
Under review as a conference paper at ICLR 2022

BEYOND MESSAGE PASSING PARADIGM: TRAINING
GRAPH DATA WITH CONSISTENCY CONSTRAINTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent years have witnessed great success in handling graph-related tasks with
Graph Neural Networks (GNNs). However, most existing GNNs are based on
powerful message passing to guide feature aggregation among neighbors. Despite
their success, there still exist three weaknesses that limit their capacity to train
graph data: weak generalization with severely limited labeled data, poor robust-
ness to label noise and structure disturbation, and high computation and memory
burden for keeping the entire graph. In this paper, we propose a simple yet ef-
fective Graph Consistency Learning (GCL) framework, which is based purely on
multilayer perceptrons, where structure information is only implicitly incorpo-
rated as prior knowledge in the computation of supervision signals but does not
explicitly involve the forward. Specifically, the GCL framework is optimized with
three well-designed consistency constraints: neighborhood consistency, label con-
sistency, and class-center consistency. More importantly, we provide theoretical
analysis on the connections between message passing and consistency constraints.
Extensive experiments show that GCL produces truly encouraging performance
with better generalization and robustness compared with other leading methods.

1 INTRODUCTION

Recently, the emerging Graph Neural Networks (GNNs) have demonstrated their powerful capa-
bility to handle the task of semi-supervised node classification: inferring unknown node labels by
using the graph structure and node features with partially known node labels. Despite all these
successes, most existing GNNs are mainly based on the message passing paradigm, which consists
of two key computations for each node at every layer: (1) AGGREGATE operation: aggregating
messages from its neighborhood, and (2) UPDATE operation: updating node representation from its
representation in the previous layer and the aggregated messages. Due to the overemphasis on the
graph structure, message-passing-based GNNs face several challenges: (1) poor robustness to label
noise and structure perturbation; (2) weak generalization when labeled data is severely scarce; (3)
not flexible enough, as it requires a large memory space for keeping the entire graph and does not
support batch-style training. There has been a large number of work proposed to address the above
problems, which leads to some newly born research topics, such as graph adversarial, graph denois-
ing, graph self-supervised learning, large-scale graph learning, etc. However, most of these methods
use Graph Convolutional Networks (GCN) (Kipf & Welling, 2016) as the bottleneck encoder, i.e.,
still following the paradigm of message passing. Therefore, two crucial questions here are: (1) Is
message passing a must for training graph data? (2) Can we remove the message passing and get
comparable or even better performance than existing GNNs with a pure MLP-based architecture?

The answer to Question (1) is “Yes”, and there have been a number of random-walk-based and
factorization-based graph embedding methods that do not require the message passing. For exam-
ple, DeepWalk (Perozzi et al., 2014) achieves graph embedding directly by deploying a truncated
random walk. Instead, LINE (Tang et al., 2015) introduces structural information into the graph
regularization term, capturing both first-order and second-order proximities in the graph structure
by optimizing a carefully designed objective function. However, since GCN was proposed, its sim-
ple design and huge performance advantages have surpassed previous graph embedding methods,
making message passing a dominant paradigm for training graph data. Therefore, how to solve the
Problem (2) still remains to be explored. Recently, there are some attempts to combine sophisticated
technologies in computer vision with MLPs to break the paradigm of message passing. For exam-

1

Under review as a conference paper at ICLR 2022

ple, Graph-MLP (Hu et al., 2021) designs a neighborhood contrastive loss to bridge the gap between
GNNs and MLPs by utilizing the adjacency information implicitly. Instead, LinkDist (Luo et al.,
2021) directly distills self-knowledge from connected node pairs into MLPs without the need for
aggregating messages. Despite their great success, these methods (1) still cannot match the state-of-
the-art message-passing-based GNNs in terms of classification performance; and (2) are designed
with intuition, and lack sufficient theoretical foundations behind the design.

In this paper, we propose a simple yet effective Graph Consistency Learning (GCL) framework to
train graph data with three well-designed consistency constraints: neighborhood consistency, label
consistency, and class-center consistency. The proposed GCL framework is a pure MLP-based ar-
chitecture with message passing modules completely removed, and structure information is only
implicitly used as a priori knowledge to guide the computation of supervision signals. More impor-
tantly, we provide theoretical analysis on the connections between message passing and consistency
constraints. Furthermore, an edge sampling strategy is proposed to support batch-style training
without the need for keeping the entire graph, which helps to address the limitations of the classical
stochastic gradient descent and improves both the effectiveness and efficiency of the inference.

Our contributions are summarized as: (1) break the message passing paradigm, where structure in-
formation is only used for loss calculation; (2) propose three consistency constraints to train graph
data and achieve performance beyond existing methods; (3) provide theoretical analysis on the con-
nections between message passing and consistency constraints; (4) demonstrate the advantages of
GCL over existing methods in terms of generalizability, robustness, and computational efficiency.

