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Abstract

In this paper, we propose CodeSCM, a Structural Causal Model (SCM) for an-
alyzing multi-modal code generation using large language models (LLMs). By
applying interventions to CodeSCM, we define the causal effects of different
prompt modalities, such as natural language, code, and input-output examples, on
the model. CodeSCM introduces latent mediator variables to separate the code
and natural language semantics of a multi-modal prompt. Using the principles of
Causal Mediation Analysis on these mediators, we define direct effects through
targeted interventions, quantitatively representing the model’s spurious leanings.
We find that, in addition to natural language instructions, input-output examples
significantly influence model generation, and total causal effects evaluations from
CodeSCM also reveal the memorization of code generation benchmarks.

1 Introduction

Modern Large Language Models (LLMs) have shown remarkable effectiveness in code reasoning
tasks, particularly code generation [29, 37, 4]. This task involves generating code that meets
specific multi-modal requirements, constrained by natural language instructions, code snippets,
and input-output example pairs[8, 2]. Furthermore, some multi-modal prompt components contain
information from both code and natural language modalities [6], such as function signatures and
variable names, where code structure and natural language coexist. This enriched coding context,
combining programming and natural language semantics, helps LLMs better understand both the
semantics and syntactic requirements of the desired code.

Prior research has shown the effectiveness of prompt tuning in improving generation performance [5,
25, 44]. These works have shown that multi-modal prompts can be highly sensitive, where small
adjustments might result in drastically different responses from the model [7, 51, 38]. However, the
interactions between the multi-modal components of code generation prompts and how they directly
or indirectly affect the generated code, are still not well understood. In this paper, we systematically
explore these complex multi-modal effects using a causal approach. We propose a novel causal
framework, CodeSCM, to measure the causal effects of different modalities in the prompt on the
performance of code generation LLMs. CodeSCM defines a Structural Causal Model[33], shown
in Figure 1, where each modal component of the prompt is treated as an independent variable that
causally affects the code generated by the model. To account for the semantics of natural language
and code, we introduce two latent mediator variables to capture the code semantics and natural
language semantics of the input prompt, mimicking a human mental model to generate correct code
snippets given a multi-modal input problem.

Specifically, we make three key contributions in this paper: (i) we introduce CodeSCM, a novel
framework for causal inference in multi-modal code generation tasks, enhancing interpretability and
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Figure 1: CodeSCM causal graph representing the total and direct effects of the modal variable nodes
on the response variable Y representing the correctness of the generated code.

causal understanding of codeLLMs. While CodeSCM is designed for the code generation task in
this paper, it can be extended to other modalities, tasks, and transformations. (ii) using CodeSCM,
we define the Total Effects of the modalities on code generation, highlighting that I/O pairs and
natural language code components, like function headers, are significant modal components alongside
natural language instructions. Our Total Effect analysis also provides strong evidence of benchmark
memorization in LLMs like GPT-4T, and (iii) through targeted interventions on CodeSCM, we
measure the Direct Effects of each modality, representing spurious model correlations, and show that
simple semantics-preserving transformations to input-output example pairs lead to a significant drop
in accuracy.

2 Background

Structural Causal Model. A Structural Causal Model (SCM)M [33] is defined by a 4-tuple
M = ⟨U,V,F,P(U)⟩, where U represents a set of exogenous variables, P (U) is a joint probability
distribution over the set U, V is a set of endogenous variables determined by U∪V, and F is a set
of functions from U∪V to V. The SCMM can be represented by a causal graph G, which employs
nodes to represent both exogenous and endogenous variables. Causal effects on any response variable
Y ∈ V are quantitatively measured using interventions. An intervention on X ∈ V, represented
by do(x), creates a sub-SCM Mx = ⟨U,V,Fx,P(U)⟩ where Fx represents a subset of function
mappings in F which do not have X in their co-domain, and X is replaced by a constant x. Following
the above notation, we can formally define causal effects:
Definition 2.1. (Total Effect) [31]: The causal effect of two distinct realizations of the variable X
with do(x′) and do(x′′):

TE(x′, x′′) = E[Y |do(X = x′)]− E[Y |do(X = x′′)] (1)

