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INTENTIONAL-GESTURE: DELIVER YOUR INTEN-
TIONS WITH GESTURES FOR SPEECH
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Generated Full-Body Gestures with Intentions

Audio

CaptionT … In my spare time, if I … … the whole day… … So, there is another day … 

Intention give an example and act leisurely emphasize I am very tired make a transition to say another thing

Intentional-Gesture

Figure 1: We present Intentional Gesture, a novel framework for intention-controllable gesture
generation. Our method models latent communicative functions from speech and grounds motion
generation in these inferred intentions.

ABSTRACT

When humans speak, gestures help convey communicative intentions, such as
adding emphasis or describing concepts. However, current co-speech gesture
generation methods rely solely on superficial linguistic cues (e.g. speech audio
or text transcripts), neglecting to understand and leverage the communicative
intention that underpins human gestures. This results in outputs that are
rhythmically synchronized with speech but are semantically shallow. To address
this gap, we introduce Intentional-Gesture, a novel framework that casts gesture
generation as an intention-reasoning task grounded in high-level communicative
functions. First, we curate the InG dataset by augmenting BEAT-2 with
gesture-intention annotations (i.e., text sentences summarizing intentions), which
are automatically annotated using large vision-language models. Next, we
introduce the Intentional Gesture Motion Tokenizer to leverage these intention
annotations. It injects high-level communicative functions (e.g., intentions) into
tokenized motion representations to enable intention-aware gesture synthesis that
are both temporally aligned and semantically meaningful, achieving new state-of-
the-art performance on the BEAT-2 benchmark. Our framework offers a modular
foundation for expressive gesture generation in digital humans and embodied AI.

1 INTRODUCTION

Gestures accompany speech to convey ideas and facilitate comprehension De Ruiter et al. (2012);
Song et al. (2023); Burgoon et al. (1990), forming an essential part of human communication. As AI
advances Lu et al. (2023; 2024b); Ren et al. (2025), enabling virtual avatars to produce expressive
gestures will be critical for digital avatar construction Tang et al. (2025); Song et al. (2024c); Huang
et al. (2024); Song et al. (2024a;b).

Recent works Liu et al. (2025b; 2023); Yi et al. (2023) have explored full-body gesture generation
conditioned on speech audio or text transcripts. However, these approaches largely treat raw
linguistic input as sufficient semantics, overlooking the deeper communicative intentions—such as
emphasis, deixis, and affirmation—that implicitly govern gesture behavior. Recovering these latent
functions is essential for generating semantically coherent non-verbal expressions.

1
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Early systems Marsella et al. (2013); Saund & Marsella (2021); McNeill (1992) attempted to
derive these deeper communicative functions through rule-based templates, but such approaches
lack scalability. Inspired by the linguistic–gesture link in psycholinguistics, we reframe gesture
modeling as a reasoning task: the model first understands the reasons or communicative intentions
behind the speech, and then treats gestures as their downstream realizations.

To achieve this, we first augment the BEAT-2 dataset Liu et al. (2022b) with structured annotations
of inferred communicative functions via VLMs (Vision-Language-Models), creating a large-scale
InG (Intention-Grounded) dataset. This enriched corpus links speech, inferred intentions, and
corresponding gesture realizations, enabling intention-aware gesture generation for the first time.

Leveraging the obtained intention annotations, we propose a CLIP-like gesture understanding
model. It learns joint representations of speech rhythm, inferred intentions, and motion dynamics
via a hierarchical contrastive alignment framework, enabling it to discern both low-level rhythmic
synchronization and high-level communicative goals.

Building upon this understanding model, we introduce the Intentional Gesture Tokenizer, a novel
quantization model that directly embeds intention semantics into the motion representation space.
Unlike prior works that discretize body parts independently without semantic grounding Mughal
et al. (2025); Liu et al. (2025a), our tokenizer processes global body motion holistically and
supervises latent representations using intention-aware motion features. This design ensures that
discrete motion tokens encode not only fine-grained motion patterns but also communicative
meaning. With the proposed tokenizer, our approach generates gestures that are not only
temporally synchronized but also semantically expressive and interpretable, advancing human-
avatar communication. Our contributions can be summarized as follows:

• We formulate gesture generation as an intention-grounded reasoning task, create the InG
(Intention-Grounded) dataset by leveraging VLMs to infer communicative functions from
speech and augmenting BEAT-2 with structured annotations.

• We introduce the Intentional Gesture Tokenizer, which discretizes global body motion
while embedding intention semantics into the latent space through semantic supervision.

• We demonstrate that our method produces gestures that are not only temporally aligned
with speech but also semantically meaningful, achieving improved realism and inter-
pretability in human-computer interaction.

2 RELATED WORKS

Co-speech Gesture Generation. Existing works on co-speech gesture generation typically use
skeleton- or joint-level pose representations. Several methods Liu et al. (2022c); Deichler et al.
(2023); Xu et al. (2023); Liu et al. (2024a); Zhang et al. (2024a); Liu et al. (2025b) learn hierarchical
semantics or apply contrastive learning to align audio and gesture embeddings. HA2G Liu
et al. (2022c) constructs multi-level audio-motion embeddings, while TalkShow Yi et al. (2023),
CaMN Liu et al. (2022b), and EMAGE Liu et al. (2023) introduce large-scale datasets for joint
face-body modeling with GPT-style decoding. More recent models such as MambaTalk Xu
et al. (2024), DiffSHEG Chen et al. (2024b), and GestureLSM Liu et al. (2025a) focus on
efficient flow matching Li et al. (2025); Zhu et al. (2024) and spatiotemporal modeling. Semantic
Gesticulator Zhang et al. (2024b) and RAG-Gesture Mughal et al. (2025) leverage LLMs to retrieve
discourse-relevant gestures as references. In contrast, we explore the modeling of communicative
intentions as explicit semantics to control gesture generation.

Vision Tokenization for Generation. In visual generation Lu et al. (2025); Gao et al. (2024); Lu
et al. (2024a), tokenization encodes raw pixels into compact representations Van Den Oord et al.
(2017); Rombach et al. (2022). Vector-quantization Van Den Oord et al. (2017) enable discrete
latent spaces compatible with autoregressive generation Tian et al. (2024); Sun et al. (2024); Chang
et al. (2022); Yu et al. (2023). Recent studies like REPA Yu et al. (2024) and Re.vs.Gen Yao et al.
(2025) show that aligning generation representation with understanding improves synthesis quality.
We further introduce the Intentional Gesture Tokenizer, supervising motion tokenization with
intention-aligned semantics, and demonstrate this strategy significantly enhances gesture generation
quality.

2
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Motion Analysis:
Head: The head remains neutral, maintaining a steady gaze, indicating focus on the topic 
of discussion
Hands & Fingers: Both hands are in a slightly closed position; fingers are curled but not 
tightly, suggesting an open stance while speaking.
Arms & Shoulders: Arms are held down at the sides with a relaxed posture and raise up 
for the whole sequence and slightly expanded outward. The shoulder position is neutral, 
lacking tension, reflecting a calm demeanor.
Legs & Feet: The legs are standing firmly, weight evenly distributed, indicating stability 
and confidence.
Torso & Whole Body: The torso is upright, reflecting attentiveness in stance while the 
overall body remains relaxed.

Function Derivation:
Affirmation: The use of "relaxing" indicates a positive affirmation of what the speaker 
enjoys. 
Mental State: The word "like" expresses an enjoyment and positive sentiment toward the 
activity mentioned. 
Process: ”is relaxing" signifies an ongoing action.

Inferred Intention:
Part 1 - Motion-Based Analysis:
The steady head position, combined with a relaxed hand and arm posture, demonstrates the 
speaker's comfort and confidence in discussing their enjoyment of a weekend activity. The open-
handed gesture signals a positive affirmation and engagement with the subject matter, while the 
slight curl of the fingers suggests an informal yet sincere expression of their feelings.
Part 2 - Direct Intention Summary:
The speaker aims to communicate a personal preference regarding their weekend activities, 
emphasizing relaxation as a valued practice. The gestures reflect enjoyment and contentment 
while reinforcing the message that relaxing is an integral part of their weekend routine.

Gesture Behavior Mapping:
Affirmation → Open and raise hand position with expansion: The hand positioning suggests 
positivity and reinforcement of the idea of relaxing as a favored activity.
Mental State → Finger curl: The relaxed fingers indicate comfort in discussing personal 
preferences. 
Process → Upright position: The upright torso conveys engagement in the present action, 
reinforcing the description of the activity.

:     The            first             thing              I             would          like             to             do          on           weekends       is         relaxing.T

Figure 2: Overview of the annotation pipeline. Sentence-level segments and word-aligned
keyframes together with rule-based descriptions are provided to the VLM, which generates (1)
motion descriptions across body regions, (2) communicative function labels, (3) gesture behavior
mappings, and (4) inferred intentions. This structured annotation enables scalable creation of a
semantically grounded, visually aligned gesture dataset.

3 INTENTIONAL GESTURE DATASET (ING)

Gestures systematically reflect semantic, pragmatic, and rhetorical structures Marsella et al. (2013);
McNeill (1992); Saund & Marsella (2021); for example, affirmation to nodding and comparison to
lateral gestures aligned with spatial metaphors. Modeling these communicative functions is critical
for generating expressive gestures. Marsella et al. (2013) introduced a rule-based system that derives
communicative functions from syntactic and lexical patterns, mapping them to gesture classes via
hand-crafted rules. While effective, such systems rely on fixed rules and limited dictionaries,
restricting scalability and domain coverage. Building on these insights, we propose a scalable
pipeline using VLMs to automatically infer communicicative functions and map them to gestures,
enabling large-scale, data-driven semantic gesture modeling. Importantly, we treat these functions
as operational proxies for communicative intention rather than attempting to recover a single “true”
mental state; they are designed as stable, controllable signals for gesture generation.

3.1 DATASET CONSTRUCTION

We introduce InG (Intention-Grounded Gestures), a dataset that augments BEAT-2 Liu et al.
(2022b) and Audio2PhotoReal Ng et al. (2024) with structured, intention-aware annotations linking
linguistic functions to gesture behaviors. Unlike prior datasets focused on motion fidelity or prosody
alignment, InG enables intention-controllable gesture generation. We employ a two-stage VLM-
based strategy, illustrated in Fig. 2.

