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ABSTRACT

Complex decision-making tasks across healthcare, drug discovery, engineering
design, and deep learning frequently involve optimizing multiple competing
objectives while navigating computationally expensive evaluations. Decision-
makers (DMs) must select Pareto-optimal solutions that align with their implicit
preferences, yet the computational burden of evaluating solutions and the cogni-
tive load of validating tradeoffs make exhaustive Pareto frontier exploration infea-
sible. While DMs often possess domain knowledge that helps constrain the initial
search space – for instance, clinicians typically have priors for specific regions
of the tradeoff surface to explore – existing methods lack systematic approaches
for iteratively refining these regions of interest. Critically, in high-stakes domains
like healthcare, DMs must develop confidence that they have not overlooked supe-
rior solutions before committing to a final decision. We present Active-MoSH, a
novel interactive framework that formalizes this exploration process by integrating
soft-hard utility functions with probabilistic preference learning. Our framework
maintains distributions over both the DM’s latent preference vector and feedback,
by way of soft and hard bounds, enabling adaptive refinement of the explored
Pareto frontier subset. We develop an active sampling strategy that optimizes
the exploration-exploitation tradeoff while minimizing cognitive burden. To ad-
dress the fundamental need for solution validation, we propose T-MoSH, which
leverages local multi-objective sensitivity analysis to systematically build DM
trust by quantifying the robustness of solutions and identifying potentially over-
looked regions of the Pareto frontier. Through extensive experiments on synthetic
benchmarks and real-world applications in engineering design and cervical cancer
brachytherapy treatment planning, we demonstrate that our framework efficiently
guides DMs toward optimal tradeoff points while providing rigorous validation of
solution quality.

1 INTRODUCTION

Countless critical decision-making tasks within the domains of healthcare, drug discovery, engineer-
ing design, and deep learning involve determining the optimal tradeoff point among multiple com-
peting, and often computationally expensive, objectives f1(x), ..., fL(x) (Fromer & Coley, 2023;
Luukkonen et al., 2023; Xie et al., 2021; Yu et al., 2000; Papadimitriou & Yannakakis, 2001). In
general, such decision-makers (DMs) typically aim to select a Pareto-optimal point — one that pos-
sesses an ideal set of tradeoffs — that matches their hidden, internal set of preferences among the
multiple objectives. However, having the DM manually search through the entire set of tradeoff
points along the Pareto frontier is infeasible due to the often computationally expensive objectives,
lengthy DM validation of each point, and, in general, limited amounts of human attention. As a
result, DMs typically navigate the Pareto frontier through an interactive process involving the val-
idation of points along different subsets of the Pareto frontier before selecting the point matching
their ideal internal set of objectives Paria et al. (2019); Ozaki et al. (2023); Wilde et al. (2021).

Within the healthcare domain, clinicians must determine patient-specific treatment tradeoffs that
maximize effectiveness while minimizing side effects. Brachytherapy, internal radiation therapy for
cancer treatment, exemplifies this challenge. Clinicians must devise treatment plans that maximize
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radiation damage to cancer tumors while minimizing exposure to nearby healthy organs. However,
the time-consuming nature of treatment planning and the vast space of radiation dosage tradeoffs
make it infeasible for clinicians to navigate and validate each potential plan, reducing the time
available for direct patient care.

Oftentimes, however, based on prior clinical experience, the clinician has a general idea of initial
radiation dosage tradeoff regions that they would like to explore. This typically is in the form of
initial bounds for the different objectives, e.g. need to cover at least 90% of the cancer tumor,
but ideally more than 95%, and preferably less than 513 centigrays (cGY) of radiation to the healthy
bladder, but no more than 601 cGY (Chen et al., 2024). This initiates an iterative, interactive process
where clinicians refine their preferred region of the Pareto frontier based on observed treatment
plans until selecting an ideal solution. Building trust in this process is crucial; decision-makers
must be confident that they have not overlooked potentially superior Pareto-optimal points. Despite
significant advances in multi-objective preference learning, methods that explicitly support such
interactive refinement and validation within Pareto frontier subsets remain underexplored.

This paper operationalizes the above intuitions and formalizes the Pareto frontier exploration pro-
cess through a novel interactive framework that iteratively learns a DM’s optimal tradeoff point via
systematic feedback on specific regions of interest. We extend the soft-hard utility function frame-
work of Chen et al. (2024), originally developed for static Pareto frontier exploration, to a dynamic
preference learning setting. Our proposed method, Active-MoSH, introduces a probabilistic frame-
work that integrates these utility functions with interactive preference learning. The framework
maintains and updates probabilistic distributions over both the DM’s latent preference vector and
their soft-hard bounds through Plackett-Luce and Gaussian likelihood functions (Luce, 1959). This
probabilistic approach enables adaptive refinement of the explored Pareto frontier subset, concen-
trating computational resources on regions that align with the DM’s evolving preferences. Building
on these updated preference distributions, we develop an active sampling strategy that optimizes the
exploration-exploitation tradeoff while minimizing both computational cost and cognitive burden
on the DM. To address the critical issue of solution trustworthiness in complex multi-objective opti-
mization, we further propose T-MoSH, which leverages local multi-objective sensitivity analysis to
help DMs develop trust in their selected solutions through a rigorous validation process.

