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Abstract

This paper investigates the Mechanism Design
aspects of the m-Capacitated Facility Location
Problem where the total facility capacity is lower
than the number of agents. Following Aziz et al.
[2020b], the Social Welfare of the facility location
is determined through a First-Come-First-Served
(FCFS) game where agents compete after the fa-
cility positions are established. When the number
of facilities is m > 1, the Nash Equilibrium (NE)
of the FCFS game is not unique, thus the utility of
the agents and the notion of truthfulness are not
well-defined. To address these issues, we consider
absolutely truthful mechanisms, i.e. mechanisms
able to prevent agents from misreporting regard-
less of the strategies played during the FCFS game.
We pair this more stringent truthfulness require-
ment with the notion of Equilibrium Stable (ES)
mechanism, i.e. mechanisms whose Social Welfare
does not depend on the NE of the FCFS game. We
show that the class of percentile mechanisms is
absolutely truthful and characterize under which
conditions they are ES. We then show that the
approximation ratio of each ES percentile mecha-
nism is bounded and determine its value. Notably,
when all the facilities have the same capacity and
the number of agents is large enough, it is possi-
ble to achieve an approximation ratio smaller than
1+ 1

2m−1 . We enhance our findings by empirically
evaluating the mechanisms’ performances when
agents’ true positions follows a distribution.

1 INTRODUCTION

The m-Capacitated Facility Location Problem (m-CFLP)
is a generalization of the m-Facility Location Problem (m-
FLP) in which each facility has a maximum service ca-

pacity (Brimberg et al. [2001], Pal et al. [2001], Aardal
et al. [2015]). Both the m-FLP and the m-CFLP are crucial
sub-problems in social choice theory, such as disaster re-
lief (Balcik and Beamon [2008]), supply chain management
(Melo et al. [2009]), healthcare (Ahmadi-Javid et al. [2017]),
clustering (Hastie et al. [2009], Auricchio et al. [2019]), and
public facility accessibility (Barda et al. [1990]). In its funda-
mental guise, the m-CFLP consists of locating m facilities
amidst n self-interested agents. Each facility has a capacity
limit, which describes the maximum amount of agents it
can serve. Since every agent requires access to the facility,
they prefer to have a facility located as close as possible to
their position. In this scenario, optimizing a communal goal
solely based on reported preferences leads to undesirable
manipulation driven by the agents’ self-interested behaviour.
For this reason, a key property that a mechanism should
possess is truthfulness, which ensures that no agent can gain
an advantage by misrepresenting their private information.
This stringent property, however, forces the mechanism to
produce suboptimal locations, leading to an efficiency loss
which is quantified by the approximation ratio – that is
the worst-case ratio between the objective achieved by the
mechanism and the optimal objective attainable (Nisan and
Ronen [1999]). Defining efficient routines that forbid agents
from manipulating is a key problem in mechanism design.

In this paper, we study the mechanism design aspects of the
m-CFLP. In particular, we focus on the framework presented
in (Aziz et al. [2020b]), where we have m facilities whose
total capacity is lower than the number of agents needing
accommodation. Moreover, the mechanism designer cannot
force agents to use a specific facility, therefore the agents
compete in a First-Come-First-Served (FCFS) game to de-
termine who is accommodated by the facilities. The overall
process therefore consists of two parts. First, the agents
report their position to a mechanism, which locates the
facilities. Second, the agents compete in the FCFS game
to determine their utilities. Notice that the Social Welfare
achieved by the mechanism and the utilities of the agents
depend on the Nash Equilibria (NE) of the FCFS game in-



duced by the facilities’ placements. When we need to place
a single facility, that is m = 1, the FCFS game has always
a unique NE. When m ≥ 2, however, the NE of the FCFS
game is no longer unique, posing a series of challenges:
if the NE is not unique, the agents’ utilities and thus the
Social Welfare achieved by a facility placement have differ-
ent values depending on the equilibrium of the FCFS game.
As a consequence, the approximation ratio also depends on
the specific NE. Furthermore, the classic definition of the
truthful mechanism is no longer suitable for this problem as
it does not consider the different strategies that the agents
may adopt during the FCFS game. Addressing these issues
are a major challenge for this problem, and thus they were
left as an open problem in (Aziz et al. [2020b]).

Our Contribution. In this paper, we study the mechanism
design aspects of the m-CFLP when the total capacity of
the facilities is less than the number of agents. In particular,
we extend the framework presented in (Aziz et al. [2020b])
to encompass problems in which there is more than one
capacitated facility to locate. First, we show that, regardless
of how we locate the facilities, the FCFS game induced by
the location has at least one pure NE. We then present a
notion of truthfulness that accounts for the different strate-
gies the agents can adopt during the FCFS game, which we
name absolute truthfulness. Finally, we introduce the class
of Equilibrium Stable (ES) mechanisms, i.e. mechanisms
whose output induces a FCFS game in which every NE
achieves the same Social Welfare.

Within this framework, we study the percentile mechanisms
(Sui et al. [2013]). We show that every percentile mecha-
nism is absolutely truthful. We then characterize the set of
conditions under which the a percentile mechanism is ES
and compute their approximation ratio.

First, we consider the case m = 2 and show that an ab-
solutely truthful and ES percentile mechanism exists. We
then characterize the approximation ratio of a percentile
mechanism as a function of the facilities’ capacity and to
the vector inducing the mechanism. As a consequence, we
determine the best percentile mechanism as a function of
the number of agents n and the capacities of the facilities k1
and k2. In particular, we show that the best approximation
ratio that an ES percentile mechanism placing two facilities
can achieve is 4

3 , which occurs when k1 = k2 = k and
n ≥ 3k.

Second, we consider the case in which m > 2. In this frame-
work, a percentile mechanism that is ES and places the fa-
cilities at more than two different locations might not exist.
However, when all the facilities have the same capacity and
n ≥ (2k − 1)m holds, there exists a percentile mechanism
whose approximation ratio is less than 1+ 1

m−1 . This result
has two interesting consequences: (i) it shows that, under
suitable assumptions, the percentile mechanisms are asymp-
totically optimal with respect to m and (ii) it highlights the

differences between the m-CFLP and the m-FLP. Indeed,
in the classic framework, any percentile mechanism has
unbounded approximation ratio whenever m > 2, (Walsh
[2020], Fotakis and Tzamos [2014]). Due to space limits,
some of the proofs are deferred to the Appendix.

Lastly, we empirically study the behaviour of the best per-
centile mechanisms under the assumption that the agents
are distributed according to a distribution µ. We focus on
the case in which we have two facilities, since it is the case
in which the gap between 1 and the approximation ratio of
the best possible percentile mechanism is largest. From our
analysis, we observe that when the agents follow a distri-
bution, the performances of the ES mechanism are close to
optimal, regardless of the distribution.