2 RELATED WORK

2.1 GRAPH NEURAL NETWORKS

Recent years have witnessed the great success of Message-Passing-based Graph Neural Networks
(GNNs) in handling graph-related tasks. There are two categories of GNNs: Spectral GNNs and
Spatial GNNs. The spectral GNNs define convolution kernels in the spectral domain based on the
graph signal processing theory. For example, ChebyNet (Defferrard et al., 2016) uses the polyno-
mial of the Laplacian matrix as the convolution kernel to perform message passing, and GCN is a
first-order approximation of ChebyNet with a self-loop mechanism. The spatial GNNs focus on the
design of aggregation functions directly. For example, GraphSAGE (Hamilton et al., 2017) employs
a generalized induction framework to efficiently generate node embeddings for previously unseen
data by aggregating known node features. GAT (Kipf & Welling, 2016), on the other hand, adopts
the attention mechanism to calculate the coefficients of neighbors for better information aggrega-
tion. We refer interested readers to the recent survey (Wu et al., 2020) for more variants of GNN
architectures, such as SGC (Wu et al., 2019), APPNP (Klicpera et al., 2018) and DAGNN (Liu et al.,
2020). However, the above methods all share the de facto design that graph structure information is
explicitly utilized for message passing to aggregate features.

2.2 GRAPH EMBEDDING

The mainstream graph embedding algorithms can be divided into three categories: (1) factorization-
based, (2) random-walk-based, and (3) deep-learning-based. The factorization-based algorithms,
such as LLE (Roweis & Saul, 2000) and Laplacian Eigenmaps (Belkin & Niyogi, 2001), repre-
sent the connections between nodes in the form of a matrix and factorize this matrix to obtain
the embeddings. Instead, the random-walk-based algorithms, such as DeepWalk (Perozzi et al.,
2014) and node2vec (Grover & Leskovec, 2016), apply random walks on graphs to directly ob-
tain node representations. With the development of deep learning techniques, deep-learning-based
methods have shown better performance than other two types of methods on various graph-related
tasks, and Graph Neural Networks are just one special category of deep-learning-based methods.
For example, Graph-MLP (Hu et al., 2021) designs a neighborhood contrastive loss to bridge the
gap between GNNs and MLPs by implicitly utilizing the adjacency information. Instead, LinkDist
(Luo et al., 2021) directly distills self-knowledge from connected node pairs into MLPs without the
need to aggregate messages. Despite their great success, they (1) still cannot match the state-of-
the-art message-passing-based GNNs in terms of performance, and (2) are designed with intuition,
and lack sufficient theoretical foundations behind the design. In this paper, we mainly focus on

2

Under review as a conference paper at ICLR 2022

deep-learning-based graph embedding and explore can we remove message passing but still obtain
comparable performance with a pure MLP-based architecture?

3 METHODOLOGY

Given a graph G = (V, E), where V is the set of N nodes with features X = [x1,x2, · · · ,xN] ∈
RN×d and E ⊆ V ×V is the edge set. Each node vi ∈ V is associated with a d-dimensional features
vector xi, and each edge ei,j ∈ E denotes a connection between node vi and node vj . The graph
structure is denoted by an adjacency matrix A ∈ [0, 1]N×N with Ai,j = 1 if ei,j ∈ E and Ai,j = 0
if ei,j /∈ E . Node classification is a typical node-level task where only a subset of node VL with
corresponding labels YL are known, and we denote the labeled set asDL = (VL,YL) and unlabeled
set as DU = (VU ,YU), where VU = V\VL. The task of node classification aims to learn a mapping
Φ : V → Y on labeled data DL, so that it can be used to infer the labels YU of unlabeled data DU .

In this section, we introduce a simple yet effective Graph Consistency Learning (GCL) framework,
which is based on a pure MLP-based architecture, with each layer composed of a linear transforma-
tion, an activation function , a batch normalization, and a dropout function, formulated as:

H(l+1) = Dropout
(
BN

(
σ
(
H(l)W(l)

)))
, H(0) = X; 0 ≤ l ≤ L− 1 (1)

where σ = ReLu(·) denotes an activation function, BN(·) denotes the batch normalization, and
Dropout(·) is the dropout function. W(0) ∈ Rd×F and W(l) ∈ RF×F (1 ≤ l ≤ L− 1) are layer-
specific weight matrices with the hidden dimension F . The proposed GCL framework trains graph
data with three well-designed consistency constraints: neighborhood consistency, label consistency,
and class-center consistency. An overview of the proposed GCL framework is shown in Fig. 1.

Neighborhood Consistency

Label Consistency

Class-center
Consistency

Label Prediction
Head

Neighborhood
Prediction Head

Target Node Non-neighborhood (Negative) Node

Neighborhood Node Sampled (Positive) Node

Pseudo Label

Ground-truth Label

Input Features

Hidden Features

Multilayer Perceptrons

Figure 1: Illustration of the proposed GCL framework, consisting of multilayer perceptrons, label
prediction head fθ(·), neighborhood prediction head gγ(·), which is mainly optimized by three con-
sistency constraints: Neighborhood Consistency, Label Consistency, and Class-center Lonsistency.

