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Abstract

State-of-the-art models represent proteins and molecules in separate embedding manifolds, limiting
the modeling of systemic biological processes. We introduce ReactEmbed, a lightweight, plug-and-
play module that bridges this gap. ReactEmbed leverages biochemical reaction networks as a source
of functional context, based on the principle that co-participation in reactions defines a shared func-
tional scope. The module aligns frozen embeddings from models like ESM-3 and MolFormer into
a unified space using a weighted reaction graph and a specialized sampling strategy. This process
enriches unimodal embeddings and enables strong performance on cross-domain benchmarks. Re-
actEmbed offers a practical method to unify biological representations without costly retraining.
The code and database are available for open us

1 Introduction

The fields of computational biology and drug discovery have been revolutionized by large-scale foundation models.
For proteins, models like ESM-3 Hayes et al.|(2025) and ProtBERT Brandes et al.|(2021) have learned deep represen-
tations from sequence data, while for molecules, models like MolFormer |Ross et al.| (2022) have done the same from
SMILES strings. While immensely powerful, these models operate in separate computational universes. Due to their
fundamentally different data modalities (e.g., amino acid sequences vs. SMILES strings) and specialized architectures,
their representations are incompatible, creating a fundamental bottleneck. Biology is driven by the systemic interac-
tions between entities, yet our best models lack a unified language to describe the functional relationships between
proteins and molecules. Prior attempts to bridge this gap have focused on narrow aspects of interaction, primarily
physical complementarity. Interaction-centric models like DrugCLIP |Gao et al.| (2023) excel at predicting if a molec-
ular "key" fits into a protein’s "lock” (the binding pocket). This makes them highly effective for virtual screening,
but their representations are specialized for this single task and may not generalize to broader biological functions.
Similarly, structure-centric models like Uni-Mol |Zhou et al.| (2023) unify entities through their 3D geometry. This is a
powerful approach for tasks like pose prediction but can miss functional equivalences between structurally dissimilar
entities. The common limitation is a focus on how entities physically fit together, rather than what they function-
ally achieve together. In this work, we introduce a new paradigm for unifying biological representations based on
functional semantics.

Our key invention is the insight that biochemical reaction networks serve as a vast, curated semantic nexus for bio-
logical function. Co-participation in a reaction is an explicit, unambiguous signal of a functional role, regardless of
structural similarity or direct binding. We operationalize this paradigm in ReactEmbed, a lightweight, computation-
ally efficient plug-and-play enhancement module. ReactEmbed takes any off-the-shelf, frozen embeddings and aligns
them into a unified, functionally-aware space. It does this through a novel relational learning architecture that inter-
prets a weighted reaction graph, systematically learning the functional context of each entity. This approach yields a
cascade of demonstrated benefits. First, the alignment process is mutually beneficial, providing context that enriches
each unimodal representation for its own domain-specific tasks. Second, this enrichment leads to strong performance
across a wide array of cross-domain benchmarks, from drug-target interaction to binding affinity prediction.

Thttps://anonymous.4open.science/r/ReactEmbeded-A283/README.md
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The main contributions of this work are: (1) A new paradigm for joint representation learning that leverages sys-
temic biochemical reaction networks to capture functional semantics. (2) ReactEmbed, a lightweight, plug-and-
play module that enhances and unifies existing, frozen embeddings without costly retraining or fine-tuning. (3)
Demonstration that this approach improves cross-domain task performance and enriches unimodal representations,
validated across a diverse range of benchmarks. To facilitate broader adoption, the ReactEmbed code and database are
[https://anonymous.4open.science/r/ReactEmbeded-A283/README.md|

2 Related Work

Our work builds on foundations in unimodal representation learning and introduces a new paradigm for joint protein-
molecule representations. The following sections provide an exhaustive review of the intellectual landscape, chart-
ing the parallel evolution of protein and molecule modeling before critically examining existing joint representation
paradigms. This contextualization highlights the specific limitations of current approaches and motivates the de-
velopment of ReactEmbed, a novel framework grounded in functional semantics derived from biochemical reaction
networks.

2.1 Representation Learning in Proteins

Sequence-based protein language models (PLMs), primarily transformer-based, have seen remarkable success/Brandes
et al.|(2021); Hayes et al.|(2025)). These models leverage vast unlabeled sequence repositories, applying self-supervised
objectives like Masked Language Modeling (MLM) to learn representations that implicitly capture co-evolution, struc-
ture, and function Rao et al| (2019); Brandes et al.| (2021). The ESM family |[Hayes et al| (2025) and models like
ProtBERT Brandes et al.| (2021)) have become powerful feature extractors for diverse downstream tasks. Following
breakthroughs in structure prediction [Jumper et al| (2021), structure-based methods have also gained prominence.
These models, often Graph Neural Networks (GNNs), directly encode 3D geometry|Zhang et al.| (2023)). GearNet, for
example, uses a relational GNN pre-trained on the AlphaFold Database with geometric self-supervised tasks |[Zhang
et al.|(2023)).

