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Abstract
The discovery of new catalysts is essential for
the design of new and more efficient chemical
processes in order to transition to a sustainable
future. We introduce an AI-guided computational
screening framework unifying linguistic reason-
ing with quantum-chemistry based feedback from
3D atomistic representations. Our approach for-
mulates catalyst discovery as an uncertain environ-
ment where an agent actively searches for highly
effective catalysts via the iterative combination
of large language model (LLM)-derived hypothe-
ses and atomistic graph neural network (GNN)-
derived feedback. Identified catalysts in interme-
diate search steps undergo structural evaluation
based on spatial orientation, reaction pathways,
and stability. Scoring functions based on adsorp-
tion energies and reaction energy barriers steer
the exploration in the LLM’s knowledge space to-
ward energetically favorable, high-efficiency cat-
alysts. We introduce planning methods that au-
tomatically guide the exploration without human
input, providing competitive performance against
expert-enumerated chemical descriptor-based im-
plementations. By integrating language-guided
reasoning with computational chemistry feedback,
our work pioneers AI-accelerated, trustworthy cat-
alyst discovery.1

1. Introduction
The discovery of new catalysts requires one to identify the
optimal combination of chemical descriptors (or properties)
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and use these descriptors to propose catalysts. However,
such descriptors are only empirically understood, present-
ing a challenge for computational studies of catalysis. Typi-
cally, chemists actively reason to mentally search through
reactants, catalysts, and operating conditions that enable
more energy-efficient chemical conversions. However, as
discussed by Nørskov et al. (2011), linking microscopic
surface properties to macroscopic catalytic performance via
chemical descriptors remains a barrier to descriptor-based
catalyst search.

Large Language Models (LLMs) (Wei et al., 2022; Ouyang
et al., 2022; Taylor et al., 2022; Lai et al., 2023; OpenAI,
2023) offer a new opportunity to realize such a data-driven
autonomous search to accelerate scientific discovery. Our
work aims to enhance natural language reasoning capabili-
ties with quantum-chemical feedback to discover optimal
catalysts for target reactions.

The Challenge However, reasoning about complex catalytic
processes requires modelling across multiple modalities, ex-
tending beyond the capabilities of existing language models.
This includes merging scientific concepts from literature
and property prediction with 3D atomistic configurations.
Determining the best catalyst is a multi-step process, requir-
ing reasoning about multiple macroscopic properties. The
first step involves identifying an optimal set of chemical de-
scriptors (e.g. “resistance to poisoning”, “porosity”) which
are relevant to the reaction in question. Formally, given a set
of these important descriptors P, |P| = n , we want to iden-
tify the optimal subset R ⊂ P, |R| = r to consider when
suggesting new catalysts. This yields Pn

r = n!
(n−r)! possible

permutations to reason over. The amount of reasoning re-
quired scales combinatorially with the number of available
properties, necessitating an autonomous reasoner: an LLM.
Using its knowledge of scientific concepts, the LLM both
proposes important properties and proposes the best pos-
sible catalysts (from all possible catalysts) that have these
properties. Pruning this large space of candidate catalysts
requires reasoning about the complex microscopic interac-
tions that occur between atomistic structures in 3D space
based on macroscopic properties (Figure 2). Further, while
simple reactions can be assessed via adsorption energies
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Figure 1. ChemReasoner successively “thinks” in terms of different constraints and factors, which are based on scientific principles and
narrow down the set of possible candidates. It accomplishes that by prompting a language model with different combinations of chemical
descriptors, yielding a tree-structured space of queries and potential candidates, and returns the optimal answer via efficient exploration of
the search-space. ChemReasoner uses automated planning, based on previous reasoning, to initiate the exploration and guides it via a
reward obtained from the exploration process to prune unpromising actions. We currently use “adsorption energy”, a key measure of
reactivity as the reward function.

of 3D chemical structures, complex reactions demand con-
sideration of multi-step reaction pathways and selectivity
(Unsleber et al., 2023).

Technical Approach To solve this challenge, we propose
a framework that combines LLM-driven heuristic search
for catalyst discovery with structure-based scoring from
atomistic graph neural networks (GNNs) trained from quan-
tum chemistry simulations for guidance (Fig. 1). This
framework formulates catalyst discovery as an uncertain en-
vironment where an agent (the LLM) pursues energetically
favorable catalysts based on computational chemistry feed-
back. In each search step, the agent plans its actions(Huang
et al., 2022; Hao et al., 2023) by 1) automatically identifying
the optimal set of properties to consider, 2) generating new
search prompts based on the identified properties, and 3)
executing the prompts using sophisticated instruction fol-
lowing (Ouyang et al., 2022). Catalyst candidates identified
in each step of the search are transformed into 3D atomistic
representations of the catalyst-adsorbate structure (Zitnick
et al., 2020). These representations enable evaluation via
structural evaluation – including spatial orientation, energy
barriers over reaction pathways, and stability – yielding a
reward for catalyst suitability. This reward drives the LLM
towards catalysts which enable reactions with minimal ex-
ternal energy, a crucial step for developing environmentally
friendly industrial processes.

In this work, we make the following key contributions:

1. We introduce CHEMREASONER: a novel hypothesis

generation and testing framework unifying heuristic
search over an LLM’s knowledge-space with quan-
tum chemistry-guided feedback. This enables natural
language-based reasoning for catalyst discovery with
stronger domain guarantees obtained from computa-
tional chemistry methods.

2. We demonstrate the decisive impact of planning
methods in automatically navigating chemical search
spaces over a SOTA LLM-based implementation.
Our purely LLM-planned approach with zero hu-
man input (CHEMREASONER-Planner) surpasses
search guided by expert-selected chemical descriptors
(CHEMREASONER-Expert) for two out of three cate-
gories in our evaluation benchmark.

3. Third, and uniquely, we establish the domain-
grounding of language models via quantum chemical
property feedback. We go beyond screening catalysts
on adsorption energies alone and propose a methodol-
ogy to reason in terms of reaction pathways and energy
barriers.

Our work pioneers an AI-guided approach to computational
catalyst screening and discovery. To facilitate commu-
nity adoption and advancement of this extremely interdisci-
plinary and compute-intensive research, all of our datasets
and code are freely available on github. This includes query
benchmarks from catalysis experts, multi-modal provenance
trails, over 700,000+ atomistic trajectories, and additional
validation of catalyst candidates from density functional
theory calculations.
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2. Background and Related Work
2.1. Catalysis

Catalysts accelerate chemical reactions by lowering reaction
barriers, without being consumed in the process. Heteroge-
neous catalysis, wherein the catalyst is in a different phase
than the reactants and products, is widely used in indus-
trial chemical processes (Dumesic et al., 2008). Developing
novel heterogeneous catalysts with high activity and selec-
tivity is essential to design energy efficient chemical process
that paves a way towards sustainability (Zitnick et al., 2020;
Hu & Yip, 2021; Mukhtar et al., 2022).

In heterogeneous catalysis, gases or liquids interact with a
solid catalyst surface to enable a reaction (Greeley et al.,
2002). This overall process consists of three elementary
steps: 1) Adsorption - reactant molecules bind to the catalyst
surface; 2) Surface reaction - adsorbed molecules react with
each other to generate product(s); 3) Desorption - product(s)
molecules desorb from the catalyst surface.

Adsorption energy of a reactant, reflecting its binding
strength on a specific catalyst surface, is often identified
as one of the key criterion for the activity of that catalyst.
Fundamentally, adsorption energy of a reactant can be tuned
by changing microscopic properties such as surface structure
(crystal facet) or electronic configuration. Within catalysis,
an overarching goal is to link these microscopic descriptors
to macroscopic catalytic performance metrics to allow com-
putation descriptor-based catalyst search (Nørskov et al.,
2011). However, modeling complex catalyst surface re-
actions requires going beyond just adsorption descriptors
(Xi et al., 2002). Interactions between reaction intermedi-
ates and competition between multiple possible reaction
pathways must be considered as well (Kattel et al., 2017;
Schwaller et al., 2019; Chen & Jung, 2022; Unsleber et al.,
2023). With so many interactions in mind, we pursue a goal
of developing models to reason compositionally about de-
scriptors, structures, and pathways to generate high-quality
hypotheses for potential catalysts, applied to the production
of sustainable fuels.

2.2. LLMs for Chemistry

LLMs for chemistry can be divided into two categories:
domain-specific models and adapted general-purpose mod-
els. Multimodal, domain-specific molecule-language mod-
els have recently emerged to target a number of problems
in the chemistry domain (Edwards et al., 2021; Vall et al.,
2021; Zeng et al., 2022; Xu & Wang, 2022; Su et al., 2022;
Edwards et al., 2022a). For brevity, we discuss them further
in Appendix D. On the other hand, general-domain LLMs
such as GPT-4 (OpenAI, 2023) have been adopted in an
agent-based approach to interface with chemistry-specific
tools, allowing information gathering and hypothesis gener-

ation (Boiko et al., 2023; Bran et al., 2023). While this work
is exciting, it differs from our approach, where we employ
an overarching, domain-specific reward function to probe
the LLM’s knowledge, enabling stronger, simulation-backed
guarantees about complex scientific reasoning. We note that
our method builds upon Sprueill et al. (2023). Unlike their
approach, and the approach of Yao et al. (2023), which use
LLM-computed rewards, we integrate true computational
chemistry-based rewards to guide the model. Further, we
integrate a context-aware planner into our search algorithm
to automatically guide the search.

