic Properties
To establish the asymptotic properties of the QCM estimators, some mild assumptions are required. For ease of presentation,
define

Φ =


1 ϕ1 ϕ21 − 1 ϕ31 − 3ϕ1
1 ϕ2 ϕ22 − 1 ϕ32 − 3ϕ2
...

...
...

...
1 ϕK ϕ2K − 1 ϕ3K − 3ϕK

 , δ(x, a) =


ζ(x, a) +Q∗(x, a)√

h(x, a)√
h(x,a)s(x,a)

6√
h(x,a)[k(x,a)−3]

24

 , and ε(x, a) =


ε1(x, a)
ε2(x, a)

...
εK(x, a)

 ,

under some notations in Section 3.3.1. Then, Proposition 3.1 holds if the following two classical assumptions in the
regression literature hold:
Assumption C.1. Φ′Φ/K is positive definite.

Assumption C.2. Φ′ε(x, a)/K
p−→ 000 as K →∞.

To be specific, from the regression model (4), we can first obtain the following matrix form:

θ̂(x, a) = Φδ(x, a) + ε(x, a),

where θ̂(x, a) = (θ1(x, a), . . . , θK(x, a))′ is the vector of estimated quantiles.

Next, under Assumption D.1, the OLS estimator for δ(x, a) is

δ̂(x, a) = (Φ′Φ)−1Φ′θ̂(x, a),

which entails

δ̂(x, a)− δ(x, a) = (Φ′Φ)−1Φ′θ̂(x, a)− δ(x, a)

= (Φ′Φ)−1Φ′(Φδ(x, a) + ε(x, a))− δ(x, a)

=

(
Φ′Φ

K

)−1
Φ′ε(x, a)

K
p−→ 0,

where the second equation follows from the linear structure between quantiles and moments (Cornish-Fisher expansion),
the third equation follows from rearranging terms, and the last convergence follows from Assumption C.2 and Slutsky’s
theorem. Hence, this proves the consistency of

δ̂(x, a) = (δ̂1(x, a), δ̂2(x, a), δ̂3(x, a), δ̂4(x, a))
′.

In other words, we have

δ̂1(x, a)
p−→ ζ(x, a) +Q∗(x, a),

δ̂2(x, a)
p−→

√
h(x, a),

δ̂3(x, a)
p−→

√
h(x, a)s(x, a)

6
,

δ̂4(x, a)
p−→

√
h(x, a) [k(x, a)− 3]

24
.

Finally, applying continuous mapping theorem, we obtain

ĥ(x, a) = δ̂22(x, a)
p−→ h(x, a),

ŝ(x, a) =
6δ̂3(x, a)

δ̂2(x, a)

p−→ s(x, a),

k̂(x, a) =
24δ̂4(x, a)

δ̂2(x, a)
+ 3

p−→ k(x, a).
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This completes the technical proof of Proposition 3.1.

Moreover, if we assume Φ′ε(x, a)/K −→ 000 almost surely as K → ∞ in Assumption C.2, all of convergence results in
Proposition 3.1 hold almost surely. Interested readers could refer to Zhang & Zhu (2023) for more comprehensive analysis
on the QCM method.

D. Vanilla Quantile-based Variance Estimator
Recall that the widely used quantile representation Zθ,τ (x, a), defined in (2), approximates Z∗(x, a) with a mixture of
Dirac distributions. With this approximation, Var[Z∗(x, a)] can be approximated by the vanilla quantile-based variance
estimator Var[Zθ̂,τ (x, a)], where

Var[Zθ̂,τ (x, a)] =

K∑
k=1

(τk − τk−1)
{
θ̂k(x, a)− E[Zθ̂,τ (x, a)]

}2

.

Here, θ̂k(x, a) for k = 1, . . . ,K are the τ∗k -th quantile estimates, and

E[Zθ̂,τ (x, a)] =

K−1∑
k=0

(τk+1 − τk)θ̂k(x, a).

E. Additional Implementation Details
E.1. Training Procedure

Motivated by (1), for each transition (xt, at, rt, xt+1), the quantile temporal difference error (Dabney et al., 2018a) is
defined as

δk,k′,t = rt + γθ̃k′

(
xt+1, argmax

a′∈A
Q̃(xt, a

′)

)
− θ̂k(xt, at)

for k′ = 1, . . . ,K ′, where Q̃(x, a) is the target Q network output, and θ̃k′(x, a) is the target quantile network output. In
the IQN framework, besides τ for quantile network, there is another τ̃ = (τ̃1, . . . , τ̃K′)′ independently sampled for the
target quantile network. Notably, the target networks share the same architecture with their online counterparts but differ in
network parameters, which are frozen but periodically synchronized from the online network.

Based on {δk,k′,t}, for a batch of {(xt, at, rt, xt+1)}, the Huber loss (Huber, 1964) for optimizing the quantile network is
defined as

ℓ(ω∗) =
∑

t∈batch

K∑
k=1

K′∑
k′=1

ρκτk (δk,k′,t) ,

where ω∗ includes all network parameters in the quantile network, and ρκτ (δk,k′,t) = |τ − I (δk,k′,t < 0)| Lκ(δk,k′,t)
κ with

Lκ (δk,k′,t) =


1

2
δ2k,k′,t, if |δk,k′,t| ≤ κ

κ

(
|δk,k′,t| −

1

2
κ

)
, otherwise

,

κ being a hyperparameter, and I(·) being the indicator function.

