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Abstract

We study a multi-armed bandit problem where the rewards exhibit regime switching.
Specifically, the distributions of the random rewards generated from all arms are
modulated by a common underlying state modeled as a finite-state Markov chain.
The agent does not observe the underlying state and has to learn the transition
matrix and the reward distributions. We propose a learning algorithm for this
problem, building on spectral method-of-moments estimations for hidden Markov
models, belief error control in partially observable Markov decision processes
and upper-confidence-bound methods for online learning. We also establish an
upper bound O(T 2/3

√
log T ) for the proposed learning algorithm where T is the

learning horizon. Finally, we conduct proof-of-concept experiments to illustrate
the performance of the learning algorithm.

1 Introduction

The multi-armed bandit (MAB) problem is a popular model for sequential decision making with
unknown information: the decision maker makes decisions repeatedly among I different options, or
arms. After each decision she receives a random reward having an unknown probability distribution
that depends on the chosen arm. The objective is to maximize the expected total reward over a
finite horizon of T periods. The MAB problem has been extensively studied in various fields and
applications including Internet advertising, dynamic pricing, recommender systems, clinical trials
and medicine [12, 13, 43]. In the classical MAB problem, it is typically assumed that the random
reward of each arm is i.i.d. (independently and identically distributed) over time and independent of
the rewards from other arms. However, these assumptions do not necessarily hold in practice [10].
To address the drawback, a growing body of literature studies MAB problems with non-stationary
rewards to capture temporal changes in the reward distributions in applications, see e.g. [11, 16, 20].

In this paper, we study a non-stationary MAB model with Markovian regime-switching rewards. We
assume that the random rewards associated with all the arms are modulated by a common unobserved
state (or regime) {Mt : t = 1, 2, . . .}modeled as a finite-state discrete-time Markov chain. This chain
makes a transition at each period regardless of which arm is pulled and its transition probabilities are
independent of the action chosen. Given Mt = m, the reward of arm i is i.i.d., whose distribution
is denoted Q(·|m, i). Such structural change of the environment is usually referred to as regime
switching in finance [33]. The agent doesn’t observe or control the underlying state Mt, and has to
learn the transition probability matrix P of {Mt} as well as the distribution of reward of each arm
Q(·|m, i), based on the observed historical rewards. The goal of the agent is to design a learning
policy that decides which arm to pull in each period to minimize the expected regret over T periods.
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The regime-switching models are widely used in various industries. For example, in finance, the
sudden changes of market environments are usually modeled as hidden Markov chains. In revenue
management and marketing, a firm may face a shift in consumer demand due to undetected changes
in sentiment or competition. In such cases, when the agents (traders or firms) take actions (trading
financial assets with different strategies or setting prices), they need to learn the reward and the
underlying state at the same time. Our setup is designed to tackle such problems.

Our Contribution. Our study features novel designs in three regards: we propose a new bandit
problem formulation, develop a new learning algorithm, and prove regret bounds with new techniques.

In terms of problem formulation, online learning with unobserved states has attracted some attention
recently [8, 19]. We consider the strongest oracle among the studies, who knows P and Q(·|m, i),
but doesn’t observe the hidden state Mt. The oracle thus faces a partially observable Markov decision
process (POMDP) [26] (with a long-run average reward objective). By reformulating it as a Markov
decision process (MDP) with a continuous belief space (i.e., a distribution over hidden states), the
oracle then solves the optimal policy (mapping belief states to actions) using the Bellman equation.
Having sublinear regret benchmarked against the strong oracle, our algorithm has better theoretical
performance than others with weaker oracles such as the best fixed arm [19] or memoryless policies
(the action only depends on the current observation) [8].

In terms of algorithmic design, we propose a learning algorithm (see Algorithm 2) with two key
ingredients. First, it builds on the recent advance on the estimation of the parameters of hidden
Markov models (HMMs) using spectral method-of-moments methods [3, 2, 8]. It benefits from the
theoretical finite-sample bound of spectral estimators, while the finite-sample guarantees of other
alternatives such as maximum likelihood estimators remain an open problem [30]. Second, it builds
on the well-known “upper confidence bound” (UCB) method in reinforcement learning [7, 25]. There
are two difficulties here as the oracle uses the optimal (belief-based) policy of the POMDP. First,
the spectral method can not use the non i.i.d. samples generated from the belief-based policy due to
the complex history dependency. Second, the belief of the hidden state is subject to the estimation
error. Hence, we divide the horizon into nested exploration and exploitation phases. We use spectral
estimators in the exploration phase to gauge the estimation error of P and Q(·|m, i). We use the UCB
method to control the regret in the exploitation phase. Different from other learning problems, we
re-calibrate the belief at the beginning of each exploitation phase based on the parameters estimated
in the most recent exploration phase using previous exploratory samples.

