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Abstract

Jiang et al. (2022) find empirically that the average test error of deep neural networks can
be estimated via the prediction disagreement of two separately trained networks, which does
not require labels. They show that this ‘Generalization Disagreement Equality’ follows from
the well-calibrated nature of deep ensembles under the notion of a proposed ‘class-aggregated
calibration’. In this reproduction, we show on two datasets that the suggested theory might be
impractical because a deep ensemble’s calibration can deteriorate as prediction disagreement
increases, which is precisely when the coupling of test error and disagreement is of interest,
and labels are needed to estimate the calibration on new datasets. Further, we simplify the
theoretical statements and proofs, showing them to be straightforward within a probabilistic
context unlike the original hypothesis space view employed by Jiang et al. (2022).

1 Introduction

Machine learning models can cause great harm when their predictions become unreliable, yet we trust them
blindly. Thus, finding ways to bound the test error of a trained deep neural network without access to the
labels is of great importance: one could estimate the performance of models in the wild where unlabeled data
is ubiquitous, labeling is expensive, and the data often does not match the training distribution. Crucially, it
would provide a signal on when to trust the output of a model and when to defer to human experts instead.

Several recent works (Chen et al.; 2021; Garg et al., 2022; Jiang et al., 2022) look at the question of how
model predictions in a non-Bayesian setting can be used to estimate model accuracy.

In a Bayesian setting, epistemic uncertainty (Der Kiureghian & Ditlevsen, 2009) captures the uncertainty of
a model about the reliability of its predictions, that is epistemic uncertainty quantifies the uncertainty of
a model about its predictive distribution, while aleatoric uncertainty quantifies the ambiguity within the
predictive distribution, c.f. Kendall & Gal (2017). Epistemic uncertainty thus tells us whether we can trust a
model’s predictions or not. Assuming a well-specified and well-calibrated Bayesian model, when its predictive
distribution has low epistemic uncertainty for an input, it can be trusted. But likewise, a Bayesian model’s
calibration ought to deteriorate as epistemic uncertainty increases: in that case, the predictions become less
reliable and so does the model’s calibration.

In this context, calibration is an aleatoric metric for a model’s reliability (Gopal, 2021). Calibration captures
how well a model’s confidence for a given prediction matches the actual frequency of that prediction in the
limit of observations: when a model is 70% confident about assigning label A, does A indeed occur with 70%
probability in these instances?

Jiang et al. (2022), while not Bayesian, make the very interesting empirical and theoretical discovery that
deep ensembles satisfy a ‘Generalization Disagreement Equality’ when they are well-calibrated according to a
proposed ‘class-aggregated calibration’ (or a ‘class-wise calibration’) and empirically find that the respective
calibration error generally bounds the absolute difference between the test error and ‘disagreement rate! Jiang
et al. (2022)’s theory builds upon Nakkiran & Bansal (2020)’s ¢ Agreement Property’ and provides backing for
an empirical connection between the test error and disagreement rate of two separately trained networks
on the same training data. Yet, while Nakkiran & Bansal (2020) limit the applicability of their Agreement
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Property to in-distribution data, Jiang et al. (2022) carefully extend it: ‘our theory is general and makes no
restrictions on the hypothesis class, the algorithm, the source of stochasticity, or the test distributions (which
may be different from the training distribution) with qualified evidence: ‘we present preliminary observations
showing that GDE is approzimately satisfied even for certain distribution shifts within the PACS (Li et al.,
2017) dataset.’

In this paper, we present a new perspective on the theoretical results using a standard probabilistic approach
for discriminative (Bayesian) models, whereas Jiang et al. (2022) use a hypothesis space of models which
output one-hot predictions. Indeed, their theory does not require one-hot predictions, separately trained
models (deep ensembles) or Bayesian models, and as remarked by the authors, their theoretical results also
apply to a single model that outputs softmax probabilities. We will see that our perspective greatly simplifies
the results and proofs.

This also means that the employed notion of disagreement rate does not capture epistemic uncertainty but
overall uncertainty, similar to the predictive entropy, which is a major difference to Bayesian approaches
which can evaluate epistemic uncertainty separately (Smith & Gal, 2018).