Meanwhile, the Q network is optimized by minimizing the sum of squared temporal difference errors:

ℓ(ω) =
∑

t∈batch

[
rt + γmax

a′∈A
Q̃(xt+1, a

′)− Q̂(xt, at)

]2
,

where ω represents all network parameters in the Q network.
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Note that we equip the agent with the prioritized experience replay method (Schaul et al., 2016). While the classical
experience replay method samples transitions uniformly from a replay memory, the prioritized experience replay method
improves sampling efficiency by replaying more frequently transitions from which there is more to learn. Specifically, it
samples transitions with prior probability pt related to the last encountered quantile temporal difference error, where

pt ∝

∣∣∣∣∣∑
k

∑
k′

ρκτk (δk,k′,t)

∣∣∣∣∣
η

with η being a hyperparameter. Clearly, the agent equipped with prioritized experience replay can utilize the transitions
guided by the QCM method more efficiently.

E.2. Network Hyperparameters

Our network-related hyperparameters are consistent with those in Yu et al. (2023) for a fair comparison. Specifically, in both
the Q network and quantile network, the LSTM feature extractor ψ(·) has a 2-layer structure with a hidden layer dimension
of 128 with dropout rate of 0.1, and the fully connected heads have two hidden layers of 64 dimensions. Moreover, the
τ -embedding network maps each quantile level into a 64-dimensional embedding, as defined in Dabney et al. (2018a).

E.3. DRL Hyperparameters

Besides the network-related hyperparameters, some additional hyperparameters that our DRL algorithm inherits from the
IQN and DQN algorithms are listed in Table E.6.

Table E.6. Additional hyperparameters.

Hyperparameter Values

Min history to start learning 10,000
ϵ-greedy 0.01
Memory size 100,000
Learning rate 5e-5
Optimizer Adam
Online network update interval (replay period) 1
Target network update interval 5,000
Batch size 128
K (length of τ in the IQN algorithm) 64
K ′ (length of τ̃ in the IQN algorithm) 64
κ (constant in the Huber loss) 1.0
η (constant in the prior probability) 0.5
λ (tuning parameter) 0.5, 1, 2
P (Alpha pool size) 10, 20, 50, 100
Total step 250,000 (P = 10),

300,000 (P = 20),
350,000 (P = 50),

400,000 (P = 100)

F. Details About Baseline Methods
To evaluate the performance of our AlphaQCM algorithm, we consider four types of baseline methods in Section 4. The first
type of baseline methods aims to measure human-level performance in alpha discovery, serving as a benchmark for the
remaining machine-based methods. In this category, we apply the well-known Alpha101 method as a representative, which
employs the 101 formulaic alphas from Kakushadze (2016) to construct mega-alphas. To ensure model interpretability, these
alphas are combined linearly based on the samples in the training and validation sets9, using a squared loss function. The

9We download the data for 101 formulaic alphas from “www.ricequant.com”.
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comparison between the AlphaQCM and Alpha101 methods aims to evaluate whether the RL-based alpha generator can
outperform human experts.

Next, the second type of baseline methods directly applies some end-to-end machine learning models to capture the linkage
between stock features and their future returns. Clearly, these machine-learning-based alphas lack interpretability but
are straightforward to generate. Following Yu et al. (2023), we implement the MLP, XGBoost, and LightGBM methods
using the open-source library Qlib (Yang et al., 2020), with pre-specified hyperparameters. The comparison between the
AlphaQCM method and the second type of baseline methods is to verify whether the combination of interpretable alphas
can outperform complex and non-interpretable alphas.

Moreover, the third type of baseline methods depends on the genetic programming algorithm. This type of methods employs
the GP method to generate alphas in a one-by-one manner, with the IC being the fitness measure. Specifically, for the GP
w/o filter method, the top-P generated alphas with the highest ICs within the training set are used to form a mega-alpha via
a linear model, which is fitted on the validation set. In contrast, the GP w/ filter method selects the top-P performing alphas
with an additional mutual-IC filter, ensuring that any pair of alphas in the set does not have a mutual IC higher than 0.7.
The comparison between the AlphaQCM and the GP-based methods aims to probe the limitations of the GP method when
involving large populations.

Lastly, the AlphaGen method (Yu et al., 2023) is the most closely related competitor to our AlphaQCM method, which also
belongs to the category of RL-based methods. The primary difference between these two methods is the algorithm used for
discovering alphas. The comparison between the AlphaQCM and AlphaGen methods aims to check whether the simple
PPO algorithm is adequate for such a non-stationary and reward-sparse MDP.