Annotation Protocol. We design a unified annotation pipeline that integrates interpretable
rule-based motion descriptors with structured VLM prompting to yield intention-aware gesture
annotations. Rather than directly “asking GPT for a label”, the pipeline first converts raw motion into
constrained, symbolic descriptors, and then uses the VLM only within this structured schema. For
training data, the VLM receives sentence context together with word-aligned keyframes and motion
descriptors, enabling inference of communicative functions, motion descriptions, and speaker intent.
For testing data, annotations are generated solely from transcripts to prevent leakage from observed
gestures. Across all segments, we explicitly allow multi-function labels (e.g., Emphasis + Deixis +
Mental State), reflecting the fact that gesture units often serve multiple discourse functions. Detailed
prompting strategies, category definitions, and validation procedures are provided in the Appendix.
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Rule-Based Motion Description Generation. To provide interpretable motion descriptors aligned
with linguistic units, we design a rule-based analysis procedure that converts raw pose sequences
into structured gesture descriptions. The process operates in three stages: (1) Temporal Windowing.
Each sentence is divided into sub-windows of 1–2 seconds based on word-level timestamps.
Consecutive words within the same span are grouped together, while longer segments are recursively
partitioned. This ensures that each window corresponds to a manageable co-speech gesture unit.
(2) Canonicalized Motion Representation. All sequences are normalized to the canonical space
relative to the body root. For elbows, wrists, head, and fingers, motions are represented by full
3D joint pose angle trajectories or positional change over the window, while for hands, we track
3D positional displacements over time. (3) Movement Characterization. Within each window,
trajectories are smoothed and segmented by direction and amplitude. Segments are categorized
into qualitative tiers (very slight, slight, moderate, significant), where thresholds are defined relative
to the standard deviation of motion distributions and refined through pilot annotation experiments
and human evaluation. Detected patterns are then labeled as monotonic (e.g., “slightly forward”),
bidirectional (e.g., “forward then backward”), or oscillatory (e.g., “repeated side-to-side”). Each
description is anchored to visual evidence by presenting the first, last, and a representative keyframe
from the corresponding word span, ensuring that textual descriptors remain verifiable against pose
snapshots. We defer algorithm details in the Appendix.

Prompt-Based Gesture Intention Annotation. The rule-based descriptors and reference frames
form the grounding for higher-level annotation with GPT-4o-mini. Given segmented utterances
and motion summaries, we design a structured prompt for multi-stage annotation: (1) Motion
Analysis — describing body poses across regions (head, arms, fingers, torso) using the rule-
based descriptors together with reference frames; (2) Function Derivation — identifying one or
more communicative functions (e.g., emphasis, negation, deixis), explicitly allowing multi-label
combinations; (3) Gesture Behavior Mapping — linking communicative functions to gesture forms;
and (4) Inferred Intention — synthesizing how verbal and nonverbal cues reflect speaker goals at the
level of discourse pragmatics. The model is required to output in a fixed motion–function–intention
schema, which constrains free-form generation and reduces hallucinations. This layered approach
ensures that gesture annotations are both semantically interpretable and physically grounded,
enabling intention-controllable gesture generation.

Human-in-the-Loop Validation. To ensure reliability of the VLM-generated annotations, we
adopt a human-in-the-loop filtering stage. For each utterance, the LLM is instructed to produce
five independent candidate annotations following the structured protocol described above. These
candidates vary in phrasing and granularity, but all conform to the same motion–function–intention
schema. Human labelers then evaluate the set of five responses and remove those that contain
incorrect interpretations, inconsistent mappings, or implausible intentions. Only the remaining
high-quality annotations are retained in the dataset. In practice, this combination of rule-based
preprocessing, schema-constrained prompting, and human filtering substantially mitigates typical
VLM noise and bias while preserving scalability.

(a) (b) (c) (d)

Figure 3: (a) Distribution of communicative function types in InG dataset. (b-d) Correlations
between function count and utterance-level features: word count, duration, and speech rate. Function
count correlates positively with utterance length and duration, but minimally with speech rate.

3.2 DATASET STATISTICS AND ANALYSIS

Our InG dataset includes 34,641, 3,598, and 9,674 annotated utterances for train/val/test splits,
respectively, each enriched with motion-grounded or intent-inferred communicative functions. We
defer the specific statistics of the distribution of 16 function types, covering pragmatic categories
such as Emphasis, Deixis, Mental State, and Process in the Appendix.
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As shown in Fig. 3 (a), Emphasis (21.7%) and Deixis (20.1%) are the most prevalent functions,
followed by Mental State (14.4%) and Process (11.0%). We further analyze correlations between
linguistic features and function density (Fig. 3, b-d). Function counts correlate positively with
utterance length (r = 0.18–0.20) and duration (r = 0.16–0.21), but show minimal correlation with
speech rate (r ≈ 0.00–0.01). This suggests that communicative function density scales with the
informational content rather than speaking speed, aligning with psycholinguistic findings.

While function derivations follow a well-defined ontology, gesture behavior mappings and inferred
intentions exhibit open-ended variability across speakers and contexts. To ensure interpretability, our
prompt design grounds mappings in established literature (McNeill McNeill (1992), Kendon Saund
& Marsella (2021)). Additional statistics and analysis are provided in Appendix.

Figure 4: Pairwise preference for VLM vs.
human annotations across three evaluation
settings. Blue: train-style prompting (with
motion); Orange: test-style (transcript only).
Red dashed line indicates chance (50%).

Annotation Validation Study. We evaluate annotation
quality through a pairwise human preference study on
100 randomly sampled utterances. Each utterance is
annotated using: (1) our train-style VLM protocol (mo-
tion input), (2) our test-style VLM protocol (transcript
only), and (3) a free-form human annotation. For each
utterance, two comparisons are created: VLM (train-
style) vs. human, and VLM (test-style) vs. human.

The human baseline is produced by two expert anno-
tators (non-authors) with prior exposure to gesture and
multimodal communication literature. For each clip, they
are given the speech transcript, rendered motion, and the
same communicative function ontology as our model, and
asked to write free-form descriptions of gesture functions
and intentions without seeing any VLM outputs.

Three raters independently judge each comparison across three criteria: E1: Intent Alignment
(which better captures communicative intent), E2: Gesture Relevance (which provides more
plausible gestures), and E3: Overall Preference (clarity and function-gesture alignment).

Final preferences are determined by majority vote. Shown in Fig. 4, both VLM protocols outperform
the free-form human baseline. Inter-rater agreement averaged 0.76 Fleiss’ κ, indicating substantial
consistency. This comparison shows that our structured motion–function–intention pipeline yields
annotations that are more consistent and directly usable for modeling than free-form text.

4 INTENTIONAL GESTURE GENERATION

4.1 INTENTION UNDERSTANDING

To leverage textual intention for co-speech gesture synthesis, we propose a CLIP-like understanding
model, H-AuMoCLIP, for gestures to better encode textual intention features. We build this
Intention-Audio-Motion CLIP on top of TANGO’s (Liu et al., 2024a) audio-motion alignment model
(AuMoCLIP) by explicitly incorporating communicative intent.

Intentional Semantic Fusion. AuMoCLIP trains its joint embedding space using contrastive
learning, where its audio tower combines acoustic features with BERT-encoded speech transcripts.
Building upon this, we introduce Intentional Semantic Fusion for merging intention semantics to
create a richer, intention-aware joint embedding space. Our Intentional Semantic Fusion mechanism
fuse transcript and intention embeddings via a linguistically grounded mechanism. Following
TANGO, we align transcript tokens to the audio timeline using a CTC-based model, and encode
both the transcript and annotated intent with separate BERT encoders. In addition to TANGO,
the aligned transcript embeddings serve as queries in a cross-attention module, with intention
embeddings as keys and values. The output captures context-specific communicative cues, which
are then concatenated with wav2vec2 audio features to form the final high-level representation. This
composite embedding is used in contrastive training to jointly align audio, motion, and intent.

Functionality. As in Fig.5, the resulting encoders improve generation by serving as two roles: (1)
the motion encoder provides semantic supervision for gesture tokenization (Sec. 4.2), and (2) the
audio encoder conditions gesture generation with both rhythmic and intentional signals (Sec. 4.3).

5
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Figure 5: Overview of our intentional gesture generation framework. Left: H-AuMoCLIP
learns a hierarchical joint embedding of motion, audio, and intention. Transcript embeddings
(BERT) aligned via CTC serve as queries in a cross-attention module with intention embeddings
as keys/values. The resulting semantic features are concatenated with wav2vec2 audio features for
contrastive learning. Right: Motion is quantized via a multi-codebook VQ module and supervised
by semantic features from H-AuMoCLIP, enabling expressive and controllable gesture generation.

4.2 INTENTIONAL GESTURE TOKENIZER

Prior works Mughal et al. (2025); Liu et al. (2025a; 2023) model different body regions using
separate encoders, decoders, and codebooks per body part. While this design encourages local
disentanglement, it has three limitations: (1) high training and inference cost, (2) poor global body
coherence, and (3) weak connection to speech-level semantics. To address these issues, we propose
an Intentional Gesture Tokenizer with two core innovations: (1) learning disentangled latent
factors within a unified global body representation through multi-codebook quantization, and (2)
embedding explicit intention semantics into the motion representation through semantic supervision.

Latent Multi-Codebook Quantization. Instead of separate body-specific quantizers, we discretize
the global motion latent f ∈ Rd using a set of n independent codebooks. The latent is partitioned
into n chunks {f1, f2, . . . , fn}, each quantized separately:

f̂ = Concat (Q(Z1, f1), . . . ,Q(Zn, fn)) , (1)
where Q denotes vector quantization. This design maintains global body context while allowing
structured disentanglement to emerge across codebooks during training. Unlike prior methods, our
tokenizer processes the full body motion jointly, enabling better modeling of coordination patterns
necessary for communicative gestures.

Intentional Semantic Supervision. To embed contextual intent into motion representations, we
supervise the quantized latents using features from the pretrained H-AuMoCLIP motion encoder
(Sec. 4.1). A linear projection is applied to the quantized output Z to match the dimension of
reference features F , and we compute a temporal cosine margin loss:

Lsem =
1

T

T∑
t=1

ReLU
(
1− z′t · ft
∥z′t∥∥ft∥

)
, (2)

where z′t and ft are projected quantized latents and motion encoder features at timestep t. This
supervision enforces semantic alignment with high-level intention cues derived from speech.

