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Abstract

Federated Learning is a framework for training machine learning models from1

multiple local data sets without access to the data. A shared model is jointly2

learned through an interactive process between server and clients that combines3

locally learned model gradients or weights. However, the lack of data transparency4

naturally raises concerns about model security. Recently, several state-of-the-art5

backdoor attacks have been proposed, which achieve high attack success rates while6

simultaneously being difficult to detect, leading to compromised federated learning7

models. In this paper, motivated by differences in the output layer distribution8

between models trained with and without the presence of backdoor attacks, we9

propose a defense method that can prevent backdoor attacks from influencing the10

model while maintaining the accuracy of the original classification task.11

1 Introduction12

Federated learning (FL) is a potential solution to constructing a machine learning model from several13

local data sources that cannot be exchanged or aggregated. As mentioned in [8], these restrictions are14

essential in areas where data privacy or security is critical, including but not limited to healthcare.15

Also, FL is valuable for companies that shift computing workloads to local devices. Furthermore,16

these local data sets are not required to be independent and identically distributed. Hence, a shared17

robust global model is desirable and, in many cases, cannot be produced without some form of18

collaborative learning. Under the FL setting, local entities (clients) submit their locally learned model19

gradients and weights to be intelligently combined by some centralized entity (server) to create a20

shared and robust machine learning model.21

Concerns have arisen that the lack of control or knowledge regarding the local training procedure22

could allow a user, with malicious intent, to create an update that compromises the global model for23

all participating clients. An example of such harm is a backdoor attack, where the malicious users24

try to get the global model to associate a given manipulation of the input data, known as a trigger,25

with a particular outcome. Some methods [6, 10, 7] have been proposed to detect the triggers in26

the training data to defend against backdoor attacks. However, in FL, as only the resulting model27

gradients or weights are communicated back, such methods cannot be applied to defend against28

backdoor attacks. Furthermore, since the model update in FL assumes no access to all clients’ data,29

there is less information available to help detect and prevent such malicious intent. Thus backdoor30

attacks may be easier to perform and harder to detect in FL. Furthermore, current robust aggregation31

methods [15] fail to prevent even mild backdoor attacks.32

In this paper, we first find that the output layer distributions of malicious users are very different33

from that of benign users. Specifically, there exists a discernible difference between malicious and34

benign user distributions for the target label class. Therefore, we can leverage this difference to detect35

backdoor attacks. Figure 1 shows a model with different estimated distributions for the target class36

depending on whether or not that model has been backdoor attacked.37
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Motivated by the finding that the output layer distributions of a model with and without a backdoor38

are different, we propose distributional differences between the output layers of returning user models39

and a known clean model to identify malicious updates. The proposed method is effective against40

multiple state-of-the-art backdoor attacks at different strength levels. Even in the unreasonable setting41

where 40% of the clients are malicious for each update, we greatly delay the success of the backdoor42

attack, outperforming current robust aggregation methods. In the experiment section, we demonstrate43

our method’s ability on several data sets to prevent backdoor attacks. The method performs well44

even when the attack happens every round starting at the beginning of the process. Furthermore, our45

method does not affect the performance of the global model on clean data, resulting in no decrease46

and even increases in the accuracy of the original classification task.47

2 Related Work48

Federated Learning. Federated learning (FL) is an emerging machine learning paradigm that has49

seen great success in many fields [11, 3, 1]. At a high level, FL is an iterative procedure involving50

rounds of model improvement until it meets some criteria. These rounds send the global model to51

users and select a subset of users to update the global model. Then those chosen users train their52

local copy of the model, and their resulting models are communicated back and aggregated to create53

a new global model. Typically, the final local model’s gradients or weights are transmitted back54

to ensure data privacy. Popular aggregation methods of FL include FedAvg [9], Median [16] and55

Trim-mean [16].56

Backdoor Attack. Recently, several backdoor attacks have been proposed to take advantage of57

the FL setting. In [14], the authors show that the multiple-user nature of FL can be exploitable to58

make more potent and lasting backdoor attacks. By distributing the backdoor trigger across a few59

malicious users, they could make the global model exhibit the desired behavior at higher rates and for60

many iterations after the attack had concluded. We will show our threshold’s effectiveness in even61

more potent attack settings than in their original paper.62

A recent work [17] proposed a projection method, Neurotoxin, for any backdoor attack method to63

improve the longevity of the compromise to a model. The attacker’s updates are projected onto64

dimensions with small absolute values of the weight vector. The authors claim such weights are65

updated less frequently by other benign users, resulting in greater longevity of successful attacks. We66

will demonstrate our method’s effectiveness against both of the above attacks [14, 17].67

Defense. On the other hand, few defense methods have been proposed to defend against backdoor68

attacks in FL. Prior work [12] claims that norm clipping [13] is effective against backdoor attacks in69

FL but has been broken by the Neurotoxin attack. Two other robust defense methods for FL were70

proposed in [15]. The paper theoretically explores two robust aggregation methods: Median and71

