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ABSTRACT

We introduce, LGR-ME (Learning Graph Representation for Model Ensemble), a
groundbreaking approach within the domain of general-purpose learning systems.
Its primary focal point is to establish a foundational framework that facilitates
self-adaptation and versatility in the ever-evolving landscape of emerging ma-
chine learning tasks. Despite the strides made in machine learning, it has yet
to reach the adaptive and all-encompassing cognitive prowess demonstrated by
biological learning systems. This discrepancy is particularly pronounced in the
sphere of replicating learning representations and mastering a diverse spectrum
of general-purpose learning algorithms. Our proposition entails a graph-centered
representation of machine learning models. This representation operates on a
graph composed of models, where the interconnections among akin models are
established based on model specifications and their corresponding performances.
In pursuit of this representation, we employ a graph neural network to undergo
training. In this aspect, we present a novel method through the utilization of the
top £ maximum spanning trees. This encoding is then subjected to training by a
meta-model that minimizes a newly devised loss function. This combined loss
function effectively accounts for both diversity and accuracy. Furthermore, we
provide a theoretical examination of both the graph encoding algorithm and the
newly introduced loss function. This advanced training process engenders an un-
derstanding of the intricate interdependencies and correlations existing among the
model ensemble. The acquired features are subsequently harnessed to generate the
ultimate output for the initial task at hand. By means of extensive empirical com-
parisons, we showcase the efficacy of LGR-ME in contrast to solutions predicated
on ensemble pruning techniques.

1 INTRODUCTION

In the forthcoming era of an intricately interconnected digital landscape, the operational paradigm of
computer systems will undergo a paradigm shift, necessitated by a diverse array of machine learning
architectures meticulously crafted to cater to an extensive spectrum of pragmatic applications and
contextual circumstances Kim et al.[(2022). Regrettably, the performance of these architectures is not
uniform across all datasets; rather, certain architectures excel under specific conditions while others
falter. In response to this intricate challenge, ensemble methods emerge as a cohort of robust machine
learning models characterized by the orchestration and amalgamation of multiple foundational
learners, all oriented towards the attainment of a singular learning objective. Manifesting state-of-
the-art efficacy across a myriad of applications, ensemble methods routinely outpace individual
classifiers by a substantial margin in terms of performance metrics Zhong et al.| (2020); Gomes et al.
(2017); |Yang et al.| (2023)). Nonetheless, the adoption of ensemble methods presents two primary
challenges. The foremost challenge emanates from their resource-intensive nature, consuming
significant computational time and memory resources. This is due to the necessity of loading and
executing all constituent models within the ensemble during the inference phase, which can lead to
considerable latency. The second challenge pertains to the potential adverse impact introduced by one
or more models within the ensemble. The collaborative dynamics of the ensemble can occasionally
result in certain models exerting a counterproductive influence on the collective learning process,
thereby impeding the overall performance enhancement that ensemble methods are designed to
achieve. Ensemble methods combine multiple individual models to make more accurate predictions
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or classifications compared to using any single model alone [Liu et al.|(2023)). However, they consider
models in the ensemble as independent elements which yields to the development of intuitive fusion
strategies in the research literature including voting, averaging, stacking, bagging, and boosting.

MOTIVATIONS

We hypothesise that an examination of the diverse patterns present among the constituent models
within the ensemble possesses the capability to yield practical insights conducive to enhancing
the comprehensive learning endeavor.

Our hypothesis suggests that by thoroughly representing and analyzing the models within an ensemble,
we can identify the best subset of models that positively contribute to the learning process. This
perspective aligns with the idea that not all models in an ensemble might be equally valuable or
effective for a given task, and by selecting the optimal subset, we could potentially improve the
overall performance of the ensemble. In this research work, we will study the dependencies among
models in the ensemble via graph representation. A graph is a data structure that consists of vertices
and edges that connect these vertices. Graphs are used to represent relationships or connections
between different entities, and they can be powerful tools for analyzing and deriving patterns among
these entities [Peng et al.| (2023). The idea behind it is to learn a robust representation that give
valuable insights of the behaviors of the different models in the ensemble.