Training Objective. Our full training objective includes: (i) a reconstruction loss LR, (ii) a vector
quantization loss LVQ, and (iii) the proposed semantic supervision loss Lsem:

L = LR + λVQLVQ + λsemLsem. (3)
We empirically set λsem = 1 and λVQ = 0.25. This balanced formulation ensures that quantized
motion tokens preserve both fine-grained fidelity and semantic coherence across time.

4.3 GESTURE GENERATION

We then leverage Sec.4.1 and Sec.4.2 to enhance gesture generation. We adapt GestureLSM (Liu
et al., 2025a), by replacing its original audio encoder and motion tokenizer. Specifically, we replace
GestureLSM’s audio encoder with our intent-aware audio encoder, which extracts hierarchical
representations capturing both rhythmic audio features and communicative intentions. Furthermore,

6
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I think I will go shopping …… During the weekend, because the …..

In my spare time, I feel okay …… I always try to move as much as I can ……

Our Emage Ground-Truth Our Emage TalkShow Ground-Truth

When I was free, I love listen to the music …… That is helpful for me ……

GestureLSM GestureLSMCAMN

Figure 6: The subjective Comparisons. Compared with others, Intentional-Gesture presents more
natural and coherent motion patterns to represent specific words or phrases (highlighted in red).

Table 1: Comparison with state-of-the-art methods trained on BEAT-2. We demonstrate superior
performance, especially when generalizing across multiple speaker identities.

1 Speaker All Speakers Novel 5 speakers
FGD↓ BC→ Div.→ FGD↓ BC→ Div.→ FGD↓ BC→ Div.→

GT 0.703 11.97 0.477 7.29 0.671 8.93
CaMN Liu et al. (2022b) 0.604 0.676 9.97 0.512 0.200 5.58 0.812 0.563 6.71
EMAGE Liu et al. (2023) 0.570 0.793 11.41 0.692 0.284 6.06 0.936 0.643 7.47
Audio2Photoreal Ng et al. (2024) 1.02 0.550 12.47 0.849 0.326 6.24 1.012 0.464 5.97
RAG-Gesture Mughal et al. (2025) 0.879 0.730 12.62 0.447 0.471 9.03 - - -
GestureLSM Liu et al. (2025a) 0.408 0.714 13.24 0.446 0.525 9.23 0.664 0.621 10.45
Ours 0.379 0.690 11.00 0.256 0.534 6.68 0.441 0.686 9.39

we replace its RVQ-based tokenizer with our Intentional Gesture Tokenizer. Additional architectural
details of the original GestureLSM are deferred to the Appendix.

5 EXPERIMENTS

We conduct main experiments on BEAT2 Liu et al. (2023), which comprises 60 hours of high-quality
SMPL-based conversational or speach gesture data collected from 25 speakers. The dataset contains
1,762 sequences, each with an average duration of 65.66 seconds, following the train-validation-test
split protocol defined in EMAGE Liu et al. (2023). In addition, we also explores its application
on Audio2Photoreal Ng et al. (2024), which provides about 8 hours of dyadic interactions between
listening and speaking actions. We defer the experiment results on Audio2PhotoReal to Appendix
with further video demos provided in the supplementary material.

5.1 QUANTITATIVE COMPARISONS

Metrics. We evaluate Fréchet Gesture Distance (FGD) Yoon et al. (2020) for pose sequence angle
distributional similarity, Diversity (Div.) Li et al. (2021a) as the average L1 distance across clips,
and Beat Constancy (BC) Li et al. (2021b) for speech-motion synchronization.

Evaluation Results. We evaluate both quality and generalization in three settings: single-speaker,
all-speaker, and zero-shot (training on 20 speakers and testing on 5 unseen speakers). As shown
in Tab. 1, our method significantly outperforms baselines across all settings. These gains are
attributed to our intentional motion representation and intention control, which reduce unnatural
gesture patterns. More detailed comparisons are provided in the Appendix. To validate runtime
efficiency, we generate intention descriptions from transcripts via an API prior to model execution.
Our method retains the efficiency of GestureLSM Liu et al. (2025a), while improving performance
through a unified motion representation, and achieves generation at 30.4 FPS on an H100 GPU.

7
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5.2 QUALITATIVE COMPARISONS

Evaluation Results As depicted in Fig. 6, our approach generates gestures that exhibit improved
rhythmic alignment and a more natural appearance compared to existing methods. For example,
when conveying “helpful for me”, our method directs the subject to extend left hand forward,
effectively representing the intention of an explanation. In contrast, competing methods fail to
capture this nuance, often generating static or unnatural poses where one or both arms remain down.

Table 2: Subjective evaluation shown
as Mean Opinion Scores (MOS).

Methods MOS1 MOS2 MOS3

EMAGE 2.01 2.42 2.31
CAMN 1.34 2.23 2.14

GestureLSM 3.43 3.61 3.48
Ours 3.76 4.11 3.92

User Study. We conducted a user study with 20 participants
and 160 video samples, 40 from each of GestureLSM Liu
et al. (2025a), EMAGE Liu et al. (2023), CAMN Liu et al.
(2022b), and Ours. Each participant viewed the videos in a
randomized order and rated them on a scale of 1 (lowest) to
5 (highest) based on three criteria: (1) realness, (2) speech-
gesture synchrony, and (3) smoothness. As shown in Tab. 2,
Our method outperforms other methods across all criteria,
achieving higher Mean Opinion Scores (MOS). We follow a
standard 1–5 Likert MOS scale with textual anchors (1 = very
poor, 3 = acceptable, 5 = excellent), and compute MOS as the average rating across raters and clips
for each method. Detailed statistics (mean ± std, 95% confidence intervals, and significance tests)
are reported in Appendix. F.

(a) (b) (c) (d)

Figure 7: Hierarchical Alignment Analysis. Retrieval-based evaluation of H-AuMoCLIP across
semantic features. We report Recall@1/10 under per-batch and global settings for both known and
unknown speakers. Incorporating intentional semantics improves retrieval performance with few
training speakers. Increasing speaker diversity further enhances generalization for retrieval.

6 ABLATION STUDIES AND ANALYSIS

We explore the hierarchical audio-intention and motion alignment, the design of tokenizer and
generator, the analysis of the quality of annotation effects on learning, in this section. We defer
sequence length effect, quantizer analysis to Appendix.

6.1 EVALUATION OF HIERARCHICAL AUMOCLIP

We evaluate H-AuMoCLIP using retrieval-based metrics that measure how well audio and
intentional features align with corresponding motion features. We report Recall@1 and 10 under
two settings: per-batch (within batch of 128) and global (across the entire test set). The
retrieval evaluates sequence-level alignment using mean-pooled audio and motion features for full-
clip matching. We evaluate generalization to both seen (in-domain) and unseen (out-of-domain)
speakers, assessing robustness across speaker identities.

Intention-Aware Alignment Improves Performance. Incorporating intentional semantics consis-
tently improves retrieval, especially under low-data regimes (1–5 speakers) (Fig. 7). High-level
alignment shows larger gains compared to low-level retrieval, confirming that explicit intention
modeling better captures sequence semantics.

Speaker Diversity Enhances Generalization. Training on multiple speakers significantly improves
generalization to unseen speakers. Even with the same total training data, models trained on more
speaker identities achieve better high-level retrieval, suggesting that speaker diversity encourages
learning more robust gesture-speech mappings, as shown in Appendix.
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Table 3: Quantitative Ablation Results. (Left) Quantizer ablation comparing design variants and levels
of intentional supervision. (Right) Gesture generation improvements with architectural modules, semantic
controls and sensitivity analysis of the whole generator model.

Model rFGD↓ Utility↑ L1↓ FGD↓ BC→ Div.→
EMAGE (VQ) 0.0867 34.35 0.3643 0.512 0.623 7.76
RAG-Gesture (Contin.) 0.0423 - 0.448 0.423 0.625 8.64
ProbTalk (PQ) 0.0283 53.24 0.3283 0.451 0.656 7.96
GestureLSM (RVQ) 0.0012 27.56 0.1557 0.314 0.527 8.64

Ours (Multi-VQ)

only transformer 0.0021 97.25 0.3043 0.332 0.474 8.01
only CNN 0.0013 98.43 0.2656 0.348 0.671 7.96
Optimal Quantizer Design 0.0011 98.84 0.2468 0.315 0.512 7.67

+Low-level Supervision 0.0014 96.72 0.2566 0.295 0.477 5.96
+High-level (seq) 0.0014 96.68 0.2512 0.286 0.614 6.21
+High-level (temporal) 0.0012 97.17 0.2488 0.256 0.534 6.68

Model FGD↓ BC→ Div.→
GestureLSM Liu et al. (2025a) 0.446 0.525 9.23

+ DiT Peebles & Xie (2023) 0.354 0.523 6.63
+ Intention Condition 0.339 0.545 6.44
+ H-AuMoCLIP 0.314 0.527 8.64

+ Intentional-Tokenizer 0.256 0.534 6.68
Sensitivity Analysis

Re-summarized intent 0.256 0.533 6.66
Unmatched intent 0.284 0.521 6.47
Window = 0.7 0.257 0.533 6.64
Window = 0.5 0.256 0.533 6.67
w/o intent text 0.281 0.523 6.54

Table 4: Ablation on Dataset Annotation. (Left) Structured intention annotation improves both
retrieval and generation, with training-time annotation yielding the best overall results. (Right)
Intention provides the strongest generation quality, motion description enhances retrieval, and
combining all signals achieves the best overall recall but a trade-off in generation.

Retrieval Generation
Setting R@1↑ R@5↑ R@10↑ FGD↓ BC→ Div.→
N/A 8.37 25.41 35.86 0.284 0.543 6.74
Baseline 8.18 23.41 33.59 0.269 0.612 6.79
Train-Set 8.47 28.43 37.67 0.256 0.534 6.68
Test-Set 8.44 28.21 37.64 0.262 0.545 6.56

Retrieval Generation
Setting R@1↑ R@5↑ R@10↑ FGD↓ BC→ Div.→
A 8.37 25.41 35.86 0.284 0.543 6.74
A + M 9.21 29.76 38.43 0.464 0.412 4.78
A + I 8.47 28.43 37.67 0.256 0.534 6.68
A + I + M 9.41 31.62 40.59 0.343 0.565 7.44

6.2 EVALUATION OF INTENTIONAL GESTURE TOKENIZER

We evaluate our intentional gesture tokenizer using reconstruct FGD (rFGD), Codebook Utility,
and L1 error, with generation metrics reported in Sec. 5.1. We defer further analysis in Appendix.