Related Work. The Mechanism Design aspects of the
m-FLP were firstly studied in (Procaccia and Tennenholtz
[2013]). Following this seminal work, various mechanisms
with constant approximation ratios for placing one or two
facilities on lines Filos-Ratsikas et al. [2017], trees (Feld-
man and Wilf [2013], Filimonov and Meir [2021]), circles
(Lu et al. [2010, 2009]), general graphs Alon et al. [2010],
Dokow et al. [2012], and metric spaces Meir [2019], Tang
et al. [2020] were introduced. Crucially, all these positive
results are limited to scenarios where the number of agents
is restricted or the number of facilities is either 1 or 2. For a
comprehensive survey of the mechanism design aspects of
the FLP, we refer to (Chan et al. [2021]).

The m-Capacitated Facility Location Problem (m-CFLP)
is a variation of the m-FLP in which each facility has a
capacity limit. The first game theoretical framework for
the m-CFLP was presented in (Aziz et al. [2020a]). In this
paper, the authors studied the case in which there are at
least two facilities whose total capacity is enough to accom-
modate all the agents and the mechanism designer has to
decide where to place the facilities and which agent can
use them. Following this initial study, in (Walsh [2022]) the
authors proposed a more theoretical analysis of the problem,
while in (Auricchio et al. [2024a]) it was shown that it is
possible to define deterministic mechanisms with bounded
approximation ratio when all the facilities have the same
capacities and the number of agents is equal to the total ca-
pacities of the facilities. Lastly, in (Auricchio et al. [2024b])
the m-CFLP is studied from a Bayesian mechanism design
perspective.

In this paper, we consider an alternative game theoretical
framework for the m-CFLP, firstly introduced in (Aziz et al.
[2020b]). This framework differs from the one proposed in
(Aziz et al. [2020a]) for two main reasons: (i) the total capac-
ity of the facilities is lower than the total number of agents,
thus part of the agents cannot be accommodated and (ii) the
mechanism designer does not enforce an agent-to-facility
assignment. Thus, after the positions of the facilities are
elicited, the agents compete in a First-Come-First-Served



(FCFS) game to access the facilities. When m = 1, the
FCFS game is trivial as the agents accommodated by the fa-
cility are the ones that are closer to the facility. When m > 1,
designing mechanisms becomes much more complicated as,
for example, the Nash Equilibrium (NE) of the FCFS game
is no longer unique. As a consequence the utility of every
agent depends on the specific NE of the game, making the
classic notion of trustfulness unfit for this framework.

2 SETTING STATEMENT

Let x⃗ ∈ [0, 1]n be the position of n agents in the interval
[0, 1]. We denote with k⃗ = (k1, . . . , km) the m-dimensional
vector containing all the capacities of the m facilities, so
that kj is the maximum number of agents that the j-th
facility can accommodate. We assume that the total capacity
of the facilities is less than the number of agents, hence∑

j∈[m] kj < n. In this case, a mechanism is a function
M : [0, 1]n → Rm that maps a vector containing the agents’
reports to a facility location y⃗ = (y1, . . . , ym), where yj
is the position of the facility with capacity kj . After the
mechanism places the facilities, agents compete in a First-
Come-First-Served (FCFS) game to access the facilities.

First-Come-First-Served Game. Let y⃗ = (y1, . . . , ym)
be a vector containing the position of the facilities to locate,
that is the facility with capacity kj is located at yj . Then,
given x⃗ ∈ [0, 1]n the vector containing the positions of the
n agents on the interval [0, 1], the FCFS game induced by
the facility location y⃗ is as follows:

(i) Each agent selects one of the facilities. Thus the set of
strategies of each agent is the set [m] := {1, 2, . . . ,m}.
We denote with s⃗ ∈ [m]n the vector containing a set of
pure strategies. For every s⃗, we denote with Sj ⊂ [n]
the set of agents that selected strategy j.

(ii) Denoted with di,j = |xi− yj | the distance of the agent
i from the location of the facility they selected, we
define Tj ⊂ Sj as the set containing the agents in
Sj whose value di,j is in among the kj lowest values.
Break ties according to the prefixed priority rule.

(iii) Finally, the utility of agent i is defined as follows

ui(x⃗, y⃗; s⃗) =

{
1− |xi − yj | if i ∈ Tj

0 otherwise
.

First, we show that every FCFS game has at least one pure
Nash Equilibrium (NE).

Theorem 1. For every x⃗ ∈ [0, 1]n, every y⃗ ∈ [0, 1]m, and
every capacity vector k⃗, the related FCFS game admits at
least one pure Nash Equilibrium.

When the vector k⃗ is clear from the context, we denote
the set of all the pure Nash Equilibria with NE(x⃗, y⃗). The

Social Welfare (SW) of the facility location y⃗ according
to γ ∈ NE(x⃗, y⃗) is defined as the sum of all the agents’
utilities, that is SWγ(x⃗, y⃗) =

∑
i∈[n] ui(x⃗, y⃗; γ). Notice

that when m = 1, the Nash Equilibrium of the FCFS game
is unique, since every agent can play only one strategy,
hence the SW of the game is well defined. This is no longer
true when we need to place more than one facility. Moreover,
when m > 1, the SW of the game changes depending on
the specific Nash Equilibrium.

Example 1. Let us consider the case in which we have 5
agents and need to place two facilities with k1 = k2 =
2. Let x⃗ := (0, 0.3, 0.4, 0.5, 0.9) ∈ [0, 1]5 be the vector
containing the agents’ positions. If y⃗ = (0.3, 0.5), both
γ1 = (1, 1, 2, 2, 2) and γ2 = (1, 1, 1, 2, 2) are pure NE
of the FCFS game. However, the SW of the FCFS game
depends on the specific NE, indeed SWγ1

(x⃗, y⃗) = 3.6 >
3.5 = SWγ2(x⃗, y⃗). Moreover, the utility the agent located
at 0.9 is zero or 0.6 depending on the equilibrium.

We define the optimal SW achievable on the instance x⃗ as

SWopt(x⃗) = sup
y⃗∈[0,1]m

sup
γ∈NE(x⃗,y⃗)

SWγ(x⃗, y⃗). (1)

Mechanism Design Aspects. A key property that a mech-
anism M must possess is truthfulness, which ensures that no
agent can increase its utility by misreporting their position.
As shown in Example 1, the utility of an agent depends on
the other agents’ strategies. For this reason, we employ a
stronger notion of truthfulness that keeps track of the differ-
ent strategies that agents can play in the FCFS game.

Definition 2.1. A mechanism M is absolutely truthful if no
agent increases its utility by misreporting, regardless of the
strategies played by other agents. More formally, for every
i ∈ [n], x⃗ ∈ [0, 1]n, and s⃗−i ∈ [m]n−1, we have

max
si∈[m]

ui(x⃗,M(x⃗); si, s⃗−i) ≥ max
s′i∈[m]

ui(x⃗,M(x⃗′); s′i, s⃗−i),

where (i) x⃗′ = (x′
i, x⃗−i) for every x′

i ∈ [0, 1], (ii) x⃗−i and
s⃗−i, are the vectors containing the positions and strategies
of the other n− 1 agents, respectively.