In terms of technical analysis, we establish a regret bound of O(T 2/3
√

log(T )) for our proposed
learning algorithm where T is the learning horizon. Our regret analysis draws inspirations from
[25, 35] for learning MDPs and undiscounted reinforcement learning problems, but the analysis
differs significantly from theirs since there are two main technical challenges in our problem.

First, to control the regret, we need to control of the error of the belief state, which itself is not directly
observed and needs to be estimated. This is in stark contrast to learning MDPs [25, 35] with observed
states. Specifically, we need to bound the estimation error of belief states by the estimation errors of
the model parameters. In addition, since the belief state is un-observable, we also need to bound the
error in the belief transition kernel, which measures the distance between the belief transition kernel
under the optimistic belief MDP model (from the UCB component of our algorithm) at each episode
and the belief transition kernel under the true model. These bounds are not trivial since the transition
kernel of the belief state depends on the model parameters in a complex way via Bayesian updating.
We overcome the difficulties by building on [18] and a delicate analysis of the belief transition kernel
to control the errors in the estimations of belief states and the belief transitions.

Second, to establish regret bound, we need an explicit bound for the span of the bias function (also
referred as the relative value function) for the belief MDP which has a continuous state space. Such a
bound is often critical in the regret analysis of undiscounted reinforcement learning of continuous
MDP, but it is either taken as an assumption [39] or proved under Hölder continuity assumptions
that do not hold for the belief transitions in our setting [35, 27]. We overcome this challenge and
bound the bias span by developing a novel approach, which could be of independent interest for
learning continuous-state MDPs. Specifically, we bound the bias span by bounding the Lipschitz
module of the bias function for our infinite-horizon undiscounted problem (with a long-run average
reward objective). To achieve this, we rely on a non-trivial application of the results in [23] which
provide general tools for proving Lipschitz continuity of value functions in finite-horizon discounted
MDPs. One key step is to bound the Lipschitz module of the belief transitions using the Kantorovich
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metric, which allows us to establish a bound on the Lipschitz module of the value function of the
finite-horizon discounted problem uniformly over the discounting factors. Exploiting the connection
with the infinite-horizon undiscounted problem then yields an explicit bound on the bias span for our
problem. We also mention that our bound on the bias span is unrelated to the diameter of the POMDP
discussed in [8]. The diameter in [8] is only for observation-based policies, not for belief-state based
policies we consider. That also explains why we need a new approach to bound the bias span.

Related Work. Studies on non-stationary/switching MAB investigate the problem when the rewards
of all arms may change over time [5, 20, 10, 6]. Our formulation can be regarded as non-stationary
MAB with a special structure. They consider an even stronger oracle than ours, the best arm in each
period. However, the total number of changes or the changing budget have to be sublinear in T to
achieve sublinear regret. In our formulation, the total number of transitions of the underlying state
is linear in T , and the algorithms proposed in these papers fail even considering our oracle (See
Section 5). Other studies focus on linear changing budget with some structure such as seasonality
[15], which is not present in this paper.

Our work is also related to the restless Markov bandit problem [21, 36, 44] in which the state of each
arm evolves according to independent Markov chains. In contrast, our regime-switching MAB model
assumes a common underlying Markov chain so that the rewards of all arms are correlated, and the
underlying state is unobservable to the agent. In addition, our work is related to MAB studies where
rewards of all arms depend on a common unknown parameter or a latent random variable, see, e.g.,
[4, 22, 28, 32, 34]. Our model differs from them in that the common latent state variable follows a
dynamic stochastic process which introduces difficulties in algorithm design and analysis.

Two papers have similar settings to ours. [19] studies MAB problems whose rewards are modulated
by an unobserved Markov chain and the transition matrix may depend on the action. However, their
oracle is the best fixed arm when defining the regret, which is much weaker than the optimal policy
of the POMDP (the performance gap is linear between the two oracles). Therefore, their algorithm is
expected to have linear regret when using our oracle. [8] proposes an algorithm based on spectral
estimators for learning POMDPs. Their algorithm will generally suffer linear regret in our problem
setting. This is because we consider a stronger oracle which is the optimal POMDP policy, whereas
their oracle is the optimal memoryless policy, i.e., a policy that only depends on the current reward
observation instead of using all historical observations to form the belief of the underlying state. It is
known that memoryless policies are in general not optimal and hence the gap between their oracle
and our oracle can be linear. Note that considering the memoryless policy allows [8] to circumvent
the introduction of the belief entirely. Indeed, the dynamics under the memoryless policy can be
viewed as a finite-state (modified) HMM and spectral estimators can be applied. Instead, because we
consider the optimal belief-based policy, such reduction is not available. Our algorithm and regret
analysis hinge on the interaction between the estimation of the belief and the spectral estimators. Our
algorithm needs separate exploration to apply the spectral methods and uses the belief-based policy
for exploitation. For the regret analysis, unlike [8], we have to carefully control the belief error and
bound the span of the bias function from the optimistic belief MDP in each episode. The comparison
of our study with related papers is summarized in Table 1. Note that we only present the regret in
terms of T .