Causal Mediation Analysis [36, 32, 35] involves understanding the effects of a mediator M ∈ V in
explaining changes in Y . All the effects from X to Y where all Z ∈ V, representing the parents of Y
excluding X , remain fixed are called Direct Effects. We measure the direct effect of modalities to
define spurious learnings that are not mediated by the latent mediators. We define the Path Effect
that allows us to systematically measure the direct effect of a modality averaged across the complete
dataset.
Definition 2.2. (Path Effect) [3, 48]: The causal effect of variable X along a path α can be
represented in an edge subgraph Gα

PEα(x
′, x′′) = E

[
Y |Zα(do(x

′′)), Zα(do(x
′))

]
− E

[
Y (x′)

]
(2)

where, Zα is set of all the mediators ∈ Gα and Zα is complementary mediator set. Hence, all the
variables on the path α take values with do(x′′) and other mediators which do not lie on α take values
with do(x′′). We use the definition of Path Effect to quantify the Direct Effect, as it is a special case
of the Path Effect.
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Figure 2: Modalities in an example from mMBPP+ dataset. Original prompt breakdown (right) and
semantics preserving transformations with respective interventions (left): red for natural language,
blue for CodeAL and CodeNL, orange for transformed CodeAL, and green for Input/Output exam-
ples.

Multi-Modal Code Generation. Natural language instructions alone are often insufficient to
meet strict context-based syntax requirements in code generation, such as variable or function
names that dependent on surrounding code. Thus, natural language prompts are augmented with
code modality, guiding the generation into appropriate syntactical space [8, 2]. Additionally, some
prompt components appear as a single entity but contribute to multiple modalities in terms of model
understanding, as observed by Casalnuovo et al. [6]. For instance, the function header name in
Figure 2 is primarily a code component, but its natural language name also conveys information
about the desired output. As highlighted later in Section 3, we call this a natural language channel of
Code. Similarly, input-output (I/O) example pairs also carry information about code correctness and
logic beyond the syntactical structure. We believe that future codeLLMs might rely heavily on these
components to ensure the correctness of intermediary variables, akin to code debugging process of
longer code fragments. Therefore, we consider I/O pairs and natural language channels of code as
separate modalities, in addition to natural language instructions and code.

3 Problem setup

CodeSCM. Each prompt P in dataset D is decomposed into its multi-modal components, which
are represented as variables in the structural causal model, as shown in Figure 1. We use the extended
Backus–Naur form (Equation 7) to represent the multi-modal prompt. In CodeSCM, as shown in
Equation 7, we consider four modalities: Natural Language (NL), algorithmic channel of Code
(CodeAL), natural language channel of Code (CodeNL), and input-output example pairs (I/O). We
define the multi-modal structural causal model (CodeSCM) to model the causal relationship between
prompt modalities and the model-generated code. Since different code snippets and similar natural
language texts can convey the same semantics for a human mental model, we introduce two latent
mediators: MCode for code semantics and MNL for natural language semantics. Following the
Causal Mediation Analysis, we assume each modality’s effect on the output is mediated through these
variables. As shown in Figure 1, CodeAL and NL directly affect MCode and MNL respectively;
I/O affects MCode, and, CodeNL directly affects both mediators. The output code generated, R, is
tested for correctness against the test cases, where code correctness is the response variable Y ∈ 0, 1,
with E(Y ) representing accuracy over dataset D.

Modal Causal Effects and Interventions. Using CodeSCM, we define the causal effects of each
modal variable in P on the generated code. We measure the Total Effect (Definition 2.1) of each
modality on the response variable Y , reflecting the model’s sensitivity. Additionally, we examine the
Direct Effect (Definition 2.2) of modalities on Y that bypass MCode and MNL, capturing spurious
correlations learned during training. We also define additional variables and interventions to quantify
these effects. Direct Effect (DE) and Total Effect (TE) for CodeAL are presented here and the detailed
derivations for other modalities are in Appendix A.