3.1 CONSISTENCY CONSTRAINTS

3.1.1 NEIGHBORHOOD CONSISTENCY

The smoothness assumption indicates that connected nodes should be similar, while disconnected
nodes should be far away, which aligns with the idea behind GCNs. With such motivation, we pro-
pose a neighborhood consistency loss that enables the MLP-based model to learn the connectivity
of graph nodes without explicit message passing modules. To this end, we first define two functions:
label prediction head yi = fθ(h

(L)
i) ∈ RC and neighborhood prediction head zi = gγ(h

(L)
i) ∈ RC ,

where C is the number of categories. Specifically, we sample between each node vi and its neigh-
bors Ni with learnable sampling coefficients, and then take sampled nodes instead of neighboring
nodes as positive samples, while other non-neighborhood nodes are considered as negative samples.
Finally, the neighborhood consistency loss is defined as

Ln =

N∑
i=1

(∑
j∈Ni

∥∥yi − gγ(βi,jh(L)
j + (1− βi,j)h(L)

i

)∥∥2
2
− αEvk∼Pk(v)

∥∥yi − gγ(h
(L)
k)

∥∥2
2

)
(2)

where βi,j = sigmoid
(
aT
[
h
(L)
i ‖h

(L)
j

])
is defined as learnable sampling coefficients with the shared

attention weight a. Besides, Pk(v) denotes the distribution that generates negative samples, and for

3

Under review as a conference paper at ICLR 2022

each node vi, we specify Pk(vi) = di
|E| . It can be seen that the neighborhood consistency loss

Ln encourages positive samples to be closer and pushes negative samples away. In this paper, we
specify two independent prediction heads fθ(·) and gγ(·) for the two contrastive node pairs, which is
mainly inspired by the recent success experience of visual self-supervised learning (He et al., 2020;
Chen et al., 2020). In the experimental section, we have also demonstrated the benefits of using two
independent prediction heads compared to one shared prediction head.

3.1.2 LABEL CONSISTENCY

The label consistency is proposed to encourage intra-class compactness and inter-class distinguisha-
bility. Specifically, the query node vi and key node vj are encoded by two prediction heads fθ(·)
and gγ(·) to obtain two label distributions ỹi = softmax

(
fθ(h

(L)
i)

)
and z̃j = softmax

(
gγ(h

(L)
j)

)
,

respectively. If node vi and node vj have the same label, they are considered to be the positive pair.
Then, the label consistency loss can be formulated as

Ll =

N∑
i=1

∑
j 6=i

Icj=ci ·
∥∥ỹi − z̃j

∥∥2
2

(3)

where ci and cj are the labels of node vi and vj , and Icj=ci is an indicator function to determine
whether the label of node vi is the same as node vj . Inspired by the success of graph contrastive
learning (Ren et al., 2021; Qiu et al., 2020; Wu et al., 2021), the label consistency can essentially
be considered as a self-supervised auxiliary task that encourages intra-class compactness with more
distinguishable inter-lcass boundaries, which helps to improve model robustness.

3.1.3 CLASS-CENTER CONSISTENCY

The basic idea behind this consistency is that the class center of the ground-truth labels and pseudo
labels are expected to be mapped nearby, which helps to mitigate the negative impact of false pseudo
labels. The class-center consistency loss can be defined as

Lc =

C−1∑
i=0

∥∥Ci(Y)− C̃i(Y)
∥∥2
2

(4)

where Ci(Y) = 1
|Ci|
∑
j∈Ci yj and C̃i(Y) = 1

|C̃i|
∑
j∈C̃i yj represents the centroid of node features

with the ground-truth label Ci and pseudo label C̃i, respectively. The benefits of center consistency
have been shown in (Yang et al., 2021) and will be supported by our experiment in Sec. 4.3 as well.

3.2 CONNECTIONS BETWEEN MESSAGE PASSING AND NEIGHBORHOOD CONSISTENCY

In this section, we theoretically analyze the connections between message passing and neighborhood
consistency. Without loss of generality, we take classical GCN as an example to analyze the proper-
ties of message passing, which can be easily generalized to other message-passing-based GNNs.

Theorem 1 The neighborhood consistency loss is lower bounded by structure smoothing imposed
by message passing (taking GCN as an example), i.e. minimizing the neighborhood consistency loss
is equivalent to performing message passing among neighbors, if the following conditions hold:

(a) α = 0, that is to remove the negative sampling module;

(b) Ni = d,∀vi ∈ V , which means that all nodes in the graph have the same degree d;

(c) fθ(·) = gγ(·) and βi,j = 1,∀i, j ∈ V .