Although there exists an extensive line of work on interactive multi-objective decision making
frameworks, most works focus on feedback mechanisms that may lack the expressiveness to in-
tuitively explore certain sub-regions of the tradeoff surface (Wilde et al., 2021; Bıyık et al., 2019;
Astudillo & Frazier, 2020; Ozaki et al., 2023). Several recent works allows for the DM to impose
priors on specific subsets of the Pareto frontier, however, they lack focus on the interactive feed-
back setting, which we believe poses several additional challenges such as building DM trust in the
framework (Paria et al., 2019; Malkomes et al., 2021). In summary, our contributions comprise the
following:

1. We propose a novel interactive framework using multi-objective soft and hard bounds, al-
lowing for the DM to intuitively explore and continually refine different regions of the
Pareto frontier for exploration.

2. We introduce multi-objective probabilistic learning and active sampling steps for more effi-
cient refinement of the DM’s hidden preferences along with T-MoSH, a method for helping
build DM trust in such interactive multi-objective decision-making scenarios.

3. We conduct experiments on both synthetic functions and real-world problems in engineer-
ing design and healthcare, specifically, cervical cancer treatment planning, demonstrating
the usefulness of our framework. Our evaluation setup takes into consideration the com-
plexity of various feedback mechanisms, allowing us to illustrate the feedback efficiency
of Active-MoSH, compared to baselines.

2 MULTI-OBJECTIVE PREFERENCE LEARNING WITH SOFT-HARD BOUNDS

2.1 BACKGROUND

Multi-objective optimization (MOO) involves the optimization of multiple objective functions, and
can be formulated as the joint maximization of L objective functions over some input space X ⊂ Rd,
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Multi-Objective Problem: Cervical Cancer 
Brachytherapy Treatment Planning. 
Orange represents the cancer tumor, 
whereas the rest are healthy organs, e.g. 
bladder.

Cancer Tumor

Next Iteration 
of Feedback

Figure 1: Example iteration of feedback with our proposed interactive framework, Active-MoSH.
We evaluated Active-MoSH on a real clinical case for cervical cancer brachytherapy treatment plan-
ning, where the objectives are to balance between the radiation dosage levels to the cancer tumor and
to the nearby healthy organs – bladder, rectum, and bowel. For the plots, we only showed two of the
four dimensions in the multi-criterion objective for this task. After observing the sampled points in
the first iteration, the decision-maker relaxes the hard bound for the BladderD2cc dimension, which
leads the decision-maker to being closer to their ideal treatment plan in the next iteration.

max
x∈X

(f1(x), ..., fL(x))

in which each fℓ, ℓ ∈ [L], defines a noisy and expensive-to-query black-box function fℓ : X →
Yℓ ⊂ R. As there does not typically exist a feasible solution that marginally optimizes each objective
function simultaneously, we focus on points on the Pareto frontier. MOO often uses scalarization
to combine the L objectives into a single scalar value, enabling the use of standard optimization
techniques. These scalarization functions, such as linear combinations of objectives, are of the form
sλλλ(y) : RL → R and are parameterized by λλλ from some set Λ in L-dimensional space Roijers et al.
(2013). The parameters λλλ ∈ Λ define the relative preferences among the objectives. Optimizing this
scalarized objective, for a given set of λλλ ∈ Λ, results in a solution along the Pareto frontier.

The DM behind countless practical applications of MOO often has priors on the ideal regions of
the multi-dimensional objective space, in the form of soft and hard bounds Chen et al. (2024). We
follow the notation described in Chen et al. (2024), where fℓ(x) ≥ αℓ,S describes the ideal region
for objective ℓ according to its respective soft bound, αℓ,S . Given the competing nature of MOO
problems, αℓ,S may not be reachable, which leads the DMs to also have a hard bound αℓ,H for which
fℓ(x) should not drop below. To operationalize such priors, Chen et al. (2024) proposes soft-hard
utility functions, or SHFs, which encode the above constraints by mapping each fℓ to a bounded
utility space. We use uααα(x) to denote the SHF utility function according to a set of soft and hard
bounds {α1,S ,α1,H ,...,αL,S ,αL,H}. Additional details are in the Appendix.

Given a selected class of scalarization functions sλλλ parameterized by λλλ ∈ Λ and an SHF utility
function as defined above, we obtain points y ∈ Y on the SHF-defined Pareto frontier by solving

max
x∈X

sλλλ(uααα(x)), (1)

where uααα := [uα1
, ..., uαL

], uαℓ
subsumes objective function fℓ and corresponds to the SHF pa-

rameterized by αℓ,S and αℓ,H , and we assume that sλλλ(uααα(x)) is monotonically increasing in all
coordinates uααα(x). We propose to extend the conceptual framework of SHFs into an interactive
preference learning setting and formally describe the setting next.