Importantly, we find that the connection between the proposed calibration metrics and the gap between test
error and disagreement rate exists because the introduced notion of class-aggregated calibration is so strong
that this connection follows almost at once.

Moreover, the suggested approach is circular': calibration must be measured on the data distribution that we
want to evaluate. Otherwise, we cannot bound the difference between the test error and the disagreement rate
and obtain a signal on how trustworthy our model is. This reintroduces the need for labels on the unlabeled
dataset, limiting practicality. Alternatively, one would have to assume that these calibration metrics do not
change for different datasets or under distribution shifts, which we show to not hold: deep ensembles are less
calibrated, the more the ensemble members disagree (even on in-distribution data).

Lastly, we draw connections and show that the ‘class-aggregated calibration error’ and the ‘class-wise
calibration error’® are equivalent to the ‘adaptive calibration error’ and ‘static calibration error’ introduced
in Nixon et al. (2019).

Outline. We introduce the necessary background and notation in §2. In §3 we rephrase the theoretical
statements from Jiang et al. (2022) using a parameter distribution (instead of a version space) and auxiliary
random variables. This allows us to simplify the theoretical statements and proofs greatly in §4 and to
examine the connection to Nixon et al. (2019). Finally, in §5, we provide empirical evidence that deep
ensembles are less calibrated exactly when their ensemble members disagree.

2 Background & Setting

We introduce relevant notation, the initial Bayesian formalism, the connection to deep ensembles, and the
probabilistic model. We restate the statements from Jiang et al. (2022) using this formalism in §3.

Notation. We use an implicit notation for expectations E[f(X)] when possible. For additional clarity, we
also use Ex[f(X)] and E(, f(z), which fix the random variables and distribution, respectively, when needed.

We will use nested probabilistic expressions of the form IE[p()A/ =Y | X)]. Prima facie, this seems unambiguous,
but is p(f/ =Y | X) a transformed random variable of only X or also of Y (and f/): what are we taking the
expectation over? This is not always unambiguous, so we disambiguate between the probability for an event
defined by an expression p|...] = E[1{...}], where 1{...} is the indicator function®, and a probability given
specific outcomes for various random variables p(g | z), c.f.:

plY =V | X] = Ey ¢ [1{Y = Y} | X] = Epgygx) Ly = 9}, (1)

IThis was also added as a caveat to the camera-ready version of Jiang et al. (2022) after reviewing a preprint of this paper.
2Which is not explicitly introduced in Jiang et al. (2022) but can be analogously constructed.
3The indicator function is 1 when the predicate ‘... is true and 0 otherwise.
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which is a transformed random variable of X, while p(Y =Y | X) is a (transformed) random variable that
depends both on Y and X. That is, the difference is that Y is bound within the former but not the latter. In
other words, p[... | X] is a random variable in X, and any random variable that appears within the ... is
bound within that expression.

Probabilistic Model. We assume classification with K classes. For inputs X with ground-truth labels Y,
we have a Bayesian model with parameters €2 that makes predictions Y. What makes the model Bayesian is
that the parameters follow a distribution p(w):

p(y,9,w|z) =p(y|z) p(§|z,w) p(w). (2)

We focus on model evaluation. (Input) samples x can come either from ‘in-distribution data’ which follows
the training set or from samples under covariate shift (distribution shift). The expected prediction over the
model parameters is the marginal predictive distribution:

p(§|) =Ea[p(g |z, Q)]. 3)

On p(w). The main emphasis in Bayesian modelling can be Bayesian inference or Bayesian model averaging
(Wilson & Izmailov, 2020). Here we concentrate on the model averaging perspective, and for simplicity
take the model averaging to be with respect to some distribution p(w). Hence, we will use p(w) as the
push-forward of models initialized with different initial seeds through SGD to minimize the negative log
likelihood with weight decay and a specific learning rate schedule (MLE or MAP) (Mukhoti et al., 2021):

Assumption 1. We assume that p(w) is a distribution of possible models we obtain by training with a
specific training regime on the training data with different seeds. A single w identifies a single trained model.

Deep Ensembles. We cast deep ensembles (Hansen & Salamon, 1990; Lakshminarayanan et al., 2016),
which refer to training multiple models and averaging predictions, into the introduced Bayesian perspective
above by viewing them as an empirical finite sample estimate of the parameter distribution p(w). Then,
w1, ..., wn ~ p(w) drawn i.i.d. are the ensemble members.