We first start from the analysis of how node representations are learned in GCN. According to the
definition of GCN, we can formulate l-th (0 ≤ l ≤ L− 1) layer of GCN as follows

H(l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2H(l)W(l)

)
(5)

4

Under review as a conference paper at ICLR 2022

where Ã = A + IN is the adjacency matrix with added self-connections, IN is the identity matrix
for N nodes, D̃ is a diagonal degree matrix with D̃i,i =

∑
j Ãi,j . GCN has been proved to be a

special form of Laplacian smoothing (Li et al., 2018). As the GCN model goes deeper with more
convolution layers, the representations in Eq. (5) reaches a termination condition Ht as

Ht = σ
(
D̃−

1
2 ÃD̃−

1
2HtWt

)
(6)

where Wt is the weight matrix on the last layer of GCN. Following the implementation made by
SGC (Wu et al., 2019), nonlinearities and collapsing weight matrices between consecutive layers
can be ignored for the sake of simplification. Thus, an approximate solution of Eq. (6) is written as

Ht = D̃−
1
2 ÃD̃−

1
2Ht (7)

More specifically, for each node vi, the approximation of the corresponding final representation is

hti =
∑
j∈Ni

1√
(di + 1) (dj + 1)

htj +
1

di + 1
hti (8)

where di = |Ni| is the degree of node vi, from Eq. (8) which we have

hti =
∑
j∈Ni

1

di

√
di + 1

dj + 1
htj (9)

Based on the above analysis, the objective of the approximate GCN model is two-fold: (1) classify
nodes with partially known labels; and (2) model the structural smoothness of the graph convolution.
Specifically, the structural smoothing loss ls imposed by message passing can be defined as

ls =

N∑
i=1

Dis
(
hti,

∑
j∈Ni

1

di

√
di + 1

dj + 1
htj

)
(10)

where Dis(·) is a metric function. Here, we adopt the Mean Square Error (MSE), and obtain

ls =

N∑
i=1

∥∥∥hti − ∑
j∈Ni

1

di

√
di + 1

dj + 1
htj

∥∥∥2
2

=

N∑
i=1

1

di

∥∥∥ ∑
j∈Ni

(hti −

√
di + 1

dj + 1
htj)
∥∥∥2
2

(11)

According to the power-mean inequality
(∑n

i=1 a
β
i

n

) 1
β

≤
(∑n

i=1 a
α
i

n

) 1
α

(β = 1, α = 2), we have

ls =

N∑
i=1

1

di

∥∥∥ ∑
j∈Ni

(hti −

√
di + 1

dj + 1
htj)
∥∥∥2
2
≤

N∑
i=1

1

di
· di

∑
j∈Ni

∥∥∥(hti −

√
di + 1

dj + 1
htj)
∥∥∥2
2

(12)

With condition (b), we have
√

di+1
dj+1 = 1. Moreover, let’s define yi = fθ(h

(L)
i) = hti, and follwing

condition (c), we have gγ
(
βi,jh

(L)
j + (1− βi,j)h(L)

i

)
= gγ(h

(L)
j) = fθ(h

(L)
j) = htj =

√
di+1
dj+1h

t
j .

Finally, according to condition (a), i.e., removing the negative samples, we can rewrite Eq. (12) as

ls ≤
N∑
i=1

1

di
· di

∑
j∈Ni

∥∥∥(hti −
√
di + 1

dj + 1
htj)
∥∥∥2
2
=

N∑
i=1

∑
j∈Ni

∥∥(yi − gγ(βi,jh(L)
j + (1− βi,j)h(L)

i

)
)
∥∥2
2
=Ln

Remark 1 In practical applications, real-world graphs usually have different node degrees, so con-
dition (b) may be an overly stringent assumption. Recalling Eq. (12), the role of node degree can
be approximated as a weighting on neighboring nodesNi. Therefore, if we modify condition (c) by
setting gγ(·) 6= fθ(·) and sampling with learnable sampling coefficients {β}Ni,j=1, it enables mod-
eling the effect of node degree on the representations of neighboring nodes Ni, which in turn helps
mitigate the impact of degree inhomogeneity. In the experiment part, we have demonstrated the
benefits of both (1) using two independent prediction heads and (2) training with learnable sampling
coefficients. Moreover, while condition (a) theoretically helps to ensure equivariant neighborhood
consistency with message passing, it may limit the expressive power of the model. Extensive recent
work on visual representation learning (Chen et al., 2020) suggests that negative samples help to
learn more distinguishable class boundaries, which is also supported by our experiments in Sec. 4.3.

5

Under review as a conference paper at ICLR 2022

3.3 EDGE SAMPLING FOR BATCH-STYLE TRAINING

Optimizing objective Eq. (2)(3) is computationally expensive, as it performs the summation over the
entire set of nodes, i.e, requiring a large memory space for keeping the entire graph. To address this
problem, we adopt the edge sampling strategy (Mikolov et al., 2013; Tang et al., 2015) for batch-
style training. More specifically, we first sample a mini-batch of edges from the entire edge set E
to construct a mini-batch Eb ∈ E . Then we randomly sample a negative node vk for each edge ei,j
in Eb, which generates two virtual negative edges ei,k and ej,k, and thus constructs a new triple set,
denoted as Tb = {(i, j, k)|ei,j ∈ Eb, vk ∼ Pk(v)}. Finally, we can rewrite Eq. (2) as