CONTRIBUTIONS

This study marks the first comprehensive effort to thoroughly explore a graph representation in
ensemble model. This approach is designed to effectively tackle the challenges presented by modern
ensemble model. In simpler words, it introduces the novel idea of LGR-ME, serving as a foundational
paradigm for creating adaptable machine learning systems. These systems aim to overcome limitations
found in both dedicated single-purpose models and multipurpose models tailored for specific tasks.
The main contributions of this research can be succinctly outlined as follows:

1. We propose a graph-based representation of the ensemble model to capture the different features
of the models specification in the ensemble. In this context, various strategies have been developed to
create the graph of models.

2. We use Graph Convolutional Neural Network as a meta model to learn how to execute a task. The
GCNN minimizes a newly formulated loss function. This composite loss uniquely captures diversity,
accuracy and tree structure hierarchy. We further give a theoretical analysis of the proposed loss
function.

3. We conduct a comprehensive and rigorous experiments to assess the different components of
LGR-ME using well-established benchmarks. The results demonstrate that LGR-ME outperforms
the baseline solutions in terms of output quality, even when the components of the graph are weak in
executing a task such as classification.

2 RELATED WORK

Ensemble learning embodies a robust learning framework that amalgamates multiple diverse learning
models with the aim of enhancing the accuracy and robustness of singular-based models. This
approach can be systematically categorized into five principal classes: 1) Bagging Zhu et al.| (2022);
Westfechtel et al. (2023)), within this framework, a multitude of replicated instances of a solitary
model undergo individual training regimens employing dissimilar subsets of the training dataset. The
ultimate synthesized output is then obtained through the process of aggregating the disparate outputs
generated by each constituent model. 2) Boosting Zhou et al.| (2023); /Wang et al.| (2022); Gabidolla
& Carreira-Perpinan| (2022), which involves the amalgamation of numerous subordinate learners
to establish a proficient learning entity. The subordinate learners, characterized by their limited
individual learning capabilities, are sequentially trained, with each successive model emphasizing the
rectification of data instances that were inadequately addressed by its predecessors. 3) Stacking|Dong
et al.|(2022); Iniyan et al.|(2023); Chen et al.|(2023)), where a plurality of models undergoes training,
and their resultant outputs are subjected to fusion via an additional model known as a meta-model.
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The meta-model is specifically trained employing the outputs of the underlying models, thereby
giving it the capacity to assimilate and leverage their individual strengths through an integrative
learning process. 4) Blending Lu et al.[(2019); |Pu et al.|(2022); [Zhu et al.| (2023)), where predictions
from multiple models are combined using a simple rule for merging the partial outputs. It involves
training diverse models on the same dataset and then aggregating their decisions to make a final
output. Blending is effective in reducing overfitting and improving generalization by leveraging the
strengths of different models. It does not require an additional meta-model training step like stacking,
making it a straightforward approach for ensemble learning. 5) Bayesian Averaging |Chipman et al.
(2006); [Fersini et al.|(2014));[Seyedan et al.|(2022) which employs a probabilistic approach to combine
decisions from different models. It estimates posterior probabilities for each class based on individual
model outputs and combines these probabilities using an aggregation. This technique leverages the
uncertainty inherent in predictions and can result in improved overall performance and calibrated
probability estimates.

We believe that our approach belongs to the third category where we aim to derive the relevant
dependency among models (meta-model) using the graph-based representation. In the following, we
will go in depth for this category. Our perspective aligns with the third class, wherein our objective is
the extraction of pertinent inter-dependencies inherent in models (termed as the meta-model) through
the utilization of a representation based on graphs. Subsequently, we intend to delve comprehensively
into the intricacies of this particularly class.
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Figure 1: LGR-ME's process starts by training machine learning models, we subsequently calculate
the model specification, and output of each model. A model graph representation is created and
learned using graph convolution neural network. A learned features are finally used to derive the
final output of the desired task using fully connected layer.