Papers Oracle Changing Budget Regret

[5] Best fixed action Linear Õ(
√
T )

[20] Best action in each period Finite Õ(
√
T )

[10] Best action in each period Sublinear Õ(T 2/3)

[8] Optimal memoryless policy Linear Õ(
√
T )

This paper Optimal POMDP policy Linear Õ(T 2/3)

Table 1: Comparison of our study with some related literature.

2 MAB with Markovian Regime Switching

2.1 Problem Formulation

Consider the MAB problem with arms I := {1, . . . , I}. There is a Markov chain {Mt} with states
M := {1, 2, . . . ,M} and transition probability matrix P ∈ RM×M . In period t = 1, 2, . . . , if the
state of the Markov chain Mt = m and the agent chooses arm It = i, then the reward in that period
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is Rt with discrete finite support, and its distribution is denoted by Q(·|m, i) := P(Rt ∈ ·|Mt =
m, It = i), with µm,i := E[Rt|Mt = m, It = i]. We use µ := (µm,i) ∈ RM×I to denote the mean
reward matrix. The agent knows M and I , but has no knowledge about the underlying state Mt (also
referred to as the regime), the transition matrix P or the reward distribution Q(·|m, i). The goal is to
design a learning policy that is adapted to the filtration generated by the observed rewards to decide
which arm to pull in each period to maximize the expected cumulative reward over T periods where
T is unknown in advance.

If an oracle knows P , Q(·|m, i) and the underlying state Mt, then the problem becomes trivial as s/he
would select I∗t = argmaxi∈I µMt,i in period t. If we benchmark a learning policy against the oracle,
then the regret must be linear in T , because the oracle always observes Mt while the agent cannot
predict the transition based on the history. Whenever a transition occurs, there is non-vanishing regret
incurred. Since the number of transitions during [0, T ] is linear in T , the total regret is of the same
order. Since comparing to the oracle knowing Mt is uninformative, we consider a weaker oracle who
knows P , Q(·|m, i), but not Mt. In this case, the oracle solves a POMDP since the states Mt are
unobservable and the optimal policy maps belief states (a distribution over the hidden state) to actions.
The total expected reward of the POMDP scales linearly in T , and asymptotically the reward per
period converges to a constant denoted by ρ∗ under the optimal belief-based policy. See Section 2.2.

For a learning policy π, we denote by Rπt the reward received under the learning policy π (which
does not know P,Q(·|m, i) initially) in period t. We follow the literature (see, e.g., [25, 36, 1]) and
define its total regret after T periods by

RT := Tρ∗ −
T∑
t=1

Rπt . (1)

Our goal is to design a learning algorithm with theoretical guarantees including high probability and
expectation bounds (sublinear in T ) on the total regret.

Without loss of generality we consider Bernoulli rewards with mean µm,i ∈ (0, 1) for all m, i. Hence
µm,i characterizes the distribution Q(·|m, i). Our analysis holds generally for random rewards with
discrete finite support. In addition, we impose the following assumptions.

Assumption 1. The transition matrix P of the Markov chain {Mt} is invertible.

Assumption 2. The mean reward matrix µ = (µm,i) has full row rank.

Assumption 3. The smallest element of the transition matrix ε := mini,j∈M Pij > 0.

The first two assumptions are required for finite-sample guarantees of spectral estimators for HMMs
[3, 2]. The third assumption is needed to control the belief error of the hidden states by the state-of-art
methods, see [18] and our Proposition 3. We next reformulate the POMDP as a belief MDP.

2.2 Reduction of POMDP to Belief MDP

To present our learning algorithm and analyze the regret, we first investigate the POMDP problem
faced by the oracle where parameters P , µ (equivalently Q for Bernoulli rewards) are known with
unobserved states Mt. Based on the historical observed history, the oracle forms a belief of the
underlying state. The belief can be encoded by a M -dimension vector bt = (bt(1), . . . , bt(M)) ∈ B :
bt(m) := P(Mt = m|I1, · · · , It−1, R1, · · · , Rt−1), where B :=

{
b ∈ RM+ :

∑M
m=1 b(m) = 1

}
. It

is well known that the POMDP of the oracle can be seen as a MDP built on a (continuous) belief
state space B, and here a policy is a mapping from belief states to actions, see [26].

We next introduce a few notations that facilitate the analysis. For notation simplicity, we write
c(m, i) := µm,i. Given belief b ∈ B, the expected reward of arm i is c̄(b, i) :=

∑M
m=1 c(m, i)b(m).