Lbn =
1

B

B∑
b=1

∑
(i,j,k)∈Tb

(∥∥yi − ẑj
∥∥2
2

+
∥∥yj − ẑi

∥∥2
2
− α

(∥∥yi − zk
∥∥2
2

+
∥∥yj − zk

∥∥2
2

))
(13)

where B is the batch size, ẑj = gγ
(
βi,jh

(L)
j + (1 − βi,j)h

(L)
i

)
, and ẑi = gγ

(
βj,ih

(L)
i + (1 −

βj,i)h
(L)
j

)
. In a similar way, we can rewrite Eq. (3) in a mini-batch from as

Lbl =
1

B

B∑
b=1

∑
i∈Vb

∑
j∈Vb,j 6=i

Icj=ci ·
∥∥ỹi − z̃j

∥∥2
2

(14)

where Vb is all sampled nodes in Eb, that is, Vb = {vi, vj |ei,j ∈ Eb}. Moreover, we can formulate
the cross-entropy loss on the labeled set DL as a classification loss, as follows

Lbcla =
1

B

B∑
b=1

∑
i∈VL,i∈Vb

C−1∑
j=0

si,j log ŷi,j (15)

where ŷi = softmax(yi) ∈ RC , and si,j = 1 if the label of node vi is cj , otherwise si,j = 0.
Finally, the total loss for training GCL in a mini-batch is defined as:

Ltotal = Lbn + Lbl + Lbcal (16)

The pseudo-code of the proposed GCL framework is summarized in Algorithm. 1.

Algorithm 1 Algorithm for the proposed Graph Consistency Learning (GCL) framework
Input: Feature Matrix: X; Edge Set: E ; Number of Batches: B; Number of Epochs: E.
Output: Predicted Labels YU , model parameters {Wl}L−1

l=0 and label prediction head fθ(·).
1: Initialize parameter matrices {Wl}L−1

l=0 and two prediction heads fθ(·), gγ(·).
2: for epoch ∈ {0,1,· · · ,E − 1} do
3: for batch ∈ {0,1,· · · ,B − 1} do
4: Sample a mini-batch of edges EB from E as well as corresponding node set VB and triple set TB ;
5: Compute loss LBn , LBl and LBcla by Eq. (13)(14)(15) and sum up as total loss Ltotal by Eq. (16);
6: Update parameters {Wl}L−1

l=0 , fθ(·), and gγ(·) by back propagation with loss Ltotal.
7: end for
8: Compute the class-center consistency loss Lc on the entire node set V by Eq. (4);
9: Update parameters {Wl}L−1

l=0 and fθ(·) by back propagation with loss Lc.
10: end for
11: Predict labels YU for those unlabeled nodes VU .
12: return Predicted labels YU , model parameters {Wl}L−1

l=0 and label prediction head fθ(·).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

The experiments include the following five aspects: (1) node classification performance compared to
existing methods on various real-world graph datasets; (2) generalization to severely limited labeled
data; (3) robustness to label noise and structure disturbation; (4) ablation study and analysis on some
of its components and consistency losses; and (5) inference time or running efficiency.

6

Under review as a conference paper at ICLR 2022

Datasets. The experiments are conducted on five widely used real-world datasets, namely Cora,
Citeseer, Actor, Coauthor-CS, and Coauthor-Phy. For each dataset, we randomly select 20 nodes
per class to construct a training set, 500 nodes for validation, and 1000 nodes for testing.

Baseline. We consider the following seven classical baselines: MLP, GCN, GAT, GraphSAGE,
SGC, APPNP, and DAGNN. Besides, we compare GCL with two state-of-the-art graph embedding
methods, including Graph-MLP and LinkDist, both based on pure MLP architectures. Moreover,
we use the same data split on each dataset to provide a fair comparison among different models.

Hyperparameters. The following hyperparameters are set the same for all datasets: Adam op-
timizer with learning rate lr = 0.01 and weight decay decay = 5e-4; Epoch E = 200; Layer
number L = 2; Loss weights α = 1.0. The other dataset-specific hyperparameters are deter-
mined by an AutoML toolkit NNI with the hyperparameter search sapces as: hidden dimension
F = {128, 256, 512, 1024}; batch size B = {256, 512, 1024, 4096}. Each set of experiments is run
five times with different random seeds, and the average performance are reported as metrics.

4.2 RESULTS AND ANALYSIS

Performance for Node Classification. Table. 1 summarizes the mode properties, i.e., whether the
adjacency matrix A is available (or involved) in the forward propagation, as well as the model per-
formance. It can be seen that while Graph-MLP and LinkDist can achieve comparable performance
with GCN on a few datasets, they still lag far behind the state-of-the-art message-passing-based
GNN model - DAGNN, and cannot even match the performance of GraphSAGE and GAT. Instead,
the GCL framework consistently achieves the best overall performance on all five datasets.

Table 1: Classification accuracy ± std (%) on five real-world datasets. The “Available Data” refers
to data that involves the forward propagation. The best results are marked by bold on each dataset.