3 LGR-ME: LEARNING GRAPH REPRESENTATION FOR MODEL ENSEMBLE

3.1 PRINCIPLE

In this section, we introduce a novel approach termed "Learning Graph Representation for Model
Ensemble" (LGR-ME), which combines principles from machine learning with graph-based represen-
tation to enhance model ensemble techniques. The conceptual framework of LGR-ME is illustrated
in Figure[I] This approach involves several distinct stages, each contributing to the overall process
of creating an integrated ensemble model. Initially, a diverse set of machine learning models is
trained using appropriate datasets and algorithms. These models encompass various architectures
and learning strategies. Upon completing the training phase, the resultant outputs and specifications
of each individual model are stored within a knowledge base. This repository of model-specific
information serves as the foundation for constructing a graph representation. The process of creating
the model graph commences with the utilization of the accumulated knowledge base. Each trained
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model is represented as a node in the graph, and the relationships between these nodes are established
based on the observed interconnections and similarities among the models. This forms a graph where
nodes denote the trained models, and edges signify the associations between these models, reflecting
their shared characteristics and behaviors. Subsequently, a GCNN is deployed to glean insights from
the constructed model graph. The primary objective of this step is to capture the intricate correlations
and dependencies that exist between the various models. The GCNN operates to transform the
information embedded within the model graph into a lower-dimensional vector space, effectively
capturing the nuanced relationships that might not be apparent in the original high-dimensional space.
The GCNN phase produces an embedded vector capturing the relationships among the trained models.
This vector, a condensed representation of the ensemble’s collective behaviors, is then processed by a
fully connected layer to generate an output tailored to the user’s objective. The subsequent sections
detail LGR-ME’s core components

3.2 GRAPH REPRESENTATION FOR MODELS

Definition 1 (Model Output). We define the set of outputs of the model M; by the union of all of its
outputs when training the set of data in D, and we write:

Vi={U v} (1)

D;eD
where, y;; is the predicted value of D; by the model M.

Definition 2 (Model Specification). We define the set of model specification S; of the model M; by
the set of the representative layers of the model M ;. For instance, S; = {conv = 1, pool = 1, att =
0,bn = 0,dr = 1} to represent that the model M; has a convolution layer, a pooling layers, no
attention layer, no batch normalization layer, and has a dropout layer.

Definition 3 (Connectivity Function). Consider a set of n models M = { M, Ms...M,,}, we define
fij a function that connect the two models M;, and M, and we write:

fiMxM—=R

Definition 4 (Characteristic Connectivity Function ). We define the Characteristic Connectivity Func-
tion (CCF) as a connectivity function that compute the similarity between two models specification,
and we write:

CCF(Mi7Mj)= ‘SiﬂSj| 2)
Definition 5 (Performance Connectivity Function). We define the Performance Connectivity Function
(PCF) as a connectivity function that compute the similarity between two models output, and we
write:

PCF(M;, Mj) = Y N Y| (©)
Definition 6 (Graph of Models). We define the graph of models Gy = (V, E) by the set of nodes
V represented the set of models M, and a set of edges, E CV x V. (M;, M;) € E, if and only
if, fi; # 0. fi; should be even CCF(M;, M) or PCF(M;, M) depending to the connectivty
function chosen by the user.

3.3 LEARNING ALGORITHM

Algorithm [T] presents the LGR-ME, it is designed to exploit the relationships among various models,
which is crucial for ensemble methods and feature selection in machine learning. The algorithm takes
a set of models M and training data points D as input and outputs a trained ensemble model. The
LGR-ME algorithm begins by initializing an empty graph G to represent the relationships between
different models in M (Line 1). For each unique pair of models, it computes a weight using a function
f and adds a corresponding edge to the graph G (Lines 3-6). Subsequently, a Maximum Spanning
Tree (MST) is extracted from G to represent the backbone of the most significant relationships
between the models (Line 8). The algorithm then computes the Laplacian matrix £ from the MST,
which is used to derive the Laplacian loss Ligpiace (Lines 10-12). The GCNN model is initialized and
trained using a newly introduced hybrid loss function (Lines 14-18). An important contribution of
the LGR-ME algorithm is the introduction of this new loss function, L(x), defined as:

L(z) = C(x) + AD(2) + YLiaplace %)
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where C(z) is the Cross-Entropy loss, D(z) is the Kullback-Leibler Divergence 10ss, Liapiace is the
Laplacian loss ensuring the model’s predictions align with the underlying graph structure, and A\ and
~ are regularization parameters.

This loss function combines the benefits of accuracy, diversity, and structural alignment, making it a
versatile intuition.