In period t, given belief bt = b, It = i, Rt = r, by Bayes’ theorem, the belief bt+1 is updated by

bt+1 = Hµ,P (b, i, r), where the m-th entry is bt+1(m) =

∑
m′
P (m′,m)·(µm′,i)

r(1−µm′,i)
1−r·bt(m′)∑

m′′
(µm′′,i)

r(1−µm′′,i)1−r·bt(m′′)
. It

is obvious that the forward function H depends on the transition matrix P and the reward matrix
µ . We can also define the transition probability of the belief state conditional on the arm pulled:
T̄ (·|b, i) := P(bt+1 ∈ ·|b, i), where bt+1 is random due to the random reward.
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The long-run average reward of the infinite-horizon belief MDP following policy π given the initial
belief b can be written as ρπb := lim supT→∞

1
T E[

∑T
t=1R

π
t |b1 = b]. The optimal (belief-based)

policy maximizes ρπb for a given b. One can show that supπ ρ
π
b is independent of the initial belief b

(Proposition 8.2.1 [38]). Therefore, we use ρ∗ := supπ ρ
π
b to denote the optimal long-run average

reward. Under this belief MDP formulation, for all b ∈ B, the Bellman equation states that

ρ∗ + v(b) = max
i∈I

[
c̄(b, i) +

∫
B
T̄ (db′|b, i)v(b′)

]
, (2)

where v : B 7→ R is the bias function. It can be shown (see the proof of Proposition 2 in Appendix)
that under our assumptions, ρ∗ and v(b) are well defined and there exists a stationary deterministic
optimal policy π∗ which maps a belief state to an arm to pull (an action that maximizes the right side
of (2)). Finding the optimal policy for the POMDP model is computationally intractable in general
[37, 31]. Therefore, various approximate methods have been proposed to solve (2) and to find the
optimal policy for the belief MDP, see e.g. [46, 41, 42]. In this work, we do not focus on this planning
problem for a known model, and we assume the access to an optimization oracle that solve (2) and
returns the optimal average reward ρ∗ and the optimal stationary policy for a given known model.

3 The SEEU Algorithm

This section describes our learning algorithm for the regime switching MAB model: the Spectral
Exploration and Exploitation with UCB (SEEU) algorithm. To device a learning policy for the
POMDP with unknown µ and P , one needs a procedure to estimate those quantities from observed
rewards. [3, 2] propose the so-called spectral estimator for the unknown parameters in HMMs.
However, the algorithm is not directly applicable to ours, because there is no decision making
involved in HMMs . To use the spectral estimator, we divide the learning horizon T into nested
“exploration” and “exploitation” phases. In the exploration phase, we randomly select an arm in each
period. This transforms the system into a HMM so that we can apply the spectral method to estimate
µ and P from the observed rewards in the phase. In the exploitation phase, based on the estimators
obtained from the exploration phase, we use a UCB-type policy to further narrow down the optimal
belief-based policy in the POMDP introduced in Section 2.2.

3.1 Spectral Estimator

We introduce the spectral estimator [3, 2], and adapt it to our setting. To simplify the notation,
suppose the exploration phase starts from period 1 until period n, with realized arms {i1, . . . , in},
and realized rewards {r1, . . . , rn} sampled from Bernoulli distributions. Recall I is the cardinality
of the arm set I, then one can create a one-to-one mapping from a pair (i, r) into a scalar s ∈
{1, 2, ..., 2I}. Therefore, the pair can be expressed as a vector y ∈ {0, 1}2I such that in each period
t, yt satisfies 1{yt=es} = 1{rt=r,it=i}, where es is a basis vector with its s-th element being one
and zero otherwise. Let A ∈ R2I×M be the observation probability matrix conditional on the state:
A(s,m) = P(Rt = r, It = i|Mt = m). It can be shown that A satisfies E[yt|Mt = m] = Aem, and
E[yt+1|Mt = m] = APT em. Write ⊗ for the tensor product. For three consecutive observations
yt−1, yt, yt+1, define

ỹt−1 := E[yt+1 ⊗ yt]E[yt−1 ⊗ yt]−1yt−1, ỹt := E[yt+1 ⊗ yt−1]E[yt ⊗ yt−1]−1yt,

M2 := E[ỹt−1 ⊗ ỹt], M3 := E[ỹt−1 ⊗ ỹt ⊗ yt+1].

From the observations {y1, y2, . . . , yn}, we may construct the estimations M̂2 and M̂3 for M2 and
M3 respectively, and apply the tensor decomposition to obtain the estimator µ̂ for the unknown mean
reward matrix and P̂ for the transition matrix. This procedure is summarized in Algorithm 1. We use
Âm (respectively B̂m) to denote the m-th column vector of Â (respectively B̂). In addition, we have
the following result ([8]) and it provides the confidence regions of the estimators in Algorithm 1.