2.2 PROBLEM DEFINITION

We now introduce the notation we use in this paper and formulate the problem.
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Problem Setting As DM evaluation of each point yyy ∈ Y is expensive, it is infeasible to observe
the full Y on the entire Pareto frontier. We therefore assume the DM has an ideal hidden set of soft
and hard bounds which best characterizes the set of tradeoffs most appropriate for their decision-
making task. We denote this ideal hidden set as {α∗

1,H , α∗
1,S , ..., α∗

L,H , α∗
L,S}, which we abbreviate

to {ααα∗
S , ααα∗

H}. We then assume ∃ x∗ ∈ X such that yyy∗ = f(x∗), where yyy∗ is the DM’s ideal hidden
point on the Pareto frontier defined by the SHF, from {ααα∗

S , ααα∗
H}. Accordingly, yyy∗ is a point which

trades off among the L objectives according to the DM’s set of hidden preferences, λλλ∗. Formally,

x∗ = argmax
x∈X

sλλλ∗(uααα∗(x)) and ∀yyy ∈ Y,yyy∗ ≽ yyy

where y = f(x). Note: In the naive case, if ααα∗
S = ααα∗

H = 0, the SHF-defined Pareto frontier is just
the original, overall Pareto frontier. In this case, discovering the optimal tradeoff point y∗, which
trades off among the L objectives according to λ∗, corresponds to more traditional multi-objective
preference learning settings Roijers et al. (2013); Astudillo & Frazier (2020)

Feedback Mechanism We assume that λλλ and {α1,S , α1,H , ..., αL,S , αL,H}, which we abbreviate
to {αααS , αααH}, are random variables. We aim to learn λλλ∗ and {αααS ,αααH} through M iterations of
interactions from the DM by way of feedback in the form of soft and hard bounds, which we denote
with αℓ,S,m, αℓ,H,m, respectively, for objective ℓ and iteration m Chen et al. (2024). As exact
numerical feedback is often imprecise, we express DM uncertainty over their provided soft and
hard bounds by imposing the following probabilistic notion: αααS,m ∼ N(µS,m, σ2

S,m), αααH,m ∼
N(µH,m, σ2

H,m) to denote the set of soft and hard bounds at iteration m, respectively, where the
index for the objective is removed for clarity.

In iteration m = 0, the DM inputs their prior distribution for {αααS , αααH}, p(αααS , αααH ), by providing
an initial set of soft and hard bounds, {αααS,0,αααH,0}. In iteration m, the DM is presented with a set of
K points, Ym = {y1, ..., yK}, where yk = f(xk) for xk ∈ Xm, which we define as the preference
query. We let Dm = {(αααS,0, αααH,0, Y0, ..., αααS,m, αααH,m, Ym, αααS,m+1, αααH,m+1)} be the obtained set
of user feedback data at the end of iteration m, where αααS,m+1 and αααH,m+1 is the DM feedback on
Ym. The DM returns feedback in the form of soft and hard bounds. We assume that at each iteration
m, the DM can modify or keep the soft and hard bounds from the previous iteration, updating the
posterior distributions p(αααS , αααH | Dm) and p(λλλ|Dm). Due to potentially complex relationships
across the multiple objectives overwhelming the DM, we assume a single modification of any of the
soft and hard bounds for all objectives to encompass the full iteration. Since we want to eventually
select a Pareto-optimal point that optimally trades off among the L objectives according to λλλ∗, at
the end of m iterations of feedback, our objective is to maximize the SHF utility ratio (Chen et al.,
2024):

maxx∈Xm
sλλλ∗(uα̂αα(x))

maxx∈X sλλλ∗(uααα∗(x))
(2)

where α̂αα is sampled from the posterior distribution p(αααS , αααH | αααS,m, αααH,m). Intuitively, the SHF
utility ratio is maximized when the points in f(Xm) are Pareto optimal and span the high utility
regions of the PF, as defined by the SHFs uααα∗ . We use Equation (2) to evaluate our results in
Section 4.

3 ACTIVE-MOSH: PROBABILISTIC MODELING AND SAMPLING

3.1 PROBABILISTIC MODELING FOR PREFERENCES AND SOFT-HARD BOUNDS

We aim to learn λ∗λ∗λ∗ by way of providing the DM with the preference query and obtaining feedback
in the form of the soft-hard bounds. To inform our preference query sampling process, we maintain
and update a posterior distribution over the preference vectors λλλ that captures our uncertainty about
the DM’s true preferences. Our goal is to efficiently update this distribution through interactive
feedback while accounting for the human’s ability to provide reliable responses. At iteration m,
given a preference query Ym and DM feedback, we update our belief over λλλ using Bayes’ rule:
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p(λλλ|Dm) ∝ p(λλλ)

m∏
i=0

p(Yi,αααS,i,αααH,i,αααS,i+1,αααH,i+1|λλλ) (3)

where p(Yi,αααS,i,αααH,i,αααS,i+1,αααH,i+1|λλλ) is the likelihood of the DM providing feedback in the
form of αααS,i+1,αααH,i+1 given preference query Ym, current soft and hard bounds αααS,i,αααH,i, and
preference vectors λλλ, p(λλλ) represents our prior beliefs about the preference vectors, and the last
equality assumes conditional independence. This formulation allows us to maintain uncertainty
over λλλ while incorporating both soft and hard bound feedback through the likelihood function.