Tokenizer Comparison. We leverage the same generator design in our framework with different
latent representation from various tokenizer designs for this comparison. As in Tab. 3 Left, our
Intentional Gesture Tokenizer achieves a significantly lower rFGD and higher diversity compared to
previous tokenizers Liu et al. (2023; 2024b); Mughal et al. (2025); Liu et al. (2025a).

Effect of Intentional Semantic Supervision. We design three supervision strategies using H-
AuMoCLIP features: (a) CNN-layer supervision for low-level spatial detail, (b) transformer-layer
with mean pooling for high-level sequence supervision, and (c) transformer-layer with frame-level
temporal supervision. Shown in Tab. 3 (Left), integrating intentional supervision into motion token
learning significantly improves generation quality, while maintaining strong reconstruction fidelity.
Notably, frame-level temporal supervision achieves the best, demonstrating that temporal alignment
of intention and motion is key to learning expressive gesture representations.

6.3 EVALUATION OF GESTURE MOTION GENERATION

Design Analysis. Replacing GestureLSM with DiT Peebles & Xie (2023) based architecture
improves the generation performance. We further investigate how intention representations impact
gesture generation. As a baseline, we condition the generator on sentence-level BERT embeddings,
which provides only marginal improvement (Tab. 3, Right). Replacing these with intention
embeddings derived from H-AuMoCLIP yields substantial gains in FGD and diversity.

Sensitivity Analysis. We evaluate the robustness of our model under noisy or mismatched intention
inputs. Using LLM-rewritten paraphrases of intention descriptions yields negligible differences in
FGD and diversity, suggesting that the model is not sensitive to surface-level textual variation. When
using temporally unmatched or missing intention text, FGD degrades slightly (by 0.025–0.03), and
synchronization weakens marginally, but the model remains stable overall.

6.4 EVALUATION OF DATASET ANNOTATION

Impact of Intention Annotation on Alignment and Generation. We assess the impact of
intention annotation quality via an ablation study (Tab. 4, left), comparing four settings: (1) no
annotation, (2) baseline unstructured annotation, (3) our structured pipeline during training, and (4)
structured annotation also applied at test time (transcript only). We discover any annotation improves
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Table 5: Semantic case study on BEAT2. We stratify segments into neutral/beat-like, iconic, and
metaphoric gestures and compare a baseline audio+text model with our intention-conditioned model
in terms of intention-aware retrieval (R@k) and generation metrics (FGD, BC, Div.).

Semantic type Method R@1 ↑ R@5 ↑ R@10 ↑ FGD ↓ BC → Div. →
Neutral / beat-like Baseline 8.79 28.47 40.52 0.144 0.523 4.17

+Intention 10.23 34.22 41.37 0.132 0.565 7.29

Iconic Baseline 7.44 24.97 38.75 0.223 0.482 4.61
+Intention 7.23 25.12 39.01 0.212 0.471 5.23

Metaphoric Baseline 7.21 20.20 38.57 0.201 0.512 6.14
+Intention 8.01 23.22 40.44 0.197 0.488 5.44

generation, though baseline signals slightly harm retrieval, suggesting noisy semantics still guide
alignment. Our structured training annotations achieve the best overall results, and adding test-time
annotation further boosts diversity and balance. The moderate gap between baseline and structured
settings indicates robustness to noise, while highlighting clear gains from high-quality supervision.

Comparison of Intention And Motion Description as Control. We compare audio (A), motion
description (M), and intention (I) as input signals (Tab. 4, right). Adding motion description (A+M)
improves retrieval but reduces generation diversity, while intention (A+I) gives the best overall
generation. Combining all three (A+I+M) achieves the strongest retrieval, though generation is
slightly less balanced than A+I alone. This shows motion description mainly strengthens alignment,
while intention provides higher-level semantic control for natural and diverse generation.

6.5 SEMANTIC CONSISTENCY EVALUATION

Standard objective metrics such as FGD, Diversity, and Beat Constancy primarily capture motion
realism and rhythm, but not directly communicative effectiveness. We therefore report semantic
consistency metrics that operate in the intention-aware representation space and complement the
main quantitative results.

Intention-aware audio–motion retrieval. We use H-AuMoCLIP to embed (audio, transcript,
intention) triplets and motion sequences into a shared space. Given a query composed of audio
+ transcript + intention, the task is to retrieve the corresponding motion segment from a candidate
pool. We report Recall@k (R@1, R@5, R@10) on the test set. Models trained with intention
supervision consistently obtain higher R@k than audio/text-only variants, indicating that the learned
representations capture function-level semantics rather than only kinematic similarity.

Case study: iconic vs. metaphoric vs. neutral segments. To further probe semantic consistency,
we conduct a small case study by stratifying segments according to their gesture semantics. The
comparison is based on the semantic label of short segments similar to the setting in short sequence
generation from Tab.15 from BEAT2: (i) Neutral / beat-like, (ii) Iconic, and (iii) Metaphoric For
each type, we compare a baseline model conditioned on audio + transcript with our intention-
conditioned model (audio + transcript + intention) in terms of both retrieval and generation quality.
We observe consistent gains from intention supervision across all three types, with especially clear
relative improvements on iconic and metaphoric segments where gesture meaning is tightly coupled
to speech. Metaphoric and iconic present slightly worse performance due to variability of the data.

7 CONCLUSION

We present Intentional Gesture, a novel framework that formulates gesture generation as an
intention reasoning task grounded in high-level communicative functions. We first curate the InG
dataset with structured annotations of latent intentions—such as emphasis, comparison, and affirma-
tion—extracted via large language models. Then, we introduce the Intentional Gesture Tokenizer,
which discretizes global motion while embedding intention semantics into the representation space
through targeted supervision. By bridging speech semantics and motion behaviors, our method
produces gestures that are both temporally synchronized and semantically meaningful. Experiments
demonstrate strong improvements in gesture quality, offering a controllable and modular foundation
for expressive gesture generation in digital humans and embodied AI.
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Intentional Gesture: Deliver your Intentions with Gestures for Speech

Supplementary Material

A OVERVIEW

The supplementary material is organized into the following sections:

• Section B: Additional Dataset Analysis
• Section C: Annotation Protocol and Validation
• Section D: Implementation Details
• Section E: Additional Experiments
• Section F: User Study Details
• Section G: Metric Details
• Section H: Ethical Statement
• Section I: Reproducibility statement
• Section J: The Use of Large Language Models
• Section K: Limitations

For more visualization, please see the additional demo videos.

B ADDITIONAL DATASET ANALYSIS

B.1 FUNCTION-TO-GESTURE MAPPING GROUNDING

Our function-to-gesture mappings derive from established frameworks in gesture pragmatics,
particularly McNeill McNeill (1992) and Kendon Kendon (2004). Tab. 6 presents gesture forms
associated with each communicative function, which inform our VLM annotation prompt’s gesture
behavior mapping.

Certain functions correspond to consistent physical gestures (e.g., Deixis to pointing, Emphasis
to beat gestures, Negation to head shakes), while others like Modal or Mental State manifest
in subtler movements (fist tightening, shoulder shrugs). These literature-backed correspondences
ensure interpretable and plausible annotations, providing a bridge between gesture generation and
discourse semantics.

Tab. 6 shows the function distribution across dataset splits. Core functions such as Deixis (57-61%),
Emphasis (46-51%), Mental State ( 41%), and Process (26-29%) are well-represented with minimal
variation across splits. Less frequent functions like Comparison, Modal, and Valence (5-8%) and
specialized functions (Intensifier, Physical Relation, ¡2%) show distributional consistency. Note that
these percentages reflect per-sentence function occurrence rather than the cumulative distribution
reported in the main paper.

B.2 CO-OCCURRENCE PATTERNS AND SPEAKER-SPECIFIC GESTURE PROFILES.

To further examine the structure of our function annotations, we analyze co-occurrence patterns
and speaker-level gesture usage. Figures 8(a–c) present conditional co-occurrence heatmaps for the
top 8 gesture functions across train, validation, and test splits. Each cell reflects the probability
that function j co-occurs given function i within the same utterance. We observe strong mutual
co-occurrence between Emphasis and Deixis, as well as between Mental State and Emphasis,
suggesting these functions often emerge in jointly expressive speech segments. These co-occurrence
trends remain stable across dataset splits, reinforcing the semantic consistency of our annotations.

Figure 8(d) shows a radar plot of gesture function usage for the top 6 most frequent speakers. While
some functions like Deixis and Emphasis are commonly expressed across speakers, other functions
(e.g., Contrast, Modal, Quantification) exhibit speaker-specific variability. This aligns with prior
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Table 6: Gesture function statistics and mappings. For each function, we report its relative frequency
(%) across dataset splits and its typical gestural manifestation.