As for the optimal solution, the FCFS game induced by the
output of a mechanism has multiple NE, hence the SW of
the mechanism is not unique. For this reason, we introduce
the notion of Equilibrium Stable mechanism.

Definition 2.2. An absolutely truthful mechanism M is said
Equilibrium Stable (ES) if, for every x⃗, we have that

SW (x⃗,M(x⃗); γ) = SW (x⃗,M(x⃗); γ′)

for every Nash Equilibria γ, γ′ ∈ NE(x⃗,M(x⃗)).

An absolutely truthful mechanism is not necessarily ES. For
example, consider the mechanism that places the facilities



at (0.3, 0.5) regardless of the agents’ reports. No agent can
manipulate the outcome of the mechanism by changing their
reports, however, going back to Example 1, we have that
the mechanism induces two NE with different SW on the
instance (0, 0.3, 0.4, 0.5, 0.9). Finally, since we are consid-
ering the utilities of the agents, we define the approximation
ratio of an ES mechanism as the worst-case ratio of the
optimal SW and the SW achieved by the mechanism.

Definition 2.3. Let M be an absolutely truthful and ES
mechanism. We define the approximation ratio of M as

ar(M) = sup
x⃗∈[0,1]n

SWopt(x⃗)

SWM (x⃗)
,

where SWM is the SW value achieved by M on any of the
NE in NE(x⃗,M(x⃗)) and SWopt is defined in (1).

3 ABSOLUTELY TRUTHFUL AND ES
MECHANISMS TO PLACE MORE
THAN ONE FACILITY

In this section, we study the class of percentile mechanisms
and characterize under which conditions a percentile mech-
anism is absolutely truthful and ES.

Definition 3.1 (Percentile Mechanism, (Sui et al. [2013])).
Given a percentile vector v⃗ ∈ [0, 1]m, the routine of the
percentile vector associated with v⃗, namely PMv⃗ , is as fol-
lows: (i) The mechanism designer collects all the reports
of the agents {x1, x2, . . . , xn} and sorts them in non-de-
creasing order, so that xi ≤ xi+1. (ii) The mechanism then
places the m facilities at the positions yj = xij , where
ij = ⌊(n− 1)vj⌋+ 1 for every j ∈ [m].

All percentile mechanisms are absolutely truthful.

Theorem 2. PMv⃗ is absolutely truthful for every v⃗.

Proof. Toward a contradiction, let PMv⃗ be a percentile
vector such that, on instance x⃗ ∈ [0, 1]m, the agent whose
real position is xi can manipulate by reporting x′

i ∈ [0, 1].
Let y⃗ be the output of PMv⃗ in the truthful input and let
y⃗ ′ be the output of PMv⃗ after the agent manipulation. If
x′
i ≤ xi, we have that the position of the facilities that PMv⃗

places on the left of xi move further to the left of xi. Each
facility that was placed by PMv⃗ on the right of xi does
not change position. Thus it holds |xi − yj | ≤ |xi − y′j |
for every j ∈ [m]. Finally, let s⃗−i ∈ [m]n−1 be a vector
containing the strategies of the other agents and let us define
with Fi(z⃗) ⊂ [m] the set of strategies that give a non-null
utility to the agent at xi when the facilities are located at
z⃗. Since |xi − yj | ≤ |xi − y′j | for every j ∈ [m], we have
that Fi(y⃗

′) ⊂ Fi(y⃗). To conclude, notice that for every
si ∈ Fi(y⃗

′) the utility of the manipulative agent decreases,
as all the distances from the facilities have increased after
the manipulation, which concludes the proof.

Unfortunately, not every percentile mechanism is ES: con-
sider the situation represented in Example 1: the posi-
tion of the facilities are the output of the PMv⃗ with
v⃗ = (0.25, 0.75), however, different NE induce different
SW values. In what follows, we characterize the set of per-
centile mechanisms that are ES and study their approxima-
tion ratio. Owing to this characterization, we identify the ES
percentile mechanism with the lowest approximation ratio.
For the sake of simplicity, we start our discussion from the
case in which m = 2.

3.1 MECHANISMS TO PLACE TWO FACILITIES

First, we study the case in which we place two facilities. We
denote with k1 and k2 the capacities of the two facilities and
assume that k1+k2 < n. Without loss of generality, let k1 ≥
k2. First, we show that for every k1 and k2, there exists at
least a percentile mechanism that is ES. Moreover, for every
k1 and k2, we compute the approximation ratio of every
ES percentile mechanism and characterize the mechanism
achieving the lowest approximation ratio. In what follows
we assume that v1 < v2, as the case v1 = v2 is equivalent
to the case m = 1.

Theorem 3. Let v⃗ = (v1, v2) ∈ [0, 1]2 be a percentile
vector and let PMv⃗ be its associated percentile mechanism.
Let k1, k2 ∈ N and let n ∈ N be such that k1 + k2 < n and
⌊v2(n− 1)⌋ − ⌊v1(n− 1)⌋ > 1. Then, we have that PMv⃗

is ES if and only if

⌊v2(n− 1)⌋ − ⌊v1(n− 1)⌋ ≥ k2 + k1 − 1. (2)

Proof. First, we show that condition (2) is sufficient to make
a percentile mechanism ES. If v⃗ satisfies (2), there are al-
ways k1 + k2 agents such that y1 ≤ xi ≤ y2, where y1 and
y2 are the two facility locations returned by the mechanism.
Notice that if y1 = y2, then the two facilities share the
position with k1 + k2 agents, hence the SW of any NE is
equal to k1 + k2. Assume now that y1 < y2. Let us then
define rj the minimal values such that Brj (yj) ∩ {xi}i∈[n]

has cardinality larger or equal to kj
1. Since there are at least

k1 + k2 agents in [y1, y2], we have that r1 + r2 ≤ |y1 − y2|.
According to every NE, agents that do not belong to ei-
ther Br1(y1) or Br2(y2) have utility equal to 0. Indeed, if
s⃗ ∈ NE(x⃗,PMv⃗(c⃗)) is such that xi /∈ Br1(y1) ∩Br2(y2)
gets accommodated by y1, we would have that at least one
agent xj ∈ Br1(y1) has null utility, hence sj = 2. However,
if agent xj can increase its utility by changing its strategy
to sj = 1, hence s⃗ /∈ NE(x⃗,PMv⃗(x⃗)), which is a contra-
diction. By the same argument, we infer that every agent
xi ∈ (yj−rj , yj+rj) attains utility 1−|xi−yj | according
to every NE. Finally, we observe that the set of agents such
that |xi − yj | = rj that have non null utility may change
according to the specific NE, but the total utility of these

1Here Br(y) denotes the ball centered in y of radius r.



agents does not change. Thus condition (2) is sufficient to
ensure PMv⃗ is an ES percentile mechanism.