Algorithm 1 LGR-ME Algorithm

Data: Set of models M, Training data points D
Result: Trained LGR-ME model

G+ 0 // Initialize the graph
foreach (m;,m;) € M? s.ti < j do

wi; = f(mg, my) // Compute weight between models using f
LG(—GU{(mi,mpwij)} // Add edge with weight to the graph

M ST < Extract Maximum Spanning Tree from G

L+ (d— ApsT) // d is the diagonal degree matrix and Aysr is the
adjacency matrix

L — 1
laplace Zw quj
Initialize GCNN model with parameters 6
L(‘T) = C(x) + )\D(f) + 'VLlaplace
Orp1 = 0; — UVL(Ot)

return Trained GCNN model with parameters 6

3.4 MAXIMUM SPANNING TREE FOR ENSEMBLE LEARNING

1. Relationships Capture: Statement The maximum spanning tree tends to capture the most
significant relationships among nodes. In our context, using edge weights that describe
shared properties means that the maximum spanning tree would emphasize the most relevant
shared properties among the models.

Logical Reasoning: The maximum spanning tree algorithm aims to select edges with the
highest weights to create a tree that spans all nodes without forming cycles. By using edge
weights that represent shared properties, the algorithm would naturally prioritize edges
that connect nodes with the most similar properties. In the context of models, these edges
would represent the most significant relationships based on shared properties. The maximum
spanning tree focuses on capturing the most relevant and informative relationships among
the models, leading to a meaningful representation of their connections.

2. Reduced Redundancy: Statement The maximum spanning tree selects edges to form a
tree structure without creating cycles. This can help in reducing redundancy and focusing
on the most essential relationships.

Logical Reasoning: The structure of a tree inherently ensures that no cycles are formed.
When the maximum spanning tree algorithm is applied to a graph, it aims to create a tree that
connects all nodes with the highest-weighted edges without forming cycles. By avoiding
cycles, the algorithm prevents redundant relationships from being included in the tree. This
results in a focused structure that captures the most essential and informative relationships
while avoiding unnecessary redundancy.

3. Hierarchical Information Statement If the maximum spanning tree has a hierarchical
structure, it could provide insights into a hierarchy of shared properties among the models.

Logical Reasoning: The hierarchical structure of a maximum spanning tree is influenced by
the arrangement of edge weights and the properties they represent. If the shared properties
have a hierarchical nature, the maximum spanning tree might naturally reflect this hierarchy.
In cases where certain shared properties are more general and others are more specific, the
algorithm would tend to connect nodes with similar general properties first, followed by
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those with more specific properties. This hierarchy in the spanning tree can provide insights
into the relationships among shared properties and their relevance to the models.

4. Ensemble Composition: Statement By considering only the most important relationships

based on the maximum spanning tree, we might achieve a more focused and diverse ensemble
of models.
Logical Reasoning: The maximum spanning tree focuses on capturing the most significant
relationships among models based on shared properties. By considering only the most
important and informative relationships, the resulting ensemble can be more focused on
leveraging the strengths of these relationships. The ensemble would include models that are
connected through the most relevant shared properties, ensuring that the selected models
complement each other’s strengths. This can lead to a diverse ensemble that benefits from
the most important aspects of each model’s contribution.

3.5 INTUITION OF THE LOSS FUNCTION IN ENSEMBLE LEARNING

Diversity and Accuracy
The Cross-Entropy loss ensures that the ensemble is accurate, while the Kullback-Leibler Divergence
can enforce diversity among the models.

Regularization
The A term acts as a regularization parameter. A higher A\ gives more importance to the Kullback-
Leibler Divergence, encouraging the ensemble to pay more attention to distributional aspects.

Laplacian Loss

The Laplacian loss, derived from the Laplacian matrix of the graph, encourages the model to respect
the graph’s structure. In the context of spanning trees, this loss ensures that the model’s predictions
align with the underlying tree structure, promoting a more structured prediction.

Trade-off
The hybrid loss allows for a balance between classification accuracy, distributional similarity, and
graph structure adherence, offering the "best of both worlds.’

Robustness
The hybrid loss can make the ensemble more robust. While Cross-Entropy loss ensures accuracy, the
Kullback-Leibler part can make the ensemble robust to variations in the input distribution.

Optimal Weighting
The hybrid loss can provide a nuanced performance metric, allowing for potentially more effective
weighting of individual models in the ensemble.

3.6 PROOF OF CONVEXITY AND CONVERGENCE OF THE LOSS FUNCTION

Theorem 1. The hybrid loss function L(x) = C(x) + AD(x) + Y Ligpiace is convex if \ > 1 and vy is
non-negative.