Algorithm 1 Description of the CHEMREASONER frame-
work.
Require: LLM, initial prompt P0, number of children to
generate N , number of children to keep M , target depth d
Initialize tree T with nodes P and edges (P, aj), scalar γ,
stored values p(P, aj), and reward function R.
root(T )← P0

Pcurr ← [root(T )]
Pnext ← [ ]
for t = 1, . . . , d do

for Pi ∈ Pcurr do
Ai, p = P(Pi, p)▷ Get action set and priors
for aj ∈ arg topNak∈Ai

(p(aj)) do
P ∗
j ← aj(Pi) ▷ Apply action aj

T .append(P ∗
j )

Pnext.append(P ∗
j )

end
Pcurr ← arg topMPj∈Pnext

(R(Pj)) ▷Calculate
reward of LLM answer and downselect

end
end
return argmaxPj∈T (R(Pj))

3. System and Methods
This section elaborates algorithmic components of the archi-
tecture described in Algorithm 1. It can be broadly divided
into two components: 1) LLM-planned and guided heuris-
tic search over chemical space and 2) quantum-chemical
feedback from graph neural network (GNN) models trained
from density functional theory (DFT) simulations.

3.1. Heuristic Search

The goal of our heuristic search is to answer a user-specified
natural language query by systematically exploring candi-
dates from different regions in the chemical space. Heuristic
searches have been applied for general problem solving and
reasoning tasks for LLMs (Yao et al., 2023). Our work fol-
lows the catalysis-focused approach of Sprueill et al. (2023),
where the original query (or prompt) and corresponding
LLM answers are systematically modified by applying dif-
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Figure 2. Illustration of CHEMREASONER search process (best viewed in color): The initial question generates base candidates, which are
iteratively refined by adding an optimal set of constraints to the query and producing a new set of actions (or prompts) to explore the
LLMs internal knowledge space. The optimal action set is chosen by 1) sampling from expert specified action space, or 2) automated
generated by a planner component as illustrated in Figure 3. We describe the resultant structure shown as the “search tree” and each node
in the tree represents a set of 3-tuple of (question, answer, reward). We refer to the initial query as a “root node.”

ferent screening criteria to iteratively contextualize the LLM
prompts and answers into a narrower region of the chemical
space. This process is illustrated in Figure 2, where the
addition of chemical descriptors change the catalysts that
are recommended. Since the number of branching pathways
could hypothetically expand exponentially, we employ a
domain-specific reward function to prune candidate cata-
lysts that don’t show promise of high catalytic activity.

More formally, our goal is to search through chemical de-
scriptors and design constraints to determine the optimal
prompt, which leads the LLM to return the best candidate
catalysts for a catalysis related query. Starting with a general
prompt P0, we use a set of actions to modify the prompt to
improve the LLM output with respect to a reward function,
R. Notably, CHEMREASONER-Planner generates its own
action space A (Figure 3).

DEFINITIONS: We define the Search Tree as a hierarchical
tree consisting of (prompt, answer, and reward) nodes. Each
node in this tree represents a state in the search space. Nodes
are linked if an action a ∈ A modifies the prompt from one
node to the next. We denote a path from root to leaf node a
Reasoning Pathway.

Following Sprueill et al. (2023), each node contains a tem-
plate LLM prompt and an internal structured representation
that provides additional context to the template prompt. This
internal representation consists of 1) a natural language ques-
tion, 2) an inclusion-exclusion list that includes or excludes
specific chemical descriptors for target catalysts and 3) a re-
lational operator that describes how the search can be shifted

from the previous query’s candidate catalysts to a different
region in chemical space (i.e. similar-to or different-from
the previous candidate catalysts). Starting the search with
the root node, the search algorithm expands each node into a
set of children nodes with a set of actions A, which modify
the internal representation of each node. The LLM then
answers the modified prompt in each node, providing a set
of candidate catalysts, and each candidate is scored using
a reward function. Each layer of the search tree is pruned
using a beam search algorithm a beam search algorithm
(Rubin & Reddy, 1977), leaving only those nodes with the
highest rewards. Finally, when the maximum search depth
is reached, we select the node in the tree with the highest
reward as the best answer to the initial prompt.

3.2. Planner-Guided Search

Our planner component is responsible for systematically
expanding the search by contextually determining viable
actions. Specifically, the planner selects actions based on
the current context of the search, using vocabulary relevant
to the current catalyst candidates. This contextual grounding
automatically constrains the search direction in a scientifi-
cally coherent way. A technical description of the planner
prompt is given in Appendix B.6.

Consider any node in the search tree where the planner
generates the actions for a given node (shown in the orange
boxes of Figure 3). Next, we execute the actions, creating
several child nodes, and retrieve a set of top-k candidate
catalysts from the LLM (such as Cu, Pd etc.). As shown in
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Figure 3. Planner-guided search action generation (best viewed in color): Given a query state defined by a question (shown in top-left)
and the set of corresponding answers, the LLM is used as an optimizer to generate a “plan” for the next query. The LLM performs internal
reasoning as shown in orange boxes. It accounts for the complete context from root query up to the current query node and generates a
“query plan” with the attributes “catalyst type”, “inclusion criteria”, “exclusion criteria” and “relationship to current candidate list”.

Figure 4. Illustration of planner guided heuristic search (best viewed in color) described in section 3.2 below. Note the systematic
expansion of the query plan in the orange boxes (left column). The middle column shows illustration of 3D atomistic structures generated
from chemical symbols. Each 3D structure is processed by a reward function that involves geometry relaxation and potentially deriving
approximations of energy barriers in reaction pathways (right column). Visualizations of materials acquired from the Materials project
structure finder (Jain et al., 2013).

figure 4, each of these candidates are then transformed into
a 3D atomistic representation and evaluated by a reward
function, which approximates catalytic activity (see sections
3.3 and 3.4 for details). All nodes at a given depth in the
search tree are collected and only a subset of nodes are
chosen for further search in the next iteration, filtered by
highest reward. The process repeats iteratively (shown via
rows in above diagram) until the maximum tree depth is
reached.

Overall, by leveraging the LLM to contextually expand the
tree search, CHEMREASONER-Planner explores candidate
catalysts in a more interpretable, scientifically-grounded
reasoning pathways. See section E for a complete trace of a
planner guided search, using GPT-4.
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Figure 5. An illustration of reaction pathways corresponding to the
conversion of CO2 to methanol for two different catalysts (red and
blue bars shows the energy of different intermediates). The energy
barrier (difference between the lower energy state and the higher
energy state, described as hill climbing in the text) associated with
these catalysts is shown by the red and blue arrows. For ease of
comparison between the catalysts, the energies have been shifted
such that both CO2 states have an adsorption energy of 0 eV.

3.3. Reward via Structure Optimization and Energy
Prediction

Each reward function returns a real number as a measure of
the catalyst’s goodness (higher is better) for a given input
question. In this work, we implement two reward functions
with different levels of complexity. The first reward function
targets catalysts for the adsorption of particular chemical
species, while the latter targets catalysts with higher approx-
imate reactivity for certain reactions.

Adsorption Energy-Based Reward: To target catalysts
for the adsorption of specific chemical species, we use an
adsorption energy-based reward, which returns the adsorp-
tion energy of the most stable binding configuration of the
catalyst as the reward. The computation begins with trans-
lating the symbolic representation of the catalysts (such as
“Platinum”) and adsorbates (e.g., “*CO”) into a 3D atom-
istic structure (Fig. 4 right). The stability and energy of a
catalyst’s atomic structure directly impacts its catalytic ac-
tivity and selectivity. Therefore, we compute the most stable
configuration for the catalyst-adsorbate pair and use its ad-
sorption energy as a measure of the reward (Section A). The
optimization process, also known as the relaxation process,
iteratively relaxes the atomic positions of the 3D structure
until an energy minimum is found. A GNN (Gasteiger et al.,
2021) is then used to calculate the adsorption energy from
this state.

Reaction Pathway-Based Reward: This function measures
the goodness of a catalyst considering multiple reaction
pathways and intermediate steps. We initially obtained 5
possible reaction pathways from the LLM for the CO2 to

methanol/ethanol conversion reactions, as lists of chemical
formulas. Since since some of the pathways were redun-
dant, we manually narrowed down the responses down to
2 reaction pathways for each application. These prompts
were not re-evaluated for each tree search.

Given each reaction pathway, our reward function computes
the adsorption energies for every intermediate step. Figure
5 shows two instances of the same reaction pathway for
two different catalysts. As the figure shows, proceeding
from one reaction step to another requires different amounts
of energy, which depends on the catalyst and adsorbate
interaction. Intuitively, moving from a lower-energy state to
higher-one can be viewed as a “hill-climbing” in the energy
landscape (indicated by the red and blue arrow for two
different catalysts) and we formulate a function that would
assign the highest reward to pathways with the smallest hills
to climb (Eq. 1). adst is the intermediate at step t of the
reaction and Eadst is the adsorption energy of adst on some
catalyst. The overall reaction-based reward function for the
top-k catalysts is the average of r(c), where c in one of
the top-k catalysts and r calculates the smallest maximum
energy jump over all paths,

r(c) = − min
p∈Paths

(
max
adst∈p

(
Eadst − Eadst−1

))
. (1)

4. Experiments
We conduct an experiment to evaluate if CHEMREASONER,
using an LLM-guided heuristic search with quantum-
chemistry feedback, can discover more novel and effective
catalysts than state-of-the-art LLMs alone. Our experiments
focus on three key research questions for enabling such a
system.