Lastly, we show that the condition is necessary. Let us as-
sume that v⃗ does not satisfy the condition (2). For the sake
of simplicity, let us denote with i1 = ⌊v1(n− 1)⌋+ 1 and
i2 = ⌊v2(n−1)⌋+1. Let us consider the following instance
x1 = · · · = xi1−1 = 0, xi1 = 0.4, xi1+1 = · · · = xi2−1 =
0.5, xi2 = 0.6 and xj = 0.9 for all the other indexes j > i2.
Notice that, since ⌊v2(n−1)⌋−⌊v1(n−1)⌋ > 1, there is at
least one agent located at 0.5. Following the same argument
used in Example 1, we can show that, depending on the
strategy played by the agents at 0.5, the Social Welfare of
the mechanism changes.

Next, we characterize the approximation ratio of every ES
percentile mechanism. Given a percentile vector v⃗ ∈ [0, 1]2

that satisfies condition (2), we denote with i1 = ⌊v1(n −
1)⌋ + 1 and i2 = ⌊v2(n − 1)⌋ + 1. Therefore that the
mechanism places the facility with capacity k1 at xi1 and
the facility with capacity k2 at xi2 .

Theorem 4. Given n, k1, and k2, let PMv⃗ an ES percentile
mechanism. Then, if i1 ≥ ⌊k1+1

2 ⌋, we have that

ar(PMv⃗) =
k1 + k2

min{k1 + (n− i2) + 1, k1+1
2 + k2}

(3)

If i1 < ⌊k1+1
2 ⌋ and i2 < n− ⌊k2+1

2 ⌋, we have

ar(PMv⃗) =
k1 + k2

min{k1 + (n− i2) + 1, i1 + k2}
.

Otherwise, we have

ar(PMv⃗) =
k1 + k2

min{k1 + k2+1
2 , k2 + i1}

.

Proof. We show the result for the case in which i1 ≥
⌊k1+1

2 ⌋, the other cases follow by a similar argument and is
deferred to the Appendix.

Our argument is as follows: we show that the worst instance
for the mechanism is either (i) xi = 0 if i ∈ {1, . . . , i1−1},
xi1 = 1

2 , and xi = 1 otherwise, or (ii) xi = 0 if
i ∈ {1, . . . , i2 − 1} and xi = 1 otherwise. Notice that
in both cases, the optimal SW is equal to k1 + k2, which is
the maximum SW attainable. Let us show that the worst case
instance has the form described in (i) or (ii). Owing to The-
orem 3, we have that there are at least k1 + k2 agents in the
interval [y1, y2], hence the agents that are accommodated by
the facility at yj are, up to ties, the kj agents that are closer
to yj . Since i1 ≥ ⌊k1+1

2 ⌋, the total utility of the agent ac-
commodated by the facility at y1 is minimized when all the
agents accommodated by y1 are all at the same distance from
y1, that is |xi1−1− y1| = |xi1+1− y1|. Given λ ∈ [0, 1], let
us consider the following instance: x1 = · · · = xi1−1 = 0,
xi1 = λ, xi1+1 = · · · = xi2−1 = 2λ. Let us now consider

the facility located at y2. By the same argument, we have
that if n− i2 is larger than ⌊k2+1

2 ⌋, then, for every λ, the po-
sition y2 that minimizes the utility is 1

2 + λ. In this case, the
cost of the mechanism is 2+(1−λ)(k1−1)+( 12+λ)(k2−1).
Since k1 ≥ k2, we have that the minimum SW is achieved
when λ = 1

2 , thus all the agents on the right of xi1 are
located at 1, all the agents on the left are located at 0 and
xi1 = 1

2 . In this case SWPMv⃗
(x⃗) = k1+1

2 + k2, while
SWopt(x⃗) = k1 + k2, which is the maximum utility achiev-
able and is attained by placing both facilities at 1.

Consider now the case n − i2 < ⌊k2+1
2 ⌋. In this case, for

every λ, the worst position for y2 is 1, hence the SW of the
mechanism is i2 +1+ (1−λ)(k1 − 1)+2λ(k2 − i2), thus,
if 2(k2 − i2) > (k1 − 1), the SW is minimized when λ = 0.
From a similar computation, we retrieve that SWPMv⃗

(x⃗) =
k1+ i2, while SWopt(x⃗) = k1+k2. We conclude the thesis
by combining these two cases.

Consequentially, we characterize the best ES percentile
mechanisms given any 2-dimensional vector k⃗. In particu-
lar, we show that the approximation of the best percentile
mechanism decreases as ∆ := n− (k1 + k2) increases.

Theorem 5. Given n and k⃗, let us define ∆ = n−(k1+k2),
then we have that the ES percentile mechanism that achieves
the lowest approximation ratio is induced by the percentile
vector v⃗ = ( i1n ,

i2
n ), where i1 and i2 are as follows

(i) i1 = ⌈k1

2 ⌉ and i2 = n − ⌊k2

2 ⌋ if ∆ ≥ ⌈k1+k2

2 ⌉, in
which case ar(PMv⃗) =

k1+k2
k1+1

2 +k2

,

(ii) i1 = k1 − k2 + α and i2 = n − α, where α =
⌈∆−(k1−k2)

2 ⌉, if k1 − k2 ≤ ∆ ≤ ⌊k1+k2

2 ⌋ + 1, in
which case ar(PMv⃗) =

k1+k2

i1+k2
, and

(iii) i1 = ∆ + 1 and i2 = n otherwise, in which case
ar(PMv⃗) =

k1+k2

∆+k2+1 .

Notice that the lowest approximation ratio is achieved when
∆ ≥ ⌈k1+k2

2 ⌉. Moreover, notice that the smaller the gap
between k1 and k2, that is k1−k2, the lower the approxima-
tion ratio of the best percentile mechanism. In particular, the
lowest approximation ratio is attained when k1 = k2 and
n ≥ 3k, in which case there exists a percentile mechanism
whose approximation ratio is 4

3+ 1
k

∼ 4
3 .

3.2 BEYOND TWO FACILITIES

We now extend our study to the case in which we want
to place m > 2 facilities. For the sake of simplicity, we
consider m facilities that have the same capacity k. First,
we extend Theorem 3 to this framework.

Theorem 6. Let k be the capacity of m facilities. Moreover,
let v⃗ be a percentile vector such that v1 < v2 < · · · < vm
so that v⃗ does not possess two equal entries and let PMv⃗ be



its associated percentile mechanism. Moreover, assume that
⌊vj+1(n − 1)⌋ − ⌊vj(n − 1)⌋ > 1 for every j ∈ [m − 1].
Then PMv⃗ is ES if and only if the following system of
inequalities is satisfied

⌊v2(n− 1)⌋ − ⌊v1(n− 1)⌋ ≥ 2k − 1

. . .

⌊vm(n− 1)⌋ − ⌊vm−1(n− 1)⌋ ≥ 2k − 1

. (4)

The proof of Theorem 6 follows an argument similar to the
one used to prove Theorem 3, so we defer it to the Appendix.
The set of inequalities (4) allows us to characterize the
vectors v⃗ that induce an ES percentile mechanism PMv⃗

depending on the capacity k. Notice that system (4) is not
feasible if k > n+m

2m or, equivalently, n < (2k − 1)m.
Indeed, by summing all the inequalities in (4), we have that

⌊vm(n− 1)⌋ − ⌊v1(n− 1)⌋ ≥ (2k − 1)m.