As described in Section 2.2, we assume uncertainty in the DM feedback in the form of imprecise
modification of the soft and hard bounds. As a result, we maintain and update a posterior distribution
over αααS and αααH which captures that uncertainty. Similarly, we update our belief over αααS , αααH using
Bayes’ rule:

p(αααH |Dm) ∝ p(αααH,0)

m∏
i=0

p(αααH,i+1|αααH,i) (4)

We only represent the belief for αααH for clarity. We assume a Gaussian likelihood model for the
bound being modified at each iteration. We discuss our formulation for the preference likelihood
model next.

3.2 MODELING SOFT AND HARD BOUNDS FEEDBACK

Feedback Interpretation We introduce an inductive bias into the sampling process to guide ex-
ploration effectively by weighting the posterior distribution of λλλ towards regions near the modified
soft and hard bounds. This is motivated by the assumption that, in our interactive setup, the DM is
most interested in evaluating tradeoffs in the objective space near the regions that have been explic-
itly selected – hence also being more actionable. As a result, exploration becomes more informed
and focused compared to what occurs in settings that adopt a uniform distribution. For clarity, we
highlight the possible scenarios for a single objective dimension for iteration m below (we remove
the objective index for clarity):

• αααH,m > αααH,m−1. This scenario describes the DM providing feedback by sliding the hard
bound higher, depicted in Figure 2 (middle).

• αααH,m < αααH,m−1. The DM moves the hard bound lower (see Figure 2 (left)), indicating
that the previous constraint was too strict and permitting exploration of solutions with lower
values.

• αααS,m ̸= αααS,m−1. The DM adjusts the soft bound (see Figure 2 (right)), signaling a refined
target and refocusing exploration on solutions closer to the updated preferred region.

• αααS,m = αααS,m−1, αααH,m = αααH,m−1. Higher certainty is placed on the unmodified bounds.

Likelihood Model Given the DM feedback interpretations listed above, we assume they each
induce a complete ranking of the points in the preference query Ym, where the ranking is determined
by proximity to the soft or hard bound being modified – hence being more actionable. As a result,
we leverage the Plackett-Luce likelihood (Luce, 1959) to learn the preference vector λλλ at iteration
m as:

p(π | λλλ) =

K−1∏
i=1

Z−1
j exp

(
sλλλ(uααα∗,m+1

(
xπ(i)

)
)
)
, Zj =

K∑
j=i

exp
(
sλλλ(uααα∗,m+1

(
xπ(j)

)
)
)

(5)

where π =
[
π(1), π(2), . . . , π(K)

]
denotes the ranking order of the K points in the current prefer-

ence query Ym as provided by the DM, f(x)π(i) is the point in Ym ranked at position i, uααα∗,m+1
is

the SHF utility function associated with αααS,m+1 and αααH,m+1, and λλλ is the latent preference vector.
As a result of our interpretation, we use Equation 5 as the likelihood model represented in Equation
3. We provide additional details in Appendix A.2.1.

5



Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

Figure 2: Interpretations of soft and hard bound feedback using brachytherapy as an example. Left:
Hard bound for PTVV 700 being moved lower. The green region indicates the preferred region that
the DM would like to inspect more closely. Middle: Hard bound for PTVV 700 being moved higher.
The green region indicates the preferred region the DM would like to inspect more closely. By plac-
ing the updated hard bound at 0.925, the DM is indicating that they desire to observe more samples
with PTVV 700 > 0.925, but preferably with a lower tradeoff in the other dimension, BladderD2cc.
As a result, ideally additional points closer to the updated hard bound can be obtained. The orange
region indicates the region of points that are rejected or dominated with respect to the DM’s internal
utility function. Right: Soft bound for PTVV 700 being moved higher. The green region indicates the
preferred region that the DM would like to inspect more closely. Since the soft bound for PTVV 700

is the one being shifted forward, the DM would like to prioritize that objective moving forward.

3.3 ACTIVE ONLINE SAMPLING FOR PREFERENCE QUERIES

This section describes how we obtain the preference queries at each iteration m. Ideally, given that
the DM provided feedback in terms of αααS,m and αααH,m, we would like to query the DM with a
set of Pareto-optimal points which is easily navigable, and, thus, reducing the cognitive load, and
driven by their preferences. As is typical in various science and engineering applications, we assume
access to some noisy and expensive black-box function – often modeled with a Gaussian process
(GP) (Williams & Rasmussen, 1995) as the surrogate function. As there is uncertainty in the DM’s
preferences λ, we wish to sample a set of query points that ideally contain the unknown λ∗, given the
current set of soft and hard bounds. Since λ∗ is unknown to us, we want a preference query set Ym

which is robust to any potential λ∗, weighted according to p(λλλ), while also constraining the size of
Ym for the purpose of reducing cognitive load on the DM. As a result, we leverage the formulation
for MoSH from (Chen et al., 2024) and actively sample the set Ym using two steps: (1) obtain a
dense set of Pareto-optimal points, YmD