Causal effects of CodeAL. We consider the CodeAL variable as an output of a structural equation
FC ∈ F on CAL, CDC and XAL, shown in equation 3. CAL is the actual prompt component
PCodeAL

∈ D. To measure the DE of code on Y DE(CodeAL on Y ), quantifying the spurious
correlations, we vary CodeAL variable while keeping mediator MC constant i.e MC(CodeAL) =
MC(Code′AL). We do this by inserting Dead Code (DC), a semantics-preserving transformation,
represented by CDC . We use the categorical variable XAL to represent the interaction between the
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Table 1: Statistics and prompt modalities of HumanEval+, MBPP+, mMBPP+, and CoderEval
datasets.

Dataset Size NL CodeAL CodeNL I/O Pairs

HumanEval+ 164 ✓ ✓ ✓ ✓
MBPP+ 399 ✓ × ✓ ✓
mMBPP+ 399 ✓ ✓ ✓ ✓
CoderEval 460 ✓ ✓ ✓ ×
CoderEval-SCP 35 ✓ ✓ ✓ ×
CoderEval-SCJ 55 ✓ ✓ ✓ ×

actual code and the dead code, which also allows us to calculate causal effects over all prompts in D.

CodeAL ← 1{XAL=1}(CAL + CDC) + 1{XAL=0}(CAL) + 1{XAL=−1}(NULL) (3)

where 1(.) is an indicator function; (CAL + CDC) represents the concatenation of a snippet of dead
code with the actual code. We measure the TE of CodeAL, TE(CodeAL on Y ), by computing
the expected change in the Y by setting the CodeAL component as NULL in the prompt using the
variable XAL.

TE(CodeAL on Y ) = TE(do(XAL = 0), do(XAL = −1))
= E[Y |do(XAL = 0)]− E[Y |do(XAL = −1)] (Definition 2.1)
(i)
= P[Y = 1|do(XAL = 0)]− P[Y = 1|do(XAL = −1)]
(ii)
= Acc(D)−Acc(D;PCodeAL

= NULL)

where, equality (i) follows because Y follows Bernoulli distribution; Acc(D) is the accuracy of
the model over the dataset D. The DE of CodeAL on Y , DE(CodeAL on Y ) is measured by the
expected change in Y with varying CodeAL, while keeping MCode unchanged with dead code
insertion. We calculate DE(CodeAL on Y ) using the Path Effect of XAL on Y , along a path from
XAL to Y which goes through CodeAL but skips MCode. Using Definition 2.2:

DE(CodeAL on Y ) = E
[
Y
(
XAL = 1, CodeAL(XAL = 1),MCode

(
CodeAL(XAL = 0)

))]
− E

[
Y (CodeAL(XAL = 0))

]
(i)
= E[Y |do(XAL = 1)]− E[Y |do(XAL = 0)]

(ii)
= Acc(D)−Acc(D;PCodeAL

= CAL + CDC)

where, equality (i) follows from MCode

(
CodeAL(XAL = 0)

)
= MCode

(
CodeAL(XAL = 1)

)
where the dead code insertion in Equation 3 keeps the code semantics MCode unchanged; equality
(ii) is similar to equality (i) and (ii) used in TE.

Causal Effects of Other Modalities. Similarly, the NL, I/O, and CodeNL modal variables are
considered as outputs of structural Equations 4, 5 and 6 respectively. For CodeNL, the direct effect
requires bypassing two mediators, MNL and MCode. Therefore, we define a transformation that
preserves semantics for both. As seen in Figure 2, our transformation adds a prefix DN (Dead Name)
to the function header, preserving semantics in both the natural language and code domains. For
I/O transformations, each assertion equality is replaced by two inequalities (≥ and ≤). While we
demonstrate one specific transformation for each modality in our work to compute the respective
Direct Effects, we note that CodeSCM can be extended to any other transformations, provided
that i) the mediator variables remain unchanged, and ii) the transformations are independent of
the input prompt. In addition to DE experiments in Section 4, we show DE computation with one
additional transformation in Appendix D. We use simple prefix/suffix transformations to ensure
independence between variables like S and DS or C and DC, to avoid correlation introduced by
common transformations such as back-translation for NL.
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Table 2: Total Effect (TE) and Direct Effect (DE) of modalities on code generation. Pass@1 accuracy
on Full prompt for each model and dataset is reported, followed by accuracy drop, indicating TE or
DE. "*" denotes an increase in accuracy with the respective intervention. Bold highlights top TE and
DE for each dataset and model. Accuracy results are averaged across three runs.