Again, the implicit model parameter distribution p(w) is given by the models that are obtained through
training. Hence, we can view the predictions of a deep ensemble or the ensemble’s prediction disagreement
for specific « (or over the data) as empirical estimates of the predictions or the model disagreement using the
implicit model distribution, respectively.

Calibration. The overall model’s calibration for a given 2 measures how well the model’s (top-1) confidence

Confrop; i=p(Y = argmaxp( =k|X)|X) (4)

matches its top-1 accuracy

Accropr :=p(Y = arg]fnaxp( =k|X)|X), (5)

where we define both as transformed random variables of X. The calibration error is usually defined as the
absolute difference between the two:

CE = ‘ACCTOpl — COHfT0p1|. (6)

In general, we are interested in the expected calibration error (ECE) over the data distribution (Guo et al.,
2017) where we bin samples by their top-1 confidence. Intuitively, the ECE will be low when we can trust the
model’s top-1 confidence on the given data distribution.

Note that the accuracy if we were to draw Y according to p(9 | z) instead of taking the top-1 is
Acc:=p[Y =Y | X] (7)
—Zp =k[X)p(Y =k[X) (8)



Under review as submission to TMLR

=Ey[p(Y =Y [ X)| X], 9)
and usually, we are interested in the accuracy over the whole dataset:

p[Y = Y] =E[Acc] = Ex[p[Y =Y | X]] = Exy[p(Y =Y | X)]. (10)

3 Rephrasing Jiang et al. (2022) in a Probabilistic Context

We present the same theoretical results as Jiang et al. (2022) but initially use a Bayesian formulation instead
of a hypothesis space and define the relevant quantities as (transformed) random variables. As such, our
definitions and theorems are equivalent and follow the paper but look different. We show these equivalences
in §A in the appendix and prove the theorems and statements themselves in the next section.

First, however, we note a distinctive property of Jiang et al. (2022). It is assumed that each p(§ | z,w)
is always one-hot for any w. In practice, this could be achieved by turning a neural network’s softmax
probabilities into a one-hot prediction for the argmax class. We call this the TopI-Output-Property (TOP).

Assumption 2. The Bayesian model p(§,w | x) satisfies TOP when p(§,w | z) is one-hot for all z and w.

Definition 3.1. The test error and disagreement rate, as transformed random variables of 2 (and '), are:

TestError := p[Y # Y | Q] (11)
=1-plY =Y |9 (12)
=1-Exy[p(Y =Y|X,Q), (13)
=1—Ep(ey) p(Y = y|2,9), (14)

Dis :=p[Y # Y | Q, Q] (15)
=1-p[Y =Y'|Q,@] (16)
=1-FEyyp(Y' =Y |X,Q)|Q,Q] (17)
=1—Ep g0 p(Y' =92, Q) (18)

where for the disagreement rate, we expand our probabilistic model to take a second model Q' with prediction
Y’ into account (and which uses the same parameter distribution), so:

p(y, 9w, 9w | ) =p(y | 2) p§ | z,w) pw)p(Y =¢ |2,Q=w) p(Q=0u').

Jiang et al. (2022) then introduce the property of interest:

Definition 3.2. The Bayesian model p(§,w | x) satisfies the Generalization Disagreement Equality (GDE)
when:

Eq[TestError(Q)] = Eq o/ [Dis(Q, Q)] (< E[TestError] = E[Dis]). (19)
When this property holds, we seemingly do not require knowledge of the labels to estimate the test error:
computing the disagreement rate is sufficient.

Two different types of calibration are then introduced, class-wise and class-aggregated calibration, and it is
shown that they imply the GDE:

Definition 3.3. The Bayesian model p(§,w | z) satisfies class-wise calibration when for any ¢ € [0,1] and
any class k € [K]:

p(Y =k|[p(Y =k|X)=¢q)=q. (20)

Similarly, the Bayesian model p(§,w | z) satisfies class-aggregated calibration when for any ¢ € [0, 1]:

> (Y =kp(Y =k|X)=¢)=q¢Y pp(Y =k|X)=q) (21)
k k
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Theorem 3.4. When the Bayesian model p(§,w | x) satisfies class-wise or class-aggregated calibration, it
also satisfies GDE.