, weighted according to the current p(λλλ), and (2) sparsify
YmD

to ensure it is more easily navigable to the DM, and return as Ym. We formulate the first step
as:

max
XmD

⊆X,|XmD
|≤kD

Eλλλ∼p(λλλ|Dm)

[
maxx∈XmD

sλλλ(uα̂αα(x))

maxx∈X sλλλ(uα̂αα(x))

]
(6)

where α̂αα is sampled from the posterior distribution p(αααS , αααH | αααS,m, αααH,m) and the term on the
right is the SHF utility ratio as described in Section 2.2. As DM validation of each point is often
time-consuming, we obtain a sparse set of YmD

by applying MoSH-Sparse from Chen et al. (2024),
and return the result as the preference query for iteration m. Additional details in Appendix A.2.2.

3.4 T-MOSH: ENHANCING DECISION-MAKER TRUST WITH SENSITIVITY ANALYSIS

We propose T-MoSH, a systematic approach to build DM confidence in multi-objective optimization
solutions through sensitivity analysis. A fundamental challenge in preference-based optimization
is that DMs often express bounds with inherent uncertainty, leading to questions about solution
optimality. Specifically, when DMs identify a seemingly optimal solution, they may lack confidence
that small adjustments to their specified bounds wouldn’t reveal superior alternatives. To address this
challenge, we develop a framework grounded in sensitivity analysis theory that provides qualitative
validation of solution quality (Rappaport, 1967).

Overall, we want the DM to be aware of the change of each objective l with respect to some per-
turbation in another objective l′ (i.e. the derivative), to get a sense of how active objective l is with
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respect to objective l′ and whether modifying it will result in a potentially much better point in ob-
jective l. We define an objective as active if perturbing it results in significant changes in another
objective. We still maintain the assumption that evaluating functions f is expensive, so we want
to be more conservative and not re-run all of the active sampling step of Active-MoSH, especially
since we really only care about the samples which produce an improvement, and how much of an
improvement that is, in the objective fl. Let fl(x) denote the objective function in dimension l,
and let x∗ be the input sample that obtains the current best solution (in terms of fl). We define the
improvement function in dimension l as

Il(x) = max
{
fl(x) − fl

(
x∗), 0}. (7)

Intuitively, Il(x) measures by how much the value of fl(x) exceeds our current best fl(x∗), or zero
if it does not exceed it at all. We then consider the expected improvement EIl(x) = E

[
Il(x)

]
, where

the expectation is taken over our posterior model (e.g. a Gaussian process) for fl(x) (Jones et al.,
1998). In practice, EIl(x) can be computed in closed form. If EIl(x) > 0, then we consider x
to be a worthwhile candidate to evaluate and display f(x) (or to highlight it to the decision-maker).
Otherwise, if it is not likely to improve fl, we do not consider it further. In this case, objective l
with respect to objective l′, the dimension being perturbed, is not active. We formulate the above
problem as:

max
x∈X

EI(x) s.t. uαℓ
(x) ≥ 0 ∀ℓ ∈ [L]/ℓ′, uαℓ′,H−ϵ(x) ≥ 0 (8)

This formulation ensures that only samples with positive expected improvement and that satisfy
the soft and hard bounds are considered. Consequently, computational resources are focused on
promising candidates, effectively guiding exploration in alignment with the decision-maker’s prior-
ities. Additional details are provided in Appendix A.2.3.

4 EXPERIMENTAL RESULTS

We hypothesize that our proposed interactive framework for soft and hard bounds improves the
efficiency of decision-making tasks with multiple objectives. In this section, we comprehensively
evaluate several other common feedback mechanisms in a simulated setup across both synthetic and
real-world applications in brachytherapy treatment planning and engineering design. We experiment
with both synthetic problems and real-world applications and compare our proposed soft and hard
bounds interactive framework to other feedback mechanisms: pairwise feedback, complete ranking
(Plackett, 1975; Luce, 1959), partial k-ranking (Guiver & Snelson, 2009), and random (Bıyık et al.,
2019). The preference queries for each of the baselines, besides random, were selected based on an
information gain-based objective (Bıyık et al., 2019).

4.1 SIMULATION SETUP

We performed experiments by simulating DM interactions using a variety of feedback mechanisms.
To ensure rigorous evaluation, we implemented several carefully controlled simulation scenarios
detailed below.

Ground-truth Values For simulating the ground-truth preferences and objective value, we ran-
domly sampled λλλ∗ ∈ ∆(L), where ∆(L) is the probability simplex in L dimensions, and obtain
yyy∗ = maxx∈X sλλλ∗(f(x)).