Function Frequency (%) Typical Gesture MappingTrain Val Test

Deixis 57.3 61.8 60.2 Index finger pointing, gaze direction shift
Emphasis 48.3 50.6 46.4 Beat gestures, small head nods
Mental State 42.0 41.1 41.1 Shrug, slow head tilt, hand on chest
Process 29.1 25.6 28.8 Circular motion, continuous hand movement
Quantification 16.7 20.6 17.0 Spread fingers, repeated motions
Spatial Relation 16.1 16.5 18.2 Hands indicating space or depth
Negation 13.2 12.3 11.0 Head shake, subtle hand wave
Affirmation 8.9 10.7 9.9 Big nod, repeated nods
Valence 8.1 7.0 7.1 Open hands (positive), recoiling motion (negative)
Modal 7.6 8.1 5.2 Tight fist, upward palm with tension
Comparison 6.6 7.7 5.6 Left-right hand sweep, comparative spacing
Interrogative 4.6 2.9 3.4 Raised eyebrows, open palms
Contrast 3.9 3.5 3.2 Alternating hand gestures, lateral head tilt
Intensifier 1.4 1.4 1.2 Sharp eyebrow raise, large gesture amplitude
Performance Factor 1.0 1.1 0.9 Gaze aversion, short blink, pause gestures
Physical Relation 0.6 0.6 0.7 Gesture showing size/shape (e.g., distance between hands)

(a) (b) (c) (d)

Figure 8: Co-occurrence and speaker-level analysis of gesture function annotations. (a–c)
show conditional co-occurrence heatmaps of the top 8 gesture functions across the train, validation,
and test splits, respectively. Each cell indicates the probability of function j appearing given
function i (i.e., P (j|i)). Strong pairings (e.g., Emphasis + Deixis, Mental State + Emphasis) reveal
compositional gesture semantics. (d) presents radar plots of function distribution across the top 6
speakers, revealing shared trends (e.g., high Deixis usage) and speaker-specific variation in gesture
behavior.

findings that gesture behavior reflects both discourse demands and speaker idiosyncrasies Kendon
(2004). Such variation presents a valuable modeling challenge for systems that aim to personalize
or adapt gesture generation to individual styles.
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Algorithm 1 Motion Pattern Detection

Require: Input data y ∈ RT , thresholds ϵs, ϵ
Ensure: Motion statistics and extrema relations

1: y← reshape to 1D array
2: if T ≤ 1 then return insufficient data
3: end if
4: // Extract key statistics
5: y0, yT ← y[0],y[T − 1]
6: imax, imin ← argmax(y), argmin(y)
7: ymax, ymin ← y[imax],y[imin]
8: δ ← ymax − ymin, ∆← yT − y0
9: // Check if motion is static

10: if δ < ϵs then
11: return {pattern: ‘linear’, range: δ, direction: sign(∆)}
12: end if
13: // Compute extrema relations
14: s← [|y0 − ymax| ≤ ϵ, |y0 − ymin| ≤ ϵ] ▷ Start position
15: e← [|yT − ymax| ≤ ϵ, |yT − ymin| ≤ ϵ] ▷ End position
16: in← [imax /∈ {0, T−1}, imin /∈ {0, T−1}] ▷ Interior extrema
17: return {y,∆, δ, s, e, in}

Algorithm 2 Motion Pattern Classification

Require: Extrema relations s = [smax, smin], e = [emax, emin], in = [inmax, inmin]
Ensure: Pattern type and description

1: if (smax ∧ emin) ∨ (smin ∧ emax) then
2: pattern← ‘round trip’ ▷ Opposite extremes
3: else if (smax ∨ smin) ∧ (emax ∨ emin) then
4: pattern← ‘return to extreme’ ▷ Same extreme
5: else if (smax ∨ smin) ∧ ¬(emax ∨ emin) then
6: pattern← ‘peak at start’ ▷ Leave from extreme
7: else if (emax ∨ emin) ∧ ¬(smax ∨ smin) then
8: pattern← ‘peak at end’ ▷ Arrive at extreme
9: else if inmax ∧ inmin then

10: pattern← ‘peak between’ ▷ Both extremes inside
11: else if inmax ⊕ inmin then
12: pattern← ‘single extreme inside’ ▷ One extreme inside
13: else
14: pattern← ‘complex extrema’ ▷ Boundary-aligned
15: end if
16: return pattern

Algorithm 3 Helper Functions

1: function GETDIRECTION(∆)

2: return


‘positive’ if ∆ > 0

‘negative’ if ∆ < 0

‘none’ otherwise
3: end function

4: function CLASSIFYMOVEMENT(∆, ϵs, ϵslow)

5: return


‘static’ if |∆| < ϵs
‘slow’ if |∆| < ϵslow
‘significant’ otherwise

6: end function
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Table 7: Training-time annotation prompt with visual grounding. Our framework analyzes
human gestures by integrating visual keyframes with speech.

System Prompt:
Assume you are the annotator for human gestures. Given images for each word the person speaks, you
need to provide fine-grained analysis from motion captions, to Function Derivations, Gesture Behavior
Mapping, and finally Inferred Intention. The Definition of Function Derivation & Gesture Behavior
Mapping are as follows:

[Function Derivation: 16 classes of Function Derivations]
[Gesture Behavior Mapping: How functions map to physical movements.]

User Prompt:
I will provide you with a transcript of speech, the atomic pose angle movement descriptions and
corresponding images showing the speaker’s gestures. Please analyze the motion and provide a detailed
description as the generation output following this format:

[Format Instruction]
Motion Analysis:
• Head: Describe head movements (nodding, shaking, tilting)
• Hands & Fingers: Describe hand gestures, positions, finger articulations
• Arms & Shoulders: Describe arm movements and shoulder positions
• Legs & Feet: Describe lower body movements and weight shifts
• Torso & Whole Body: Describe posture and body orientation
Function Derivation: List relevant functions from the prior knowledge
Gesture Behavior Mapping: Map each function to observed gestures
Inferred Intention: Explain overall communicative intent

[One-shot Example:]
Input: “I think this one is much better than the previous one.” [Images]
Output: Motion Analysis: [Head, hands, arms, legs, body movements]
Function Derivation: [Comparison, Emphasis, Deixis functions]
Gesture Behavior Mapping: [Function-to-gesture relationships]
Inferred Intention: [Communication intent analysis]

[Data to be Annotated]

C ANNOTATION PROTOCOL AND VALIDATION

C.1 MOTION PATTERN ANALYSIS

Unlike a action pattern Yang et al. (2025), the fine-grained movements for gestures is hard to
be detect and analysis. To achieve this goal, we propose a rule-based algorithm for classifying
temporal motion patterns by analyzing the geometric relationships between trajectory extrema and
boundaries. Given a motion sequence y ∈ RT (e.g., joint angles or hand positions), our method
extracts key statistics and determines the motion pattern through a deterministic decision process, as
detailed in Algorithms 1–2.

The algorithm operates in three stages. First, it computes fundamental statistics: boundary values
(y0, yT ), global extrema (ymax, ymin) with their indices, and the motion range δ = ymax − ymin

(Algorithm 1, lines 3–6). If δ falls below a static threshold ϵs, the motion is classified as linear/static,
avoiding misclassification of noise as complex patterns (Algorithm 1, lines 8–10).

For non-static motion, the algorithm analyzes extrema-boundary relations by computing boolean
indicators for whether the start/end positions are near (within tolerance ϵ) the global extrema, and
whether extrema occur in the trajectory interior (Algorithm 1, lines 12–14). These geometric
relations capture motion characteristics invariant to scale and translation.

Finally, pattern classification applies hierarchical logical rules based on these relations (Algo-
rithm 2). For instance, if the trajectory starts near one extreme and ends near the opposite
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Table 8: Test-time annotation prompt without visual grounding. To prevent data leakage in
evaluation, test-time annotations deliberately exclude visual information, requiring functions and
intentions to be inferred solely from linguistic content.

System Prompt:
Assume you are the annotator for human speech. Without access to gesture images, you need to infer likely
communicative functions and intentions from linguistic content alone. Based on Function Derivations,
analyze the words and its durations within the transcript. Then analyze the Inferred Intention. The
Definition of Function Derivation are as follows:

[Function Derivation: 16 classes of Function Derivations]

User Prompt:
I will provide you with:
• Previous two sentences for context
• Current sentence to be annotated
• No visual information or keyframes
Please analyze the linguistic content and provide predictions as follows:

Linguistic Analysis:
• Identify key words and phrases that typically trigger gestures
• Note speech elements that commonly correlate with specific movements
• Analyze the syntactic and semantic structure that implies gesture potential
Function Derivation: Infer likely functions based solely on linguistic content
Predicted Gesture Types: Suggest probable gesture categories without seeing actual movements
Inferred Intention: Predict the likely communicative intent based on linguistic cues

[One-shot Example for In-Context Learning without visual data]
[Data to be Annotated - transcript only]

(smax∧emin)∨(smin∧emax), it’s classified as a “round trip” pattern (Algorithm 2, lines 2–3). Other
patterns include “return to extreme” (starting and ending at the same extreme), “peak between” (both
extrema in the interior), and “single extreme inside” (one interior extreme), among others.

The algorithm employs context-aware thresholds that adapt based on motion type (e.g., different sen-
sitivity for hand positions vs. joint angles) and achieves O(T ) complexity through efficient single-
pass operations (Algorithm 2). This deterministic approach provides interpretable pattern detection
without requiring training data, making it suitable for real-time motion analysis applications where
understanding the type of movement (cyclic, monotonic, or complex) is crucial for downstream
tasks.

C.2 TRAINING-TIME ANNOTATION PROTOCOL (WITH MOTION FRAMES)

VLMs have demonstrate their effectiveness in visual reasoning Yu et al. (2025). To construct training
annotations, we leverage the this ability of VLMs and prompt GPT-4o-mini with both linguistic
and visual inputs. Each prompt includes: (1) The two previous sentences spoken by the speaker,
serving as linguistic context. (2) The current sentence to annotate, segmented into word units with
corresponding timestamps. (3) The sampled starting and ending keyframe image for each word,
together with the rule-based motion description annotation for the poses. We show the prompt
template in Tab.7. The model is instructed to generate a structured analysis with the following
outputs:

Motion Analysis: Detailed natural language description of body movements, including head
motion, arm/shoulder gestures, finger positions, torso orientation, and stance.

Function Derivation: Identification of pragmatic functions (e.g., Emphasis, Deixis, Negation) that
are linguistically relevant to the current sentence.

Gesture Behavior Mapping: Mapping between derived functions and observable gesture types
(e.g., pointing, nodding, brow raise) following established gesture theory.
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Table 9: Baseline annotation prompt without structure. This naive protocol excludes gesture
theory or function derivation, asking the model to directly infer the speaker’s communicative intent.
This leads to overgeneralized or underspecified outputs.

System Prompt:
You are an assistant that helps interpret the meaning behind a speaker’s body language and words. Given
the speaker’s sentence and gesture images for each word, describe what the speaker is trying to express
overall. Do not break the task into components; simply provide an intention summary based on what you
perceive.

[No prior gesture theory, no function derivation definitions]

User Prompt:
I will give you:
• A transcript of the speaker’s sentence
• An image for each word the speaker says
Please describe what the speaker is trying to express or communicate. Use natural language, and focus on
the overall message or feeling you perceive.