RQ1. Quantification of performance improvement:
Does heuristic-search guided by quantum-chemical
feedback produce better catalyst candidates over query-
ing state-of-the-art LLMs?

RQ2. Characterization of key components: What are
the key parameters that control the computational
complexity-system performance trade-off?

RQ3. LLM Hypothesis testing: How do we verify hy-
potheses generated by CHEMREASONER using do-
main knowledge? Which areas need further attention
to make CHEMREASONER’s computational screening
more accurate and interpretable?

4.1. Experimental setup

Dataset We conduct our experiments on an augmented ver-
sion of a chemistry-focused reasoning query benchmark,
originally proposed in (Sprueill et al., 2023), containing 145
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OpenCatalyst BioFuels CO2-Conversion
GPT-4 GPT-3.5 GPT-4 GPT-3.5 GPT-4 GPT-3.5

Chain-of-Thought 0.37 0.66 2.08 2.10 -0.62 -0.54
Self Consistency 0.73 0.76 2.08 2.12 -0.54 -0.36

CHEMREASONER-Expert 1.90 2.11 3.90 3.79 0.45 0.78
CHEMREASONER-Planner 2.36 2.16 4.15 3.29 0.01 0.49

Table 1. Final reward values of best recommended catalyst for each search variant. Our CHEMREASONER methods both significantly
outperforms the GPT-4 baseline. Larger numbers are better and reflect GNN-predicted adsorption or reaction pathway-based rewards.

queries split between 3 general categories: OpenCatalyst,
BioFuels, and CO2-Fuel. We adopt queries from Sprueill
et al. (2023) for the first two categories and further enhance
the dataset with the CO2-Fuel subset. First, the OpenCata-
lyst dataset is compiled from the set of adsorbates from the
Open Catalyst Project 2020 dataset (Chanussot et al., 2010;
Zitnick et al., 2020); it requires suggesting catalysts which
each adsorbate strongly binds to (86 queries). Second, the
BioFuels dataset is targeted at catalyst discovery for bio-
fuel development (39 queries). These queries have been
modified to target metallic catalysts, which is necessary for
our reward calculation. Finally, we specifically target the
conversion of CO2 to methanol and ethanol (20 queries), a
platform molecule, which can be used to produce fuels and
chemicals for achieving net-zero carbon emissions (Ling
et al., 2023; Mondal & Yadav, 2021). See section B for
details on the queries in these datasets

System Implementation The LLMs used in our experi-
mental setup included OpenAI GPT-3.5 and GPT-4. Al-
though we initially benchmarked CHEMREASONER with
LLama2 (Touvron et al., 2023), we found that its instruction-
following capabilities in this domain were too limited to
allow an evaluation.

For our GNN reward model, we utilized the GemNet-dT
model (Gasteiger et al., 2021) from the Open Catalyst
Project. Runtime configurations and inference scaling per-
formance for each of these models are provided in section
C.5. Inferences for both OpenAI models were executed in
parallel using asynchronous execution features. The GNN
inferences were run on a single DGX2/V100 or A100 GPU.

5. Towards Explainable Reasoning from
Chemical Feedback

5.1. Reasoning Approaches

We evaluate two different variations of CHEMREASONER.
CHEMREASONER-Expert is an implementation in which
the action space is defined by catalysis experts. These ac-
tions (relation-operators and descriptors) are:

1. Inclusion criteria: high activity, high selectivity, low
cost, novelty, low toxicity, high binding energy, high

conversion, high availability.
2. Exclusion criteria: low activity, low stability, low

selectivity, low binding energy, high cost, high toxi-
city, low dispersion, low porosity, high scarcity, low
conversion.

3. Catalyst type: metallic catalysts, monometallic cata-
lysts, bimetallic catalysts, trimetallic catalysts.

4. Relationship to previous candidate set: include ele-
ments that are different from, include elements similar
to, introduce new elements to, include elements from.

These actions are sampled with uniform probability, with-
out using the same criteria twice. On the contrary,
CHEMREASONER-Planner uses LLM-suggested actions for
expanding the search space which do not require any expert
specification. As such, CHEMREASONER-Planner’s actions
can adapt to the changing context of the search, whereas
CHEMREASONER-Expert’s action space remains static.

Better LLM Translates into Search Efficiency As Ta-
ble 1 shows, both implementations of CHEMREASONER
significantly outperforms the GPT-4 baseline. This is
also visualized by Figure 8 (section C.3). Specifically,
CHEMREASONER-Planner coupled with GPT-4 performs
best for the OpenCatalyst and Biofuels query categories,
whereas CHEMREASONER-Expert performs best for CO2-
Conversion queries. As noted in Section 5.4 and shown in
Table 2, the top-1 prediction of CHEMREASONER-Expert
has high similarity with the current commercial catalyst
for methanol synthesis (Etim et al., 2020). We also com-
puted the average depth of the node containing the best
answer for both variants of CHEMREASONER (Table 4).
Lower average depth would indicate that our system is
finding the best results more efficiently, and we observe
that using GPT-4 leads to a reduction of 11.28% in the av-
erage search depth. The impact is more pronounced for
CHEMREASONER-Expert than CHEMREASONER-Planner,
which already obtains performance boost through the algo-
rithmic contribution of planning.

LLM’s Alignment with Reward function is key The
strong performance of the CHEMREASONER-Expert on
CO2-Conversion queries is noteworthy, especially consid-
ering it is based on GPT-3.5-turbo. We hypothesize that
the performance is related to a complex reward function.
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For queries associated with the adsorption energy based
reward function (OpenCatalyst and Biofuels) the LLM’s
notion of a good catalyst typically aligns with lower ad-
sorption energy (higher reward) profiles. Therefore, the
planner effectively uses the LLM as an optimizing func-
tion for searching towards energetically favorable catalysts.
However, the LLM’s notion of a good catalyst may not
directly align with the complex reaction pathway-based re-
ward function associated with CO2 conversion. In general,
it suggests that fine-tuning the LLM using a methodology
similar to RLHF (Ouyang et al., 2022) may be a promising
path for downstream tasks with complex reward functions.

5.2. Performance Characterization of Key Components

CHEMREASONER performs a large number of LLM and
GNN inferences that influence both its performance and
throughput. The following factors control the computational
complexity of the overall execution.

LLM Inference and Tree Search The runtime of
CHEMREASONER is O(Ntree), where Ntree is the number
of nodes in the search tree. Ntree increases exponentially
with the maximum depth (set to 5) and the branching fac-
tor for expanding each node in the search tree, denoted as
Nactions (set to 8). We use a beam width parameter (set
to 6) to control the number of nodes that are expanded in
each iteration of the search. CHEMREASONER performs
LLM inferences for each node in the search tree to 1) plan
actions, 2) suggest candidate catalysts, and 3) transform
LLM answers into atomistic structures. It is important to
note the strong intra-node and inter-node dependencies be-
tween these LLM queries, as the output from one query is
fed into the next ones. This dependency exists both within a
node and to its children in the search tree. Therefore, robust-
ness of LLM instruction-following behavior, specifically the
ability to return answers in a consistent format, is a critical
factor for an effective system. Overall, CHEMREASONER-
Expert and CHEMREASONER-Planner executes 2Ntree and
3Ntree LLM inferences respectively.

To execute the entire benchmark of 145 queries with
Nmax = 300 requires execution of 28,000-42,000 LLM
inferences, which makes the the scalability and through-
put of a generative LLM a critical factor for successful
experimentation. By default, we batch LLM inferences in
sizes of 48 and execute these inferences asynchronously
for scalability. These two factors, namely the robustness
of instruction-following and high-throughput execution of
batched queries restricted our experiments to only GPT-3.5
and GPT-4 models. Our experiments with LLama2 were
both affected by frequent spurious answers and relatively
low throughput on A100 systems. We recognize the impor-
tance of the development and benchmarking of open-source
models, but this particular topic should be the subject of

future work.

GNN Inference and Reward Estimation GNN inferences
play an equally critical role for CHEMREASONER. A single
execution of the adsorption energy-based reward function
requires multiple inferences. Given a string-based repre-
sentation of a catalyst, we first randomly initialize a 3D
atomistic representation and oversample the structural con-
formation to generate Nstructs samples (see Appendix A).
Next, relax each of these Nstructs structures (set to 16 by
default) for a maximum specified iteration limit of Nrelax

(set to 64 by default), or until fmax. Therefore, each ex-
ecution of each adsorption energy-based reward function
requires Nstructs ∗ Nrelax GNN inferences. For scalabil-
ity, we group the GNN inferences using a batch size of 40.
In reaction pathway-based reward computations, we per-
form this computation for every intermediate state in each
pathway. Therefore, with Npathway denoting the number
of pathways and Nrstep denoting the average number of
intermediate steps per pathway, a single reward estimation
involves Nstructs ∗ Nrelax ∗ Npathway ∗ Nrstep GNN in-
ferences. Given our CO2-fuel conversion queries which
involve 2 reaction pathways comprising 4-5 steps, we ex-
ecute 9,216 GNN inferences for every reaction-pathway
based reward. On a single A100 or V100 GPU, batches can
be evaluated in approximately 0.5 seconds.