Model Modality HumanEval+ mMBPP+ CoderEval-SCP CoderEval-SCJ Mean
TE DE TE DE TE DE TE DE TE DE

GPT-4T

Full 81.71 72.68 48.57 43.64 61.65

NL 42.08 1.22 19.05 4.26 20.00 2.86* 3.64 1.82 21.19 3.64
CodeAL 1.83 1.22 1.25 4.01 8.57 0.00 43.64 18.18* 13.82 5.86
CodeNL 18.91 1.83 42.86 2.76 0.00 2.86* 1.82 0.00 15.90 1.52
I/O Pairs 5.49 2.44 12.28 6.26 N/A N/A N/A N/A 8.89 4.35

WizCoder

Full 53.05 52.63 37.14 47.27 47.52

NL 30.49 5.49 13.53 0.50 5.71 8.57* 10.91 3.64 15.16 3.70
CodeAL 4.27 9.76 2.00 2.50 2.86 2.86* 45.45 0.00 13.65 3.78
CodeNL 6.10 2.44 4.01 0.50 8.57* 8.57* 3.64 0.00 5.58 3.34
I/O Pairs 12.20 12.20 5.26 0.75 N/A N/A N/A N/A 8.73 6.48

LLaMa-3

Full 55.49 58.64 31.43 0 36.39

NL 33.54 3.66 16.54 0.00 11.43 5.71* 0.00 3.64* 15.38 3.54
CodeAL 0.61 3.66 1.76 1.51 0.00 2.86* 0.00 0.00 0.59 2.01
CodeNL 10.98 3.05 6.02 2.01 8.57 0.00 0.00 0.00 6.39 0.98
I/O Pairs 6.10 4.27 6.27 2.76 N/A N/A N/A N/A 6.19 3.52

4 Experiments

4.1 Settings

We analyze causal effects on codeLLMs across three benchmarks: HumanEval+, mMBPP+, and
CoderEval. To address the absence of the CodeAL modality in MBPP+, we create mMBPP+ by
adding a function header to the original prompts. HumanEval and mMBPP are evaluated using
evalplus [23], which includes additional challenging test cases. CoderEval provides coding tasks
ranging from self-contained functions to more complex ones requiring a full project setup [49]. We
focus on self-contained subsets, CoderEval-SCP (Python) and CoderEval-SCJ (Java), with detailed
statistics in Table 1. Using CodeSCM, we evaluate causal effects on three CodeLLMs: OpenAI
GPT-4 Turbo [30], WizardCoder-15B [27], and Llama-3-8B [1]. Further implementation details are
included in the Appendix C.

4.2 Total Effects of Modalities

Natural Language. The Natural Language (NL) component, often a docstring in code completion
tasks and containing the core logic of the generated code, shows the highest Total Effect across
all models on HumanEval+, mMBPP+, and CoderEval-SCP. As shown in the error analysis, in
Table 2, removing NL (row corresponding to NL for each model and dataset) increases semantic
errors, where the model generates syntactically correct but fails test cases. The Total Effect of NL
is highest for HumanEval+, followed by mMBPP+ and CoderEval-SCP, likely due to the greater
detail in HumanEval+ docstrings compared to the shorter ones in CoderEval-SCP. However, the
do(XNL = −1) intervention still maintains a non-zero accuracy. Given that generating correct code
output without NL semantics is not possible, we hypothesize that the model either infers the correct
NL semantics from the CodeNL, or relies on its memory, representing memorization.

CodeNL TE. The latter hypothesis is confirmed with the TE computation of CodeNL, which
emerges as an important prompt component in the HumanEval+ and mMBPP+ datasets. For GPT-4T
on mMBPP+, the TE of CodeNL is 42.86%, surpassing the NL modality. Natural language chat
models, like GPT-4T and LLaMa-3, consistently show higher TE for CodeNL, with GPT-4T reaching
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18.91% on HumanEval+. This suggests that natural language models may prioritize NL semantics
(MNL) more than code-focused models.