Since n ≥ ⌊vm(n−1)⌋−⌊v1(n−1)⌋, we must indeed have
that n ≥ (2k − 1)m. Although when n < (2k − 1)m it is
impossible to define an ES percentile mechanism that places
m facilities at m different locations, it is possible to define
an ES percentile mechanism that places all the facilities at
one or two different locations. To keep the discussion on
track, we first study the case in which system (4) admits a
solution and defer the pathologic case to a dedicated section.

3.2.1 Case n ≥ (2k − 1)m.

In this case, it is possible to select an ES and absolutely
truthful percentile mechanism that places the m facilities at
m different positions among the agents’ reports.

Theorem 7. If k < n+m
2m , then given a ES PMv⃗ , we have

ar(PMv⃗) =

{
mk

(m− 1
2 )k+

1
2

if i1, n− im ≥ ⌊k+1
2 ⌋

mk
(m−1)k+min{i1,n−im} otherwise

where i1 = ⌊v1(n− 1)⌋+ 1 and im = ⌊vm(n− 1)⌋+ 1.

Proof. The case in which i1, n−im ≥ ⌊k+1
2 ⌋ follows by the

same argument adopted in the proof of Theorem 4. Indeed,
by definition of the mechanism, the SW of the mechanism
is minimized when each facility yj = x⌊vj(n−1)⌋+1 is such
that |yj − x⌊vj(n−1)⌋| = |yj − x⌊vj(n−1)⌋+2|. Hence the
mechanism achieves the minimal SW when x⌊vj(n−1)⌋+1 =
2j−1
2m for every j ∈ [m] and xi =

l
m if ⌊vl(n − 1)⌋ + 1 <

i < ⌊vl+1(n− 1)⌋+ 1 where l = 0, 1, . . . ,m, v0 = 0 and
vm+1 = 1. On such instance the SW of the mechanism is
(m − 1

2 )k + 1
2 . Notice the mechanism achieves the same

SW on the instance x⃗O defined as (xO)i = 0 for every
i ≤ ⌊v1(n−1)⌋+1, and (xO)i = 1 otherwise. To conclude,
we observe that the optimal SW on instance x⃗O is mk.

The case in which min{i1, n − im} ≤ ⌊k+1
2 ⌋ follows a

similar argument and it is deferred to the Appendix.

In particular, for every given the capacity k and number of
facility m, it is possible to detect the best possible ES and
absolutely truthful percentile mechanism.

Theorem 8. Given k, m, and n, let us define α =
⌊ (n−2k(m−1)+1)

2 ⌋. The vector v⃗ where vj =
α+(2k−1)(j−1)

n
for j ∈ [m] induces the ES percentile mechanism with the
lowest approximation ratio. In particular, if n ≥ 2km, the
approximation ratio of PMv⃗ is less than 1 + 1

2m−1 .

Notice that, if n ≥ 2km, the approximation ratio of the
best percentile mechanism decreases as the number of fa-
cilities increases. Noticeably, when m goes to infinity, the
approximation ratio goes to 1.

3.2.2 Case n < (2k − 1)m.

We now consider the case in which the number of agent is
too small and thus Theorem 6 does not hold. In this case,
it is possible to circumvent Theorem 6, by considering an
percentile mechanism that places all the facilities at either
one or two locations, that is the percentile mechanisms
whose associated vector v⃗ has at most two different entries.
When more than one facility is placed at the same location,
we considered them as a unique facility whose capacity is
the sum of all the facilities placed at the common location.

Two different entries. When the mechanism places the
facilities at two different locations, we can use the results
proposed in Section 3.1. Indeed, owing to Theorem 5, we
know that the approximation ratio becomes lower as the
difference in capacity between facilities is smaller. For this
reason, we consider a mechanism that splits the facilities as
evenly as possible.

Mechanism 1 (All-aside mechanism). Let k be the
capacity of m facilities and let a, b ∈ N be such that a +
2mk ≤ b ≤ n. Given in input a vector x⃗ ∈ [0, 1]n, the
All-aside mechanism associated with a and b, namely
ASa,b, places ⌈m

2 ⌉ facilities at xa and ⌊m
2 ⌋ facilities at xb.

Owing to Theorem 3, the All-aside is absolutely truthful
and ES. Moreover, we can extend Theorem 4 to this case.

Theorem 9. The approximation ratio of every ASa,b is
determined by Theorem 4 by setting k1 = ⌈m

2 ⌉k, k2 =
⌊m

2 ⌋k, i1 = a, and i2 = b.

One different entry. Lastly, we consider the case in which
the mechanism places all the facilities at one place, hence
the percentile vector v⃗ = (v, v, . . . , v) for a v ∈ [0, 1]. In
this case, we have that most of the results presented in (Aziz
et al. [2020b]) extend trivially, hence every v⃗ = (v, v, . . . , v)
induces an absolutely truthful and ES mechanism. Moreover,
the best percentile vector is m⃗ = (0.5, 0.5, . . . , 0.5). In our
case, however, the approximation ratio guarantees are worse



than the one presented in (Aziz et al. [2020b]). Indeed, since
in our case the capacity can be split at m different locations,
the optimal solution has a further degree of freedom that
heightens the approximation ratio of the mechanism.

Theorem 10. Let k > 1 be the capacity of the facilities and
fix v⃗ = (0.5, 0.5, . . . , 0.5). If n ≤ (m+ 1)k, we have that

ar(PMv⃗) =
2(m− 1)k + (n− (m− 1)k) + 1

mk + 1
.

Otherwise, ar(PMv⃗) =
2mk
mk+1 = 2− 2

mk+1 .

Notice that the lowest approximation ratio occurs when n =
km+1, in which case ar(PMv⃗) = 2− k

mk+1 . Thus, as the
number of facilities increases, we attain an approximation
ratio that converges to 2.

4 EXPERIMENTAL RESULTS

In this section, we complement our theoretical study of the
m-CFLP with scarce resources by running several numer-
ical experiments. In particular, we evaluate the Bayesian
approximation ratio of the percentile mechanisms identified
by Theorem 5. The Bayesian approximation ratio measures
how close the expected SW induced by the mechanism and
the expected optimal SW are when the agents’ positions are
samples drawn from a probability distribution, (Hartline and
Lucier [2010]). Therefore, the Bayesian approximation of
PMv⃗ is

Bar(PMv⃗) :=
EX⃗∼µ[SWPMv⃗

(X⃗)]

EX⃗∼µ[SWopt(X⃗)]
, (5)

where X⃗ is a n dimensional random vector distributed ac-
cording to µ. Our aim is to show that percentile mechanisms
that are optimal according to the worst-case analysis, namely
PMbest (see Theorem 5), are optimal or quasi-optimal from
a Bayesian perspective as well. For this reason, we run two
tests: (i) first, we assess to what extent the Bayesian approx-
imation ratio depends on the percentile vector inducing the
percentile mechanism when all the agents are independent
and identically distributed (i.i.d.). In particular, we compare
PMbest with PM(0,1), that is the percentile mechanism
induced by v⃗ = (0, 1). (ii) Secondly, we assess the Bayesian
approximation ratio of PMbest when diverse agents within
the populations follow distinct distributions. This examina-
tion helps determine the suitability of PMbest for address-
ing problems involving non-identically distributed agents.