Finally, Jiang et al. (2022) introduce the class-aggregated calibration error similar to the ECE and then use it
to bound the magnitude of any GDE gap:

Definition 3.5. The class-aggregated calibration error (CACE) is the integral of the absolute difference of
the two sides in eq. (21) over possible ¢ € [0, 1]:

CACE::/[O1 |Zp Y=k|X)=gq) —qZp V=k|X) —q’dq (22)
q€

Theorem 3.6. For any Bayesian model p(§,w | z), we have:

|E[TestError] — E[Dis]| < CACE.

4 GDE is Class-Aggregated Calibration in Expectation

Here, we show that proof for Theorem 3.6 is trivial if we use different but equivalent definitions of the class-wise
and class-aggregate calibration. First though, we establish a better understanding for these definitions by
examining the GDE property E[TestError] = E[Dis|. For this, we expand the definitions of E[TestError] and
E[Dis], and use random variables to our advantage.

We define a quantity which will be of intuitive use later on: the predicted accuracy
PredAcc := Ey [p(Y | X) | X] = Zp = k| X)p(Y = k| X), (23)
as a random variable of X. It measures the expected accuracy assuming the model’s predictions are correct,

that is the true labels follow p(§ | ).
Revisiting GDE. On the one hand, we have:

E[TestError] = Eq[p[Y # Y | Q)] (24)
=1-p[Y =V] (25)
—1—Eyy[p(Y =V [ X)] (26)
=1- [Acc] (27)

and on the other hand, we have:

E[Dis] = Eo.o/[p[V" # V' | 2,9]] (28)
—1—Eqo[p[Y =Y |0, (29)
=1-p[Y =V (30)
—1-Exp[p(Y' =Y | X)] (31)
=1-Eyy[p(Y | X)] (32)
=1 — E[PredAcc]. (33)

The step from (30) to (31) is valid because ¥ 1. Y| X, and the step from (31) to (32) is valid because p(§
x) =p(§| x). Thus, we can rewrite Theorem 3.4 as:

—~
S

| Lemma 4.1. The model p(9 | z) satisfies GDE, when
E[Acc] = E[p(Y =Y | X)] = E[p(Y | X)] = E[PredAcc], (34)

i.e. the accuracy of the model equals the predicted accuracy of the model, or equivalently, the error of the
models equals the predicted error.
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Crucially, while Jiang et al. (2022) calls 1 —E v [p(Y | X)] the expected disagreement rate E[Dis], it actually
is the predicted error of the (Bayesian) model as a whole.

Equally important, all dependencies on ) have vanished. Indeed, we will not use €2 anymore for the remainder
of this section. This reproduces the corresponding remark from Jiang et al. (2022)%:

Conclusion 1. The theoretical statements in Jiang et al. (2022) can be made about any discriminative
model with predictions p(y | z).

When is Ey y [p(Y = V| X)] =Ey ¢[p(Y | X)]? Or in other words: when does p(y = § | #) equal p(§ | =) in
expectation over p(z,y,§)?

As a trivial sufficient condition, when the predictive distribution matches our data distribution—i.e. when
the model p(§ | x) is perfectly calibrated on average for all classes—and not only for the top-1 predicted class.
ECFE =0 is not sufficient because the standard calibration error only ensures that the data distribution and
predictive distribution match for the top-1 predicted class (Nixon et al., 2019). But class-wise calibration
entails this equality.

Class-Wise and Class-Aggregated Calibration. To see this, we rewrite class-wise and class-aggregated
calibration slightly by employing the following tautology:

p(Y =k[p(Y =k|X)=0q) =g, (35)

which is obviously true due its self-referential nature. We provide a formal proof in §C in the appendix. Then
we have the following equivalent definition:

Lemma 4.2. The model p(§j | x) satisfies class-wise calibration when for any q € [0,1] and any class k € [K]:
p(Y =k,p(Y =k|X)=q)=p(Y =k,p(Y =k|X) =q). (36)

Similarly, the model p(§ | x) satisfies class-aggregated calibration when for any q € [0, 1]:
P =Y | X)=q) =p(p(¥ | X) =q) (37)

and class-wise calibration implies class-aggregate calibration.