CodeAL TE. In CoderEval-SCJ, CodeAL has a high TE across all models, with GPT-4T and
WizardCoder performance dropping nearly to zero. We observe limited code generation capabilities in
the Java programming language exhibited by codeLLMs, particularly evident with zero performance
from LLaMa-3. We observe that the low performance in Java is because the models hallucinate code
entry points when CodeAL is absent. For instance, in all 55 examples, LLaMa-3 places the required
function name in a hallucinated class, as illustrated in Figure 3. On Python subsets, CodeAL, which
contains minimal syntax information like function headers and variable names (Figure 2), has the
lowest TE across all models. However, CodeAL in all three datasets under consideration is limited
to the function header and input variable names along with function syntax (Figure 2); the TE of
CodeAL where it may contain essential generation logic is yet to be explored.

I/O Pairs. The TE of I/O pairs surpasses that of CodeNL with WizardCoder and holds equal
significance with LLaMa-3 and GPT-4. This underscores the syntactic information encoded within
I/O pairs, potentially aiding the model in reasoning over correct code structures. We speculate that
this might be analogous to human programmers employing unit testing for iterative code writing, the
TE of I/O pairs suggests a similar process within codeLLMs. Future versions of codeLLMs may even
utilize intermediate I/O values for handling complex code, akin to the debugging process in software
engineering.

Memorization of Code Benchmarks. Given that codeLLMs are trained on open-source datasets,
we explore the potential for benchmark memorization. The non-zero pass@1 accuracy, even without
NL instructions, indicates strong memorization. Furthermore, even after standardizing function header
names(Figure 2), GPT-4T still generated original function names in 11.5% of HumanEval+ and
7.2% of mMBPP+ cases (Figure 3). LLaMa-3 showed similar behavior, with 10.3% of HumanEval+
examples despite standardization or prefix transformation of function names. The notably high
memorization figures for GPT-4T also raise concerns regarding its performance on the EvalPlus
leaderboard[23]. While prior studies, such as [20], have addressed memorization concerns, our
Causal Analysis also reveals significant dataset memorization, emphasizing the need for new code
evaluation benchmarks.

4.3 Direct Effects of Modalities

We define direct effects (DE) by noting the drop in pass@1 accuracy of the model under the semantics-
preserving transformations of modalities where the latent mediators remain unchanged (Section 3).
These effects also represent the spurious correlations, as any non-spurious learning process must be
mediated through MNL and MCode. From Table 2, I/O pairs exhibit the strongest direct effect (DE)
on HumanEval+ and mMBPP+ across models, except for mMBPP+ on WizardCoder. As seen in
Figure 3, replacing a single assert equality in each I/O example with two inequalities makes it harder
for the model to reason correctly over the code logic.

The DE of I/O pairs is then followed by the DE of CodeAL, where WizardCoder shows a very high
DE of 9.76% on HumanEval+. For CoderEval-SCJ, GPT-4T’s accuracy increased by 18.18% under
the do(XAL = 1) intervention. As shown in Figure 3, a Java code snippet in the form of dead code
reduces the class name hallucinated by the model. With this finding, we speculate that dead code
might help control hallucinations, but we leave the detailed analysis to future work. In general, we
observe that the DEs of NL and CodeNL are comparatively lower, implying models are more robust
to natural language than code semantics, likely due to instruction tuning stages.

5 Related Work

Automatic Code Generation. Some of the earlier works on code generation with natural language
and I/O pairs include [12, 16]. Recent works have either adopted the transformer architecture [14, 43]
or leveraged the GPT [5] skeleton with massive pretraining for Code Generation [37, 21, 27, 29].

Prompt-Tuning. Various approaches to prompt-tuning [46] have been explored for various domains
and modalities [28, 47], such as Chain-of-Thought reasoning [44], discrete prompt optimization
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[45, 39], and few-shot learning [5]. In the context of code generation, prompt engineering has been
leveraged for human-in-loop debugging [11], correctness evaluation of generated code [24], multistep
planning, and generation [50]. Our work explores the effects of modalities in prompts on code
generation, which can be further used to guide the prompt-tuning process for better performance.