Output:
• One or two sentences summarizing the speaker’s communicative intention
• Do not perform motion breakdown or gesture labeling
• Do not mention gesture function classes or mappings
[Example:]
Input: “I think this one is much better than the previous one.” [Images]
Output: The speaker is expressing a strong preference for a current choice, likely implying confidence or
satisfaction.
[Data to be Annotated]

Inferred Intention: A communicative goal inferred from the alignment of motion and function
(e.g., emphasizing contrast, directing attention, expressing uncertainty).

This protocol captures visually grounded, multi-level annotation aligned with both motion and
speech.

C.3 TEST-TIME ANNOTATION PROTOCOL (TRANSCRIPT ONLY)

To avoid potential data leakage in test annotations, we exclude visual motion input from the VLM
prompts during test set annotation. Each test prompt contains the two prior sentences for context
and the current sentence to be annotated. No keyframes or motion descriptions are provided. The
VLM is instructed to: (1) Infer likely communicative functions based solely on linguistic content.
(2) Derive high-level communicative intent without visual grounding, as shown in Tab.8.

This simulates the actual evaluation scenario, where gesture models must predict motion solely from
speech, and prevents the test set annotations from being conditioned on ground-truth poses.

C.4 BASELINE ANNOTATION PROTOCOL (NO STRUCTURED PROMPT)

To examine the importance of structured reasoning, we design a baseline annotation protocol that
omits the function derivation and gesture behavior mapping stages. In this setting, GPT-4o-mini is
prompted with the current sentence and visual frames for each word, but is asked only to provide
an inferred intention directly—without performing intermediate motion analysis or reasoning about
communicative function. We present the prompt example in Tab.9.

This resembles a generic captioning-style instruction (e.g., “Describe what the speaker is trying to
express”), lacking any prior definitions or decomposition of gesture semantics. While this setup may
yield fluent outputs, it often results in: (1) Overgeneralization: Outputs tend to collapse nuanced
signals (e.g., emphasis, negation, deixis) into vague descriptions such as “the speaker is sharing
a thought.” (2) Hallucination: In the absence of reasoning stages, the model may infer incorrect
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Table 10: Comparative annotation outputs across two utterances. Structured annotations include
function derivation and gesture mapping. Improper annotations suffer from overgeneralization,
hallucination, or lack of compositionality.

Utterance A: ”I think watching anime is helpful for me”

Training-Time (w/
motion)

Function Derivation: Deixis (“me”), Mental State (positive belief).
Gesture Mapping: Deixis → hand at chest, Mental State → relaxed stance.
Inferred Intention: The speaker reflects personally on the benefit of anime.
Gestures reinforce introspection and confidence.

Test-Time
(transcript-only)

Function Derivation: Deixis, Mental State.
Gesture Mapping: [Not available]
Inferred Intention: The speaker shares a personal viewpoint with implied
conviction, likely supported by subtle gestures.

Improper: Flat In-
tent Only

Inferred Intention: The speaker is talking about anime.
[Missing: No function derivation, no motion context, no gestural insight.]

Improper: Halluci-
nated Purpose

Inferred Intention: The speaker is encouraging the audience to try watching anime
as a productivity tool.
[Issue: Adds persuasive intent not supported by transcript or body motion.]

Improper:
Misaligned Gesture
Mapping

Inferred Intention: The speaker is contrasting anime with something unhelpful.
[Issue: Misinterprets positive reflection as contrast/negation.]

Utterance B: ”I always try to move as much as I can when I’m not working”

Training-Time (w/
motion)

Function Derivation: Emphasis (“working”), Negation (“not working”), Modal
(“can”).
Gesture Mapping: Emphasis → steady hands reinforce commitment; Negation →
assertive fist posture; Modal → gestural space around ”can”.
Inferred Intention: Speaker emphasizes an active lifestyle outside of work.
Gestures signal assertion and capability.

Test-Time
(transcript-only)

Function Derivation: Same as above (Emphasis, Negation, Modal).
Gesture Mapping: [Omitted]
Inferred Intention: The speaker frames movement as a conscious, empowering
action. Likely gestures reinforce contrast and agency.

Improper: Flat In-
tent Only

Inferred Intention: The speaker is saying that they move around a lot.
[Issue: No deeper intent, no gesture mapping, missing compositional structure.]

Improper:
Misaligned Functions

Inferred Intention: The speaker is unsure whether they move enough and seems
to compare working vs. resting.
[Issue: Misses clear assertion and negation. Misreads modality.]

Improper: No Com-
position

Inferred Intention: The speaker likes to be active.
[Issue: Oversimplifies the sentence; collapses nuanced components (modal vs.
negation vs. emphasis) into a flat label.]

intentions (e.g., persuasive intent where none exists). (3) Loss of Interpretability: Since outputs
are not grounded in functional structure, they cannot be mapped to gesture execution in a controllable
or compositional way. This baseline highlights the necessity of structured prompting in generating
interpretable and semantically grounded gesture annotations. We include comparative examples in
Tab. 10 to illustrate these failure modes in context.

C.5 ANNOTATION VALIDATION AND HUMAN PREFERENCE STUDY

To assess the reliability of our annotation pipeline, we randomly sampled 100 utterances from the
training set. Each sample was annotated using both the training protocol (with-motion) and the test
protocol (transcript-only). Separately, expert annotators were provided with: (1) The utterance and
its transcript. (2) The full sequence of rendered motion frames.

Experts then independently labeled: (1) The communicative function(s) present. (2) The inferred
intention based on motion and speech. (3) The gesture types observed in the motion.
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We then presented annotators with three candidate annotations for each sample (training VLM, test
VLM, and human-generated), blinded and randomized. Annotators were asked to rate: (1) Which
annotation most accurately reflected the speaker’s intent. (2) Which annotation was most clearly
and consistently reasoned.

Results, shown in main paper Fig.4, indicate that the training-style annotation (with visual ground-
ing) achieved the highest human preference. However, the transcript-only test-style annotations
also achieved strong scores, outperforming human-generated annotations in clarity and structural
alignment. This validates the effectiveness of our prompt design and supports the use of VLM-
generated labels for both training and evaluation.

C.6 VLM CONSISTENCY AND HALLUCINATION AUDIT

To ensure the reliability of our VLM-based annotation pipeline, we performed two targeted sanity
checks: a consistency audit and a hallucination spot check.

Consistency Under Repeated Prompts. We randomly selected 100 utterances from the dataset
and re-prompted GPT-4o-mini three times each under the same configuration. We examined the
stability of the output across three categories: (i) function derivations, (ii) inferred intentions, and
(iii) gesture behavior mappings. Across the 300 trials: 93% of the outputs maintained consistent
function derivation labels. 84% preserved consistent gesture mappings across trials. These results
suggest that the model exhibits stable behavior under repeated prompting, with low variance in the
output of structural annotations.

Hallucination Spot Check. To assess the faithfulness of annotation outputs to visual evidence,
we conducted an expert spot check on 50 randomly sampled annotation instances. Each instance
included three components: (1) Motion Descriptionz, (2) Function–Gesture Mapping, and (3)
Inferred Intention. For motion descriptions, 4 out of 50 samples (8%) were flagged for partial
inconsistencies. These typically involved subtle over-interpretations—e.g., stating a “brow raise”
when the face appeared neutral in the keyframe. No instances of fully fabricated or unrelated
gestures were identified. For Function–Gesture Mapping, only 1 sample (2%) was marked as
problematic, where a mapping relation (e.g., from a deictic phrase to a pointing gesture) was missing.
The issue stemmed from under-specification rather than misalignment. For intention inference,
3 samples (6%) were flagged for slight exaggerations—such as over-interpreting neutral tones as
emphasizing emotion. These were still broadly reasonable within the context of the utterance,
and none were deemed to be outright hallucinations. Overall, the hallucination rate was low, and
all identified issues were minor and recoverable. Importantly, no samples exhibited completely
incorrect reasoning or disjointed alignment. This suggests the annotations are well-grounded and
highlights the strong prompt-following and contextual inference abilities of the VLM. We also
observe that minor hallucinations in motion description do not meaningfully degrade the accuracy
of intention inference, supporting the robustness of our pipeline.

C.7 HUMAN STUDY INSTRUCTIONS

We present the details how we conducted the manual hallucination checking from the users as
follows.

Study 1: Function–Gesture Mapping Coherence Objective: Evaluate whether gestures are
appropriate and coherent realizations of their corresponding communicative functions.

Instructions to Annotators: You are provided with a communicative function label (e.g.,
“Emphasis”) and a corresponding gesture description (e.g., “Right hand performs rhythmic beat”).
Please assess whether the described gesture appropriately fulfills or expresses the given function.

• Q1: Is this mapping coherent? (Yes / No)
• Q2 (Optional): If you selected ”No”, briefly explain why.

Evaluation Protocol: We randomly selected 50 samples and recruited 2 expert annotators. Final
coherence score is computed as the average percentage of “Yes” responses across raters.
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Study 2: Motion Description–Keyframe Fidelity Objective: Determine whether the motion
description accurately reflects the visible pose and dynamics presented in the keyframes.

Instructions to Annotators: You are shown a short video segment (or sequence of static keyframes)
and a motion description (e.g., “Left hand slowly rises while the head turns right”). Please judge
whether the described motion is clearly and accurately visible in the keyframes.

• Q1: Does the motion description match the keyframes? (Yes / Partially / No)
• Q2 (Optional): If “Partially” or “No”, please explain which aspects were inaccurate or

missing.

Evaluation Protocol: We used the same 50 annotated samples and had each rated by 2 human
experts. Final scores are reported as the percentage of samples rated “Yes” (fully correct) and
“Partially”.

Study 3: Inferred Intention Plausibility Objective: Assess whether the inferred communicative
intention is a reasonable high-level summary of the utterance and accompanying gesture behavior.

Instructions to Annotators: You are shown a spoken utterance (text transcript) and a corresponding
intention inference (e.g., “The speaker is attempting to reassure the listener about a concern”). Please
judge whether the intention is plausible based on the content and tone of the utterance.

• Q1: Is the inferred intention plausible given the utterance? (Yes / Somewhat / No)
• Q2 (Optional): If “Somewhat” or “No”, please describe why the inference may be

overstated or misaligned.

Evaluation Protocol: Each of the 50 samples was evaluated by 2 annotators. We report the
percentage of “Yes” and “Somewhat” responses to quantify plausibility and over-interpretation.