2.2 Representation Learning in Molecules

Molecular representation has followed a similar trajectory. Sequence-based models like ChemBERTa (Chithrananda
et al.| (2020a) and MolFormer Ross et al.| (2022) apply transformers to SMILES strings, treating chemistry as a "lan-
guage" [Ross et al.| (2022)). In parallel, GNN-based methods naturally capture molecular topology (atoms as nodes,
bonds as edges). Models like Message Passing Neural Networks (MPNNs) |Gilmer et al.|(2017) and contrastive learn-
ing frameworks like MolCLR [Wang et al.| (2022b) have proven highly effective by learning from the graph structure
itself.

2.3 Joint Protein-Molecule Representations

Joint representation learning aims to place proteins and molecules in a unified space. Interaction-centric models
(e.g., DrugCLIP Gao et al.|(2023)) use contrastive architectures specialized for virtual screening but may lack broader
functional context. Structure-centric models (e.g., Uni-Mol [Zhou et al.[ (2023)) unify entities via 3D geometry,
effective for pose prediction but potentially missing functional equivalences between structurally dissimilar entities.

Graph and KG Methods. Methods like KG-DTI, KGNN [Wang et al.| (2022a); Hu et al| (2022)), and recent archi-
tectures like DCGAT-DTIAbir et al.| (2026) explicitly model relational data. However, these are often transductive or
graph-dependent at inference, requiring known graph neighbors to generate predictions. ReactEmbed differs by being
fully inductive. It functions as a modular enhancement for frozen Foundation Models, utilizing the reaction graph only
during training to imprint context. At inference time, it operates solely on entity features, enabling predictions for
"cold-start" entities with no known reaction history.
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3 The ReactEmbed Framework

ReactEmbed is a novel method designed to enhance and align protein and molecule representations by integrating
biochemical reaction data with pre-trained embeddings, as illustrated in Figure[I]
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Figure 1: Overview of the ReactEmbed framework. Left: A toy reaction dataset is converted into a weighted reaction
graph. We move beyond simple co-occurrence counts, using normalized association scores (PPMI) as edge weights
to capture functional specificity and dampen the effect of common hub’ nodes. Middle: The ReactEmbed model
architecture. Frozen, domain-specific pre-trained embeddings (E?, ., E}) ) are projected into a unified space via
lightweight, trainable P2U (Protein to Unified) and M2U (Molecule to Unified) MLP modules. Right: Illustration of
our advanced sampling strategy. An anchor (blue circle) samples a functionally-specific positive partner (green circle)
from its 1-hop neighborhood, weighted by PPML. It also samples challenging “hard negatives’ (red circles) from its k-
hop neighborhood (k € {2, 3,4, 5}) for both intra-domain (e.g., another protein) and cross-domain (e.g., a molecule)
alignment, forcing the model to learn fine-grained distinctions.

3.1 Methodology

3.1.1 Method Overview and Objectives

Given sets of proteins P and molecules M, along with a database of reactions R, ReactEmbed enhances individual
protein and molecule representations. First, we construct a comprehensive weighted reaction graph, where edge
weights are derived from normalized association scores (PPMI) to capture functional specificity. This graph represents
protein-protein, protein-molecule, and molecule-molecule associations. Second, we leverage this graph through a
novel relational contrastive learning framework, which employs an advanced sampling strategy (hard negative mining)
to efficiently preserve domain-specific information while learning cross-domain functional relationships. Algorithm [I]
summarizes our methodology.

3.1.2 Reaction-to-Graph Conversion and PPMI Weighting

The first step is to convert the reaction dataset R into a weighted, undirected graph G = (V, E, Wppasr). The set of
vertices V' = P U M includes all proteins and molecules. A simple co-occurrence count C(e;, e;) is a problematic
edge weight, as it is dominated by ubiquitous "hub" nodes (e.g., ATP, water) that are functionally general. To capture
functional specificity, we compute edge weights using Positive Pointwise Mutual Information (PPMI)Church & Hanks
(1990), a standard measure of association from information theory, to mitigate this "hub problem." First, we compute
the raw co-occurrence counts C(e;, e;) as shown in Algorithm (lines 2-7). From these, we estimate the probabilities
P(e;, e;) and the marginal probabilities P(e;) and P(e;). The PMI is then:

PMI(e;,e5) = log <Im> )

PMI measures how much more likely two entities are to co-occur than if they were independent. We use the Positive
PML Wppai(e;,e;) = max(0, PMI(e;, e;)), as the final edge weight. This hub-dampened weight is high for pairs
that are specifically associated and low for pairs that co-occur merely by chance or due to one entity being a hub.
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Algorithm 1 Advanced Relational Learning for Embedding Enhancement

Require: Reaction dataset R; Protein set P, Molecule set M.
Require: Pre-trained, frozen embedders EJ,.., Epy..
Let h(x) denote the embedding enhancement module.
Phase 1: Graph Construction and PPMI Weighting
: Initialize G(V, E) with V =P U M.
: Initialize co-occurrence count matrix C' = 0.
: forr € R do
Let E,- C V be the set of entities in reaction 7.
for each distinct pair {e;, e;} C E, do
C(ei, 6j) — C(ei, ej) + 1.
end for
: end for
9: Let Niotar = Z” C/(es, ;) be total co-occurrences.