5.3. Considering DFT-Based Rewards

A critical component for a reasoning system is accurate
feedback. For this reason, the use of DFT-based rewards
would be the gold standard reward calculations. However,
due to their significant computational cost, we are forced
to employ GNNs for high-throughput evaluation of catalyst
candidates (Zitnick et al., 2020). We evaluated our top
GNN results using DFT simulations; overall, we found
that DFT calculation-based rewards diverge in some cases
significantly from GNN predictions (Table 3). Here, we
briefly examine the divergence between SOTA GNN models
and ground truth DFT simulations.

One limitation of the GNN likely arises from the conversion
of text-based catalyst recommendations from the LLM to 3D
atomistic structures for the GNN calculation. Our structure
generation method (see Section A) is limited to pre-defined
lattice structures, (e.g., face centered cubic (FCC), body
centered cubic (FCC), and hexagonal close packed (HCP)).
While these lattice structures effectively describe mono-
metallic structures, multimetallic compounds may exhibit
more complex lattice structures. Thus, our assumptions
of reference structures may not adequately reflect realistic
catalyst structures. Furthermore, our multimetallic bulk
structures were generated by randomly placing elements
throughout the bulk, creating additional complexity due to
the emergence of defects in the bulk structures.
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While the GNN can predict energy for any given structures,
the challenges mentioned above may lead to erroneous DFT
calculations, which makes validation of our predicted cat-
alysts difficult. Therefore, future research should explore
novel methods to convert textual representations of catalysts
into realistic 3D atomistic structures.

5.4. CO2 Hydrogenation: A Case Study

To evaluate the real-world efficacy of CHEMREASONER,
we performed a literature evaluation of the top-5 predicted
metallic catalysts for the conversion of CO2 to methanol.
These predictions from GPT-4, CHEMREASONER-Expert,
and CHEMREASONER-Planner models are shown in Table
2. We find that the CHEMREASONER-Expert predictions
include elements that make up the current commercial cata-
lysts for methanol production Cu/ZnO/Al2O3 (Etim et al.,
2020). Cu, ZnO, and Cu-Zn sites were considered to gener-
ate the active sites for high methanol selectivity (Etim et al.,
2020; Tisseraud et al., 2015).

On the other hand, CHEMREASONER-Planner predicted
bimetallic precious metal alloys, which are well-known to
catalyze hydrogenation reactions (Tawalbeh et al., 2023).
The ensemble effect (Wang et al., 2019) in Pd-Au electro-
catalysts was considered as key factor in achieving high
activity for CO2 reduction to methanol since Pd, Pt, Rh
and Ru alone can shift the selectivity to methane (CH4)
by uncontrolled hydrogenation of CO2 (Pakhare & Spivey,
2014). Alloying allows for improved methanol selectiv-
ity compared to the performance of single metal cata-
lysts (Tawalbeh et al., 2023; Etim et al., 2020; Tisseraud
et al., 2015) that were predicted by GPT-4 and some by
CHEMREASONER-Expert. Since both CHEMREASONER-
Expert and CHEMREASONER-Planner predicted alloys, we
consider their recommendations to have higher likelihoods
of being successful catalysts.

6. Conclusion
We introduce a multi-modal framework unifying linguis-
tic reasoning enabled by generative LLMs with atomistic
structure based rewards, built on principles in catalysis and
quantum chemistry. We demonstrate that such integration
can enable the recommendations of catalysts that are crit-
ical for the development of energy efficient chemical con-
version processes that combat climate change. Namely,
CHEMREASONER was able to recommend CuAlZn for the
conversion of CO2 to methanol, the current commercially
viable catalyst.

Our methodology makes use of instruction-following foun-
dational LLMs, GPT-3.5 and GPT-4, avoiding the need for
expensive finetuning. Additionally, our application of au-
tomatic planning methods removes the need to hard-code

domain specific knowledge into the search method. So
long as one can define a systematic search space and a rele-
vant domain specific reward function, one could adapt our
method to other scientific applications in biology, chemistry,
or materials science. While we recognize the importance of
accessible, open-source LLMs, our experiments with Llama-
2 revealed that such models may not currently possess the
instruction following capabilities or scalability required for
our heuristic search. Therefore, the development of open-
source LLMs for scientific reasoning remains the subject of
future work.

Finally, CHEMREASONER presents a new way to carry out
computational investigations of catalyst materials with DFT
surrogate models. Our application of a GNN based reward
function grounds the LLM in reality, guiding the search
towards catalysts with higher activity. Still, a limitation
of CHEMREASONER is the reliance on existing reference
structures, which may not accurately reflect real catalyst
structures, providing a challenge to verification of results
with DFT. This motivates the future development of more ro-
bust methods to convert textual representations of materials
into 3D atomistic structures.
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A. GNN Driven Adsorption Energy
Calculation

Here, we detail our methodology for GNN-driven adsorption
energy calculations. Given a linguistic catalyst recommen-
dation from the LLM, an adsorption energy is produced in a
three step process, catalyst generation, adsorbate+catalyst
sampling, relaxation.

First, the linguistic representation of a catalyst from the
language model must be translated into a formate which is
computationally digestible. For instance, a simple catalyst,
like pure Copper Zinc (CuZn), can be expressed in several
different ways:

• Copper-Zinc

• Copper alloyed with Zinc

• CuZn

• Copper/Zinc-oxide (catlyst not supported by our
method)

• Cu-Zn.

Attempting to capture all possible disambiguation of catlyst
is intractable for large tree searches, especially with less-
well behaved models such as GPT-3.5-turbo. It also be-
comes more difficult to decide which catalysts to penalize as
containing non-metals, such as Copper/Zinc-oxide. There-
fore, we prompt the LLM to parse out the correct chemical
symbols into digestible lists of chemical symbols (see Ap-
pendix B.5 for the prompt details). We would expect the
above phrases to be parsed into:

• [“Cu”, “Zn”]

• [“Cu”, “Zn”]

• [“Cu”, “Zn”]

• [“Cu”, “Zn”, “O”] (catlyst not supported by our
method)

• [“Cu”, “Zn”].

These examples are much easier to parse out, since we
expect to see only chemical symbols. Additionally, the “O”
can easily be parsed out to return a penalty value. With
these lists of chemical symbols we can use a set of rules to
generate the associated 3D structures.

In the second step, the 3D structure of the catalyst is in-
ferred from known reference structures, as specified by the
Atomic Simulation Environment (ASE) package (Larsen
et al., 2017). For the purposes of this paper, we restrict
our focus only to catalyst whose reference structures are in

face-centered cubic (FCC), body-centered cubic (BCC), or
hexagonal close-packed (HCP) lattice structures. Catalysts
with other reference structures are skipped and assigned a
negative reward value. However, many important metals
for catalysis have these three lattice structures. If the rec-
ommended catalyst is a bimetallic or trimetallic catalyst
(composed of two or three elements), we randomly intro-
duce atoms from the secondary and tertiary elements into
the structure. For bimetallic compounds, AB, we assume a
2:1 ratio of A to B, while trimetallic catalysts have a 1:1:1
ratio. Catalysts with more than 3 elements return a penalty
value. The lattice structure is always inferred by the first
species listed by the LLM. For instance CuZn would have
the structure of copper, with some atoms randomly replaced
with Zn in a 2:1 ratio. To promote the stability of the cata-
lysts, we sample 16 possible configurations and chose only
the structure with the lowest energy, as determined by the
GNN, to move on to the rest of the GNN calculation.

The third step of the process is the sampling of adsor-
bate+catalyst configurations. the goal is to sample different
locations and orientations for an adsorbate to bind to the
surface of the catalyst, to ensure optimal binding is observed.
We determine binding sites, use the placement sites speci-
fied by ASE for each of the three lattice configuration. Then,
for an adsorbate, which we denote generically as, *XYZ,
we place the atom marked by the * at the binding location
at a height 1.87 Åabove the surface. Then, to sample orien-
tations of the adsorbate, we rotate the molecule a random
angle up to 15 degrees in the x-axis (axis parallel to the
surface), then a random angle up to 360 degrees around
the z axis (axis perpendicular to the surface). Finally, since
some adsorbate molecules may bind differently to certain
elements in multimetallic catalysts, we randomly replace
the binding site of the catalyst with each of the available
metallic elements, with equal probability. This gives fair
change of the adsorbate binding to any of the given catalyst
species. We take 16 initial adsorbate+catalyst configurations
and relax each of them with the GNN to compute adsorption
energies.

The fourth and final step is the the GNN driven relaxation.
Given the set of atomic coordinates and atomic numbers of
a structure, the GemNet-dT model (Gasteiger et al., 2021)
returns an approximation to that structure’s adsorption en-
ergy and forces, Eads and Fmax. Starting with the sampled
adsorbate+catalyst configurations, the structures are relaxed
in-batches of 40, using the L-BFGS from Pytorch (Chanus-
sot* et al., 2021; Paszke et al., 2019). We stop the relaxation
terminates when after 64 stems or when the magnitude of
the maximum single atom force is below the early stop-
ping threshold, Fmax < 0.05 eV/Å. Then, the minimum
adsorption energy of the 16 samples is returned as the final
adsorption energy for the adsorbate+catalyst configuration.
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These four steps constitute the computational backbone
of the reward calculation. For reaction based queries, the
reward function is derived from these energies according to
Equation 1.

B. Dataset Design
We propose two task datasets related to catalyst design: the
first is derived from the Open Catalyst (OC) Project (Zitnick
et al., 2020) and the second consists of complex reasoning
queries designed by catalysis experts. Our multi-disciplinary
team involves researchers who actively work on designing
new catalysts for bio-fuels development.