Baseline Feedback Simulations To simulate pairwise, ranking, and partial ranking feedback,
we utilized λλλ∗ with added Gaussian noise ϵ ∼ N(0, σ2) when determining preferences between
alternatives. Specifically, for pairwise comparisons, the hidden noisy utilities were computed as
υi = sλλλ∗(f(xi)) + ϵi, where f(xi) represents the objective values for alternative i. The alternative
with the higher noisy utility value was selected as preferred. Ranking and partial ranking-based
feedback follow similarly.
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Active-MoSH Feedback Simulations For Active-MoSH feedback, we assumed the DM interac-
tion to be in response to the set of points displayed at iteration m, Ym. Specifically, we assume the
DM to respond to Ym based on some reference point within Ym. Intuitively, for instance, a DM
would observe the values of the points in Ym at the extreme ends and determine, based on those
values, whether some bound should be modified. Details of the Active-MoSH feedback simulations
are described in Appendix A.3.1.

4.2 PERFORMANCE EVALUATION

Our primary objective is to assess the interaction efficiency of our proposed method compared to
alternative feedback mechanisms. The key metric is the number of DM interactions required to
identify the DM’s ideal point, yyy∗. To quantify performance at each iteration, we employ Equation 2
with the set of points Xm.

Interaction Units To ensure fair comparison across different feedback mechanisms, we take into
consideration the inherent cognitive complexity of providing each of them. To do so, we propose
the notion of interaction units. As a base case, we assign the pairwise feedback mechanism to
be 1 interaction unit. As Active-MoSH requires for the DM to (1) determine the dimension and
bound to modify and (2) specify a magnitude and direction of the modification, we assign it to be 2
interaction units. For the ranking-based feedback mechanisms, we assign them to be k interaction
units, where k is the number of points displayed at iteration m 1. This accounting method provides
a standardized basis for comparing the efficiency of different preference elicitation approaches, as
illustrated in Figure 3.

4.3 BRANIN-CURRIN: SYNTHETIC TWO-OBJECTIVE FUNCTION

We leverage the Branin-Currin synthetic two-objective optimization problem provided in the
BoTorch framework (Balandat et al., 2020), which has a mapping of [0, 1]2 → R2. The results
are shown in Figure 3. As shown, Active-MoSH performs similarly to the other baseline feedback
mechanisms in this simplified setting.

4.4 REAL CLINICAL CASE: CERVICAL CANCER BRACHYTHERAPY TREATMENT PLANNING

We validate our methodology using a real clinical case study of cervical cancer brachytherapy treat-
ment planning, which presents a four-objective optimization problem with three continuous decision
variables. The objectives comprise maximizing therapeutic radiation dose to the (1) target tumor
volume while simultaneously minimizing radiation exposure to three critical organs at risk (OARs):
(2) bladder, (3) rectum, and (4) bowel. For computational consistency, we reformulate the mini-
mization objectives for the OARs as maximization problems through appropriate transformations.
The decision variables serve as inputs to an epsilon-constraint optimization program (Deufel et al.,
2020), which enables systematic exploration of the treatment planning trade-off space. The results
are shown in Figure 3.

4.5 FOUR BAR TRUSS: ENGINEERING DESIGN

We further evaluate our approach on a multi-objective optimization problem in structural engineer-
ing: the four-bar truss design problem from REPROBLEM (Tanabe & Ishibuchi, 2020). This system
presents a bi-objective optimization task with four continuous design variables and exhibits a con-
vex Pareto frontier (CHENG & LI, 1999). The objectives involve the simultaneous minimization of
structural volume and joint displacement, while the decision variables parameterize the lengths of
the individual truss members. The results are shown in Figure 3. As shown, Active-MoSH performs
similarly to the other feedback mechanisms. We leave for future work evaluating on human subjects
for more nuanced comparisons.

1k log k is also a valid interpretation for the number of interaction units for the ranking-based feedback
mechanisms, however use k for several reasons: (1) the cognitive load of ranking points often is not uniform
across points, (2) for simplicity.
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Figure 3: Evaluation results with 10 interaction units for the Branin-Currin synthetic function, Four
Bar Truss engineering design, and Brachytherapy Treatment Planning applications (from left to
right). The results were all computed over 5 independent trials.

5 RELATED WORKS

Interactive Feedback Mechanisms Many feedback mechanisms for interactive settings have
been proposed, most of which use pairwise comparisons Chu & Ghahramani (2005); Ozaki et al.
(2023); Giovanelli et al. (2024). Wilde et al. (2021) proposed learning reward functions with scale
feedback, allowing for slightly more feedback signal. Benavoli et al. (2023) developed a framework
for choice functions, which allows the DM to select multiple objects from a given set. When interact-
ing with multiple humans at once, Myers et al. (2021) proposed to learn multimodal rewards. Within
MOO, Ozaki et al. (2023) introduces the notion of improvement requests for certain objectives. In
contrast, we propose an interactive framework that directly builds soft and hard bound feedback into
a unified probabilistic model, allowing for more nuanced, multi-dimensional preferences.

Active Sampling and Learning Methods Several active query sampling methods have been pro-
posed (Ozaki et al., 2023). Other works have also explored different characteristics, such as generat-
ing easy-to-answer queries (Bıyık et al., 2019). Additionally, approaches that leverage uncertainty-
based or diversity-driven strategies to guide query selection have been introduced (Hernández-
Lobato et al., 2015). In contrast, our method actively samples an actionable subset of the Pareto
frontier while taking into consideration the high cost of DM validation for each additional point.