I ANE A ol ey

10: Let D(e;) = E]. C'(es, j) be marginal occurrences of e;.
11: Initialize weight matrix Wpparr = 0.

12: for each pair {e;, e;} where C'(e;, e;) > 0 do

13: P(ei,e;) + C(ei,€;j)/Niotal

14: P(e;) < D(€;)/Niotar; P(e;) < D(€j)/Niotal

15:  PMI(ei,e;) < log (%)

16: Wppmi(es,ej) < max(0, PMI(e;, e;))
17: end for
Phase 2: Relational Learning via Advanced Sampling

18: while not converged do

19: Sample anchor z, ~ Uniform(V).

20: Let N(z.) be the set of 1-hop neighbors of z,.

21: Hub-Dampened Positive Sampling:

22: Sample z,, from N (z,) with probability P(zp|za) x Wpparr(Ta, Tp)-
23: Graph-Based Hard Negative Sampling:

24: Let D, be domain of z,; D, be the opposite domain.

25: Sample k ~ Uniform({2, 3,4,5}).

26: Let Ni(z,) be the set of k-hop neighbors of .

27: Ny intra < (Ng(za) N Do) \ N(z4)

28: Nk,c'ross — (Nk(xa) n Do) \ N(l‘a)

29: Sample Ty, intra ~ Uniform(Ng intrq OF Dg if Nk intra = 0).
30: Sample Tn,cross ~ Uniform(Ng cross or Do if Ni cross = 0).

31: Linra < max(0,m + d(h(za), h(zp)) — d(h(xa), A(Zn,intra)))-
32: Leross < max(0,m + d(h(a), h(p)) — d(h(a), h(zn,cross)))-

33: Liotal < Lintra + (1 — a)ﬁm,ss.

34: Update parameters of A(z) using V Lol

35: end while

36: return Trained enhancement module parameters 0 parr, Oar2v -

3.1.3 Relational Learning with Advanced Sampling

Our framework aligns the disparate embedding manifolds of proteins and molecules into a single, functionally coherent

space. A key design choice of our "plug-and-play" module is to use frozen pre-trained embedding functions:
Eb.:P—R%  EN:M-—R™

This is a deliberate strategy to maintain the rich, general features learned by these large models and to ensure our

enhancement module is computationally efficient. These frozen embeddings are projected into a unified latent space

of dimension dg using our trainable enhancement module. This module consists of two lightweight multi-layer per-

ceptrons (MLPs), P2U (Protein to Unified) and M2U (Molecule to Unified). These are two-layer MLPs with ReLU
activation, chosen to keep the module computationally efficient and avoid overfitting. The final unified embedding for
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any entity x is given by:
P2U(Efe(x);0por), ifzeP
M2U(E™ (x); Opov), ifx e M

pre

Euniﬁed(-r) = { (2)

The module is trained through a specialized relational learning process that leverages the weighted reaction graph.
The core of this process is an advanced sampling strategy:

* Hub-Dampened Positive Sampling: For a given anchor x,, we sample a positive partner x, from
its 1-hop neighborhood N(z,) with a probability proportional to the PPMI edge weight, P(z,|z,) o
Wppnmi(2a,xp). This ensures the training signal comes from functionally specific, not just common, as-
sociations.

* Graph-Based Hard Negative Sampling: Random negative sampling is inefficient. We instead employ a
hard negative mining strategy based on graph topology. We sample negatives from the k-hop neighborhood
of the anchor (where k is randomly chosen from {2, 3, 4,5}), which are entities that are functionally related
but not direct partners. This forces the model to learn fine-grained distinctions.

* Intra- and Cross-Domain Objectives: This hard sampling is applied to our two core objectives: (1) Intra-
Domain Preservation, which samples a hard negative 2, intrq from the same domain (e.g., a k-hop protein,
excluding 1-hop neighbors) to preserve fine-grained structure, and (2) Cross-Domain Alignment, which sam-
ples a hard negative x,, ¢r0ss from the opposite domain (e.g., a k-hop molecule, excluding 1-hop neighbors)
to drive alignment.

These two objectives are balanced in a multi-faceted loss function. The total loss is:
Etotal == aﬁintra + (1 - O‘)Ecross (3)

Here, the Ly, term enforces structural preservation within each domain, while the L term drives the functional
alignment between them. Each component is a margin-based triplet loss:

Eintra - maX(O7 m + d(hua hp) - d(haa hn,intra))

4
Leross = maX(07 m+ d<ha7 hp) - d(ha; hmcross)) @

where h; = FEuifiea() represents the projected embedding of an entity x, d(-,-) is the Cosine distance (chosen to
focus the model on the angular relationship between embeddings rather than their magnitude), and m is the margin.
This advanced framework ensures that specific functional signals are learned efficiently by focusing the model on
challenging examples.