We run our experiments for different distributions µ and
different capacity vectors k⃗ in order to provide a comprehen-
sive view. Moreover, since the highest approximation ratio
is attained when m = 2, we only consider cases in which
we need to place two facilities. Due to space limits, part of
the results are deferred to the Appendix.

Throughout our experiments, we sample the agents’ posi-
tions from three different probability distributions supported
over [0, 1]: (i) the uniform distribution, namely U whose
density is equal to 1 over a [0, 1], (ii) the triangular distribu-
tions of parameter c ∈ (0, 1), namely T , whose density is
equal to 2(1−x) over a [0, 1], and (iii) the Beta distributions
of parameters α, β > 0, namely B(α, β) whose density is
equal to Cxα−1(1− x)β−1 over a [0, 1], where C is a nor-
malizing constant. We consider different capacity vectors
k⃗. Specifically, we consider balanced capacities k⃗ = (k, k)

and unbalanced capacities k⃗ = (k1, k2), k1 > k2. For the
case of balanced capacities, we consider k = αn, where
α = 0.1, 0.2, 0.3, and 0.4. For the case of unbalanced ca-
pacities, we consider the slightly unbalanced capacities i.e.
k⃗ = (0.4n, 0.3n), and highly unbalanced capacities i.e.
k⃗ = (0.6n, 0.2n), (0.7n, 0.1n). Lastly, for every instance
x⃗, we do not compute the optimal SW, but rather an upper
bound to that quantity. Indeed, the optimal position of the
facilities can be any couple of points in [0, 1]. Furthermore,
to select the optimal facility location we must compute all
the NE of every possible facility location and select the one
achieving the highest SW. For these reasons, we consider
an easier to compute upper bound that is obtained by con-
sidering the maximum SW achievable when the mechanism
forces agents to use a specific facility, that is

SWUB(x⃗) := sup
y1,y2∈[0,1]

sup
π∈Π

∑
i∈[nu]

∑
j∈[2]

(1− |xi − yj |)πi,j

where Π is the set containing all the matching π ⊂ [n]× [2]
such that (i) every i ∈ [n] has degree that is equal or lower
than 1 and (ii) every j ∈ [2] has degree equal to kj . This
quantity is easy to compute, as the set of optimal positions
for the facilities coincides with the positions of the agents.

Experiment results – Comparing different percentile
mechanisms. In this experiment we want to assess to
what degree the percentile vector affects the performances
of the percentile mechanisms it induces. For this reason, we
compare the empiric Bayesian approximation ratio of the
best percentile mechanism PMbest (identified via Theo-
rem 5), with the performances of a mechanism that places
the facilities at the extreme agents’ positions. That is, the
percentile mechanism induced by the vector w⃗ = (0, 1),
namely PM(0,1). We first consider the case of balanced ca-
pacities k⃗ = (k, k). Figure 1 shows the average and the 95%
confidence interval (CI) of Bayesian approximation ratio
for n = 10, 20, 30, 40, 50 when the agents are distributed
according to U and T . Each average is computed over 500
instances. We observe that the percentile mechanism identi-
fied in Theorem 5 achieves the a Bayesian approximation ra-
tio that is lower than the one obtained by PM(0,1) for every
value of n. Moreover, the Bayesian approximation ratio of
PM(0,1) consistently increases as the number of agents in-
creases, while the Bayesian approximation ratio of PMbest

remains constant regardless of n. Figure 2 shows the average
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Figure 1: The Bayesian approximation ratio of PMbest

and PMw⃗ in the balanced case, i.e. k1 = k2 = αn for
n = 10, 20, . . . , 50. Every column contains the results for
different vector k⃗. The first row contains the results for the
Uniform distribution U , while the second row the results for
the triangular distribution T .
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Figure 2: The Bayesian approximation ratio of PMbest and
PMw⃗ when the agents are distributed according to T and
the facilities are unbalanced, i.e. k1 = α1n ̸= k2 = α2n for
n = 10, 20, . . . , 50. Every column contains the results for
different vector k⃗.

and the 95% confidence interval (CI) of Bayesian approxi-
mation ratio for n = 10, 20, 30, 40, 50 when the capacities
of the two facilities are not balanced, and the agents are
distributed according to T . More specifically, we consider
k⃗ = (0.4n, 0.3n) and (0.7n, 0.1n). Again, we observe that
the percentile mechanism identified by Theorem 5 has a
lower and more stable Bayesian approximation ratio, high-
lighting how choosing a percentile vector affects the average
performances of the mechanism.
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Figure 3: The Bayesian approximation ratio of PMbest for
a non i.d. population in the balanced, i.e. k1 = k2 = αn
with α = 0.1, 0.2, 0.3, and for n = 10, 20, . . . , 50. Every
column contains the results for different Λ.

Experiment results – Bayesian approximation ratio for
non i.d. populations. In this test, we empirically evaluate
the Bayesian approximation ratio of the percentile mecha-
nisms identified by Theorem 5 when agents are not iden-
tically distributed. In particular, we consider the case in
which each agent of the population is distributed according
to U , T , and B(5, 5). Every instance is identified by the
percentages of agents following each distributions, hence
we set Λ = (λU , λB , λT ), where λU = nU

n , λB = nB

n , and
λT = nT

n , n is the total number of agents, and nU , nB , and
nT are the number of agents following the uniform, Beta,
and Triangular distribution, respectively.

In Figure 3, we report two instances with two different
vectors Λ. We consider the case in which the capacities of
the facilities are balanced, that k1 = k2 = ⌊αn⌋, where
α = 0.1, 0.2, and 0.3. From our experiments we observe
that the percentile mechanism achieves an almost optimal
Bayesian approximation ratio (peaking at 1.01), that it is
constant regardless of n, and that the CI is small (around
0.003). Our experiments confirm that the best percentile
mechanism according to the worst-case analysis behave
almost optimally in a Bayesian framework.

5 CONCLUSION AND FUTURE WORKS

In this paper, we studied the mechanism design aspects of
the m-CFLP under the assumption that the total capacity of
the facility is smaller than the number of agents to accom-
modate. We assume that, after the position of the facility
is fixed, the agents compete in a First-Come-First-Served
(FCFS) game to gain access to the facilities. Our main con-
tribution consist in studying the case in which m ≥ 2, which
was left as an open questions in the paper introducing the
problem (Aziz et al. [2020b]). Our approach emphasizes
the significance of absolutely truthful mechanisms, which
prevent agents from benefiting regardless of their strategy
in the FCFS game, and ES mechanisms, whose SW remains
independent of the FCFS game equilibrium. We show that



the percentile mechanisms (Sui et al. [2013]) are absolutely
truthful and characterize under which conditions they are ES.
We show that ES percentile mechanisms achieve bounded
approximation ratio for every m > 1 and characterize the
best percentile vector as a function of n, k1, and k2. Inter-
estingly, if n > (2k − 1)m, the approximation ratio of the
best percentile mechanism 1 + 1

2m−1 , i.e. is asymptotically
optimal with respect to the number of facilities. Lastly, we
run extensive numerical results to study the performances
of the percentile mechanism from a Bayesian perspective.