Causal Inference in Code/NLP. Recent research has applied causal inference to the NLP domain
[42, 15, 40] to better understand model behavior, which is now formalized as causal NLP [19, 13]. In
the context of code, prior approaches have applied causal framework for various classification tasks
such as vulnerability detection [34, 17] and code performance prediction [10]. To the best of our
knowledge, we are the first to apply causal inference to the multi-modal code generation task.

6 Conclusion

We propose CodeSCM, a Structural Causal Model for analyzing multi-modal code generation using
LLMs. Our analysis revealed that input-output examples and natural language code components
significantly influence model generation, and our evaluations demonstrate the memorization of code
generation benchmarks. Additionally, our interventions show that semantics-preserving changes can
impact accuracy and can also lead to fewer hallucinations in some cases. Our work highlights the
relative importance and direct effect of each modality in the prompt, which should also guide the
prompt engineering process for code LLMs.

Limitations and Future Work. We can calculate causal effects in CodeSCM with the assumption of
no confounders. We believe that in the future, our causal formulation of code generation could be
extended to account for confounders using the backdoor criterion.
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A Causal Effects

In this section, we present the causal effects of three modalities: Natural Language (NL), I/O Pairs,
and Code with NL component (CodeNL). For each modality, we provide the corresponding structural
equation, followed by the total effect (TE) and direct effect (DE).

A.1 Natural Language (NL)

NL Structural Equation. The NL variable is defined by the following structural equation:

NL← 1{XNL=1}(S +DS) + 1{XNL=0}(S) + 1{XNL=−1}(NULL) (4)

where S is the actual natural language prompt component PS ∈ D, DS is a Dead String that does
not alter the semantics of the natural language, and XNL is used to control whether to allow the
original PS , concatenate a dead string, or remove the natural language modality. Similar to dead
code insertion in CodeAL, dead string insertion is a semantics-preserving transformation such that
MNL(S) = MNL(S +DS).

Total Effect of NL.

TE(NL) = TE(do(XNL = 0), do(XNL = −1))
= Acc(D)−Acc(D;PNL = NULL)

Direct Effect of NL.

DE(NL) = E
[
Y
(
XNL = 1, NL(XNL = 1),MNL

(
NL(XNL = 0)

))]
− E

[
Y (NL(XNL = 0))

]
= Acc(D)−Acc(D;PNL = S +DS)

Here, DS represents the Dead String. We use the prefix ‘DOCSTRING: ’ concatenated to each
natural language instruction to preserve semantics. Other transformations such as back-translation
are possible but introduce correlations between variables, so we prefer simpler prefix or suffix
transformations that keep S and DS independent.

A.2 I/O Pairs

I/O Structural Equation. The I/O modality is defined by the following structural equation:

I/O ← 1{XIO=0}(I
r = Ir) + 1{XIO=1}((I

l ≤ Ir) + (Ir ≥ Ir)) + 1{XIO=−1}(NULL) (5)

where I l and Ir represent the left-hand side (LHS) and right-hand side (RHS) of the assertion equality
statement in the original prompt, respectively. For semantics-preserving transformations, we replace
each assertion equality with two inequalities, ≤ and ≥.

Total Effect of I/O.

TE(IO) = TE(do(XIO = 0), do(XIO = −1))
= Acc(D)−Acc(D;PIO = NULL)

Direct Effect of I/O.

DE(IO) = E
[
Y
(
XIO = 1,MCode(XIO = 1),MIO

(
MCode(XIO = 0)

))]
− E

[
Y (MIO(XIO = 0))

]
= Acc(D)−Acc(D;PIO = (I l ≤ Ir) + (Ir ≥ Ir))
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A.3 Code with NL Component (CodeNL)

CodeNL Structural Equation. The CodeNL modality is defined by the following structural
equation:

CodeNL ← 1{XNL=1}(CNL +DN) + 1{XNL=0}(CNL) + 1{XNL=−1}(NULL) (6)

where CNL is the code prompt component PCodeNL
∈ D, and DN is a Dead Name added to the

function header. This transformation preserves semantics for both the natural language and code
domains. For instance, MNL(CNL) = MNL(CNL +DN).

Total Effect of CodeNL.