The straightforward proof is found in §C in the appendix.

Jiang et al. (2022) mention ‘level sets’ as intuition in their proof sketch. Here, we have been able to make
this even clearer: class-aggregated calibration means that level-sets for accuracy p(f’ =Y | X) and predicted
accuracy p(}A/ | X)—as random variables of Y and X, and Y and X , respectively—have equal measure, that
is probability.

4The remark did not exist in the first preprint version.
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GDE. Now, class-aggregated calibration immediately and trivially implies GDE. To see this, we use the
following property of expectations:

Lemma 4.3. For a random variable X, a function t(x), and the random variable T = t(X), it holds that

Ep(T] = E[T] = Ex [t(X)]. (38)

This basic property states that we can either compute an expectation over T' by integrating over p(T = t)
or by integrating t(x) over p(X = x). This is just a change of variable (push-forward of a measure).

We can use this property together with the class-aggregated calibration to see:

E [Acc] E [PI‘edACC]
Il Il
Exyp(¥ =Y |X)] Exylp(Y|X)
Il Il
E[p(Y y Y| X)] IE[P(?” | X)]

Epp=yi0ld) = Equppeixyldl: (39)
which is exactly Lemma 4.1, where we start with the equality following from class-aggregated calibration

and then apply Lemma 4.3 along each side. Thus, GDE is but an expectation over class-aggregated
calibration; we have:

Theorem 4.4. When a model p(§ | x) satisfies class-wise or class-aggregated calibration, it satisfies GDE.

\. J

Proof. We can formalize the proof above slightly. We introduce two auxiliary random variables:
S=pY =Y|[X), (40)
as a transformed random variable of Y and X, and
T:=p(Y | X), (41)

as a transformed random variable of ¥ and X. Class-wise calibration implies class-aggregated calibration.
Class-aggregated calibration then is p(S = ¢) = p(T = ¢q) (*). Writing out eq. (39), we have

E[p(Y =Y | X)] = Ex y[S] = E[S] = Es]S)] (42)

= /p(S =q)qdq (43)

© /p(T =q)qdg (44)

=Er[T] = E[T] =Ex y[T] = E[p(Y | X)], (45)

which concludes the proof. O

The reader is invited to compare this derivation to the corresponding longer proof in the appendix of Jiang et al.
(2022). The fully probabilistic perspective greatly simplifies the results, and the proofs are straightforward.

CACE. Showing that CACE bounds the gap between test error and disagreement is also straightforward:
Theorem 4.5. For any model p(§ | x), we have:

|E[TestError] — E[Dis]| < CACE.
Proof. First, we note that

CACE= [ [pp(F =¥ |X) =q) = p(p(¥ | X) = o)lda (46)
q€[0,1]
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following the equivalences in the proof of Lemma 4.2. Then using the triangle inequality for integrals and
0 < ¢ <1, we obtain:

CACE (47)
— [ (T =Y X) =0~ po(f =7 X) =) dg (48)
qE[O,l]
z/ a|pp(¥ = Y| X) = q) — p(p(¥ = ¥ | X) = g)| dg (49)
qE[O,l]
| ape =YX =adi~ [ app|X) =g da] (50)
q€[0,1] q€[0,1]
= |E[S] — E[T]] (51)
= |E[TestError] — E[Dis]|, (52)
where we have used the monotonicity of integration in (49) and the triangle inequality in (50). O

The bound also serves as another—even simpler—proof for Theorem 4.4:

Conclusion 2. When the Bayesian model satifies class-wise or class-aggregated calibration, we have
CACE = 0 and thus E[TestError] = E[Dis], i.e. the model satisfies GDE.

Furthermore, note again that a Bayesian model was not necessary for the last two theorems. The model
parameters () were not mentioned—except for the specific definitions of TestError and Dis which depend on
Q following Jiang et al. (2022) but which we only use in expectation.

Moreover, we see that we can easily upper-bound CACE using the triangle inequality by 2, narrowing the
statement in Jiang et al. (2022) that CACE can lie anywhere in [0, K]:

Conclusion 3. CACE < 2.