Method Available Data Cora Citeseer Actor Coauthor-CS Coauthor-Physics

MLP X,A 61.86±0.43 59.76±0.51 21.18±0.64 83.12±0.53 86.24±0.66
GCN X,A 81.28±0.42 71.06±0.44 24.84±0.56 88.66±0.48 92.14±0.34
GAT X,A 83.02±0.45 72.56±0.51 26.28±0.45 89.28±0.63 92.40±0.52

GraphSAGE X,A 82.22±0.80 71.22±0.58 26.54±0.70 89.18±0.45 91.54±0.54
SGC X,A 80.88±0.47 71.84±0.72 25.24±0.55 88.56±0.60 90.92±0.62

APPNP X,A 83.28±0.33 71.74±0.27 27.82±1.02 89.72±0.59 92.54±0.59
DAGNN X,A 84.30±0.51 73.14±0.62 28.98±0.86 90.20±0.61 93.02±0.72

Graph-MLP X 81.45±0.52 72.87±0.70 25.40±0.49 89.80±0.68 91.85±0.49
LinkDist X 76.70±0.47 65.19±0.55 23.96±0.65 89.56±0.58 92.36±0.70

GCL (ours) X 84.80±0.42 73.72±0.67 31.86±0.72 91.22±0.41 94.46±0.56

Performance with Severely Limited Labels. The performance on Cora and Citeseer datasets with
1, 3, 5, and 10 training labels per class are shown in Table. 2. When only a limited number of labels
are provided, GCL outperforms other baselines at various label rates. Moreover, the performance of
GCL is greatly improved compared to other methods when there is only 1 label per class.

Table 2: Classification accuracy ± std (%) with severely limited labeled nodes.

Method Cora Citeseer

1 label 3 labels 5 labels 10 labels 1 label 3 labels 5 labels 10 labels

GCN 43.64±0.79 62.96±0.78 74.03±1.03 74.98±0.80 30.75±0.75 55.42±0.77 62.40±0.64 66.82±0.57
GAT 51.60±0.60 67.15±0.70 76.35±0.95 77.94±0.83 43.66±0.77 58.14±0.64 63.36±0.66 68.56±0.81

GraphSAGE 47.57±0.65 66.70±0.62 74.52±0.79 76.55±0.68 38.24±0.81 56.07±0.59 63.67±0.70 67.47±0.84
SGC 45.15±1.08 63.84±1.22 73.31±1.10 75.58±0.98 35.05±0.92 54.03±0.88 59.40±0.76 65.30±0.90

APPNP 49.53±0.54 70.20±0.71 77.95±0.88 79.19±0.75 44.87±0.67 61.10±0.85 64.16±0.58 69.03±0.71
DAGNN 66.71±0.78 72.66±0.59 78.50±0.93 80.66±0.67 59.06±0.83 63.26±0.72 67.84±0.84 71.76±0.73

GCL (ours) 65.14±0.57 73.78±0.41 79.52±0.90 81.62±0.60 59.82±0.64 68.94±0.62 71.58±0.46 72.74±0.50

Performance with Corrupted Structures. The classification performance under different structure
perturbation ratios r is reported in Table. 3, where the corrupted structures are obtained by randomly
removing and adding r · |E| edges for training. Experiments are conducted on the Cora and Citeseer
datasets by varying structure perturbation ratios r as {5%, 10%, 20%, 30%}. It can be seen that
our model is more robust than other methods under various structure perturbation ratios, especially

7

Under review as a conference paper at ICLR 2022

under severe structure perturbations, e.g., r = 20% or 30%. For example, when r = 30%, GCL
outperforms GAT by 3.42% and 4.97% on the Cora and Citeseer datasets, respectively.

Table 3: Classification accuracy ± std (%) with different structure perturbation ratios.

Method Cora Citeseer

5% 10% 20% 30% 5% 10% 20% 30%

GCN 76.01±0.55 74.19±0.96 68.69±0.67 63.82±0.54 69.82±0.62 64.84±0.69 62.87±0.93 60.51±0.73
GAT 77.77±0.74 75.01±0.97 69.62±0.51 64.76±0.74 68.27±0.47 63.35±0.89 61.81±0.96 58.57±1.23

GraphSAGE 77.35±0.64 74.72±0.69 69.02±0.50 64.14±0.94 68.98±0.58 63.38±0.67 62.80±0.66 59.54±0.77
SGC 74.80±0.87 73.84±0.83 67.52±0.67 63.77±0.98 66.57±0.56 61.50±0.64 60.76±0.71 57.00±0.98

APPNP 77.92±0.73 74.36±0.71 70.02±0.93 64.90±1.05 67.42±0.44 63.88±0.93 61.56±1.08 58.32±0.69
DAGNN 78.96±0.58 75.12±0.85 70.41±0.84 65.74±0.82 68.73±0.82 64.74±0.65 61.92±0.91 58.96±1.19

GCL (ours) 80.68±0.52 76.42±0.98 72.28±0.48 68.18±0.99 72.16±0.42 69.02±0.60 66.10±0.90 63.54±0.76

Performance with Noisy Labels. The performance with noisy labels is reported in Table. 4 at vari-
ous noise ratios r ∈ {5%, 10%, 20%, 30%} for two types of label noise: symmetric and asymmetric.
The symmetric noise means that label ci (0 ≤ i ≤ C − 1) of each training sample changes inde-
pendently with probability r

|C|−1 to another class cj (j 6= i), but with probability 1− r preserved as
label ci; the asymmetric noise means that label ci flips independently with probability r to another
(fixed) class cj (j = (i+ 1)%C), but with probability 1− r preserved as label ci. It can be seen that
our model is more robust than other methods with various label noise types and ratios, especially
with the asymmetric noise and severe noise ratios. For example, with r = 30% asymmetric noise,
GCL outperforms DAGNN by 3.61% and 5.99% on the Cora and Citeseer datasets, respectively.