Proposition 1. Under Assumptions 1 and 2, for any δ ∈ (0, 1) and any initial distribution, there
exists N0 such that when n ≥ N0, with probability 1 − δ, the estimated µ̂ and P̂ by Algorithm 1
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Algorithm 1 Spectral estimation of (µ, P ) from the observations from the exploration phase [2, 3, 8].
Input: sample size n, {y1, y2, . . . , yn} created from the rewards {r1, . . . , rn} and arms {i1, . . . , in}
Output: The estimation µ̂, P̂

1: For i, j ∈ {−1, 0, 1}: compute Ŵi,j = 1
N−2

∑N−1
t=2 yt+i ⊗ yt+j .

2: For t = 2, . . . , n− 1: compute ŷt−1 := Ŵ1,0(Ŵ−1,0)−1yt−1, ŷt := Ŵ1,−1(Ŵ0,−1)−1yt.
3: Compute M̂2 := 1

N−2

∑N−1
t=2 ŷt−1 ⊗ ŷt, M̂3 := 1

N−2

∑N−1
t=2 ŷt−1 ⊗ ŷt ⊗ yt+1.

4: Apply tensor decomposition ([2]):
B̂ = TensorDecomposition(M̂2, M̂3).

5: Compute Âm = Ŵ−1,0(Ŵ1,0)†B̂m for each m ∈M.
6: Return mth row vector (µ̂)m of µ̂ from Âm .
7: Return P̂ = (Â†B̂)> († represents the pseudoinverse of a matrix)

satisfy

||(µ)m − (µ̂)m||2 ≤ C1

√
log(6S

2+S
δ )

n
, m ∈M,

||P − P̂ ||2 ≤ C2

√
log(6S

2+S
δ )

n
. (3)

where (µ)m and (µ̂)m are the m-th row vectors of µ and µ̂, respectively. Here, S = 2I , and C1, C2

are constants independent of n.

The expressions of constants N0, C1, C2 are given in Section B in the appendix. Note that parameters
µ, P are identifiable up to permutations of the hidden states [8].

3.2 The SEEU Algorithm

The SEEU algorithm proceeds in episodes of increasing length. As mentioned before, each episode
is divided into exploration and exploitation phases. In episode k, it starts with the exploration phase
that lasts for a fixed number of periods τ1, and the algorithm uniformly randomly chooses an arm and
observes the rewards. After the exploration phase, the algorithm applies Algorithm 1 to (re-)estimate
µ and P . Moreover, it constructs a confidence interval based on Proposition 1 with a confidence
level 1− δk, where δk := δ/k3 is a vanishing sequence. Then the algorithm enters the exploitation
phase. Its length is proportional to

√
k. In the exploitation phase, it conducts UCB-type learning: the

arm is pulled according to a policy that corresponds to the optimistic estimator of µ and P inside the
confidence interval. The detailed steps are listed in Algorithm 2. Note we use the UCB component in
the exploitation phase instead of point estimators of µ and P for the ease of analysis.

3.3 Discussions on the SEEU Algorithm

Computations. For given parameters (µ, P ), we need to compute the optimal average reward
ρ∗(µ, P ) that depends on the parameters (Step 8 in Algorithm 2). Various computational and
approximation methods have been proposed to tackle this planning problem for belief MDPs as
mentioned in Section 2.2. In addition, we need to find out the optimistic POMDP in the confidence
region Ck(δk) with the best average reward. In general it is not clear whether there is an efficient
computational method to find the optimistic plausible POMDP model in the confidence region when
the unknown parameters are high-dimensional. The extended value iteration method in [25] does not
work in our POMDP setting. This is because we cannot separately find µ and P as c̄ and T̄ in (2)
both depend on µ, and we cannot write the inner optimization in the extended value iteration to find
optimistic P as a linear programming over the convex polytope Ck(δk) since T̄ is a nonlinear function
of µ and P . This issue is also present in recent studies on learning continuous-state MDPs with the
upper confidence bound approach, see e.g. [27] for further discussions. For low dimensional models,
one can discretize Ck(δk) into grids and calculate the corresponding optimal average reward ρ∗ at each
grid point so as to find (approximately) the optimistic model (µk, Pk). The discretization error does
affect the regret, although it can be controlled arbitrarily well with sufficient computational capacity.
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Algorithm 2 The SEEU Algorithm
Input: Initial belief b1, precision δ, exploration parameter τ1, exploitation parameter τ2

1: for k = 1, 2, 3, . . . do
2: Set the start time of episode k, tk := t
3: for t = tk, tk + 1, . . . , tk + τ1 do
4: Uniformly randomly select an arm: P(It = i) = 1

I
5: end for
6: Input the realized actions and rewards in all previous exploration phases Îk :=