Additionally, for completeness’ sake, we can also define the class-wise calibration error formally as:
Definition 4.6. The class-wise calibration error (CWCE) is defined as:

CWCE = g/qe[o’uwwz kop(V = k| X) = q) — p(¥" = k,p(¥ = k| X) = )| (53)

Using the triangle inequality, we have:
Lemma 4.7. CWCE > CACE > | E[Acc] — E[PredAcc]|.

Note that when we compute CACE empirically, we divide the dataset into several bins for different intervals
of p(Y = k| X). Jiang et al. (2022) use 15 bins. If we were to use a single bin, we would compute
| E[Acc] — E[PredAcc]| directly.

In §B we show that CWCE has previously been introduced as ‘adaptive calibration error’ in Nixon et al.
(2019) and CACE as ‘static calibration error’ (with noteworthy differences between Nixon et al. (2019)
and its implementation).

5 Deterioration of Calibration under Increasing Disagreement

Generally, we can only hope to trust model calibration for in-distribution data, while under distribution shift,
the calibration ought to deteriorate. In our empirical falsification using models trained on CIFAR-10 and
evaluated on the test sets of CIFAR-10 and CINIC-10 (as a dataset with a distribution shift), we find in
both cases that calibration deteriorates under increasing disagreement. More importantly though, calibration
markedly worsens under distribution shift.
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Figure 1: Rejection Plot of Calibration Metrics for Increasing Disagreement In-Distribution (CIFAR-10)
and Under Distribution Shift (CINIC-10). Different calibration metrics (ECE, CWCE, CACE) vary across
CIFAR-10 and CINIC-10 on an ensemble of 25 Wide-ResNet-28-10 model trained on CIFAR-10, depending
on the rejection threshold of the predicted error (disagreement rate). Thus, calibration cannot be assumed
constant for in-distribution data or under distribution shift. The test error increases almost linearly with the
predicted error (disagreement rate), leading to ‘GDE gap’ |Test Error — Predicted Error| becoming almost
flat, providing evidence for the empirical observations in Nakkiran & Bansal (2020); Jiang et al. (2022). The
mean predicted error (disagreement rate) is shown on the x-axis. (a) shows results for an ensemble using
TOP (following Jiang et al. (2022)), and (b) for a regular deep ensemble without TOP. The regular deep
ensemble is better calibrated but has higher test error overall and lower test error for samples with small

predicted error.
9
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Specifically, we examine an ensemble of 25 WideResNet models (Zagoruyko & Komodakis, 2016) trained on
CIFAR-10 (Krizhevsky et al., 2009) and evaluated on CIFAR-10 and CINIC-10 test data. CINIC-10 (Darlow
et al., 2018) consists of CIFAR-10 and downscaled ImageNet samples for the same classes, and thus includes
a distribution. The models are trained using the setup described in Mukhoti et al. (2021).

Figure 1 shows rejection plots under increasing disagreement for in-distribution data (CIFAR-10) and under
distribution shift (CINIC-10). The rejection plots threshold the dataset on increasing levels of the predicted
error (disagreement rate)—which is a measure of epistemic uncertainty when there is no expected aleatoric
uncertainty in the dataset. We examine ECE, class-aggregated calibration error (CACE), class-wise calibration
error (CWCE), error E[TestError], and ‘GDE gap’, | E[Acc] —E[PredAcc]|, as the predicted error (disagreement
rate), E[Dis] = 1 — E[PredAcc], increases.

We observe that all calibration metrics, ECE, CACE and CWCE, deteriorate under increasing disagreement,
both in distribution and under distribution shift, and also worsen under distribution shift overall. This is
consistent with the experimental results of Ovadia et al. (2019) which examines dataset shifts. However,
given that the calibration metrics change with the quantity of interest, we conclude that:

Conclusion 4. The bound from Theorem 3.6 might not have as much expressive power as hoped since the
calibration metrics themselves deteriorate as the model becomes more ‘uncertain’ about the data.

At the same time, the ‘GDE gap’, which is the actual gap between test error and predicted error, flattens,
and the test error develops an almost linear relationship with the predicted error (up to a bias). This shows
that there seem to be intriguing empirical properties of deep ensemble as observed previously (Nakkiran &
Bansal, 2020; Jiang et al., 2022). However, they are not explained by the proposed calibration metrics®.