TE(CodeNL) = TE(do(XCN = 0), do(XCN = −1))
= Acc(D)−Acc(D;PCodeNL

= NULL)

Direct Effect of CodeNL.

DE(CodeNL) = E
[
Y
(
XCN = 1, CodeNL(XCN = 1),

MNL

(
CodeNL(XCN = 0)

)
,MCode

(
CodeNL(XCN = 0)

))]
− E

[
Y
(
CodeNL(XCN = 0)

)]
= Acc(D)−Acc(D;PCodeNL

= CNL +DN)

Here, DN represents Dead Name, and we use the prefix ‘func_’ in Python and ‘Method’ in Java to
maintain semantic preservation. Other transformations, like capitalization, are possible but avoided
to keep CNL and DN independent.

B Multi-Modal Prompt

The multi-modal prompt P can be expressed as an equation comprising one or more prompt com-
ponents P j of modality Mi, where different prompt components are concatenated using one of the
defined separators:

P = P 1
M1

[
sep P j

Mi

]
, sep = ′ ′ | \n | \t | : | , | < sep_token > | ′|′ | ; (7)

In this equation, different prompt components are concatenated using one of the defined separators.

Furthermore, the figure below (Fig. 2) shows an example of a prompt broken down into its constituent
modalities and the semantics-preserving transformations applied to each.

C Implementation details

All datasets used are evaluation-only subsets, with no training involved in our experiments. For
inference on all LLMs, we use a temperature of 0.01, a top_p value of 0.95, and a batch size
of 8. The open-source model experiments were conducted on a single A100 GPU with 40 GB
VRAM and GDDR5 memory. We selected ‘\n′ as our modal-separator, though different choices
of modal-separators (equation 7) may result in varying performance [38]. During experiments with
self-contained CoderEval functions in Python and Java, we ensured transformations were equivalent
across both languages. For example, dead code added for the CodeAL modality was semantically
equivalent in Python and Java, depending on the prompts.

Furthermore, we exclude APPS [18] and CodeContest [22], as they lack multi-modal prompts,
making them unnecessary for multi-modal causal analysis. Similarly, while the CONCODE segment
of the CodexCGLUE [26] benchmark includes multi-modal prompts, it measures code quality via
natural language similarity metrics like BLEU, which is unsuitable for code generation tasks. Lastly,
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DS-1000 [20] was excluded due to the need for manual screening of all examples to separate modal
components for CodeSCM.

In terms of models, WizardCoder, a ‘code-aware’ model, is instruction-tuned using Evol-Instruct with
34B Python tokens, building on StarCoder [21]. LLaMa-3 [1] is pre-trained on 15T tokens, including
four times more code data than its predecessor LLaMa-2 [41].

For our results, we use changes in mean pass@1 accuracy (Pr(Y = 1)) to measure the direct and
total effects after interventions on CodeSCM [9]. For DE, simple string transformations (dead code,
dead string, and dead name) are applied to CodeAL, NL, and CodeNL modalities, and for I/O pairs,
assert equalities are replaced with equivalent inequalities.

D DE Additional Transformation

We demonstrate one specific transformation for each modality in the paper and compute the respec-
tive causal effects. CodeSCM can be directly extended to other transformations as well for DE
computation. For example, in Table 3, along with original transformations from Table 2 (DE-1), we
illustrate DE computation with an additional set of transformations (DE-2) for the mMBPP+ dataset
using WizardCoder codeLLM. The following transformations are used for DE-2 - (dead string prefix,
unused variable, dead name prefix, and negating the not assert statement):

• DS = Code Logic:\n (in Equation 4)
• CDC = \tvar = 42 (in Equation 3)
• DN = header_ (in Equation 6)
• assert I l == Ir is changed to assert not I l! = Ir) (in Equation 5)

Table 3: Direct effects of WizardCoder on mMBPP+ dataset under an additional transformation.
DE-1 values are the same as Table 2