{it1:t1+τ1 , · · · , itk:tk+τ1} and R̂k := {rt1:t1+τ1 , · · · , rtk:tk+τ1} to Algorithm 1 to compute
µ̂k, P̂k = Spectral Estimation(Îk, R̂k)

7: Compute the confidence interval Ck(δk) from (3) using the confidence level 1− δk = 1− δ
k3

such that P{(µ, P ) ∈ Ck(δk)} ≥ 1− δk
8: Find the optimistic POMDP in the confidence interval

(µk, Pk) = argmax(µ,P )∈C(δk) ρ
∗(µ, P )

9: for t = 1, 2, . . . , tk + τ1 do
10: Update belief bkt to bkt+1 = Hµk,Pk(bkt , it, rt) under the new parameters (µk, Pk)
11: end for
12: for t = tk + τ1 + 1, . . . , tk + τ1 + τ2

√
k do

13: Execute the optimal policy π(k) by solving the Bellman equation (2) under parameters
(µk, Pk): it = π(k)(bkt )

14: Observe reward rt
15: Update the belief at t+ 1 by bkt+1 = Hµk,Pk(bkt , it, rt)
16: end for
17: end for

Below we discuss its impact on regret. The discretization kicks in when we want to find the optimistic
POMDP in the confidence region, whose gain is denoted as ρk in episode k. In practice, we have to
discretize the confidence region into grid points and find the optimistic POMDP among the finite set.
Suppose one can obtain an approximate optimistic model with error εk, that is, suppose we can find a
model with the gain ρ̃k ≥ ρk − εk. Then we can infer from formula (22) in the appendix that the
extra regret incurred due to the discretization error is given by

∑K
k=1

∑
t∈Ek εk = τ2

∑K
k=1

√
kεk,

where Ek denotes the exploitation phase in episode k. One can show that the order of K, the number
of episodes up to time T , is T 2/3. Hence if the discretization error can be controlled at εk = c/

√
k,

then the extra regret is simply cτ2K, which is O(T 2/3). On the other hand, if the discretization
error εk is a constant c > 0 in all the exploitation phases, then the extra regret incurred is of the
order

∑K
k=1

√
kc ≈ c · K3/2, which is of order cT . There is a trade-off between the additional

computational complexity due to discretization and the regret bound. For instance, to control the
discretization error at εk = c/

√
k, the computational cost is higher compared with the case εk = c.

In general, it remains open to find efficient methods to solve the optimistic POMDP approximately in
the high-dimensional setting. In our regret analysis below, we do not take into account approximation
errors arising from the computational aspects discussed above, as in [35, 27].

Dependence on the unknown parameters. When computing the confidence region in Step 7 of
Algorithm 2, the agent needs the information of the constants C1 and C2 in Proposition 1. These
constants depend on a few “primitives” that can be hard to know, for example, the mixing rate of the
underlying Markov chain. However we only need upper bounds for C1 and C2 for the theoretical
guarantee, and hence a rough and conservative estimate would be sufficient. Such dependence on
some unknown parameters is common in learning problems, and one remedy is to dedicate the
beginning of the horizon to estimate the unknown parameters, which typically doesn’t increase the
rate of the regret. Alternatively, C1 and C2 can be replaced by parameters that are tuned by hand.
See Remark 3 of [8] for a further discussion on this issue.

4 Regret Bound

This section presents our main theoretical results on the regret bound for the SEEU algorithm. We
first state two technical results that are important in proving the regret bounds.
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Proposition 2 (Uniform bound on the bias span). If the belief MDP satisfies Assumption 3, then
for (ρ, v) satisfying the Bellman equation (2), we have the span of the bias function span(v) :=
maxb∈B v(b)−minb∈B v(b) is bounded by D(ε), where

D(ε) :=
8
(

2
(1−α)2 + (1 + α) logα

1−α
8

)
1− α

, with α =
1− 2ε

1− ε
∈ (0, 1).

Recall vk is the bias function for the optimistic belief MDP in episode k. Proposition 2 guarantees
that span(vk) is bounded by D = D(ε/2) uniformly in k, because Assumption 3 can be satisfied
(with ε replaced by ε/2) by the optimistic MDPs when T is sufficiently large due to Proposition 1.

Proposition 3 (Controlling the belief error). Suppose Assumption 3 holds. Given (µ̂, P̂ ), an estimator
of the true model parameters (µ, P ). For an arbitrary reward-action sequence {r1:t, i1:t}t≥1, let b̂t
and bt be the corresponding beliefs in period t under (µ̂, P̂ ) and (µ, P ) respectively. Then there
exists constants L1, L2 such that

||b̂t − bt||1 ≤ L1||µ̂− µ||1 + L2||P̂ − P ||F , (4)

where L1 = 4M(1−ε)2
ε2 min{µmin,1−µmax} , L2 = 4M(1−ε)2

ε3 +
√
M , || · ||F is the Frobenius norm, µmax and

µmin are the maximum and minimum element of the matrix µ respectively.