4 Empirical Evaluation

41 Tasks

The empirical evaluation utilizes tasks from four primary areas: molecular properties, protein characteristics, protein-
protein interactions, and molecule-protein interactions. This set of tasks aligns with those commonly employed in
previous works to benchmark models within these respective domains Hayes et al.| (2025); Brandes et al.| (2021);
Wang et al|(2022b)); Ross et al.| (2022); [Zhang et al.| (2023)); [Wang et al.| (2022b)); [Chithrananda et al.| (2020b); Rao
et al.| (2019); Xu et al.| (2022). For molecule-protein interaction prediction, we evaluated DrugBank Wishart et al.
(2018)) focused on drug-target interaction prediction, and BindingDB [Liu et al.| (2007, which provides binding affin-
ity measurements. For protein-protein interaction prediction, we utilized three complementary datasets: HumanPPI
Pan et al.| (2010) and YeastPPI|Guo et al. (2008)), which evaluate interaction prediction capabilities across human and
yeast organisms, respectively; and PPIAffinity [Moal & Fernandez-Recio| (2012), which provides quantitative mea-
surements of binding strength between protein pairs. For protein property prediction, we evaluated our model on
three distinct datasets: BetalLactamase |Gray et al.| (2018)), which measures activity values of TEM-1 beta-lactamase
protein first-order mutants; Stability Rocklin et al.| (2017)), which quantifies protein stability; and Cellular Compo-
nent (GeneOntology)Consortium| (2019), which focuses on cellular component classification. For molecular property
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prediction, we evaluated three key datasets: BBBP [Martins et al.|(2012)), which measures blood-brain barrier penetra-
tion; FreeSolvMobley & Guthrie| (2014), which examines hydration free energy; and CEP[Lopez et al.| (2016)), which
estimates photovoltaic efficiency.

4.2 Baseline Methods

We selected state-of-the-art pre-trained models to serve as the base embeddings for our "plug-and-play"” module. Our
selection criteria prioritized models that represent the distinct prevailing paradigms in the field:

* Sequence & Structure Baselines: For proteins, we used ESM-3 Hayes et al.| (2025) and GearNet |[Zhang
et al. (2023)). For molecules, we chose MolFormer Ross et al.|(2022)) and MolCLR |Wang et al.| (2022b).

* Multimodal Comparisons: We compare against DrugCLIP |Gao et al.| (2023) and Uni-Mol [Zhou et al.
(2023) as canonical representatives of the Interaction-Centric and Structure-Centric paradigms. To ensure
our evaluation captures the latest advancements, we also compare against two very recent graph-based ar-
chitectures: DCGAT-DTI |Abir et al.|(2026), which utilizes dynamic cross-graph attention, and MRHormer
Zhang et al.| (2026), a multi-scale heterogeneous graph transformer.

4.3 Experimental Setup

Our study utilized publicly available datasets and their standard splits to ensure fair comparison. The reaction data
for training ReactEmbed was sourced from the Reactome database, a high-quality, manually curated database. The
resulting reaction graph contained 8,692 protein and 2,204 molecule nodes. The ReactEmbed projection layers (P2U
and M2U) are two-layer MLPs (projecting from the base model dimension, e.g., 768, to a hidden dimension of 1024,
and back to a final unified embedding space of 768) with ReLU activation. Key hyperparameters were tuned via
grid search on a held-out validation set of reactions, optimizing the contrastive loss. We searched learning rates over
{le — 5,5e — 5, le — 4} and the triplet margin m over {0.1,0.3,0.5}. The final parameters used for all experiments
were a learning rate of 5¢ — 5, a margin of 0.1, and a loss balancing weight o (Equation 3) of 0.5. The distance
function d(-, -) used was Cosine distance. Training was performed for 50 epochs with a batch size of 256 using the
AdamW optimizer. Following standard evaluation protocol Rao et al| (2019), we assess representation quality by
training a single linear layer on top of the frozen embeddings (either the original "Baseline" or our "ReactEmbed"
enhanced embeddings) for each downstream task. To ensure robustness, all experiments were repeated 10 times
with different random seeds, and we report the mean and standard deviation of the results. To maintain consistency
with prior work, we adopt their standard evaluation metrics: AUC for classification and Root Mean Square Error
(RMSE) for regression. Statistical significance in Tables [I] and 2] was determined using an independent two-sample
t-test (p < 0.05). The computational complexity of the graph construction (Phase 1) is proportional to the number of
reactions and the square of the number of participants in each reaction, followed by a pass over all co-occurrence pairs
to compute PPMI. The relational learning phase (Phase 2) scales with the number of training epochs and the number
of edges sampled. For the experiments presented in this work, constructing the full reaction graph from the Reactome
dataset took approximately 45 minutes on a standard CPU. The complete training of the ReactEmbed module for 50
epochs required 15 minutes on a single NVIDIA L40 GPU.