In our future works, we aim at extending this problem to
the case in which the agents are distributed to higher di-
mensional spaces or graphs. Another interesting research
avenue is to study how changing the preferences of the
agents affects the performances of the mechanisms. Finally,
it would be interesting to study the asymptotic Bayesian ap-
proximation ratio as done in (Auricchio et al. [2024b]) and
beyond worst-case analysis proposed in (Deng et al. [2022])
to complement and strengthen our experimental results.
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APPENDIX

In this appendix, we report the proofs and the experimental results missing from the main body of the paper.

A MISSING PROOFS

Proof of Theorem 1. Let x⃗ be the vector containing the position of the agents and let y⃗ be the position of the facilities. We
denote with kj the capacity of the facility located at yj for every j ∈ [m]. In what follows, we assume that the set of agents
has an inner ordering that decides how to break ties.

Let us define D the set containing all the distances agents to facility, that is D = {|xi − yj |}i∈[n],j∈[m].

Let c⃗ ∈ Rm be the null vector, that is cj = 0 for every j ∈ [m]. We now construct a Nash Equilibrium through the following
iterative routine.

1. Let d be the minimum of the elements in D. Up to a tie, there exist a couple (i1, j1) ∈ [n]×[m] such that d = |xi1−yj1 |.
We set cj1 = cj1 + 1, si1 = j1, and remove all the elements of the form |xi1 − yj | from D. Then, if cj1 = kj1 , we
remove from D all the elements of the form |xi − yj1 |.

2. We repeat the routine of point (1) until D becomes empty.

3. If si = 0 for some i ∈ [n], we set them to be equal to 1.

Since D is discrete, the routine terminates in finite number of iterations and the output is a vector containing a set of agents’
pure strategies.

We now show that the output of the routine s⃗ is a Nash Equilibrium by proving that no agent i can increase its payoff by
deviating from playing si. Toward a contradiction, assume that an agent i can increase its payoff by playing s′i rather than si.
By definition of si, we have that if |xi − ys′i | < |xi − ysi |, then there are at least ks′i agents that are closer to ys′i or that
have a higher priority order than agent i and play strategy s′i. Thus the agent cannot gain a benefit from deviating from si,
which proves that s⃗ is a pure Nash Equilibrium.

Proof of Theorem 4. To complete the proof, we need to consider the case in which i1 < ⌊k1+1
2 ⌋. First, we consider the case

in which i2 < n− ⌊k2+1
2 ⌋. By the same argument used to prove the case in which i1 ≥ ⌊k1+1

2 ⌋, we have that the worst case
instance in this case is

xi =


xi = 0 if i = 1, . . . , i1,

xi = λ if i = i1 + 1, . . . , i2 − 1,

xi = 1 otherwise.

for some λ ∈ [0, 1], since the SW of the mechanism is minimized when the i1-th and i2-th agents are at the extremes of the
interval. For any value of λ, the SW of the mechanism is then

SW (x⃗) = i1 + (n− i2) + (1− λ)(k1 − i1) + λ(k2 − (n− i2)).

Since SW (x⃗) is linear in λ, we have that the minimum is achieved at either λ = 0 or λ = 1. Thus the minimal SW
achievable is

min{k1 + (n− i2), k2 + i1}.
Since in both cases we have that the optimal SW is k1 + k2, we conclude the thesis for this specific case.

Lastly, we consider the case in which n− i2 ≥ ⌊k2+1
2 ⌋. In this case, the worst case instance places the first i1 agents on the

extreme left side, while places y2 in between two clusters of agents. Therefore we consider the following instance

xi =


xi = 0 if i = 1, . . . , i1,

xi = λ if i = i1 + 1, . . . , i2 − 1,

xi2 = λ+1
2

xi = 1 otherwise.

The SW induced by the mechanism is then

SW (x⃗) = i1 + 1 + (1− λ)(k1 − i1) +
1 + λ

2
(k2 − 1).



Again, since the SW is linear in λ, we have that the minimium is attained at either λ = 0 or λ = 1. Then the minimum SW
achievable by the mechanism is

min
{
k1 +

(k2 + 1)

2
, k2 + i1

}
.

To conclude notice that in both cases, the SW attained by the optimal solution is k1 + k2.

Proof of Theorem 5. When ∆ ≥ ⌈k1+k2

2 ⌉, the indexes i1 = ⌈k1

2 ⌉ and i2 = n− ⌊k2

2 ⌋ are well defined. Owing to Theorem 3
and by definition of ∆, we have that PMv⃗ is ES. Finally, from Theorem 4, we infer that ar(PMv⃗) =

k1+k2
k1+1

2 +k2

, which is

the smallest approximation ratio achievable by an ES percentile mechanism.

To conclude the proof, we need to show that the points (ii) and (iii) hold. We do that by carefully tuning i1 and i2. For the
sake of simplicity, we consider i1 and i2 to be rationals, to retrieve the real integer indexes, it suffices to take the floor or the
ceil functions of the quantities we retrieve.

Let us consider the case (ii), that is k1 − k2 ≤ ∆ ≤ ⌊k1+k2

2 ⌋+ 1. Owing to Theorem 4, we retrieve the best values i1 and i2
by maximizing the quantity

min{k1 + (n− i2), i1 + k2}.
Thus, we look for i1 and i2 such that

k1 + (n− i2) = i1 + k2,

subject to the constraint
n− i2 + i1 = ∆,

since, owing to Theorem 2, k1 + k2 agents must lay between xi1 and xi2 . By a simple computation, we have that

n− i2 =
k2 − k1 +∆

2
,

thus i1 = ∆−(k2−k1)
2 = k1 − k2 +

∆−(k2−k1)
2 and i2 = n− k2−k1+∆

2 , which concludes the proof of case (ii).

Lastly, we consider case (iii). In this case, we have that ∆ < k1 − k2, thus we have

k2 + i1 − k1 − (n− i2) = i2 − n+ i1 + k2 − k1 ≤ ∆+ k2 − k1 < 0,

since i2−n+ i1 < n− i2+ i1 ≤ ∆. Thus the minimum SW attainable by the mechanism is i1+k2, therefore, to maximize
the minimum achievable SW, we need to set i1 = ∆ and i2 = n, which concludes the proof.

Proof of Theorem 6. The proof follows by the same argument used to prove Theorem 3. Indeed, by condition (4) for every
j ∈ [m] we have that at least kj + kj+1 agents are located between yj and yj+1, thus the Social Welfare generated by the
facilities at yj and yj+1 does not depend on the specific Nash equilibrium. To conclude the proof, it suffices to apply this
argument to each couple of facilities (yj , yj+1).