We now state our first main result. The proof is given in Appendix E.
Theorem 1. Suppose Assumptions 1 to 3 hold. Fix the parameter τ1 in Algorithm 2 to be sufficiently
large. Then there exist constants T0, C which are independent of T , such that when T > T0, with
probability 1− 7

2δ, the regret of Algorithm 2 satisfies

RT ≤ CT 2/3

√
log

(
9(S + 1)

δ
T

)
+ T0ρ

∗,

where S = 2I and ρ∗ denotes the optimal long-run average reward under the true model.

The constant T0 measures the number of periods needed for the sample size in the exploration phases
to exceed N0 arising in Proposition 1. The constant C has the following expression:

C = 3
√

2

[(
D + 1 +

(
1 +

D(1− α)

2

)
L1

)
M3/2C1 +

(
1 +

D(1− α)

2

)
L2M

1/2C2

]
τ

1/3
2 τ

−1/2
1

+ 3τ
−2/3
2 (τ1ρ

∗ +D) + (D + 1)

√
2 ln(

1

δ
).

Here, M is the number of hidden states, C1, C2 are given in Proposition 1, α,D is given in Proposi-
tion 2, andL1, L2 are given in Proposition 3. One can verify thatC = Õ(ε−4C1M

5/2+ε−5C2M
3/2).

Here we require τ1 to be large so as to apply Proposition 1 from the first episode to simplify the
presentation. Theoretically, this requirement is not essential and can be removed without affecting
the order of the regret. For τ2, it can be an arbitrary positive integer in our regret analysis.
Remark 2 (Effect of lengths of exploration and exploitation phases on regret order). In Algorithm
2, we use an exploration phase of length τ1 and a exploitation phase of length τ2

√
k in episode k.

This in the end leads to O(T 2/3) of the regret as the total length of exploration (and the total number
of episodes) is Θ(T 2/3). The intuition of such a choice is the following. After k episodes, the total
length of exploration is τ1k, and hence the estimation error of the model parameters and also the
belief states is of order 1/

√
k. As a result, we needs to choose an exploitation phase with length

τ2
√
k to balance this so that the regret incurred per episode is controlled. One might wonder whether

one can simply choose a longer exploitation phase of length τ2kα with α ≥ 1/2, and then the regret
order will be reduced. This is not possible, and the intuition is as follows. The total number of
episodes K satisfies

∑K
k=1(τ1 + τ2k

α) = T , which yields K ∼ T
1

α+1 . The total regret incurred then

is, ignoring the logarithmic factors, on the order of
∑K
k=1(τ1 + 1√

k
· τ2kα), which is T

α+1/2
α+1 . One

can immediately see that the choice of α = 1/2 is actually optimal, leading to a regret of order T 2/3.
The impact of the hyper-parameters τ1 and τ2 on the regret will be studied numerically in Section 5.
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From Theorem 1, we can choose an appropriate δ = 9(S+1)
T and readily obtain the following

expectation bound on the regret. The proof is omitted.
Theorem 3. Under the same assumptions as Theorem 1, the regret of Algorithm 2 satisfies

E[RT ] ≤ CT 2/3
√

2 log T + (T0 + 32(S + 1))ρ∗.

Remark 4 (Lower bound). For the lower bound of the regret, consider the I problem instances
(equal to the number of arms): In instance i, let µm,i = 0.5 + ε̄ for all m for a small positive constant
ε̄, and let µm,j = 0.5 for all m and j 6= i. Such structure makes sure that the oracle policy simply
pulls one arm without the need to infer the state. Since the problem reduces to the classic MAB, the
regret is at least O(

√
IT ) in this case. Note that the setup of the instances may violate Assumption 2,