B.1. Prompt Design

To apply CHEMREASONER to catalyst discovery, we define
use a prompt template which incorporates and overall query
for the LLM to answer and we use the actions defined in
5.1 to modify the fields of the templates to reason about
the queries. Here, we discuss the s general prompt tem-
plate, which is used for CHEMREASONER, CoT, and self-
consistency, before diving into the construction of queries
within the datasets.

Given a query, we use a prompt template which allows
the systematic adjustment of an LLM’s context for an-
swering the query, essentially creating a reasoning process.
The reasoning has four changeable variables, the “catalyst
type”, “inclusion criteria”, “exclusion criteria”, and “can-
didate list statement”. Here, we describe each of these
variables in detail.

First, the “catalyst type” is the broad category of catalysts
to suggest (i.e. metallic catalysts, bimetallic catalysts, tran-
sition metal catalysts). Second, we provide a list of ‘inclu-
sion criteria” and “exclusion criteria” to provide additional
context for which properties are more/less useful for sug-
gesting a catalyst that answers the original query. Such
examples could be “include catalysts with low cost, high
conversion, high Lewis-acidity” or “exclude catalysts which
degrade quickly”. While the variables provide context to the
LLM, in CHEMREASONER, we additionally include, in the
prompt, the suggested catalysts from the previous answer as
additional context. This motivates final variable, “candidate
list type,” where the prompt LLM is instructed how to use
the previous candidates in its evaluation. For instance, it can
produce candidates that are “similar to..”, “different from...”,
or “have stronger affinity for oxygen than...” the previous
candidates.

The overall prompt template is as follows:

{query}

{include statement}{exclude statement}
Provide scientific explanations

for each of the {catalyst label}.
Finally, return a python list
named final answer which contains
the top-5 {catalyst label}.
{candidate list statement}

Take a deep breath and let’s think
step-by-step. Remember, you need
to return a python list named
final answer!

The query in the prompt template is determined by our three
datasets: OpenCatalyst, BioFuels,

B.2. OpenCatalyst Dataset

The Open Catalyst dataset (Zitnick et al., 2020) is an ex-
tensive collection of (DFT) calculations for various adsor-
bate+catalyst, intended for training surrogate models for
computational chemistry simulations related to catalysis.
Here, we utilize this dataset to benchmark the ability of
the CHEMREASONERto produce catalyst recommendations
for the set of adsorbates given in the Open Catalyst 2020
dataset.

Each query consists of a single adsorbate from the
Open Catalyst Project dataset (i.e. *OHCH3, where *
denotes the catalyst binding site). So, each prompt tem-
plate takes the form Generate a list of top-5
{catalyst label} for the adsorption of
{adsorbate}, where catalyst label begins with
‘metallic catalysts’.

B.3. BioFuels Dataset

The BioFuels dataset targets more complex adsorbates re-
lated to (a) the production of sustainable fuels from organic
materials and (b), the reverse water gas shift reaction. The
reactions and adsorbates targeted here are crucial to the pro-
duction synthetic bio fuels with greater selectivity.(Canakci
& Van Gerpen, 1999; Daza & Kuhn, 2016; Kattel et al.,
2017; Artz et al., 2018; Stolarczyk et al., 2018; Xu & Carter,
2018; Mukhtar et al., 2022)

For the queries in (a), we benchmark the ability of CHEM-
REASONERto recommend catalysts for the adsorption of
specific adsorbates related to bio-fuel production. Such
adsorbates are phenol(-ate), anisole, furfurol, methanol,
methyl, ethanol, acetic acide, and acetate. Additionally, we
apply a criterion of interest to CHEMREASONER, such as
high/low selectivity, conversion, binding energy. Finally,
we provide additional context by specifying a type of
reaction we are interested in, hydrodeoxygenation or hy-
drogenation. The template for these queries is Generate
a list of top-5 {catalyst label} can
bind {adsorbate} in the {reaction type}
reaction with {additional constraint},
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where catalyst label begins with ‘metallic
catalysts’ while reaction type, adsorbate,
and additional constraint take the values
described above.

For the queries in (b), we benchmark the ability of CHEM-
REASONERto recommend catalysts for the production of
CO through the RWGS reaction,

CO2 +H2
cat−−⇀↽−− CO+H2O.

There are several query variations for this reaction. First,
we ask CHEMREASONERto recommend catalysts that
strongly bind the reactants (CO2 and H2) and weakly bind
the product (CO). The remainder of the questions relate
to catalysts which demonstrate high convergence for the
reaction. Then, we change the type of catalyst requested
(metallic catalyst, bimetallic catalyst, bimetallic catalyst
with noble metal and base metal). Finally, we optionally
include an additional criterion for low cost catalysts. The
final query template is Generate a list of top-5
{catalyst label} {additional criterion}
for {reaction question}.

B.4. CO2-Conversion Dataset

For the final set of queries, the CO2-conversion dataset,
we propose a set of 20 queries to benchmark CHEMREA-
SONER’s ability to recommend catalysts for more complex
reactions, the conversion of CO2 to methanol and ethanol
(X-anol). Compared to the RWGS reaction, these reactions
consist of pathways with different chemical intermediates.
The language model will have to consider how the structure
of the catalyst promotes the progression of the reaction of
several chemical intermediates. Thus, queries involving
the CO2 to X-anol conversion reactions use our reaction
pathway based reward.

These query templates echo the same structure as the
RWGS templates, Generate a list of top-5
{catalyst label} {additional criterion}
for {reaction question}.

B.5. Symbols Parsing Prompt

One critical requirement of CHEMREASONER’s pipeline is
the ability to a fuzzy, linguistic catalyst name into a list
of symbols (see Appendix A). To accomplish this task, we
use the following LLM prompt template: Consider the
following list of catalysts:

[{cat 0}, {cat 1}, ..., {cat k}].

For each catalyst, return the list
of chemical symbols that make up the
catalyst. If a catalyst does not have
a chemical symbol, return None. If a

catalyst is already a chemical formula,
repeat the elements in the chemical
formula.

Format your list as:

{cat 0}: [list 0]
{cat 1}: [list 1]
...
{cat k}: [list k]

Where cat i is the ith catalyst proposed by the LLM.
The symbols lists can be parsed out from the answer by
following the provided format in the prompt.

B.6. Planner Prompt

Here, we detail how CHEMREASONER determines the next
set of catalyst descriptors by implementing a planner prompt.
The prompt incorporates context from previous catalyst
answers and the current search state to update the search
states in a reasonable way. The search state corresponds to
the 4 action types listed in section 5.1:

1. Catalyst Type: the current catalyst type,
2. Exclusion Criteria: the list of catalyst design criteria

to exclude,
3. Inclusion Criteria: The set of catalyst criteria to in-

clude,
4. Relationship to previous candidate set: How the

new catalyst should relate to the previous catalysts (e.g.
similar to, different from).

CHEMREASONER uses actions to modify these four state
variables. Whereas CHEMREASONER-Expert uses a hand-
defined set of actions designed by catalysis experts,
CHEMREASONER-Planner uses the LLM to determine the
actions. To this end, we propose the following contextual-
ized prompt template for our planner module, presented in
figure 6.

In the planner template, the phrases denoted by $ are treated
as “variables” in the LLM’s context window. They hold
information about the following information:

1. search state: a dictionary mapping each
CHEMREASONER state variable name to its current
value,

2. action space: a description of the possible ac-
tions,

3. root question: the root question for
CHEMREASONER to answer. For example, “What is a
good catalyst for X reaction?”

4. current prompt: the previous catalyst prompt that
produced the current answer. It should be a mod-
ification of root question with the previous ac-
tions chosen by CHEMREASONER,

5. current answer: the current catalyst recommen-
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Top-5 Catalysts GPT-4 CHEMREASONER-Expert CHEMREASONER-Planner
1 Pd Cu-Zn Pd-Au
2 Cu Fe Pt-Ru
3 Ru Ni Ru-Au
4 Rh Co Rh-Pd
5 Pt Cu-Cr Pt-Au

Table 2. Final catalyst recommendations from CHEMREASONER and GPT-4 (root of the tree) for the CO2→ methanol conversion
reactions.

dations and their scientific explanations, as returned by
the LLM.

$search state = {current state}

$action space = [
“change the type of catalyst to search for”,
“add a new inclusion criteria”,
“add a new exclusion criteria”,
“change the relationship to the candidate list”,
]

$root question = {root prompt}

$current prompt = {previous prompt}

$current answer = {previous answer}

Consider the $search state, $root prompt, $current question 
and $current answer.

Your task is to suggest possible actions that could achieve 
the intent of the $root prompt.

Your answers should use the following guidelines:

Your suggestions should use scientific explanations from the 
answers and explanations in $current answer.

Your suggestions should not include MOFs, Zeolites, non-
metals.

Your suggestions should not repeat categories from $search 
state.

Let’s think step-by-step, explain your thought process, with 
scientific justifications, then return your answer as a 
dictionary
mapping from [“catalyst type”, “exclusion criteria”, 
“inclusion criteria”, “relationship to previous candidate 
list"] to lists of suggestions

Figure 6. The planner prompt template. The LLM is prompted to
suggest actions which modify the four state variables. Context
about the current search state is provided to the LLM by using
“variables,” denoted with a $ symbol.