Table 4: Classification accuracy ± std (%) with different label noise ratios.

Dataset Flipping-Rate GCN GAT GraphSAGE SGC APPNP DAGNN GCL (ours)

Cora

symmetric 20% 77.77±0.62 79.75±0.92 78.38±0.68 74.82±0.82 79.53±0.56 80.76±0.59 81.50±0.80
symmetric 40% 69.39±0.70 72.69±0.78 71.33±0.81 68.43±1.08 74.38±0.76 75.69±0.90 76.54±0.98
symmetric 60% 52.17±0.93 55.16±0.81 53.99±0.89 49.04±0.90 58.87±1.04 63.10±0.88 65.86±1.15
asymmetric 20% 71.97±0.97 73.63±0.83 73.58±1.05 70.30±0.77 74.53±0.69 76.50±0.97 78.74±0.77
asymmetric 40% 64.07±0.58 64.24±0.78 63.86±0.68 62.41±0.80 65.99±0.69 67.18±0.66 68.76±0.67
asymmetric 60% 38.47±0.95 39.38±0.99 39.49±0.78 37.02±0.82 40.39±1.01 42.61±0.81 46.22±0.80

Citeseer

symmetric 20% 66.91±0.58 67.61±0.59 67.34±0.43 65.19±0.62 68.20±0.48 71.25±0.61 72.54±0.38
symmetric 40% 61.65±0.59 63.88±0.46 62.21±0.58 57.66±0.67 65.61±0.58 69.32±0.77 71.64±0.60
symmetric 60% 54.83±0.63 55.26±0.90 54.20±0.58 53.63±0.70 55.84±0.56 59.36±0.77 63.38±0.59
asymmetric 20% 65.38±0.89 66.62±0.85 66.52±0.70 64.50±1.07 68.17±0.96 68.61±0.89 71.90±0.95
asymmetric 40% 55.70±1.07 56.42±0.81 56.60±0.99 53.91±0.91 57.63±0.79 60.39±0.86 65.38±0.67
asymmetric 60% 41.90±0.98 43.70±1.15 42.65±0.58 41.61±0.76 45.15±0.91 46.05±0.87 52.04±1.06

Inference Time. With the removal of message passing, the inference time complexity of GCL can
be reduced from O(|V|dF + |E|F) to O(|V|dF) compared to GCN, where d and F are the input
and hidden dimensions. The running time averaged over 30 sets of runs is reported in Table. 5,
where all methods use L = 2 layers (except L = 1 for SGC) and hidden dimension F = 16.
Besides, all baselines are implemented based on the standard implementation in the DGL library
(Wang et al., 2019). While the inference speed of SGC is the fastest, it involves only one layer of
linear transformation. In a fair comparison (without considering SGC and marking it as gray), GCL
achieves the fastest inference speed on all datasets compared to other message-passing-base GNNs.

Table 5: Comparison of the inference time (ms) for various methods.

Method Cora Citeseer Actor Coauthor-CS Coauthor-Phy

GCN 22.41 23.37 23.01 40.43 66.51
GAT 29.65 34.91 32.77 53.19 84.26

GraphSAGE 13.89 13.10 13.03 15.86 22.85
SGC 4.63 4.21 3.86 3.52 3.16

APPNP 54.04 51.91 59.21 85.57 129.38
DAGNN 45.03 55.53 47.04 47.47 56.17

GCL (ours) 5.22 5.08 4.77 8.64 14.04

8

Under review as a conference paper at ICLR 2022

4.3 ABLATION STUDY

Effects of Three Consistency Constraints. This evaluates the effectiveness of three consistency
constraints through four sets of experiments: the model without (A) Neighborhood Consistency (w/o
Lbn); (B) Label Consistency (w/oLbl); (C) Class-center Consistency (w/oLc), and (D) the full model.
After analyzing the results in Fig. 2, we can conclude: (1) The neighborhood consistency is the most
important factor for excellent performance, the lack of which leads to unsatisfactory classification.
For example, the removal of the neighborhood consistency will lead to a sharp deterioration in per-
formance, e.g., 6.1% and 8.7% on the Coauthor-CS and Coauthor-Phy datasets. Moreover, both
Label Consistency and Class-center Consistency contribute to improving performance. More im-
portantly, applying these two constraints together can further improve performance on top of each.