but this can be easily fixed by introducing an arbitrarily small perturbation to µ. The gap between
the upper and lower bounds is probably caused by the split of exploration/exploitation phases in our
algorithm. In the exploration phase, arms have to be pulled purely randomly in order to estimate the
parameters. Such naive exploration without any maximization may lead to unnecessary regret. In fact,
it resembles the structure of the explore-then-commit algorithm (Chapter 6 of [29]) for the classic
MAB problem, which turns out to have the suboptimal regretO(T 2/3) as well. With special structures,
such as a common mean for all states, special-purpose algorithms can be designed to achieve the
optimal rate O(T 1/2). Unfortunately, our algorithm doesn’t adapt to the special structure. In fact,
the spectral estimator no longer works because of the degeneracy as it cannot differentiate between
states from the observations. One natural direction that may potentially improve our algorithm and
close the gap is to integrate the exploration and exploitation. We may follow the design similar to
UCRL2 in [25]: in each episode, we use the parameters estimated in previous episodes and use the
optimistic policy in the confidence region. The observations are then used to update the estimation.
This can lower the cost for exploration because the naive exploration is replaced by a near-optimal
policy when the confidence region is small. However, it requires the spectral estimator to work with
non i.i.d. samples generated by the optimistic belief-based policy. The design of the spectral estimator
makes it hard to handle non i.i.d. observations with complex history dependency. This is also why
[8] focused on observation-based policies in order to apply the spectral estimator. We may replace
the spectral estimator by other estimators with better theoretical properties. The likelihood-based
estimators may be a promising candidate [45], but they have not been fully extended to POMDPs yet.
In summary, we need better estimators for POMDP/HMMs (which is a dynamic research area itself)
with finite-sample guarantees to improve the upper bound. Nevertheless, we are not aware of other
algorithms that can achieve sublinear regret in our setting.
Remark 5 (General reward distribution). Our model requires the estimation of the reward distribution
instead of just the mean to estimate the belief. For discrete rewards taking O possible values, the
regret bound holds with S = OI instead of 2I for Bernoulli rewards. For continuous reward
distributions, it might be possible to combine the non-parametric HMM inference method in [18]
with our algorithm design to obtain regret bounds, and we leave it for future work.

5 Numerical Experiment

In this section, we present proof-of-concept experiments. Note that large-scale POMDPs with
long-run average objectives (the oracle in our problem) are computationally difficult to solve, i.e.
it is challenging to find the optimal belief-based policy [14]. On the other hand, while there can
be many hidden states in general, often only two or three states are important to model in several
application areas, e.g. “bull market” and “bear market” in finance [17]. Hence we focus on small-scale
experiments, following some recent literature on reinforcement learning for POMDPs [8, 24].

As a representative example, we consider a 2-hidden-state, 2-arm setting with P =

[
1/3 2/3
3/4 1/4

]
and

µ =

[
0.9 0.1
0.5 0.6

]
, where the random reward follows a Bernoulli distribution. We compare our algo-

rithm with (1) ε-greedy (ε = 0.1), non-stationary bandits algorithms including (2) Sliding-Window
UCB (SW-UCB) [20] with tuned window size, (3) Exp3.S [5] with L = T (the hyperparameter L
is the number of changes in their algorithm), and (4) the optimal memoryless policy for POMDPs
discussed in [8]. To implement (4) under our model setting, we assume the reward µ and the transition
matrix P are known and search for the optimal stochastic memoryless policy that maps the reward
and action in the last period to a discrete distribution over two arms. We also run an algorithm/oracle
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Figure 1: (a) Regret comparison of different algorithms; (b) Effect of (τ1, τ2) on the regret of SEEU.

that implements SEEU with known P but unknown µ. This can allow us to better understand the
value of knowing the information of P . In Figure 1(a), we plot the average regret versus T of different
algorithms in log-log scale, where the number of runs for each algorithm is 500. The numerical
experiments are conducted on a PC with 3.10 GHz Intel Processor and 16 GB of RAM. We observe
that the slopes of all algorithms except for two SEEU implementations are close to one, suggesting
that they incur linear regrets. This is expected, because these algorithms don’t take into account the
hidden states. On the other hand, the slope of SEEU is close to 2/3. This is consistent with our
theoretical result (Theorem 3). Similar observations are made on other small-scale examples. This
demonstrates the effectiveness of our SEEU algorithm, particularly when the horizon length T is
relatively large.

We also briefly discuss the impact of parameters τ1 and τ2 on the performance of the SEEU algorithm.
For the example above, we calculate the average regret for several pairs of parameters (τ1, τ2). It can
be seen that the choices of these parameters do not affect the order O(T 2/3) of the regret (the slope).
See Figure 1(b) for an illustration.

6 Conclusions, Limitations and Future Research

In this paper, we study a non-stationary MAB model with Markovian regime-switching rewards.
We propose a learning algorithm that integrates spectral estimators for hidden Markov models and
upper confidence methods from reinforcement learning. We also establish a regret bound of order
of O(T 2/3

√
log T ) for the learning algorithm. As far as we know, this is the first algorithm with

sublinear regret for MAB with unobservable regime switching.

The main limitation of our work is that the regret upper bound does not match the lower bound. It
would be interesting to find out whether one can improve the regret upper bound O(T 2/3

√
log T ).

The gap in the upper and lower bounds are likely to be filled if one can resolve either of the following
two fundamental open questions: (1) show the spectral method can be applied to non i.i.d. samples
generated from belief-based policies, and (2) establish finite-sample guarantees for other estimators
(e.g. maximum likelihood estimators) of POMDP parameters with data generated from adaptive
policies. We leave them for future research.
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