C. Search Analysis
C.1. Parameter selection

Given the compute intensive nature of each
CHEMREASONER query, we carried out hyperparam-
eter sweeps to determine the optimal number of actions
(Nactions), as well as the maximum number of relaxation
steps (Nrelax). Figure 9 shows how increasing Nactions

impacts the distribution of rewards, and we set it to a
default value of 8 for all experiments. Figure 7 shows
convergence of the GNN for finding the optimal atomistic
structure configuratio over 300 iterations for 40 random

Figure 7. GNN energy versus relaxation iteration for 40 randomly
chosen adsorbate+catalyst configurations. The difference between
the current and final GNN energies are displayed to highlight the
time-to-convergence for each relaxation. The majority of structures
are nearly fully relaxed by 64 iterations.

initial adsorbate+catalsyst configurations. Relaxations
are terminated early if |Fmax| < 0.05 ev/Å. At each
step in the relaxation process, the difference between the
current adsorption energy and the final adsorption energy is
reported. The dashed gray line depicts the iterations cutoff
for reward calculations in CHEMREASONER, 64 steps.
Most iterations are nearly converged by 64 steps.

C.2. Quantitative Validation with DFT

To validate the adsorption energies being predicted by
the GNN, density functional theory (DFT) calculations
were performed for the top scoring candidates. These
calculations were carried out using the open-source
Quantum ESPRESSO package (Giannozzi et al., 2009;
2017) which implements DFT using a plane-wave basis
set. Core electrons were replaced by pseudopotentials of
projector augmented-wave (PAW) type from the pslibrary
(Dal Corso, 2014). The PBE exchange-correlation func-
tional was used (Perdew et al., 1996), and van der Waals
effects were included using the DFT-D3 approach (Grimme
et al., 2010). All of the calculations were managed and or-
chestrated using the AiiDA automation framework (Huber
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Surface Pathway Adsorbate Adsorption Energy (eV)
GNN DFT

CuZn Methanol CO2 0.384 −0.066
CHOH 0.552 5.951
OCHO 0.577 5.836
OHCH3 −1.160 2.699

CuAlZn Methanol CO2 0.265 6.816
CHOH 0.609 −1.824
OCHO −0.125 2.820
OHCH3 −1.589 −5.615

Table 3. Comparison of adsorption energies predicted by the GNN
to those computed with DFT, for the methanol pathway.

et al., 2020).

While the GNN predicts the adsorption energy directly, each
DFT computation of the adsorption energy requires three
calculations of the total energy:

EDFT
adsorption = EDFT

system − (EDFT
slab + EDFT

adsorbate) (2)

where EDFT
system is the DFT total energy for the complete

system, EDFT
slab is the DFT total energy for the bare slab

without any adsorbate, and EDFT
slab total DFT energy of the

adsorbate molecule alone.

To compute each of these energies, relaxations were initi-
ated from the final relaxed coordinates coming from the
GNN, removing the adsorbate or the slab if necessary. For
the both the GNN relaxations and the DFT relaxations, the
same atoms in the bulk layers were fixed, while those in
the surface layer were allowed to relaxed. The cell vec-
tors from the GNN structures already included sufficient
vacuum above the slab and so were used directly for the
corresponding DFT calculations.

C.3. Analysis of Search Depth

Beyond analyzing the final reward, it is also valuable to
understand which of the CHEMREASONERsearch methods
discover their best recommended catalysts with fewer com-
putations. One aspect of of this search is the depth at which
the maximum reward node is found. As shown in Table 4,
GPT-4 based searches find their maximum reward node in
fewer nodes, on average than, GPT-3.5-turbo based searches,
in each dataset. Then, CHEMREASONER-Expert shows
superior performance in the OpenCatalyst and BioFuels
datasets.

C.4. Ablation on Actions Taken

To further investigate CHEMREASONER’s performance,
we perform an ablation over the number of actions sug-

Figure 8. Distribution of simulation rewards for GPT-4 vs the two
CHEMREASONER strategies. CHEMREASONER consistently rec-
ommends better catalyst candidates across different simulations.

gested from the planning prompt. While it may be unpre-
dictable how many actions the LLM may propose in its plan,
we can limit the number of actions, by randomly down-
selecting actions, determining the ideal number of actions
for CHEMREASONER-Planner. In Figure 9, we show box-
and-whisker plots of the best rewards for CHEMREASONER-
Planner evaluated over our datasets for various maximum
numbers of actions (10 was used in the main text). The final
rewards are steadily increasing for max number of actions
2-6, while 8 and 10 are offer the highest rewards overall.

C.5. Scaling of LLM and GNN inference

Both GPT-4 and GPT-3.5-turbo were run using the Python
OpenAI Azure interface. Our runtime was dominated by per-
deployment rates limits, which are 40K tokens/minute and
240 requests/minute for GPT-4 and 300k tokens/minute and
1800 requests/minute for GPT-3.5-turbo. Prompts at each
level in the heuristic search tree are executed asynchronously
and in parallel.

Our implementation of the GNN reward function can per-
form an L-BFGS step in approximately 0.5s with a batch
size of 40 adsorbate+catalyst configurations on a single
GPU on a DGX2/V100 and on a single A100 40GB.

D. Multi-modal models for Chemistry
Recent advances in NLP have produced strong results in the
chemistry domain by training LLMs (Fabian et al., 2020;
Chithrananda et al., 2020; Vaucher et al., 2021; Schwaller
et al., 2021; NVIDIA Corporation, 2022; Tysinger et al.,
2023) on molecular sequence representations (Weininger,
1988; Weininger et al., 1989; Krenn et al., 2020; Cheng et al.,
2023). Beyond this, multi-modal text-molecule models
(Edwards et al., 2021; Vall et al., 2021; Zeng et al., 2022;
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Table 4. Comparison of the average search depth of best node in each of the search trees.
Method Category GPT-3.5-turbo GPT-4 Search depth reduction (%)

CHEMREASONER-Expert OpenCatalyst 3.87 3.45 10.97
CHEMREASONER-Expert BioFuels 3.71 3.50 5.76
CHEMREASONER-Expert CO2-Fuel 4.30 3.30 23.25
CHEMREASONER-Planner OpenCatalyst 3.79 3.67 3.08
CHEMREASONER-Planner BioFuels 3.5 3.21 8.16
CHEMREASONER-Planner CO2-Fuel 4.25 3.55 16.47

Figure 9. Impact of maximum number of actions on candidate
search. Maximum actions if the most actions (e.g., “exclude low
selectivity”) that the LLM is allowed to consider at once when it is
reasoning over catalysts.

Xu & Wang, 2022; Su et al., 2022; Seidl et al., 2023; Xu
et al., 2023; Zhao et al., 2023b; Liu et al., 2023b) have been
proposed to enable high-level control over molecular design
(Zhang et al., 2023). This line of work largely focuses on
cross-modal retrieval (Edwards et al., 2021; Zeng et al.,
2022), translation (Edwards et al., 2022b; Liu et al., 2023c;
Christofidellis et al., 2023), and editing (Liu et al., 2022).
Building on this trend, recent work has also emerged to
enable this behavior via instruction-following (Zhao et al.,
2023a; Fang et al., 2023; Guo et al., 2023) and dialogue-
based systems for molecules (Liu et al., 2023a; Cao et al.,
2023; Ye et al., 2023; Zhao et al., 2024).

E. Example of Automated Planner-driven
Execution

In this example, we demonstrate the reasoning pathway
followed by CHEMREASONER-Planner from the root node
in a search tree to the best answer.

We provide the question and then present the internal rea-
soning generated by the LLM to determine the next search

criteria. We interleave each planning phase with the ques-
tion and answers.

Question: Generate a list of top-5 catalyst-label that exhibit
high activity for the CO2 to methanol conversion reaction.
Provide scientific explanations and return a list of top 5
answers and their explanations as a list of pairs. Let’s think
step-by-step.

Level 0: Answer from User-specified Query

1. Copper (Cu): Cu-based catalysts are the most widely used
in the CO2 to methanol conversion process, mainly due to
their high catalytic activity and selectivity towards methanol.
The reaction mechanism involves the initial dissociation of
CO2 on the Cu surface into CO and O, followed by the
hydrogenation of CO to form methanol.

2. Zinc (Zn): Zinc is commonly used in conjunction with
copper (Cu/Zn) for the CO2 to methanol conversion. Zinc
does not directly participate in the catalysis but enhances the
dispersion of copper particles, which increases the number
of active sites and thereby the catalytic activity.

3. Palladium (Pd): Palladium can catalyze the CO2 to
methanol conversion reaction via a formate pathway. The
CO2 molecule adsorbs on the palladium surface and is re-
duced to formate, which subsequently gets hydrogenated to
produce methanol.

4. Ruthenium (Ru): Ruthenium-based catalysts exhibit high
activity for the CO2 to methanol conversion reaction. The
CO2 molecule adsorbs on the Ru surface and undergoes
dissociation into CO and O, which are then hydrogenated to
form methanol.

5. Nickel (Ni): Nickel-based catalysts can efficiently cat-
alyze the CO2 to methanol conversion via a CO pathway.
The CO2 molecule initially dissociates into CO and O on
the Ni surface, followed by the hydrogenation of CO to form
methanol.

Level 1: Internal monologue of Planner

To address the root question, we need to modify the search
state to find metallic catalysts that are effective in the CO2
to methanol conversion reaction. Given the existing state,
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we need to add inclusion criteria that align with this require-
ment.