As described previously, the results are not limited to Bayesian or version-space models but also apply to any
model p(§ | z), including a regular deep ensembles without TOP. In our experiment, we find that a regular
deep ensemble is better calibrated than the same ensemble made to satisfy TOP. We hypothesize that each
ensemble member’s own predictive distribution is better calibrated than its one-hot outputs, yielding a better
calibrated ensemble overall.

Given that all these calibration metrics require access to the labels, and we cannot assume the model to be
calibrated under distribution shift, we might just as well use the labels directly to asses the test error.

6 Conclusion
We have found that the theoretical statements in Jiang et al. (2022) can be expressed and proven more
concisely when using probabilistic notation for (Bayesian) models that output softmax probabilities.

Moreover, we empirically found the proposed calibration metrics to deteriorate under increasing disagreement
for in-distribution data, and as expected, we have found the same behavior under distribution shifts.

While Jiang et al. (2022) are careful to qualify their results for distribution shifts, above results should give us
pause: strong assumptions are still needed to conjecture about model generalization, and we need to beware
of circular arguments.
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A Equivalent Definitions
Jiang et al. (2022) defines a hypothesis space H. In the literature, this is also sometimes called a version
space. The hypothesis space induced by a stochastic training algorithm 4 is named H 4.

We can identify each hypothesis h : X — [K] with itself as parameter w;, = h and define p(wy,) as a uniform
distribution over all parameters/hypotheses in H_4. This has the advantage of formalizing the distribution
from which hypothesis are drawn (h ~ H 4), which is not made explicit in Jiang et al. (2022). h(z) = k then
becomes arg max, p(j | #,ws) = k. Moreover, as p(j,w | z) satisfies TOP, we have®

“Uh(z) = kY =p(Y = k| z,wp). (54)

Thus, “TestErrg(h) £ Eg[1[h(X) # Y]]” is equivalent to:

“TestErrg(h) = Eg[1[h(X) # Y]]” (55)
=Exy[p(Y # Y| X,w)] (56)
= Ex[p[l # Y | X, wl] (57)
=p[Y #Y |wi] (58)
= TestError(wp,). (59)
Similarly, “Disg (h, h') £ Eg [1[h(X) # h'(X)]]” is equivalent to:
“Disg (h, h') £ Eg [1[M(X) # W/(X))]" (60)
=Ey ¢ [p[Y # V' | wn,wn]] (61)
= Dis(wh, wh/). (62)
Further, “hy,(x) £ Ezp, [1[h(z) = k]]” is equivalent to:
“hi(2) £ Ee,[1h(z) = k)" (63)
=Ea[p(Y = k|2, Q)] (64)
=p(Y =k|a). (65)
For the GDE, “Ej, p/~2, [Disg (R, h')] = Epze, [TestErr(h)]” is equivalent to:
“Eh,h/Nij [DiS@ (h, h/)] = ]EthfA [TestErr(h)]”
& Eq o [Dis(Q, Q)] = Eg[TestError(9)]. (66)
For the class-wise calibration, “p(Y = k | hx(X) = q) = ¢” is equivalent to:
PY =k [ (X)) =0q) =" (67)
ep(Y =k|p(Y =k|X)=q) =q. (68)

S p(Y =k, hy(X)=q)
S p(he(X)=q)

For the class-aggregated calibration, “ = ¢” (and note in Jiang et al. (2022), class indices

run from 0..K — 1) is equivalent to:

;;Zk 0 p( =k, hi(X) = q) —q" (69)
Yo P(h(X) = q)
6We put definitions and expressions written using the notation and variables from Jiang et al. (2022) inside quotation marks

“” to avoid ambiguities.
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Zk 1p( (Y | X)=9q)
@Zp(Y=k,p(?=le)=q)
k=1 B
=q¢> p(Y =k[X)=0q). (71)

k=1

Finally, for the class-aggregated calibration error, the definition is equivalent to:

“CACEg(h)
é/qe[o,u Zk;(kp(_hf(hk)()_()q) 2, -Zk:p(ﬁk(X)=q) dq (72)
:/qe[01 1N o (Y =k hi(X) = q) —qzk:p(izk(X):q) |dg” 73)
/qe[01|zp *le):q)*qu( p(Y = k| X) = q)|dg (74)