4.4 Data Leakage Considerations

A critical aspect of our methodology is the prevention of data leakage between the Reactome training graph and the
downstream interaction test sets (BindingDB, DrugBank, and PPI). To ensure a rigorous evaluation of the model’s
predictive power on novel interactions, we implemented a stringent data splitting protocol. Rather than removing the
entities themselves (which would deplete the graph of valuable contextual information), we explicitly identified and
removed any direct edge from the Reactome graph that represented a co-occurrence between two entities found to be
homologous or analogous to a known pair in one of the downstream test sets. Further analysis of different leakage
prevention strategies is provided in Appendix A.
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Table 1: Evaluation of ReactEmbed for regression tasks (RMSE, lower is better). Results are reported as Mean + 95%
Confidence Interval (over 10 runs). "Baseline" refers to the original frozen embeddings.

Protein Model Molecular Model ReactEmbed (95% CI) Baseline (95% CI)

FreeSolv
ESM3 MolCLR 4.29 £+ 0.09 4.26 + 0.09
ESM3 MolFormer 2.85 + 0.06 3.12 £ 0.07
GearNet MolCLR 421 £0.10 4.26 +£0.09
GearNet MolFormer 2.91 +0.06 3.12 £ 0.07
ProtBERT MolICLR 4.21 +£0.09 426 +0.09
ProtBERT MolFormer 2.92 +0.07 3.12 £ 0.07
CEP
ESM3 MolICLR 1.99 4+ 0.04 2.02 £ 0.05
ESM3 MolFormer 1.64 4+ 0.03 1.68 + 0.04
GearNet MolCLR 2.01 £ 0.05 2.02 + 0.05
GearNet MolFormer 1.63 + 0.04 1.68 £+ 0.04
ProtBERT MolICLR 1.99 4+ 0.06 2.02 + 0.05
ProtBERT MolFormer 1.62 £ 0.04 1.68 + 0.04
BetalL.actamase
ESM3 MolCLR 0.26 + 0.01 0.32 +£0.02
ESM3 MolFormer 0.26 + 0.02 0.32 +0.02
ProtBERT MolICLR 0.29 £+ 0.01 0.32 £0.02
ProtBERT MolFormer 0.31 £0.01 0.32 £ 0.02
Stability
ESM3 MolICLR 0.44 £+ 0.02 0.45+0.04
ESM3 MolFormer 0.43 &+ 0.02 0.45 +£0.04
GearNet MolCLR 0.54 £+ 0.02 0.64 +0.02
GearNet MolFormer 0.55 +0.03 0.64 + 0.02
ProtBERT MolICLR 0.53 +£0.03 0.53 £0.02
ProtBERT MolFormer 0.51 £0.02 0.53 £0.02
BindingDB
ESM3 MolICLR 1.28 +£0.02 1.48 +£0.03
ESM3 MolFormer 1.21 +0.03 1.40 +0.02
GearNet MolCLR 1.28 +0.03 1.45 £ 0.04
GearNet MolFormer 1.20 + 0.04 1.36 = 0.03
ProtBERT MolICLR 1.24 +£0.02 1.41 +0.03
ProtBERT MolFormer 1.17 + 0.03 1.36 £ 0.03
PPIA(ffinity
ESM3 MolCLR 3.03 +0.07 3.32 £ 0.07
ESM3 MolFormer 3.02 = 0.06 3.32 £ 0.07
GearNet MolICLR 3.09 £ 0.09 3.69 £+ 0.09
GearNet MolFormer 3.10 £ 0.08 3.69 £+ 0.09
ProtBERT MolICLR 3.10 + 0.07 332 +0.12
ProtBERT MolFormer 3.14 £ 0.07 3.32 £0.12

5 Results and Analysis

5.1 Performance on Downstream Tasks

As shown in Tables [2] and [T] applying the ReactEmbed module yields broad performance improvements across the
majority of the 11 downstream tasks. The most substantial gains are observed in tasks centered on molecular interac-
tions, where capturing functional context is critical. While ReactEmbed improved performance in the vast majority
of settings, we observed minor degradation in a few configurations (e.g., GearNet on YeastPPI). This may suggest
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Table 2: Evaluation of ReactEmbed for classification tasks (AUC, higher is better). Results are reported as Mean +
95% Confidence Interval (over 10 runs).

Protein Model Molecular Model ReactEmbed (95% CI) Baseline (95% CI)