C.8 QUALITATIVE COMPARISON: STRUCTURED VLM VS. FREE-FORM HUMAN
ANNOTATIONS

To make the annotation protocols more concrete, we provide qualitative examples comparing our
structured VLM annotations to the free-form human baseline described in Sec. 3.2. For each
utterance, we show the transcript segment, a summary of the dominant motion pattern, the free-form
human description, and our VLM-based motion–function–intention annotation. These examples
illustrate that (i) both humans and the VLM operate over the same ontology and motion evidence,
and (ii) our structured pipeline encourages more explicit function labels and gesture mappings,
which are easier to use as supervision for gesture generation.

D IMPLEMENTATION DETAILS

Hierarchical Audio-Motion Modality Alignment. We adopt a dual-tower CLIP-based con-
trastive framework inspired by Tango Liu et al. (2024a), trained using a global InfoNCE loss. A
key design choice for handling audio-motion modality alignment is the separation into low-level
and high-level encoders.

For the audio stream, we represent input as raw waveforms and apply a 7-layer CNN (low-level)
followed by a 3-layer Transformer (high-level), following the design of Wav2Vec2 (Baevski et al.,
2020). For motion, we use a 15D representation and employ a 3-layer residual CNN (adapted from
the Momask Motion Tokenizer (Guo et al., 2024)) and a 3-layer Transformer.

We use a projection MLP to process low-level features and another projection MLP with mean
pooling for high-level features. Both audio and motion streams are temporally downsampled by a
factor of 4.

Local and Global Contrastive Loss. We retain the InfoNCE loss over CLS tokens for global
alignment, and additionally introduce a frame-level local contrastive loss. We treat frames within a
temporal window (i ± t) as positives and distant frames (i − kt, i − t, i + t, i + kt) as negatives,
with t = 4 and k = 4 under a 30 FPS setting. This localized loss encourages robustness to minor
temporal misalignments common in natural talking scenarios.
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Example 1

Transcript (snippet):
“So this part is especially important for the final result.”
Motion summary:
Right hand moves forward with a medium-amplitude beat on “this part”, then retracts; slight head nod on
“important”.
Free-form human annotation:
“The speaker uses the right hand to emphasize ‘this part’ and nods to stress the importance of the point.”
Structured VLM annotation (ours):
Functions: Emphasis; Mental State (importance).
Gesture behavior: Right-hand beat gesture toward the listener on “this part”, followed by retraction;
single head nod on “important”.
Inferred intention: The speaker highlights a critical component of the explanation and signals that the
audience should pay special attention to it.

Example 2

Transcript (snippet):
“On the one hand, we save time, and on the other, we reduce errors.”
Motion summary:
Both hands alternate laterally: right hand extends to the right on “one hand”, left hand extends to the left
on “other”. Mild torso sway follows the alternation.
Free-form human annotation:
“The speaker contrasts two aspects using both hands, pointing to each side while explaining the two
options.”
Structured VLM annotation (ours):
Functions: Contrast; Deixis.
Gesture behavior: Right hand extends to the right space on “one hand”, left hand extends to the left space
on “other”, forming a lateral contrast between two alternatives. Torso subtly follows the side-to-side
motion.
Inferred intention: The speaker frames the two benefits as parallel but distinct options, using spatial
contrast to help the listener distinguish them.

Example 3

Transcript (snippet):
“I think this is probably not the best approach.”
Motion summary:
Slight head tilt and brow raise on “think”; small outward palm-up gesture with both hands on “not the
best”.
Free-form human annotation:
“The speaker shows uncertainty or reservation, tilting the head and opening the palms while expressing
doubt about the approach.”
Structured VLM annotation (ours):
Functions: Mental State (epistemic stance); Attitude / Evaluation; Softened Negation.
Gesture behavior: Brief head tilt and eyebrow raise marking internal reflection on “think”; low-amplitude,
palm-up gesture suggesting hesitation and mild disagreement on “not the best”.
Inferred intention: The speaker carefully signals a skeptical evaluation while softening the disagreement,
indicating personal opinion rather than categorical rejection.

Table 11: Examples comparing the free-form human baseline and our structured VLM annotations.
Both use the same communicative function ontology and access to transcript + motion evidence, but
the structured protocol encourages explicit function labels and gesture behavior descriptions that are
easier to use as supervision for gesture generation.

Stop-Gradient on Low-Level Encoders. To jointly optimize both low- and high-level representa-
tions, we stop the gradient from the global InfoNCE loss to the low-level encoders, as in Tango Liu
et al. (2024a). This design promotes feature learning across hierarchy levels.

Intentional Gesture Tokenization. We design the motion tokenizer using a simplified version of
the encoder architecture above, followed by a decoder that mirrors its structure. To stabilize training,
we reduce both to a single Transformer layer but maintain the same residual CNN blocks. The latent
feature dimension is set to 512.
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We apply a self-attention layer to project the 512-dimensional encoding to 32 dimension for
quantization. The quantizer comprises 8 codebooks, with a dimension 32 and 8192 codes. For
post-quantization, another attention layer maps the 32D features back to 512D for decoding.

Intentional Gesture Generator. The generator operates on token sequences produced by the
tokenizer. It uses a Transformer with DiT Peebles & Xie (2023) architecture with 8 layers, a hidden
dimension of 256, and a feedforward dimension of 1024, and number of head to be 4. In each layer,
there is one self-attention, one cross-attention and followed with the feed-forward layer. For the
cross-attention layer, due to two levels of audio conditioning, we design the structure of Decoupled
Cross-Attention. Rather than forcing a single attention over mixed features, we apply two cross-
attention branches separately. Given a shared query Q, we compute:

Zr = SoftMax
(
QK⊤

r√
d

+P

)
Vr, Zi = SoftMax

(
QK⊤

i√
d

+P

)
Vi, (4)

where (Kr, Vr) and (Ki, Vi) are key-value pairs from rhythmic and intentional features, respec-
tively. The outputs Zr and Zi are summed to form the final conditioning representation.

This design introduces only a minimal overhead—adding separate key and value projections (only
adding 2% parameters) for each cross-attention layer—yet yields consistent improvements of
0.01–0.03 in FGD across validation runs. This demonstrates the benefit of explicitly modeling
disentangled prosodic and semantic cues during gesture generation.

Optimizer Settings. All modules are trained using the Adam optimizer Kingma (2014), with a
learning rate of 1 × 10−4, β1 = 0.5, and β2 = 0.999. We utilize a liner schedule with constant
decay for the learning rate for the model learning. The generator is trained on 800 epoches for both
single speaker setting and multi-speaker setting.

E ADDITIONAL EXPERIMENTS

Table 12: The quantitative results on
BEAT-2. We bold the best results.

Methods FGD (↓) BC (→) Diversity (→)

Ground-Truth – 0.703 11.97

HA2G Liu et al. (2022c) 1.232 0.677 8.626
DisCo Liu et al. (2022a) 0.942 0.643 9.912
CaMN Liu et al. (2022b) 0.664 0.676 10.86
DiffSHEG Chen et al. (2024b) 0.714 0.743 8.21
TalkShow Yi et al. (2023) 0.621 0.695 13.47
ProbTalk Liu et al. (2024b) 0.504 0.771 13.27
EMAGE Liu et al. (2023) 0.551 0.772 13.06
Audio2PhotoReal Ng et al. (2024) 1.02 0.550 12.47
MambaTalk Xu et al. (2024) 0.536 0.781 13.05
SynTalker Chen et al. (2024a) 0.469±0.13 0.736±0.04 12.43±0.23
GestureLSM Liu et al. (2025a) 0.409±0.03 0.714±0.12 13.24±0.23
Intentional-Gesture 0.379±0.05 0.690±0.04 11.00±0.21

Baseline Methods. We compare against a com-
prehensive set of recent gesture generation ap-
proaches Habibie et al. (2021); Liu et al. (2022a;b;
2023); Chen et al. (2024b); Yi et al. (2023); Liu
et al. (2024b); Xu et al. (2024); Liu et al. (2025a),
all evaluated under the 1-speaker setting for fair
comparison. This setting is used by most prior works
and allows precise alignment with publicly reported
results on BEAT-2.

Full Generation Results. Table 12 presents the
quantitative results on the BEAT-2 benchmark. Our
model, Intentional-Gesture, achieves state-of-the-art
performance across all key metrics. Notably, our method obtains the lowest FGD (0.379),
indicating the highest overall realism, while maintaining strong beat consistency (0.690) and
natural motion diversity (11.00). These results demonstrate the benefit of our intentional alignment
and conditioning mechanisms in generating gestures that are both semantically expressive and
rhythmically precise.

Table 13: The quantitative results on Au-
dio2PhotoReal. We bold the best results.

Methods FGD (↓) Diversity (→)

Ground-Truth – 2.50

EMAGE Liu et al. (2023) 4.43 2.13
Audio2PhotoReal Ng et al. (2024) 2.94 2.36
GestureLSM Liu et al. (2025a) 2.64 2.34

Intentional-Gesture 2.21 2.43

Results on Audio2PhotoReal. Table 13 presents the
quantitative results on the Audio2PhotoReal Ng et al.
(2024) benchmark. Our model, Intentional-Gesture,
achieves state-of-the-art performance across all key
metrics. These results demonstrate the benefit of our
intentional alignment and conditioning mechanisms in
generating gestures can also be generalizable to dyadic
conversational speaking and listening settings.

Effect of Speaker Diversity on Retrieval. To ex-
amine how speaker diversity influences model generalization, we fix the total number of training
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Table 14: Ablation on Speaker Diversity. Increasing speaker diversity consistently boosts retrieval
for both seen (Known) and unseen (Unknown) speakers, indicating better generalization.

Known Unknown
Num R@1↑ R@5↑ R@10↑ R@1↑ R@5↑ R@10↑
1 20.63 40.34 50.67 1.03 1.95 2.56
2 29.41 57.63 60.61 1.44 2.31 2.78
3 31.37 60.42 63.39 1.67 2.49 2.92
4 33.52 63.52 66.87 1.87 2.64 3.01

samples and vary only the number of distinct speakers contributing data. As shown in Tab. 14 (right),
increasing the number of training speakers from 1 to 4 significantly improves retrieval performance
across both in-domain (seen speakers) and out-of-domain (unseen speakers) settings.