B Comparison of CACE and CWCE with calibration metrics with ‘adaptive
calibration error’ and ‘static calibration error’

Nixon et al. (2019) examine shortcomings of the ECE metric and identify a lack of class conditionality,
adaptivity and the focus on the maximum probability (argmax class) as issues. They suggest an adaptive
calibration error which uses adaptive binning and averages of the calibration error separately for each class,
thus equivalent to the class-wise calibration error and class-wise calibration (up to adaptive vs. even binning).
In the paper, the static calibration error is defined as ACE with even instead of adaptive binning. However,
in the widely used implementation’, SCE is defined as equivalent to the class-aggregated calibration error.

C Additional Proofs

Lemma C.1. For a model p(§ | x), we have for all k € [K] and q € [0, 1]:
p(Y =k|p(Y =k|X)=0q) =4, (75)

when the left-hand side is well-defined.

Proof. This is equivalent to
p(Y =k,p(Y =k[X) =q) =g p(Y = k| X) =q), (76)

as the conditional probability is either defined or p(p(Y = k| X) =¢q) = 0. Assume the former. Let
p(p(Y = k| X) = q) > 0. Introducing the auxiliary random variable T} := p(Y = k| X) as a transformed
random variable of X, we have

p(Y =k, Ty = q) = qp(Tk = q). (77)
We can write the probability as an expectation over an indicator function

p(Y = k,Tx = q) (78)

"https://github.com/google-research/robustness_metrics/blob/baad7fbe38£80913590545fe7c199898f9aff349/
robustness_metrics/metrics/uncertainty.py#L15685, added in April 2021
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=Ey ¢ [{Y =k, Th(X) = ¢}] (79)
= Ey o [I{Y = k} 1{T(X) = q}] (80)
= Ex[1{Tk(X) = ¢} Eg [1{Y =k} | X]] (81)
= Ex[1{Tk(X) = ¢} p(Y = k| X)]. (82)

Importantly, if 1{T}(z) = ¢} = 1 for an z, we have Ty(z) = p(Y = k| z) = ¢, and otherwise, we multiply
with 0. Thus, this is equivalent to

= Ex[1{T(X) = ¢} q] (83)
= qEx[{Tx(X) = ¢}] (84)
=qp(T(X) = q)- (85)

O

Lemma 4.2. The model p(§ | x) satisfies class-wise calibration when for any q € [0,1] and any class k € [K]:

p(Y =k, p(Y = k| X)=q) =p(Y = k,p(Y =k|X) =q). (36)
Similarly, the model p(§ | x) satisfies class-aggregated calibration when for any q € [0, 1]:
p(p(Y =Y | X)=¢q) =pp(Y | X)=q), (37)

and class-wise calibration implies class-aggregate calibration.

Proof. Beginning from
p(Y =k|p(Y =k|X)=0q)=q, (86)
we expand the conditional probability to
Sp(Y =kp(Y =k|X)=q) =qppY =k[X)=q), (87)
and substitute eq. (35) into the outer ¢, obtaining the first equivalence
SpY =kp(Y =k|X)=¢) =p(Y =k p(Y =k|X) =q). (88)
For the second equivalence, we follow the same approach. Beginning from

> p(Y =kp(Y =k|X)=¢) =g pp(Y =k|X)=q), (89)
k k

we pull the outer ¢ into the sum and expand using (35)

@Zp p(V=k[X)=¢) =) qp(pY =k|X)=q)=> p(Y =kp(Y =k|X)=¢q). (90)
k k

In the inner expression, k is tied to Y on the left-hand side and Y on the right-hand side, so we have

<:>Zp p(Y =Y | X) =q) Zp p(Y | X) =q). (91)

Summing over k, marginalizes out Y = k and Y=k respectively, yielding the second equivalence

p(p(Y =Y | X) =q) =p(p(Y | X) =q) (92)
Finally, class-wise calibration implies class-aggregated calibration as summing over different & in (88), which
is equivalent to class-wise calibration, yields (90), which is equivalent to class-aggregated calibration. O
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