Proof. Let C(x) be the cross-entropy loss and D(z) the Kullback-Leibler Divergence loss. To prove
convexity, we examine the second derivatives, forming the Hessian matrix for L(z). Let p; represent
the true probability distribution for class ¢ and g; represent the predicted probability distribution for
class i.

Cross-Entropy Loss C(z):
C(x) == pilog(a:)

Kullback-Leibler Divergence D(x):
pi
D(z) = E p;log (q)

d*C(x)
0q;0q;
p;i log(g;) (and p; log(%)) only involves g; and no other g; where ¢ # j, the mixed partial derivative

. Since each term

To build the Hessian matrix we need to find the mixed partial derivative
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is zero:

920 ()

0q;0q;

For both C'(z) and D(z), the Hessian matrices are diagonal. Therefore, we only need to consider the
second derivative with respect to each g; or p;.

* Second derivative of C(x) with respect to ¢;: —%.

* Second derivative of D(z) with respect to ¢;: —%.

Laplacian Loss Liapiace:
Llaplace =o' Lx
The Hessian of Ligpiace i simply the Laplacian matrix £ itself. The Laplacian matrix is positive
semi-definite, which means all its eigenvalues are non-negative. This ensures that the Laplacian loss
is convex.
Total Loss L(x):
L(CE) = C(CE) + )\D(ZL’) + ’}/Llaplace
_pi(1+X)
72

i

Second derivative with respect to g;:

The function L(x) will be convex if 7%

i

> 0 for all ¢, and the Laplacian loss is convex.

* p; > 0 because p; is a probability.
* g; > 0 because g; is a probability.
e 1 - XA <0implies A > 1.

Therefore, if A > 1 and 7 is non-negative, then L(x) is convex, as all the second derivatives are
non-negative, making the Hessian matrix positive semi-definite.

Thus, the loss function L(z) = C(x) + AD(x) + 7y Liaplace is convex when X\ > 1 and + is non-
negative. O

Theorem 2. If the gradients of the loss function L(x) = C(z) + AD(x) + v Liplace are bounded,
then gradient-based optimization methods like gradient descent will converge.

Proof. To prove that the gradients are bounded, we examine the first derivatives of L(x).

Cross-Entropy Loss C(z):
C(x) == pilog(q:)

First derivative with respect to q;: — Z—

Kullback-Leibler Divergence D(z):

D) = Yo ({;)

First derivative with respect to ¢;: — %

Total Loss L' (x): L'(z) = C(z) + AD(z)
z)=C(z) + €

First derivative with respect to g;: — w.

Since p; and g; are probabilities, they are bounded between 0 and 1. Also, A is a non-negative
constant. Therefore, the first derivative of L’(x) is bounded.
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The gradient of the Laplacian 10ss Liaplace With respect to x is:
VLlaplace =2Lx

Given that £ is the Laplacian matrix, which is derived from the adjacency matrix of the graph, its
values are bounded. This ensures that the gradient of Liapiace 1S bounded.

Now, combining the boundedness of the gradients of Cross-Entropy loss, Kullback-Leibler Diver-
gence, and the Laplacian loss, we can conclude that the gradients of the loss function L(z) =
C(z) + AD(z) + 7 Liapiace are bounded. By the boundedness of the gradients, we can conclude that
gradient-based optimization methods like gradient descent will converge when optimizing L(x). 0O

4 EXPERIMENTATION

4.1 EXPERIMENTAL SETUP

We evaluated the LGR-ME algorithm on five Kaggle classification datasets: Employee, Heart-attack,
Titanic, Credit Card Approval, and Water Potability |Inc.[(2023). Datasets underwent preprocessing,
normalization, and encoding. The graph’s representation was built using a diverse set of classifiers
with tailored hyperparameters. These include Random Forest with 10 estimators and a minimum
samples split of 2, Gradient Boosting with 10 estimators and a 0.1 learning rate, Logistic Regression
using L2 penalty and ’lbfgs’ solver, SVC with an RBF kernel and ’scale’ gamma, K-Nearest
Neighbors with 5 neighbors, Decision Tree using Gini criterion, Gaussian Naive Bayes with
a variance smoothing of 1 x 1079, and MLP with a 100-neuron hidden layer. Only the PCF
function is used to assign weights to the graph edges. Our GCNN processes graph data with three
graph convolutional layers, transforming node features into 128, 32, and 18-dimensional spaces.
Post-aggregation, features are averaged and passed through a fully connected layer, producing class
probabilities.The GCNN is trained for 50 epochs with a batch size of 128 with a regularization
parameters A = v = 5.0. To ensure a robust evaluation of the GCNN model, we employed KFold
cross-validation where K = 5.