Citeseer Cora Actor Coauthor-CS Coaothor-Phy

0.688

0.734
0.722

0.737

0.686

0.843
0.828

0.848

0.309
0.301

0.319

0.259

0.886

0.945
0.939

0.858

0.901

0.924

0.851

0.912

w/o Lb
n

w/o Lb
l

w/o Lc

full model

Figure 2: Ablation study on three consistency constraints.

Analysis on Negative Samples, Prediction Heads, and Sampling Coefficients. (1) Effects of
Negative Samples. The removal of negative samples, i.e., setting α to 0, will lead to performance
drops as shown in Table. 6, e.g., 2.2% and 3.2% on the Coauthor-CS and Coauthor-Phy datasets,
because contrasting with negative samples helps to push away those possible non-similar samples
and enhances the inter-class distinguishability. (2) Two independent prediction heads vs. One shared
prediction head. Training with one shared prediction head, i.e., fθ(·) = gγ(·), leads to huge perfor-
mance degradation, which indicates mapping neighboring nodes separately using two independent
heads helps to better model the relationship between nodes, somewhat similar to learning multiple
prediction heads separately for different data augmentations in visual self-supervised learning (You
et al., 2021). (3) Effects of Learnable Sampling Coefficients. Compared with directly taking neigh-
boring nodes as negative samples, i.e., setting βi,j = 1, the use of learnable sampling coefficients
draws on the success of Mixup (Zhang et al., 2017) and helps to learn distinguishable inter-class
boundaries, which explains why setting βi,j = 1 causes severe performance drops in Table. 6.

Table 6: Ablation study on three key model components.

Scheme Cora Citeseer Actor Coauthor-CS Coauthor-Phy

GCL 84.8 73.7 31.9 91.2 94.5
+ α = 0 83.1(↓1.7) 71.5(↓2.2) 29.5(↓2.4) 89.0(↓2.2) 91.3(↓3.2)
+ fθ(·)=gγ(·) 82.7(↓2.1) 73.1(↓0.6) 29.1(↓2.8) 88.2(↓3.0) 90.7(↓3.8)
+ βi,j = 1 83.5(↓1.3) 72.9(↓0.8) 29.9(↓2.0) 89.3(↓1.9) 92.6(↓1.9)

5 CONCLUSIONS

In this paper, we propose a simple yet effective Graph Consistency Learning (GCL) framework to
train graph data with three well-designed consistency constraints. The GCL framework is based
purely on multilayer perceptrons, where structural information is only implicitly incorporated as
prior knowledge in the computation of supervision signals, but does not explicitly involve the for-
ward propagation. More importantly, we prove theoretically that minimizing the neighborhood
consistency loss is equivalent to performing message passing under certain conditions. The GCL
framework demonstrates that message passing is not a must to achieve excellent classification per-
formance and is expected to replace the current dominant GCN-style models as a new paradigm.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding and
clustering. In Nips, volume 14, pp. 585–591, 2001.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. arXiv preprint arXiv:1606.09375, 2016.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 855–864, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in neural information processing systems, pp. 1024–1034, 2017.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9729–9738, 2020.

Yang Hu, Haoxuan You, Zhecan Wang, Zhicheng Wang, Erjin Zhou, and Yue Gao. Graph-mlp:
Node classification without message passing in graph. arXiv preprint arXiv:2106.04051, 2021.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Thirty-Second AAAI conference on artificial intelligence, 2018.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
338–348, 2020.

Yi Luo, Aiguo Chen, Ke Yan, and Ling Tian. Distilling self-knowledge from contrastive links to
classify graph nodes without passing messages. arXiv preprint arXiv:2106.08541, 2021.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed represen-
tations of words and phrases and their compositionality. In Advances in neural information pro-
cessing systems, pp. 3111–3119, 2013.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710, 2014.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang,
and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In Pro-
ceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 1150–1160, 2020.

Yuxiang Ren, Jiyang Bai, and Jiawei Zhang. Label contrastive coding based graph neural network
for graph classification. arXiv preprint arXiv:2101.05486, 2021.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. science, 290(5500):2323–2326, 2000.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proceedings of the 24th international conference on world
wide web, pp. 1067–1077, 2015.

10

Under review as a conference paper at ICLR 2022

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv
preprint arXiv:1909.01315, 2019.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Lirong Wu, Haitao Lin, Zhangyang Gao, Cheng Tan, Stan Li, et al. Self-supervised on graphs:
Contrastive, generative, or predictive. arXiv preprint arXiv:2105.07342, 2021.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 2020.

Xu Yang, Cheng Deng, Zhiyuan Dang, Kun Wei, and Junchi Yan. Selfsagcn: Self-supervised se-
mantic alignment for graph convolution network. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 16775–16784, 2021.

Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning auto-
mated. arXiv preprint arXiv:2106.07594, 2021.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

11

	Introduction
	Related Work
	Graph Neural Networks
	Graph Embedding

	Methodology
	Consistency Constraints
	Neighborhood Consistency
	Label Consistency
	Class-Center Consistency

	Connections between Message Passing and Neighborhood Consistency
	Edge Sampling for Batch-style Training

	Experiments
	Experimental setups
	Results and Analysis
	Ablation Study

	Conclusions