BBBP
ESM3 MolICLR 61.68 £ 0.56 58.23 £0.59
ESM3 MolFormer 65.13 £ 0.55 64.92 £+ 0.56
GearNet MolCLR 59.36 £+ 0.61 58.23 4+ 0.59
GearNet MolFormer 64.24 + 0.58 64.92 + 0.56
ProtBERT MolICLR 64.86 £ 0.55 58.23 + 0.59
ProtBERT MolFormer 65.22 £+ 0.56 64.92 £ 0.56
GO-CC
ESM3 MolICLR 82.14 £+ 0.37 81.00 £ 0.40
ESM3 MolFormer 82.32 + 0.36 81.00 £+ 0.40
GearNet MolCLR 69.98 + 0.51 69.63 £+ 0.53
GearNet MolFormer 69.97 £+ 0.52 69.63 £+ 0.53
ProtBERT MolICLR 80.11 £ 0.45 79.58 4+ 0.46
ProtBERT MolFormer 80.18 + 0.44 79.58 £ 0.46
DrugBank
ESM3 MoICLR 80.10 £ 0.65 76.34 £ 0.71
ESM3 MolFormer 84.30 + 0.59 76.70 £+ 0.68
GearNet MolCLR 78.32 £ 0.71 72.18 £+ 0.81
GearNet MolFormer 82.41 £+ 0.65 74.73 £ 0.78
ProtBERT MolICLR 83.52 £ 0.61 76.55 4+ 0.69
ProtBERT MolFormer 85.53 + 0.56 78.93 £ 0.62
HumanPPI
ESM3 MoICLR 93.90 £ 0.17 93.78 £ 0.19
ESM3 MolFormer 94.88 + 0.15 93.78 £ 0.19
GearNet MolCLR 86.28 £+ 0.46 83.74 £ 0.50
GearNet MolFormer 85.30 + 0.48 83.74 £ 0.50
ProtBERT MolICLR 91.52 £0.31 88.89 +0.37
ProtBERT MolFormer 90.16 £ 0.34 91.52 +£0.31
YeastPPI
ESM3 MolICLR 65.71 £ 0.81 57.86 £ 0.93
ESM3 MolFormer 64.79 £+ 0.84 57.86 £ 0.93
GearNet MolCLR 53.36 + 0.99 58.00 4 0.90
GearNet MolFormer 54.67 £ 0.96 58.00 £+ 0.90
ProtBERT MolICLR 59.56 + 0.87 56.23 + 0.96
ProtBERT MolFormer 67.68 £+ 0.78 59.56 £+ 0.87

that for certain models or tasks, the functional semantics from reaction data may not perfectly align with the existing
features, a phenomenon we plan to investigate in future work.

5.1.1 Substantial Gains on Interaction-Centric Tasks

The most substantial gains are observed in tasks centered on molecular interactions, where capturing functional con-
text is critical. For example, on the DrugBank drug-target prediction task, ReactEmbed improves performance by up
to 10.28%. Similarly, on the BindingDB affinity prediction task, it reduces error by as much as 13.79%. This demon-
strates that our method effectively captures the complex functional relationships that govern protein-molecule binding
(while acknowledging the data leakage considerations discussed in Section [4.4).
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5.1.2 A Generally Applicable Enhancement for Sequence and Structure Models

This functional context generally enhances both sequence-based (ESM3, ProtBert) and structure-based (GearNet)
models. This indicates that reaction data provides a complementary signal that enriches existing representations,
regardless of their architectural foundation. For instance, the structure-aware GearNet sees a 15.6% error reduction on
protein stability, while the sequence-based ESM3 improves by 13.6% on YeastPPI.

5.1.3 Functional Context Appears Most Crucial for Complex Tasks

ReactEmbed’s impact is most pronounced on more challenging tasks with lower baseline scores, such as YeastPPI and
protein stability. This suggests our approach offers a crucial source of information for complex cases where sequence
or structure alone are insufficient to capture the full picture. These results validate that ReactEmbed is a robust and
practical method for enhancing and unifying biological representations.

5.2 Comparison with Multimodal Baselines

To further situate our work, we compare ReactEmbed against state-of-the-art multimodal models on the two primary
cross-domain tasks: DrugBank (interaction classification) and BindingDB (affinity regression). As shown in Table 3]
existing models are highly specialized, reflecting their training objectives.

Table 3: Comparison with specialized state-of-the-art multimodal models on cross-domain tasks. We compare Re-
actEmbed (ProtBERT + MolFormer) against established paradigms (DrugCLIP, Uni-Mol) and recent 2026 architec-
tures (DCGAT-DTI, MRHormer).

Model DrugBank (AUC 1) BindingDB (RMSE |)
DrugCLIP|Gao et al[(2023) 85.10 1.45
Uni-Mol Zhou et al.|(2023) 75.30 1.20
DCGAT-DTTI |Abir et al.| (2026) 84.35 1.24
MRHormer |Zhang et al.| (2026) 85.02 1.31
ReactEmbed (Ours) 85.53 1.17

The interaction-centric DrugCLIP, which is pre-trained to distinguish true from false interactions, excels at the Drug-
Bank classification task. However, its representation is not optimized for the fine-grained nuances of affinity prediction,
leading to weaker performance on BindingDB. Conversely, the structure-centric Uni-Mol, which is designed to predict
3D poses and geometry, performs well on the BindingDB affinity task but is less effective for the broader functional
classification task in DrugBank.

ReactEmbed is the only model to achieve state-of-the-art performance on both tasks. This demonstrates the generality
of our approach. By learning functional semantics from reaction networks rather than specializing in physical interac-
tion or 3D structure, ReactEmbed creates a unified representation that is broadly applicable to diverse protein-molecule
challenges.

5.3 Ablation Studies

We conducted comprehensive ablation studies to validate ReactEmbed’s design choices. The key findings are pre-
sented in Table 4l

Validating the ''Plug-and-Play'' Design. To test if a more integrated approach is superior, we compared ReactEm-
bed against a variant where the foundational embeddings were fine-tuned. The "Fine-Tuned" results (Table ) show
consistent degradation across all tasks. We attribute this to the fact that fine-tuning on specific reaction data causes the
model to "forget" the broad structural and sequence patterns learned during large-scale pre-training. Our lightweight
module successfully "injects" functional context without compromising the base model’s integrity. We view this as a
democratic approach to Al for Science, allowing researchers to enhance multi-billion parameter models with minimal
compute.