4.2 RESULTS DISCUSSION

The LGR-ME algorithm’s performance across various datasets underscores its ability to adeptly
combine the strengths of multiple weak classifiers. LGR-ME often results in achieving superior
performance metrics compared to any single classifier in its ensemble.

For the Water Potability dataset for instance, LGR-ME’s performance is nothing short of remarkable,
achieving an accuracy of 0.9975, which is significantly higher than any other model, including
RandomForest with an accuracy of 0.6368 and GradientBoosting at 0.6275. This demonstrates
LGR-ME’s capability to handle intricate patterns and nuances in datasets.

The convergence of the loss function is a crucial indicator of the stability and reliability of a learning
algorithm. For the datasets under consideration, we observed consistent convergence patterns, as
illustrated in figure 2] below. For each of the highlighted datasets, the loss function exhibits a clear
trend towards convergence, indicating that the model is learning the underlying patterns effectively.
The detailed results and further discussions are provided in the appendix.

Model Accuracy | Precision | Recall | F1 Score
RandomForestClassifier 0.6368 0.6261 0.6368 | 0.6114
GradientBoostingClassifier 0.6275 0.6149 0.6275 | 0.6033
LogisticRegression 0.5958 0.4742 0.5958 | 0.4481
SvC 0.4291 0.5044 | 0.4291 | 0.3653
KNeighborsClassifier 0.5516 0.5316 0.5516 | 0.5354
DecisionTreeClassifier 0.5964 0.5967 0.5964 | 0.5963
GaussianNB 0.6169 0.5993 0.6169 | 0.5752
MLPClassifier 0.5629 0.6245 0.5629 | 0.4230
LGR-ME 0.9975 0.9979 | 0.9979 | 0.9979

Table 1: Average Metrics Over All Folds for Water Potability dataset
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On the Titanic dataset, LGR-ME again showcases its prowess with an accuracy of 0.9655, outper-
forming other models such as RandomForest (0.7331) and GradientBoosting (0.7469). Similarly, for
the Employee dataset, LGR-ME achieves an accuracy of 0.8936, surpassing RandomForest (0.8197)
and DecisionTree (0.8114).

Model Accuracy | Precision | Recall | F1 Score
RandomForestClassifier 0.7331 0.7328 0.7331 0.7285
GradientBoostingClassifier 0.7469 0.7435 0.7469 | 0.7390
LogisticRegression 0.7120 0.6961 0.7120 | 0.6973
SvC 0.6094 0.3891 0.6094 | 0.4734
KNeighborsClassifier 0.6775 0.6778 0.6775 | 0.6743
DecisionTreeClassifier 0.7605 0.7726 0.7605 | 0.7605
GaussianNB 0.6297 0.6725 0.6297 | 0.6218
MLPClassifier 0.6299 0.6030 | 0.6299 | 0.6097
LGR-ME 0.9655 0.9717 | 0.9586 | 0.9650

Table 2: Average Metrics Over All Folds for Titanic dataset

Average GCN Training and Validation Loss for water_potability Dataset

—— Average Training Loss
Average Validation Loss

Figure 2: Training/Validation Loss of Water potability averaged for all the folds

5 CONCLUSION

We introduce in this paper a novel approach, Learning Graph Representation for Model Ensemble
(LGR-ME), which integrates foundational machine learning principles with the construct of a graph
representation. It involves training and storing the outputs of diverse machine learning models in
a knowledge base, creating a graph that signifies model relationships, applying a GCNN to learn
complex dependencies, and ultimately utilizing a fully connected layer to yield the final learning
output aligned with the user’s desired task. This representation is then subjected to training by a
meta-model, which seeks to minimize a novel loss function we have defined. This combined loss
effectively took into account both diversity, accuracy and the concept of maximum spanning trees.
Additionally, we provided a comprehensive theoretical examination of the newly introduced loss
function. This intricate and comprehensive methodology offers a powerful means of harnessing
the collective capabilities of diverse models to enhance ensemble learning outcomes. Its efficacy
is showcased in classification task on different benchmarks. The potential of LGR-ME has been
demonstrated in specific classification learning task. Our aim is to amplify its applicability across
a wider range of machine learning scenarios. This endeavor entails customizing the framework
to accommodate various data domains, types of problems, and assessment criteria. To illustrate,
LGR-ME has the potential to be employed in contexts like reinforcement learning, tasks within
natural language processing, and even intricate challenges in bioinformatics.
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A APPENDIX