Pareto Frontier Population Mechanisms Many existing works in MOO focus on populating the
entire Pareto frontier (Campigotto et al., 2014; Ponweiser et al., 2008; Emmerich, 2008; Picheny,
2015; Hernández-Lobato et al., 2015; Zhang et al., 2009). Several works use random scalarizations
to attempt to recover the entire Pareto frontier (Knowles, 2006; Paria et al., 2019). Other works have
also focused on obtaining sparse coverage of the Pareto frontier, perhaps as determined by level
sets (Zuluaga et al., 2016; Malkomes et al., 2021). Rather than populating the entire frontier, we
use soft and hard bounds to actively direct exploration toward high-utility areas aligned with user
preferences, thereby reducing computational cost and cognitive load.

6 CONCLUSION

This paper introduces a novel interactive framework for multi-objective preference learning that inte-
grates soft-hard bound feedback with probabilistic inference to efficiently identify optimal tradeoffs
on the Pareto frontier. The framework’s active sampling strategy, guided by updated belief distri-
butions over both preference vectors and bounds, focuses computational resources on promising
regions of the objective space while managing cognitive load. Additionally, our proposed T-MoSH
extension employs local multi-objective sensitivity analysis to systematically build decision-maker
trust by quantifying solution sensitivity and identifying potentially overlooked improvements. Fi-
nally, we evaluate across synthetic benchmarks and real-world applications, such as brachytherapy
treatment planning, and demonstrate the efficiency of our interactive framework. Future work in-
cludes conducting a study with human subjects to more comprehensively evaluate Active-MoSH.
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to the Multi-Objective Optimization Problem. Journal of Machine Learning Research, 17(104):
1–32, 2016. ISSN 1533-7928. URL http://jmlr.org/papers/v17/15-047.html.

A APPENDIX

A.1 MULTI-OBJECTIVE PREFERENCE LEARNING WITH SOFT-HARD BOUNDS

A.1.1 SOFT-HARD UTILITY FUNCTIONS

We follow Chen et al. (2024) and use a similar form for the soft-hard utility functions, as follows:
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uα(x) =



1 + 2β × (α̃τ − α̃S) f(x) ≥ ατ

1 + 2β × (f̃(x)− α̃S) αS < f(x) < ατ

1 f(x) = αS

2 × f̃(x) αH < f(x) < αS

0 f(x) = αH

−∞ f(x) < αH

(9)

where f̃(x) and α̃ are the soft-hard bound normalized values, ατ , the saturation point, determines
where the utility values begin to saturate, and β ∈ [0, 1] determines the fraction of the original rate
of utility, in [αH , αS ], obtained within [αS , ατ ]. Normalization, for value z, is performed according
to the soft and hard bounds, αS and αH , respectively, using: z̃ = ((z − αH) −(αS − αH)) ∗ 0.5.
In practice, we follow Chen et al. (2024) and determine ατ to be αH+ζ(αS − αH), for ζ = 2.0.
Additional details may be found in (Chen et al., 2024).

A.2 ACTIVE-MOSH: PROBABILISTIC MODELING AND SAMPLING

A.2.1 MODELING SOFT AND HARD BOUNDS FEEDBACK

In practice, the ranking of points in Ym is determined by their Euclidean distance to the bound being
modified at the end of iteration m, following the intuition described in Section 3.2.

A.2.2 ACTIVE ONLINE SAMPLING FOR PREFERENCE QUERIES

We solve the first step of MoSH, Equation (6), using the MoSH-Dense algorithm from Chen et al.
(2024). In short, MoSH-Dense uses the notion of random scalarizations to sample a λλλ from its
posterior distribution at each iteration, which is then used to compute a multi-objective acquisition
function (Paria et al., 2019). The maximizer of the acquisition function is then chosen as the next
sample input to be evaluated with the expensive black-box function, resulting in a single Pareto-
optimal point. For our experiments, we follow Chen et al. (2024) and use the Upper Confidence
Bound (UCB) heuristic. We define acq(u, λt, x) = sλt(uφ(x)) where φ(x) = µt(x) +

√
βtσt(x)

and βt =
√

0.125× log(2× t+ 1). For βt, we followed the optimal suggestion in Paria et al.
(2019).

This is continued for a total of T iterations, resulting in a dense set of T Pareto-optimal points. The
full algorithm is shown below, and more details may be found in Chen et al. (2024).