Impact of Advanced Sampling Strategies. The advanced sampling framework described in Section 3 is critical. We
compared our full model against a "Basic Sampling" variant where both key components were removed: it used simple
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Table 4: Ablation study results across downstream tasks. The "Full" column refers to the ReactEmbed (ESM3 + Mol-
Former) configuration. "Basic Samp." refers to removing both PPMI and hard negative sampling strategies. Results
are reported as the absolute performance metric and relative percentage change (A %) from the "Full" model. Negative
A% for AUC and positive A% for RMSE indicate worse performance than the "Full" model.

Data-10 |Intra-Domain| Noise-10 | Basic Samp. | Fine-Tuned

Task Full Score A% |Score A% |Score A% |Score A% |Score A%
BBBP 65.13|164.94 -0.29163.03 -3.22 |6491 -0.34|62.52 -4.01 [61.46 -5.63
DrugBank 84.30(84.10 -0.24 |81.89 -2.86 |84.06 -0.28 [79.49 -5.71 |80.84 -4.10
GO-CC 82.32(82.43 +0.13|80.11 -2.68 [81.06 -1.53]79.85 -3.00 [79.10 -3.91
HumanPPI 94.88(93.62 -1.3390.95 -4.14 [93.74 -1.20(90.23 -4.90 |89.56 -5.61
YeastPPI 64.79|64.40 -0.60 |62.78 -3.10 |63.86 -1.44|61.49 -5.09 [61.95 -4.38

BetaLactamase | 0.26 | 0.27 +3.85| 0.29 +11.54 | 0.27 +3.85| 0.28 +7.69 |0.315 +21.15
BindingDB 1.21 | 1.22 +0.83| 1.25 +3.31 | 1.23 +1.65| 1.32 +9.09 | 1.30 +7.44

CEP 1.64 | 1.65 +0.61|2.02 +23.17 | 1.68 +2.44| 1.74 +6.10 | 1.97 +20.12
FreeSolv 285|284 -035|3.19 +11.93|2.86 +0.35|3.15 +10.53| 3.20 +12.28
PPIAffinity 3.02 | 3.05 +0.99| 329 +894 |3.09 +2.32|3.18 +5.30 | 3.44 +13.91
Stability 043 | 044 +233| 0.53 +23.26 | 0.44 +2.33| 049 +13.95| 0.52 +20.93

co-occurrence counts for positive sampling (instead of PPMI) and random uniform sampling for negatives (instead of
k-hop hard negatives). As shown in the "Basic Samp." column of Table ] removing these components significantly
degrades performance across all tasks (e.g., -5.71% on DrugBank, +13.95% RMSE on Stability). This confirms that
PPMI is necessary to dampen common hubs and hard negative mining is essential for efficient learning.

Data Robustness and Resilience. ReactEmbed demonstrates strong data efficiency. When using only 10% of the
reaction data (‘Data-10°), performance degrades by less than 1.5% on average across most classification tasks. It is
also robust to label noise, maintaining performance with only minor degradation at 10% noise (‘Noise-10‘). Impor-
tance of Intra-Domain and Cross-Domain Learning. Ablating intra-domain edges (forcing the model to learn only
from protein-molecule links) led to significant performance drops, especially on complex regression tasks like CEP
(+23.17% RMSE). This confirms the importance of preserving domain-specific structure while learning cross-domain
relationships.

5.4 Qualitative Analysis: Visualizing Functional Coherence

To directly evaluate the "functional coherence" of the ReactEmbed space, we visualized the learned embeddings using
t-SNE. We selected five distinct protein families covering diverse biological roles: GPCRs (720 proteins), Kinases
(336), Ion Channels (169), Phosphatases (65), and Peptidases (11).

The results (Figure [2)) highlight the fundamental difference between sequence-based and function-based representa-
tions:

* GPCRs (Blue): These are separated in both spaces. Their highly conserved 7-transmembrane domain struc-
ture provides a strong sequence signal that the baseline ProtBert model easily captures.

* Jon Channels (Orange) & Peptidases (Red): In the Baseline space, these families are overlapped with
others, lacking the global sequence uniformity of GPCRs. ReactEmbed, however, forms distinct, isolated
clusters for them. This indicates the model has learned their distinct functional contexts (transport vs. hy-
drolysis) which are not immediately apparent from sequence alone.