Notably, for in-domain cases, Recall@1 rises from 20.63% (1 speaker) to 33.52% (4 speakers),
while for out-of-domain speakers, Recall@1 improves from 1.03% to 1.87%. These gains indicate
that speaker diversity not only enriches the representation space but also enables more robust cross-
speaker generalization. We hypothesis that training with a wider range of gestural patterns allows
the model to better disentangle speaker-specific motion from shared semantic-rhythmic alignment.

(a) (b) (c) (d)

Figure 9: Tokenizer ablation. We perform both global and local grid searches to study the effects
of codebook design choices on rFGD (×103). (a)–(c): Global sweeps varying one factor at a time;
(d): Local grid search over code count and dimension. All results confirm consistent trends: 8
codebooks, a code dimension of 32, and 8192 codes yield optimal or near-optimal performance.

Design Analysis. We ablate design choices of the tokenizer, including the number of codebooks,
code dimension, and code size. Fig. 9 shows that (1) 8 codebooks outperform fewer or more,
balancing representational capacity and model compactness; (2) a code dimension of 32 achieves
the best trade-off between expressiveness and compression; and (3) increasing code size improves
rFGD up to 8192 codes, with diminishing returns beyond. These trends are consistent across global
and local grid searches. For architecture design, we discover CNN presents better reconstruction
quality, but the transformer presents better generation FGD. Our hybrid design takes the advantage
of both variants.

Long Sequence Generation Quality. In the main paper, the experiment setting were conducted
to generate sequences for the whole testing sequence. Specifically, we follow the existing works Liu
et al. (2023; 2025a); Chen et al. (2024b) to utilize a sliding window for long sequence generation
(with an average of 65.66 seconds). Each time, we provide the previous 2.13 seconds (a sequence
length of 16 for neural representation) generated from the previous generated segment as the
condition for the current time segment. Naturally, this setting is easy to encounter the error
propagation issue (if the sequence from the previous generation present low quality, this error will
be propagated to the current time segment). To understand this effect, we further design the new
setting that replicate the inference setting of the same inference audio length as that utilized during
training (8.633 seconds). We present the comparison setting between EMAGE, GestureLSM and
Intentional-Gesture for single speaker setting in Tab.15. On long sequences, our model achieves the
best performance (FGD = 0.379, BC = 0.690, Div. = 11.00). Under short-sequence inference, our
FGD further improves by 0.133 (to 0.246), closely matching the improvements of 0.140 and 0.107
seen for EMAGE and GestureLSM, respectively—indicating a consistent FGD gap of 0.12 across
models. Note that BC is not reported (–) for 8.633 s segments, due to the tricky implementation to
select the precise audio segments from full ground-truth sequences with the generation segments.
These results underscore the impact of error accumulation in sliding-window co-speech gesture
generation and motivate future work on mitigating segment-wise propagation.
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Table 15: Comparison of long-sequence (full test sequences) vs. short-sequence (8.633 s) inference
on the single-speaker setting.

Long-seq Generation Short-seq Generation
FGD↓ BC→ Div.→ FGD↓ BC→ Div.→

GT 0.703 11.97 0.703 11.97
Single-speaker

EMAGE Liu et al. (2023) 0.570 0.793 11.41 0.430 - 9.57
GestureLSM Liu et al. (2025a) 0.408 0.714 13.24 0.301 - 12.12
Ours 0.379 0.690 11.00 0.246 - 10.21

Quantizer Comparisons Analysis To isolate the influence of architecture on tokenizer perfor-
mance, we standardized all encoder–decoder backbones to our CNN+Transformer design, which
we found consistently outperforms alternatives across various quantizers. Specifically:

(1) EMAGE Liu et al. (2023) originally uses separate VQ quantizers for upper body, lower body, and
hands. We replace its CNN encoders with our ResNet-style CNN blocks and normalize codebook
embeddings rather than using raw outputs. We keep the original codebook size and dimensionality
to demonstrate how reducing dimension and increasing code count affects performance.

(2) For RAG-Gesture Mughal et al. (2025), we re-implement their encoder and decoder based on
Latent Motion Diffusion from MotionLCM codebase Dai et al. (2024). The comparions indicates
for the continuous representation, it is hard to present the motion latent with a compressed latent
mean prediction from VAE encoder to ensure it is synchronized with the audio for generation.

(3) For ProbTalk Liu et al. (2024b), we maintain their design of product quantization while improve
the encoder and decoder with our design. This comparison indicates the product quantization, while
present a latent codebook split, unlike our codebook design of separate latent motion representation,
presents an inferior performance.

(4) For GestureLSM Liu et al. (2025a), we maintain the design of 6 layers of codebooks for
each body region (upper, lower and hands), which leads to 18 codebook in total. While this
multi-codebook approach achieves competitive reconstruction, its reliance on separate decoders for
sequential region generation reduces efficiency and harms overall motion quality.

F USER STUDY DETAILS

For user study, we recruited 20 participants with good English proficiency. To conduct the user
study, we randomly select videos from GestureLSM Liu et al. (2025a), EMAGE Liu et al. (2023),
CAMN Liu et al. (2022b) and ours. Each user works on 8 videos. The users are not informed of the
source of the video for fair evaluations. A visualization of the user study is shown in Fig 10.

Subjective Evaluation Protocol and MOS Statistics We briefly summarize the subjective
evaluation protocol and provide full statistics for the Mean Opinion Scores (MOS) reported in Tab. 2.

Scale and anchors. Participants rate each video on a 5-point Likert scale for: (1) realness, (2)
speech–gesture synchrony, and (3) smoothness. We adopt standard textual anchors: 1 = very poor
(clearly unnatural / unacceptable), 3 = acceptable (plausible but with noticeable artifacts), and 5 =
excellent (natural and highly convincing). MOS is computed as the average rating across all raters
and all clips for a given method and criterion.

Statistics and significance. Table 16 reports MOS as mean± standard deviation, together with 95%
confidence intervals computed via bootstrapping over clips. We further conduct paired Wilcoxon
signed-rank tests between our method and each baseline for each criterion. Across all three criteria,
our method significantly outperforms GestureLSM, EMAGE, and CAMN (p < 0.01).

G METRIC DETAILS

Fréchet Gesture Distance (FGD). We adopt Fréchet Gesture Distance Yoon et al. (2020) to
quantify the distributional similarity between real and generated gestures. Inspired by FID in
image generation, FGD compares mean and covariance statistics of latent features extracted from a
pretrained network:
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Figure 10: User Study Screenshot

Method Realness Synchrony Smoothness

CAMN 1.34± 0.12 2.23± 0.21 2.14± 1.23
EMAGE 2.01± 0.44 2.42± 0.13 2.31± 1.12
GestureLSM 3.43± 0.17 3.61± 0.22 3.48± 0.67
Ours 3.76± 0.21 4.61± 0.89 3.92± 0.32

Table 16: MOS statistics (mean ± standard deviation) for each method and criterion.

FGD = ∥µr − µg∥2 + Tr
(
Σr +Σg − 2(ΣrΣg)

1/2
)
, (5)

where (µr,Σr) and (µg,Σg) are the empirical means and covariances of real and generated gesture
embeddings, respectively. Lower FGD indicates better realism and distributional alignment.
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L1 Diversity (Div.). To assess sample-level variation, we compute L1 Diversity Li et al. (2021a),
defined as the average pairwise L1 distance across N generated sequences:

L1 Diversity =
1

2N(N − 1)

N∑
t=1

N∑
j=1

∥∥∥pit − p̂jt

∥∥∥
1
, (6)

where pit and p̂jt denote the joint positions at frame t for the i-th and j-th sequences. To focus on
local articulation, global translation is removed before computing distances.

Beat Constancy (BC). Beat Constancy Li et al. (2021b) measures rhythmic alignment between
gesture dynamics and speech. Motion beats are detected as local minima in upper body joint
velocity, while speech onsets define audio beats. BC is computed as:

BC =
1

|g|
∑
bg∈g

exp

(
−minba∈a ∥bg − ba∥2

2σ2

)
, (7)

where g and a are the sets of gesture and audio beats, respectively. BC closer to ground-truth implies
stronger gesture-speech synchronization.

H ETHICAL STATEMENT

While our work is centered on generating human motion videos, it raises ethical concerns due to
its potential misuse for photorealistic human motion retargeting. We emphasize the importance
of responsible use and recommend implementing practices such as watermarking and deepfake
detection to mitigate the risks involving deepfake videos and animated representations.

I REPRODUCIBILITY STATEMENT

We have provided the code of algorithmic annotation for the motion pattern analysis in the
supplementary material together with the code for the whole system.

J THE USE OF LARGE LANGUAGE MODELS

We utilize Large Langauge Models for the dataset annotation and paper polishing.

K LIMITATIONS

While our framework demonstrates strong performance across alignment, tokenization, and gesture
generation, several limitations remain.

First, our method relies on pre-annotated sentence-level intention descriptions to guide semantic
learning. This setup assumes that such annotations are either available or can be reliably extracted,
which may not hold in less curated or low-resource scenarios. Future work could explore
unsupervised or weakly supervised intention discovery to broaden applicability.

Second, while the multi-codebook tokenizer introduces structure into the latent space, it does not
guarantee complete disentanglement between semantic and rhythmic dimensions. Investigating
more principled inductive biases or factorized token learning may improve interpretability and
controllability.

Third, as shown in Sec.E, we discover that existing methods present error propagation issues for
long-sequence generation settings. We would like to highlight this issue and hope future works can
propose solutions for this fundamental issue for the co-speech gesture generation domain.

Fourth, in this work, while the motion description annotation, gesture-behavior function mapping
are intermediate outputs during the annotation procedure, they are not input as variables for the
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motion control but only intention annotations were utilized. We build this simple baseline because
during inference procedure, we are not able to obtain these motion relationed analysis. However,
we argue that the values of these annotations should not be ignore and hope future works can further
explore the use cases of these annotations as well for motion control and inspire the analysis of the
relationships between gesture motion patterns and linguistic cues from speech context.

Finally, although our hierarchical alignment improves generalization across speakers, domain
shifts—such as significant accent variation, disfluency, or cultural gesture norms—remain challeng-
ing. Incorporating domain adaptation techniques or cross-cultural gesture modeling could enhance
robustness in real-world deployments.
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