A.1 REMAINING RESULTS

It’s essential to note that LGR-ME’s performance isn’t universally dominant. For instance, on
the Heart-attack dataset, GaussianNB achieves the highest accuracy of 0.8142, while LGR-ME
lags behind with 0.6401. This suggests that while LGR-ME is generally adept at combining weak
classifiers, its performance can still be contingent on the nature of the dataset and the quality of the
base classifiers.

For the Credit Card Approvals dataset, LGR-ME isn’t the top performer, with GCN taking the lead at
0.9074. However, LGR-ME’s ensemble approach still allows it to achieve competitive results across
the board, emphasizing the power of collaborative learning.

Model Accuracy | Precision | Recall | F1 Score
RandomForestClassifier 0.8197 0.8174 0.8197 | 0.8148
GradientBoostingClassifier 0.8361 0.8373 0.8361 | 0.8296
LogisticRegression 0.7117 0.7015 0.7117 | 0.6808
SVC 0.5035 0.6116 | 0.5035 | 0.5016
KNeighborsClassifier 0.7800 0.7764 | 0.7800 | 0.7693
DecisionTreeClassifier 0.8114 0.8085 0.8114 | 0.8082
GaussianNB 0.6924 0.6809 | 0.6924 | 0.6831
MLPClassifier 0.6150 0.5261 0.6150 | 0.5259
LGR-ME 0.8936 0.8932 | 0.8932 | 0.8932

Table 3: Average Metrics Over All Folds for Employee dataset

Model Accuracy | Precision | Recall | F1 Score
RandomForestClassifier 0.7727 0.7779 0.7727 | 0.7730
GradientBoostingClassifier 0.7440 0.7517 0.7440 | 0.7439
LogisticRegression 0.8140 0.8166 0.8140 | 0.8133
SvVC 0.6662 0.6782 0.6662 | 0.6562
KNeighborsClassifier 0.6781 0.6877 0.6781 | 0.6752
DecisionTreeClassifier 0.7484 0.7562 0.7484 | 0.7482
GaussianNB 0.8142 0.8188 | 0.8142 | 0.8138
MLPClassifier 0.6859 0.6698 0.6859 | 0.6661
LGR-ME 0.6401 0.6401 0.6401 | 0.6401

Table 4: Average Metrics Over All Folds for Heart-attack dataset
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Model Accuracy | Precision | Recall | F1 Score
RandomForestClassifier 0.8747 0.8793 0.8747 | 0.8748
GradientBoostingClassifier 0.8166 0.8180 0.8166 | 0.8164
LogisticRegression 0.8348 0.8389 0.8348 | 0.8334
SvC 0.6115 0.7108 0.6115 | 0.5269
KNeighborsClassifier 0.6787 0.6815 0.6787 | 0.6756
DecisionTreeClassifier 0.8220 0.8242 0.8220 | 0.8218
GaussianNB 0.7985 0.8140 0.7985 0.7926
MLPClassifier 0.7839 0.7913 0.7839 | 0.7825
GCN 0.9074 0.9074 | 0.9074 | 0.9074

Table 5: Average Metrics Over All Folds for Credit Card Approvals dataset

For all the datasets, the loss function exhibits a clear trend towards convergence, indicating that the
model is learning the underlying patterns effectively.

Average GCN Training and Validation Loss for heart Dataset
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Figure 3: Training/Validation Loss for Heart Attack dataset
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Figure 4: Training/Validation Loss for Credit Card Approvals dataset
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Figure 5: Training/Validation Loss for Titanic dataset

13



Under review as a conference paper at ICLR 2024

Average GCN Training and Validation Loss for Employee Dataset
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Figure 6: Training/Validation Loss for Emplyee dataset
Average GCN Training and Validation Loss for water_potability Dataset
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Figure 7: Training/Validation Loss for Water Potability dataset
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