» Kinases (Green) & Phosphatases (Purple): Interestingly, these two groups remain spatially overlapping
in the ReactEmbed space. This validates our graph-based learning objective. ReactEmbed learns from co-
occurrence in reactions. Since kinases and phosphatases often regulate the same substrates in the same
signaling cascades (one adding a phosphate, the other removing it), they share a dense "functional neigh-
borhood." The model correctly groups them as "pathway partners" distinct from unrelated entities like Ion
Channels.
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Figure 2: t-SNE visualization of protein embeddings across five functional families. Left: The Baseline space (Prot-
Bert) separates GPCRs (Blue) due to their strong sequence motifs but fails to distinguish between other families (e.g.,
Ion Channels and Peptidases are mixed). Right: The ReactEmbed space clearly separates Ion Channels (Orange) and
Peptidases (Red). Notably, Kinases (Green) and Phosphatases (Purple) remain clustered together; this reflects their
systemic functional coupling, as they often operate on the same substrates within signaling pathways.

5.5 AQuantitative Functional Coherence Analysis
To quantify the functional organization of the ReactEmbed space beyond visual t-SNE clusters (Figure[2), we evaluate

the embeddings using the Silhouette Coefficient (S) and Intra-Family Cosine Distance. The Silhouette Coefficient
measures how tightly an entity is matched to its functional family compared to others (range [—1, 1]).

Table 5: Quantitative analysis of functional family clustering. ReactEmbed improves internal family compactness
while maintaining biological relationships between pathway partners.

Family Intra-Family Dist (|) Silhouette Score (1)
Baseline ReactEmbed Baseline ReactEmbed
GPCRs 0.421 0.312 0.154 0.288
Ton Channels 0.654 0.442 -0.012 0.145
Kinases 0.512 0.398 0.087 0.192
Peptidases 0.723 0.485 -0.045 0.112
Overall Mean 0.578 0.409 0.046 0.184

As shown in Table [5] ReactEmbed increases family compactness across all groups. Notably, the Silhouette Score for
Ion Channels and Peptidases—which are often overlapped in sequence-only spaces—moves from near-zero to positive
values, indicating the formation of distinct functional neighborhoods.

6 Conclusion and Future Work

We introduced ReactEmbed, a plug-and-play module that operationalizes a new paradigm for joint representation
learning. By leveraging biochemical reaction networks as a foundational bridge for functional semantics, ReactEm-
bed enhances and unifies separate, state-of-the-art embeddings for proteins and molecules. Our method provides a
cascade of benefits: it enriches unimodal representations and achieves strong performance on cross-domain tasks, as
demonstrated across 11 benchmarks. By learning what entities do in a systemic context, rather than just what they look
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like or how they fir together, our model provides a universally beneficial signal that is crucial for modeling complex
biological systems.

Limitations. ReactEmbed’s performance relies on the quality and coverage of the underlying reaction database.
Its effectiveness may be constrained for novel entities with sparse interaction data or for tasks that are not strongly
correlated with systemic biochemical function. Our hard negative sampling, while effective, relies on graph topology
and may miss challenging negatives that are topologically distant but semantically similar.

Future Work. Future directions include integrating richer biological context (e.g., pathways, gene expression) and
exploring few-shot learning for rare diseases. A particularly significant next step is to move beyond the current sym-
metric, role-agnostic graph. The current construction treats all co-participating entities equally, losing the specific
roles of substrates, products, and catalysts. Future work will focus on constructing a multi-relational graph with dif-
ferent edge types based on reaction rules (e.g., substrate, product, catalyst) to explicitly model these distinct functional
roles. Beyond role-aware graphs, a significant next step is the development of a full-scale biological foundation model
pre-trained from scratch with reaction-based objective functions. While the current work proves that reaction net-
works provide a source for functional alignment, an integrated architecture may further optimize the synergy between
modality-specific features and systemic biological roles.

Code and Data Availability

The code and database are available for open use.
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A Appendix A: Data Leakage Analysis

Table 6: Impact of leakage strategies across Interaction Tasks (Metric: AUC for classification, RMSE for regression).

Leakage Strategy DrugBank (AUC) BindingDB (RMSE) HumanPPI (AUC)
Full Leakage (No Removal) 86.52 +£0.28 1.12 + 0.02 95.10 4+ 0.15
Direct Edge Removal (Ours) 84.30 + 0.59 1.21 £+ 0.03 94.88 + 0.15
2-Hop Path Removal (Strict) 82.15 £ 0.68 1.25 £ 0.04 92.90 4+ 0.25

To ensure that our model’s performance on interaction tasks (DrugBank, BindingDB) represents true generalization
rather than memorization of training data, we analyzed different strategies for preventing data leakage between the
Reactome training graph and downstream test sets. We compared three scenarios:

 Full Leakage: No edges are removed from the Reactome graph. This allows the model to potentially "see"
test pairs during training if they co-occur in reactions.

* Direct Edge Removal (Current Method): As detailed in Section we remove any direct edge between
two entities if that specific pair appears in the test set. This prevents memorization of the exact interaction
while preserving the broader functional context of each entity.

* 2-Hop Path Removal (Strict): A more stringent approach that removes not only direct edges but also any
intermediate nodes that create a 2-hop path between test pairs. This eliminates indirect leakage but severely
sparsifies the training graph.

Table [6] shows the impact of these strategies on the DrugBank task. While "Full Leakage" yields artificially high
performance, our current method maintains strong predictive power without direct memorization. The strict 2-hop
removal causes a significant performance drop, indicating it likely removes too much valid functional context.
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