G. Additional Experiments
G.1. Impact of Parameter Size

As mentioned in Appendix E.2, the network-related hyperparameters for both the AlphaGen and AlphaQCM methods are
kept consistent to ensure a fair comparison. However, due to differences in their network architectures, the total parameter
size of these two methods varies. Specifically, the AlphaGen method employs two types of networks: an actor network and
a critic network, with a total of 298, 609 trainable parameters. In contrast, the AlphaQCM method utilizes four networks: an
online Q-network, an online quantile network, and their respective target networks (with frozen parameters), resulting in
572, 000 trainable parameters. Thus, the AlphaQCM method has nearly twice the number of trainable parameters compared
to AlphaGen, with the same network-related hyperparameters.

To examine whether the superior performance of the AlphaQCM method over the AlphaGen method stems from its ability
to handle non-stationary and reward-sparse alpha discovery MDP rather than the increased model complexity, we design
two additional variants: a larger AlphaGen method and a smaller AlphaQCM method. The larger AlphaGen method has
564, 953 trainable parameters, achieved by setting the hidden dimensions of the LSTM feature extractor to 180, with fully
connected heads comprising two hidden layers of 90 dimensions each. Conversely, the smaller AlphaQCM method has
297, 070 trainable parameters, achieved by setting the hidden dimensions of the LSTM network to 90, with fully connected
heads comprising two hidden layers of 48 dimensions each. These configurations ensure that the larger AlphaGen method
aligns with the parameter size of the proposed AlphaQCM method, while the smaller AlphaQCM method matches the
complexity of the original AlphaGen method.

Table G.7 reports the IC values for methods with different parameter sizes. From this table, we first observe that both
methods are robust to changes in parameter size. Additionally, the AlphaQCM method consistently outperforms the
AlphaGen method across different parameter scales, with substantial performance gaps. These findings further emphasize
the capability of the AlphaQCM method in solving the non-stationary and reward-sparse alpha discovery MDP effectively.

G.2. Impact of Model Architecture

In this subsection, we conduct an ablation study to assess whether the MAMBA block could provide efficiency and scalability
advantages for the AlphaQCM method. Specifically, we replace the original LSTM module with an MAMBA block, using
a 128-dimensional hidden layer and 4 attention heads, while keeping the rest of the network architecture unchanged.
The results from the ablation study are shown in Table G.8. Here, we only run 3 random seeds for the MAMBA-based
AlphaQCM method.
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Table G.7. Out-of-sample IC values for methods with different parameter sizes.

CSI 300 CSI 500 Market

Method Mean Std Mean Std Mean Std

Panel A: Small-parameter method (nearly 300K parameters)

AlphaGen 8.13% 0.94% 8.08% 1.23% 6.04% 1.78%
AlphaQCM 8.23% 0.90% 9.68% 1.07% 9.12% 1.47%

Panel B: Large-parameter method (nearly 570K parameters)

AlphaGen 8.09% 1.33% 8.40% 1.48% 6.67% 2.03%
AlphaQCM 8.49% 1.03% 9.55% 1.16% 9.16% 1.61%

As seen, there is no significant difference between the IC values from the LSTM-based and MAMBA-based AlphaQCM
methods. This may be due to the relatively short token sequence (i.e., the formula of alpha), which consists of only the top
20 tokens. Consequently, the scalability advantages of the MAMBA block do not appear in this case. Additionally, there is
no notable efficiency difference in terms of time, as the majority of the time is spent on agent-environment interaction.

Table G.8. Comparison between LSTM and MAMBA models.

CSI 300 CSI 500 Market

Model Mean Std Mean Std Mean Std

LSTM 8.49% 1.03% 9.55% 1.16% 9.16% 1.61%
MAMBA 8.56% 1.05% 9.32% 1.16% 9.13% 1.63%

G.3. Impact of Expanded Dataset

In this subsection, we expand the testing set in the paper from the period (2021/01/01 to 2022/12/31) to the period (2021/01/01
to 2024/12/31), while the training and validation periods are kept. Apart from the extended time span, all other experimental
settings remain consistent with those in Table 1.

Table G.9. Out-of-sample IC values with expanded testing set.

CSI 300 CSI 500 Market

Method Mean Std Mean Std Mean Std

Alpha101 3.02% - 4.11% - 3.78% -

MLP 1.47% 0.26% 2.15% 0.66% 2.04% 0.76%
XGBoost 1.80% 0.97% 3.16% 1.11% 3.25% 1.33%

LightGBM 1.85% 0.79% 2.32% 0.84% 2.37% 1.06%

GP w/o filter 1.15% 1.87% 1.04% 1.65% 0.89% 2.02%
GP w/ filter 2.47% 2.28% 3.54% 2.14% 0.56% 2.57%

AlphaGen 4.13% 0.95% 4.19% 1.39% 3.19% 1.94%
AlphaQCM 5.48% 1.17% 5.87% 1.33% 4.83% 1.79%

The updated experimental results are shown in Table G.9. From this table, we can see that the advantages of our AlphaQCM
method remain evident over the baseline methods. However, nearly all methods show a noticeable decrease in out-of-sample
IC values. This issue could potentially be addressed by re-fitting the models in these methods whenever new information is
available.
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