Proof of Theorem 7. To conclude the proof, we need to consider the case in which either i1 or n− im are lower than ⌊k+1
2 ⌋.

Since the other case is symmetric, we restrict our analysis to the case in which i1 ≤ n− i2. Again, since i1, n− im ≤ ⌊k+1
2 ⌋,

we have that the worst case instance places the first i1 agents at 0 and the last n− im + 1 at 1. Since every facility has the
same capacity, we have that the worst case instance has the following form

xi =



0 if i = 1, . . . , i1,

δ1 if i = i1 + 1, . . . , i2 − 1,

δ1 +
1−δ1−δ2
2(m−2) if i = i2,

δ1 + 2 1−δ1−δ2
2(m−2) if i = i2 + 1, . . . , i3 − 1,

δ1 + 3 1−δ1−δ2
2(m−2) if i = i3,

δ1 + 4 1−δ1−δ2
2(m−2) if i = i3 + 1, . . . , i4 − 1,

. . .

1− δ2 if i = im−1 + 1, . . . , im − 1,

1 otherwise



where δ1, δ2 ≥ 0 and such that δ1 + δ2 ≤ 1. The SW of the mechanism on this instance is

SW (x⃗) = i1 + (n− i2) +m− 2 + (k − i1)(1− δ1) +

m−2∑
i=2

(
(k − 1)

(m− 3 + δ1 + δ2
m− 2

))
+ (k − (n− im))(1− δ2).

Again, this quantity is linear in δ1 and δ2, thus it is minimized when δ1, δ2 ∈ {0, 1} By plugging in the possible combinations,
we infer that the minimum is achieved when δ1 = 1 and δ2 = 0 since i1 ≤ n− im.

Proof of Theorem 8. Owing to Theorem 7, the approximation ratio is lower when min{i1, n − im} is maximized, thus
when i1 = n− i2. Thus the best mechanism places the first and last facility at xℓ and xn−ℓ, where ℓ is a suitable integer.
Since i1 + n− i2 = n− 2k(m− 1) + 1, we complete the first half of the proof.

Notice that, if i1 or i2 is less than ⌊k+1
2 ⌋, then we have that

min{i1, i2} ≤ ⌊k + 1

2
⌋.

Therefore, (
m− 1

2

)
k +

1

2
− (m− 1)k −min{i1, i2} ≥ k

2
+

1

2
− ⌊k + 1

2
⌋ ≥ 0,

thus the approximation ratio of the mechanism is smaller when i1, i2 ≥ ⌊k+1
2 ⌋. Moreover, in this case, the approximation

ratio does not depend on the specific v⃗, thus any ES percentile mechanism whose v⃗ is such that i1, i2 ≥ ⌊k+1
2 ⌋ achieves

the minimum approximation ratio. Notice that, by definition, the vector v⃗ where vj = α+(2k−1)(j−1)
n for j ∈ [m] where

α = ⌊ (n−2k(m−1)+1)
2 ⌋ is such that i1, i2 ≥ ⌊k+1

2 ⌋. Moreover, owing to Theorem 2, it is also ES, hence it achieves the
minimal approximation ratio.

Lastly, notice that
mk

(m− 1
2 )k + 1

2

≤ mk

(m− 1
2 )k

=
(m− 1

2 )k + k
2

(m− 1
2 )k

= 1 +
1

2m− 1
,

which concludes the proof.

Proof of Theorem 9. It follows directly from Theorem 4. Indeed, it suffices to prove that even if we have m facilities to
locate, the optimal SW we can obtain by locating m facilities with capacity l is the same as locating two facilities with
capacity ⌈m

2 ⌉k and ⌊m
2 ⌋k. Since the worst case instance of any PMv⃗ with v⃗ ∈ [0, 1]2 places i1 agents 0 and the others at 1,

the optimal SW remains mk even though we locate m facilities separately.

Proof of Theorem 10. By definition of v⃗ = (0.5, 0.5, . . . , 0.5) and PMv⃗, we have that for every input x⃗ ∈ [0, 1]n the
facility is placed at ⌊n+1

2 ⌋. The number of agents on the left of y1 and the number of agents on the right of y1 is the same,
hence the SW of the mechanism is minimizes when xi = 0 when i < ⌊n+1

2 ⌋, x⌊n+1
2 ⌋ =

1
2 , and xi = 1 otherwise. The SW

of the mechanism is mk+1
2 .

If n ≤ (m+ 1)k, the optimal SW on the instance is (m− 1)k + n−(m−1)k
2 + 1

2 . Indeed, we can locate m− 1 facilities at
either 0 or 1 that only accommodate the agents at 0 and 1. The total combined utility of the agents accommodated by these
m− 1 facilities is (m− 1)k. Since the agents are divided evenly among 0 and 1, the maximum utility attainable by the last
facility is at most n−(m−1)k

2 + 1
2 . Therefore the total utility of the optimal SW is (m− 1)k + n−(m−1)k

2 + 1
2 .

If n > (m+1)k, the optimal SW on this instance is mk, and it is attained when ⌊m
2 ⌋ facilities are placed at 0 and the others

at 1. To conclude the thesis it suffices to take the ratio of the optimal SW and the SW of the mechanism.

B ADDITIONAL EXPERIMENTAL RESULTS

In this section, we report the experimental results missing from the main body of the paper.

In Table 4, we report all our results for the case in which the facilities have balanced capacity, that is k1 = k2.

In Table 4, we report all our results for the case in which the facilities have unbalanced capacity, that is k1 > k2.



In Table 6, we report all our experiments non identical for different values of Λ.

We observe no major changes across all the different cases we considered.
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Figure 4: The Bayesian approximation ratio of PMbest and PMw⃗ in the balanced case, i.e. k1 = k2 for n = 10, 20, . . . , 50.
Every column contains the results for different vector k⃗. The first and second row contains the results for the Beta distribution.
In the first row, we consider an asymmetric Beta distribution, that is B(1, 9); in the second row a symmetric Beta, that is
B(5, 5). The third row contains the results for the triangular distribution T . The last row contains the results for the Uniform
distribution U .
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Figure 5: The Bayesian approximation ratio of PMbest and PMw⃗ when the agents are distributed according to T and the
facilities are unbalanced, i.e. k1 = α1n ̸= k2 = α2n for n = 10, 20, . . . , 50. Every column contains the results for different
vector k⃗. The first row contains the results for a symmetric Beta distribution, that is B(5, 5). The second row contains the
results for the triangular distribution T . The last row contains the results for the Uniform distribution U .
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Figure 6: The Bayesian approximation ratio of PMbest for a population non i.d.. The capacities of the facilities are balanced,
i.e. k1 = k2 = αn with α = 0.1, 0.2, 0.3, and for n = 10, 20, . . . , 50. In the first raw, the Beta distribution is symmetric, in
particular B(5, 5), in the second raw the Beta distribution is asymmetric, in particular B(1, 9). Every column contains the
results for different Λ.
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