Modality DE-1 DE-2

Full 52.63

NL 0.50 1.23
CodeAL 2.50 3.03
CodeNL 0.50 1.73
I/O Pairs 0.75 3.23

E Error analysis

In this section, we categorize and analyze the errors encountered across different models and datasets,
such as syntax errors, semantic errors, and runtime errors. Table 4 presents a breakdown of errors
encountered by running the HumanEval+ and mMBPP+ datasets on GPT-4T, WizardCoder-15B, and
Llama-3-8B. Negative numbers in this table mean that when an intervention is made upon a prompt,
there is a decrease in error count from the full prompt. Positive numbers mean that upon intervention
there is an increase in error count. For example, in the case of GPT-4T with the CodeNL modality
on the mMBPP+ dataset, the intervention leads to an increase in error count for runtime errors by
32.21%. Similarly, when the NL modality is removed for HumanEval+ on WizardCoder-15B, there
is a decrease in runtime errors by 11.65%. We classify errors into the following four categories:

Syntax Errors. These errors occur when the code does not conform to the syntactical rules of the
programming language. They are typically detected during the parsing stage. An example of a syntax
error might be a missing colon, unmatched parentheses, or incorrect indentation.

Semantic Errors. Semantic errors arise when the code is syntactically correct but fails to produce
the intended output due to logical mistakes. This can include errors in the logic of the code, incorrect
use of variables, or wrong implementation of algorithms. We broadly encounter two types of Semantic
Errors, (i) test case errors: when the test cases in the respective dataset fail; (ii) assertion errors:
when an input-output example assertion in the prompt fails.
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Figure 3: Left figure shows a CoderEval-SCJ prompt where dead code insertion corrects the original
prompt’s error of creating a hallucinated Java class (red box). The top right figure illustrates an
mMBPP+ prompt where I/O pair transformations lead to a semantic error in lines 15-16. The bottom
right figure shows GPT-4T’s memorization of a HumanEval+ prompt.

Table 4: Percentage of errors out of total passed cases for GPT-4T, WizardCoder-15B, and Llama-3-
8B on HumanEval+ and mMBPP+. Negative percentages indicate a decrease in error count, while
positive values indicate an increase in error count upon intervention. Syn represents Syntax errors,
Sem represents Semantic Errors, and RunT represents runtime errors.

HUMANEVAL+ MMBPP+
MODEL MODALITY SYN SEM RUNT OTHER SYN SEM RUNT OTHER

GPT-4T

NL -8.22 26.13 -18.67 0.76 -5.58 14.32 -9.61 0.87
CodeAL -0.75 1.49 -1.80 1.10 -1.42 2.31 -0.89 0.00
CodeNL -3.12 -7.04 -8.47 18.63 -11.27 -30.64 32.21 9.70
I/O PAIRS -1.62 0.61 1.01 0.00 -3.85 -4.75 7.65 0.94

WIZARDCODER

NL -3.37 15.01 -11.65 0.00 -1.29 7.72 -6.01 -0.42
CodeAL -0.30 -0.65 -0.95 -.00 -0.92 6.93 -5.58 -0.42
CodeNL -0.59 -4.58 -0.21 4.96 -1.04 -2.08 2.74 0.39
I/O PAIRS -1.01 2.67 -1.65 0.0 -1.05 4.06 -3.38 0.37

LLAMA-3

NL -4.11 20.96 -16.60 -0.25 -5.14 14.13 -7.98 -1.01
CodeAL 0.42 0.90 -1.30 -0.03 -1.32 4.38 -2.13 0.93
CodeNL -1.57 -8.67 -1.21 11.44 -0.90 -10.04 7.68 3.26
I/O PAIRS 4.43 1.75 -6.13 -0.05 -0.41 -9.85 10.80 -0.54

Runtime Errors. These errors occur during the execution of the code. They result from operations
like division by zero, accessing out-of-bound indices, or other exceptional conditions that the code
does not handle.

Other Errors. This category includes various errors that do not fit into the above classifications.
It covers, (i) resource errors: these happen when the code exceeds the available resources, such
as memory errors when the program tries to allocate more memory than what is available; (ii)
dependency errors: these arise when the code fails to import necessary modules or packages. It
could be due to missing dependencies or incorrect module names; (iii) environment errors: these
are caused by issues in the execution environment, such as problems with file access, permissions,
or environment-specific configurations; (iv) timeout errors: these occur when the execution of
the code takes longer than the allowed time limit, indicating inefficiencies or infinite loops in the
implementation.
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