Let’s consider the following factors:

1) Catalyst Type: The root prompt asks for metallic catalysts,
so we don’t need to change the type of catalyst. However,
to narrow down our search, we could specify a subclass
of metallic catalysts that are known to be effective in this
reaction. For example, transition metal catalysts such as
copper, zinc, and palladium are known to be active in CO2
to methanol conversion.

2) Inclusion Criteria: Since we’re looking for catalysts that
exhibit high activity for the CO2 to methanol conversion
reaction, we should include this as a criteria. We might
also want to include catalysts that are stable under reaction
conditions and have a high selectivity towards methanol.

3) Exclusion Criteria: Since we’re looking for metallic cata-
lysts, we can exclude non-metallic catalysts. Additionally,
we might want to exclude catalysts that degrade quickly or
are toxic.

4) Relationship to Candidate List: We’re looking for cat-
alysts that are similar to those in our candidate list. This
means they should have similar properties and performance
in the CO2 to methanol conversion reaction.

Here are my suggestions:

- Catalyst Type: [”transition metal catalysts”] - Inclusion
Criteria: [”high activity in CO2 to methanol conversion”,
”stability under reaction conditions”, ”high selectivity to-
wards methanol”] - Exclusion Criteria: [”non-metallic cat-
alysts”, ”quickly degrading catalysts”, ”toxic catalysts”] -
Relationship to Candidate List: [”similar to”]

This way, we can find catalysts that are not only similar
to those in our candidate list, but also meet the specific
requirements of the root question.

Level 1: Answer from Planner-generated Query

Based on the requirement of high activity for the CO2 to
methanol conversion reaction, the following metallic cata-
lysts are recommended:

1. **Rhodium (Rh)**: Rhodium-based catalysts have
shown excellent performance in CO2 hydrogenation to
methanol. The high activity of Rh is attributed to its ability
to dissociate the C-O bond in CO2, which is a key step in
the conversion process. Additionally, Rh has an appropriate
binding energy for CO2, allowing for efficient adsorption
and desorption of the reactant and product.

2. **Platinum (Pt)**: Platinum is known for its high cat-
alytic activity in various reactions. In the case of CO2 to
methanol conversion, Pt can activate the CO2 molecule by

weakening the C-O bond, facilitating the subsequent hydro-
genation steps.

3. **Iridium (Ir)**: Iridium catalysts are effective in CO2
hydrogenation to methanol due to their high resistance to CO
poisoning, a common issue in these reactions. Furthermore,
Ir has a suitable binding energy for CO2, which enhances
the reaction rate by promoting the adsorption and desorption
processes.

4. **Gold (Au)**: Gold catalysts have recently been found
to be effective in CO2 to methanol conversion. The high
activity of Au is associated with its ability to activate CO2
by facilitating the breaking of the C-O bond. Also, Au has
a high resistance to CO poisoning.

5. **Silver (Ag)**: Silver is another promising catalyst
for CO2 to methanol conversion. The strong interaction
between Ag and CO2 ensures efficient activation of the
CO2 molecule, leading to high reaction rates. Moreover, Ag
is known for its resistance to sintering, which maintains the
catalyst’s stability and longevity.

Level 2: Internal monologue of Planner

Based on the current search state, answer and the root ques-
tion, it is clear that we are looking for metallic catalysts that
exhibit high activity for the CO2 to methanol conversion re-
action. The inclusion criterion is commercial viability, and
there are no exclusion criteria. The recommended catalysts
should be similar to the ones provided in the candidate list.

From the current answer, we see that the recommended
catalysts have properties such as high resistance to CO poi-
soning, efficient activation of CO2, ability to dissociate the
C-O bond in CO2, suitable binding energy for CO2, high
resistance to sintering, etc.

Based on these, here are some possible actions that we can
take:

- **Catalyst Type:** We can look for other types of metallic
catalysts that have not been included in the current list. For
instance, we can search for ”transition metal catalysts” or
”noble metal catalysts”, since these categories often exhibit
high catalytic activities and have similar properties to the
catalysts in the current list.

- **Inclusion Criteria:** We can add new inclusion criteria
based on the properties of the recommended catalysts in
the current answer. For example, we can include ”high
resistance to CO poisoning” or ”ability to dissociate the
C-O bond in CO2”.

- **Exclusion Criteria:** Since all the recommended cata-
lysts in the current answer seem to have desirable properties,
it may not be necessary to add any exclusion criteria at this
point. However, if we want to narrow down our search, we
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could consider excluding catalysts that have ”low resistance
to sintering” or ”poor binding energy for CO2”.

- **Relationship to Candidate List:** The relationship to the
candidate list can remain as ”similar to”, as we are looking
for catalysts that have similar properties to the ones in the
current list.

”catalyst-type”: [”transition metal catalysts”, ”noble metal
catalysts”], ”inclusion-criteria”: [”high resistance to CO
poisoning”, ”ability to dissociate the C-O bond in CO2”],
”exclusion-criteria”: [”low resistance to sintering”, ”poor
binding energy for CO2”], ”relationship-to-candidate-list”:
[”similar to”]

Level 2: Answer from Planner-generated Query

Sure, here is the list of top-5 metallic catalysts that exhibit
high activity for the CO2 to methanol conversion reaction
with properties of commercial viability and high resistance
to CO poisoning:

1. Copper (Cu): Copper-based catalysts, particularly when
combined with zinc oxide and alumina (Cu/ZnO/Al2O3),
are the most widely used in the industrial production of
methanol from CO2. Copper has a high catalytic activity
and selectivity towards methanol production. The resistance
to CO poisoning is improved by the presence of ZnO, which
can absorb CO2 and present it to the copper sites in a more
reactive form.

2. Palladium (Pd): Palladium catalysts, particularly when
supported on carbon (Pd/C), show high activity for CO2
reduction to methanol. Pd has the ability to dissociate CO2
into CO and O, facilitating the subsequent hydrogenation of
CO to methanol. The carbon support provides resistance to
CO poisoning by facilitating the desorption of CO from the
Pd surface.

3. Ruthenium (Ru): Ruthenium catalysts, especially when
supported on carbon (Ru/C), show good activity and selec-
tivity for CO2 reduction to methanol. Ru has a high CO
dissociation energy, which helps resist CO poisoning. The
carbon support helps disperse the Ru particles to maximize
the catalytic surface area.

4. Nickel (Ni): Nickel catalysts, particularly when supported
on alumina (Ni/Al2O3), have been shown to catalyze the
CO2 to methanol reaction. Nickel has a lower CO binding
energy than other metals, which helps resist CO poisoning.
The alumina support helps disperse the Ni particles and
stabilize the catalyst.

5. Cobalt (Co): Cobalt catalysts, particularly when sup-
ported on ceria (Co/CeO2), can catalyze the CO2 to
methanol reaction. Cobalt has a relatively low CO bind-
ing energy, which helps resist CO poisoning. The ceria
support can enhance the CO2 adsorption and activation,

improving the catalytic activity.

Comparing to the initial list, these metals are generally
cheaper and more abundant, making them more commer-
cially viable. They also show a good resistance to CO
poisoning due to their lower CO binding energies and/or the
use of specific supports.

Level 3: Internal monologue of Planner

Based on the $searchState, $rootPrompt, $currentQuestion,
and $currentAnswer, here are some possible action sugges-
tions:

1) ”catalyst-type”: The current catalyst type is ”metallic
catalysts”. The $currentAnswer provides a list of metallic
catalysts that are commercially viable and have high resis-
tance to CO poisoning. Based on this, we could further
specify the type of metallic catalysts to explore. For ex-
ample, we could look into ”transition metal catalysts” or
”noble metal catalysts”. These categories are subclasses of
metallic catalysts and could potentially offer new candidates
that have not been considered yet.

2) ”inclusion-criteria”: The current inclusion criteria are
”commercial viability” and ”high resistance to CO poison-
ing”. The $currentAnswer explains that these properties are
achieved through the choice of metal and the use of specific
supports. This suggests that we could add criteria related to
these factors. For instance, we could add ”use of specific
supports to enhance catalytic activity and resistance to CO
poisoning” as a new inclusion criteria.

3) ”exclusion-criteria”: The current exclusion criteria is an
empty list. Based on the $currentAnswer, all the suggested
catalysts are not only commercially viable and resistant
to CO poisoning, but also have good catalytic activity for
the CO2 to methanol conversion reaction. Therefore, we
could add ”low catalytic activity for the CO2 to methanol
conversion reaction” as an exclusion criterion.

4) ”relationship-to-candidate-list”: The current relationship
to the candidate list is ”similar to”. Since the $currentAn-
swer provides a new list of catalysts that are different from
the initial list, we could change the relationship to ”different
from”.

”catalyst-type”: [”transition metal catalysts”, ”noble metal
catalysts”], ”inclusion-criteria”: [”use of specific supports to
enhance catalytic activity and resistance to CO poisoning”],
”exclusion-criteria”: [”low catalytic activity for the CO2 to
methanol conversion reaction”], ”relationship-to-candidate-
list”: [”different from”]

These changes would allow us to explore new categories of
metallic catalysts while focusing on the important proper-
ties and excluding those with low activity for the CO2 to
methanol conversion reaction.
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Level 3: Answer from Planner-generated Query

Let’s begin by analyzing the original list of catalysts:

1. Copper (Cu): Commercially viable and shows high re-
sistance to CO poisoning. It has been extensively used in
industry for the conversion of CO2 to methanol due to its
high catalytic activity. Cu-based catalysts, especially when
combined with zinc oxide and alumina, exhibit remarkable
performance.