Algorithm 1 MoSH-Dense: Dense Pareto Frontier Sampling
1: procedure MOSH-DENSE
2: Init soft and hard bounds {αℓ,H , αℓ,S} ∀ ℓ ∈ [L]

3: Initialize D(0) = ∅
4: Initialize GP

(0)
ℓ = GP (0, κ) ∀ ℓ ∈ [L]

5: for t = 1 → T do
6: Obtain λt ∼ p(λ|Dm)
7: xt = argmaxx∈X acq(u, λt, x)
8: Obtain y = f(xt)
9: D(t) = D(t−1) ∪ {(xt, y)}

10: GP
(t)
ℓ = post(GP t−1

ℓ |(xt, y)) ∀ ℓ ∈ [L]
11: end for
12: Return D(T )

13: end procedure

To reduce the cognitive load on the DM, we use MoSH-Sparse from Chen et al. (2024) on YmD

from MoSH-Dense. MoSH-Sparse leverages the notion of submodularity, which encapsulates the
concept of diminishing returns in utility for each additional point the DM validates (Chen et al.,
2024; Nemhauser et al., 1978; Krause et al., 2008). In doing so, MoSH-Sparse theoretically guaran-
tees for our active sampling of preference queries step to obtain a set of points Ym from YmD

which
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achieves the optimal coverage of p(λλλ|Dm), albeit with a slightly greater number of points than K.
Additional details of MoSH-Sparse may be found in Chen et al. (2024).

A.2.3 T-MOSH: ENHANCING DECISION-MAKER TRUST WITH SENSITIVITY ANALYSIS

In practice, we found it difficult to display proper objective points to highlight, i.e. within the SHF
ααα and exceeding the current best fl(x∗) for objective l – especially at earlier iterations. As a result,
we solve for Equation 8 multiple times (10) and filter out the obtained objective points which violate
the SHF or do not exceed the current best point.

A.3 EXPERIMENTAL RESULTS

A.3.1 SIMULATION SETUP

Throughout our experiments, for the scalarization function we used the augmented Chebyshev
scalarization function sλλλ(y) = −maxℓ∈[L]{λλλℓ|yℓ − z∗ℓ |} − γ

∑L
ℓ=1|yℓ − z∗ℓ | where z∗ℓ is the ideal

point for objective ℓ.

For Active-MoSH, we implemented the following simulated behavior:

• When yyy∗ falls outside some of the current bounds αααH,m, the simulated DM selects the
bound associated with the objective ℓ that violates the value of yyy∗ the most and adjusts
those bounds to bring yyy∗ closer to being within bounds. The adjustment magnitude is
determined by the reference point, which we assume to be the point in Ym closest to yyy∗.

• When yyy∗ is within all bounds αααH,m, the DM selects the bound furthest from yyy∗ and, we
assume, attempts to narrow the feasible space around yyy∗. For this case, we assume the
reference point to be the point in Ym furthest from yyy∗.

• We assume the DM initially leverages the hard bounds, to ensure that yyy∗ is within the
desired region. For some objective ℓ that is selected, if the soft and hard bounds are too
close in proximity, i.e. αℓ,S,m − αℓ,H,m < β, we assume the DM then leverages the soft
bounds to fine tune the desired region points.

Gaussian noise is added to the observations of points in Ym at each iteration m. The magnitude of
bound adjustments is sampled from a Gaussian distribution centered at the deviation between y∗ and
the reference objective point, with added noise. When y∗ is outside the bounds and our proposed
method T-MoSH promotes an improved point, we assume the DM has enhanced confidence and
increases the magnitude with which they modify the soft or hard bound for that iteration.

Each simulator maintains consistent noise parameters and sampling procedures to ensure fair com-
parisons across feedback types. This simulation framework allows us to systematically evaluate how
different types of preference feedback and varying levels of DM noise affect the convergence and
effectiveness of our proposed approach. The setup enables controlled experiments while capturing
realistic aspects of human decision-making behavior such as inconsistency and imprecision in feed-
back. As there is some degree of subjectivity to the simulation setup, we plan to more rigorously
evaluate the efficiency of Active-MoSH through a comprehensive study with human subjects in the
future.

A.3.2 PERFORMANCE EVALUATION

For mechanisms requiring multiple interaction units to complete a single feedback instance (e.g.,
ranking), the utility ratio remains constant across the constituent interaction units until the full
feedback is processed. This accounting method provides a standardized basis for comparing the
efficiency of different preference elicitation approaches, as illustrated in Figure 3. This overall eval-
uation framework enables systematic assessment of both the quality of the learned preferences and
the human effort required to achieve those preferences across different feedback paradigms.

Lastly, we would like to note that there is some degree of subjectivity in the number of interaction
units assigned for each of the feedback mechanisms. To help combat against that, we also plan to
provide results illustrating the evaluation metrics if each feedback mechanism had an interaction
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count of 1. As future work, we plan to more rigorously evaluate the efficiency of Active-MoSH,
against the baselines, through a study with human subjects.

A.3.3 REAL CLINICAL CASE: CERVICAL CANCER BRACHYTHERAPY TREATMENT
PLANNING

For the cervical cancer brachytherapy treatment planning application, we leveraged a real clinical
case which had been performed in the clinic previously. As a result, we had access to the patient CT
data (in the form of DICOM files) and the final treatment plan which had been administered to the
patient. For the experiments, we obtained a single treatment plan via a linear program formulated
as an epsilon-constraint method Deufel et al. (2020). The three parameters to that linear program,
which implicitly control the weights of the different objectives (radiation dosage to the bladder,
rectum, bowel, and cancer tumor), were employed as the decision variables.
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