2. Palladium (Pd): While Pd-based catalysts show high
catalytic activity for many reactions, they are known to
be susceptible to CO poisoning, which could limit their
effectiveness in the CO2 to methanol conversion.

3. Ruthenium (Ru): Ru-based catalysts exhibit high cat-
alytic activity and resistance to CO poisoning. However,
their high cost and limited availability may hinder their
commercial viability.

4. Nickel (Ni): Ni-based catalysts are commercially viable
due to their relatively low cost. However, they exhibit mod-
erate activity for the CO2 to methanol conversion and could
be susceptible to CO poisoning.

5. Cobalt (Co): Co-based catalysts are less active for the
CO2 to methanol conversion compared to the other catalysts
listed. Also, they are susceptible to CO poisoning.

Based on the above analysis, let’s create a new list of metal-
lic catalysts that meet the specified requirements:

1. Rhodium (Rh): Rh-based catalysts show high catalytic
activity for the CO2 to methanol conversion and have high
resistance to CO poisoning. However, their high cost may
limit their commercial viability.

2. Silver (Ag): Ag-based catalysts exhibit high catalytic ac-
tivity for the CO2 to methanol conversion, and are resistant
to CO poisoning. They are also commercially viable due to
their relative abundance and lower cost compared to noble
metals.

3. Iron (Fe): Fe-based catalysts are commercially viable due
to their low cost and abundance. They show moderate to
high activity for the CO2 to methanol conversion and have
good resistance to CO poisoning.

4. Platinum (Pt): Pt-based catalysts have high catalytic
activity and resistance to CO poisoning. However, their
high cost may limit their commercial viability.

5. Gold (Au): Au-based catalysts show high catalytic ac-
tivity for the CO2 to methanol conversion and have high
resistance to CO poisoning. However, their high cost may
limit their commercial viability.

This list includes catalysts that exhibit high catalytic activity
for the CO2 to methanol conversion and high resistance to

CO poisoning. However, the commercial viability of some
of these catalysts may be limited due to their high cost.

Level 4: Internal monologue of Planner

From the $currentAnswer, it seems that we have already
achieved the intent of the $rootPrompt. We have a list of
top-5 metallic catalysts that exhibit high activity for the CO2
to methanol conversion reaction, and have given scientific
explanations for each of the metallic catalysts. The list has
also been compared to the initial list of catalysts.

However, if we wanted to refine the search further, we could
consider the following actions:

1) ”Change the type of catalyst to search for”: We could
limit our search to only noble metallic catalysts. Noble
metals like Rhodium, Platinum, and Gold have already been
identified as having high catalytic activity and resistance to
CO poisoning. However, their commercial viability may be
limited due to their high cost. Including less costly noble
metals like Silver might provide a good balance between
catalytic performance and commercial viability.

2) ”Add a new inclusion criteria”: We could add ”relative
abundance” as a new inclusion criteria. This would ensure
that we only consider catalysts that are not only commer-
cially viable and resistant to CO poisoning, but also readily
available.

3) ”Add a new exclusion criteria”: We could add ”high cost”
as a new exclusion criteria. This would help us exclude
catalysts that are not commercially viable, despite their high
catalytic activity and resistance to CO poisoning.

4) ”Change the relationship to the candidate list”: Given
that we already have a list of suitable catalysts, we could
modify the relationship to be ”different from”. This would
help us identify new and potentially better catalysts.

Here’s how we could represent these suggested actions:

”catalyst-type”: [”noble metallic catalysts”], ”inclusion-
criteria”: [”relative abundance”], ”exclusion-criteria”:
[”high cost”], ”relationship-to-candidate-list”: [”different
from”]

These suggestions would help us refine our search and poten-
tially identify new metallic catalysts that are commercially
viable, resistant to CO poisoning, readily available, and not
excessively costly.

Level 4: Answer from Planner-generated Query

The list provided contains both noble (Rh, Ag, Pt, Au) and
non-noble (Fe) metallic catalysts. For the CO2 to methanol
conversion, a noble metallic catalyst is desirable for its high
resistance to CO poisoning which is important as CO is an
intermediate in this reaction. Iron, however, is not a noble
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metal and does not have this property.

1. Palladium (Pd): Palladium is a noble metal that can be
used for CO2 to methanol conversion. It has high resistance
to CO poisoning. It is also commercially viable since it
is widely used in the industry for hydrogenation reactions.
Moreover, palladium can dissociate CO2 into CO and O,
which is beneficial for methanol synthesis.

2. Ruthenium (Ru): Ruthenium is another noble metal that
can be used for this conversion. It shows high resistance to
CO poisoning and is commercially viable. Ruthenium can
adsorb CO2 and hydrogen simultaneously, facilitating the
conversion to methanol.

3. Rhodium (Rh): Rhodium is a noble metal with high
catalytic activity for the CO2 to methanol conversion. It is
resistant to CO poisoning and is commercially viable. It
has an excellent ability to dissociate CO2 and hydrogen,
facilitating the conversion to methanol.

4. Platinum (Pt): Platinum is a noble metal that is highly
resistant to CO poisoning. It is commercially viable and is
often used in catalysis due to its high reactivity. Platinum
can dissociate CO2 into CO and O, which is beneficial for
methanol synthesis.

5. Gold (Au): Gold is a noble metal that is resistant to
CO poisoning. It is commercially viable and is known to
catalyze the CO2 to methanol conversion, especially when
used as nanoparticles. Gold can adsorb and activate CO2,
facilitating its conversion to methanol.

Therefore, the updated list of noble metallic catalysts suit-
able for the CO2 to methanol conversion, considering
the given criteria, is [’Palladium (Pd)’, ’Ruthenium (Ru)’,
’Rhodium (Rh)’, ’Platinum (Pt)’, ’Gold (Au)’].

Level 5: Internal monologue of Planner

Looking at the $rootPrompt, the task is to generate a list
of top-5 metallic catalysts. The $currentAnswer provides a
list of noble metallic catalysts. However, the $rootPrompt
does not restrict the type of metallic catalysts to noble ones.
Therefore, one possible action is to expand the search to
include non-noble metallic catalysts.

Furthermore, the $currentAnswer includes scientific expla-
nations for each catalyst. These explanations can be used
to refine the inclusion and exclusion criteria. For exam-
ple, the ability to dissociate CO2 into CO and O is a desir-
able property mentioned multiple times in the explanations.
Therefore, this can be added as a new inclusion criterion.
On the other hand, low catalytic activity for the CO2 to
methanol conversion reaction is the current exclusion crite-
rion. We can add another exclusion criterion based on the
explanations provided. For example, we can exclude cata-
lysts that cannot adsorb and activate CO2, as this property

is also mentioned as being beneficial for the conversion to
methanol.

The relationship to the candidate list can be changed to
”different from” to find new metallic catalysts that are not
in the current list.

Here are the suggestions based on the above analysis:

”catalyst-type”: [”non-noble metallic catalysts”], ”inclusion-
criteria”: [”ability to dissociate CO2 into CO and O”, ”abil-
ity to adsorb and activate CO2”], ”exclusion-criteria”: [”can-
not adsorb and activate CO2”], ”relationship-to-candidate-
list”: [”different from”]

These changes will help in finding new metallic catalysts
that are not noble metals but still have high catalytic activity
for the CO2 to methanol conversion reaction. This is in line
with the intent of the $rootPrompt.

Level 5: Answer from Planner-generated Query

The CO2 to methanol conversion reaction is a crucial pro-
cess in catalysis and has been extensively studied. Here
are my top-5 recommendations for noble metallic catalysts
that exhibit high activity for this reaction, along with the
scientific explanations:

1. **Palladium-Gold (Pd-Au) Alloy**: This alloy cata-
lyst has shown excellent catalytic performance for CO2
reduction to methanol. The Pd-Au alloy, especially when
supported on titanium dioxide (TiO2), provides a synergistic
effect where Pd facilitates CO2 activation and dissociation,
while Au helps in reducing the CO intermediate to methanol.
The alloy structure also enhances the resistance to CO poi-
soning.

2. **Platinum-Ruthenium (Pt-Ru) Alloy**: Pt-Ru alloy,
when supported on carbon (C), exhibits high activity and se-
lectivity for CO2 to methanol conversion. The bifunctional
mechanism involves CO2 activation and dissociation on Ru
sites and subsequent hydrogenation to methanol on Pt sites.

3. **Ruthenium-Gold (Ru-Au) Alloy**: The Ru-Au alloy
is another excellent choice for this reaction. Ru helps in
dissociating CO2 into CO and O, while Au aids in the reduc-
tion of CO to methanol. The alloy structure also enhances
the resistance to CO poisoning.

4. **Rhodium-Palladium (Rh-Pd) Alloy**: The Rh-Pd
alloy, when supported on alumina (Al2O3), exhibits high
activity for CO2 to methanol conversion. Rh facilitates CO2
dissociation, while Pd helps in reducing the CO intermediate
to methanol. The alloy structure enhances the resistance to
CO poisoning.

5. **Platinum-Gold (Pt-Au) Alloy**: The Pt-Au alloy,
when supported on carbon (C), shows high activity and
selectivity for the CO2 to methanol conversion. The bifunc-
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tional mechanism involves CO2 activation and dissociation
on Au sites and subsequent hydrogenation to methanol on
Pt sites.
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