Trim-mean, which were shown effective in defending against poisoning attacks in FL. Median is a72

coordinate-wise aggregation rule in which the aggregated weight vector is generated by computing73

the coordinate-wise median among the weight vectors of selected users. Trim-mean aggregates74

the weight vectors by computing the coordinate-wise mean using trimmed values, meaning that75

each dimension’s top and bottom k elements will not be used. We propose a method that can be76

implemented in addition to other aggregation or model filtering methods. In the experiment, we focus77

on the original FedAvg [9] aggregation to show the effectiveness of our proposed method without78

assistance from additional defense techniques.79

3 Method80

This section describes the motivation and framework for our proposed method, Trusted Aggregation81

(TAG), which effectively defends against state-of-the-art backdoor attacks. The current defense82

aggregation methods [9, 15] are insufficient for preventing attacks of even mild strength. In addition83

to better model security, our method can improve accuracy for the original classification task compared84

to the current robust aggregation methods.85

Motivation. We find that the output layer distributions of models returned by malicious users are86

very different from that of benign users. Figure 1 shows the output distributions of a backdoor model87

and a clean model on clean input data. Each neuron in the output layer corresponds to one class, and88

the backdoor model has a learned association between the backdoor trigger and the target class. We89

observe that the learned associated comes with a distributional change in the output distribution for90

the target class. Therefore it implies that with a guaranteed clean model, we should be able to identify91

whether another candidate model has a backdoor attack by comparing their output distributions on92
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Figure 1: Final hidden layer output distributions (kernel density estimation based) for a backdoor model (red)
and a clean model (black). There is an obvious difference between the distributions of the backdoor and clean
models for the target label class.

some clean data. Note that we can observe a discernible difference between malicious and benign93

user distributions for this target label class. Therefore, we can leverage this difference to detect94

backdoor attacks.95

Detection Framework. We assume that there exists one user who we can be confident is trustworthy96

to place in charge of gate-keeping the global model for updates. The detection method leverages the97

trusted user to evaluate incoming model weights and determine whether each contribution is allowed98

to participate in the global model update procedure. The assumption is reasonable as, in reality, the99

center server will also collect some data to help with the training process, not just blindly relying on100

the local data from users.101

The main idea is to detect user models with an unusually distributed output layer with information102

from a single trusted user. Moving forward, we will refer to this single trusted user as the validation103

user. In each communication round, this validation user completes the following steps to generate a104

threshold for malicious user detection, see Algorithm 1105

Algorithm 1 Trusted Aggregation
Notation: Let S represent the random subset of users that will submit locally trained models Uj to
update the global model G, UT to denote the model from the trusted user, X to denote the local data
of the trusted user, and D to represent the distributional difference function.

1: procedure TRUSTED AGGREGATION(X, G, UT , {Uj}j∈S)
2: Generated outputs: oG = G(X), oT = UT (X), and oj = Uj(X), ∀j ∈ S
3: for each class c ∈ [1, ...,m] do
4: Compute the distributional distances between each user and the global model
5: v

(c)
T = D(o(c)

G ,o
(c)
T ) and v

(c)
j = D(o(c)

G ,o
(c)
j ), ∀j ∈ S ▷ o(c): output for class c

6: end for
7: The above procedure produces: vT ∈ Rm,vj ∈ Rm ▷ m: total number of classes
8: Compute threshold: τ = 2×max(vT ) ▷ max: maximum element of the vector
9: τ̃ ← GLOBAL-MIN MEAN SMOOTHING(τ) ▷ Algorithm 2

10: Select users: Sr = {j ∈ S|max(vj) < τ̃} ▷ maximum element < threshold
11: return FedAvg({Uj}j∈Sr

)
12: end procedure

In general, Algorithm 1 determines which users will be used for the global updates based on a106

threshold. During each round of training, we compute and store a forward pass output (oG) of the107

global model on the validation user’s local data. Then, local training is performed, and forward pass108

outputs (oj ,oT ) on the validation user’s local data with the selected users’ models and the model109

of the validation user are stored. For each class, we compute the class-conditional distributional110

distance (v(c)j , v
(c)
T ) between the global model output (o(c)

G ) and the user output (o(c)
j or o(c)

T ) by111

applying a distributional difference function on estimated CDFs based on o
(c)
G , o(c)

j and o
(c)
T . Here,112

o(c) represents the outputs based on the trusted user’s local data with the label c. In our experiment,113

the Kolmogorov-Smirnov (KS) function is used to compute the distributional difference, but other114

distance functions can also be applied. Suppose there are m classes in total; the process will result in115

a distance vector (vj ,vT ∈ Rm) for each user, including the validation user. The distance vectors116

will then determine which users can be selected for the update.117
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Threshold Construction. In this part, we discuss how to decide the threshold (τ ) and how to use118

it to select users. We quantify the threshold as the largest possible change a non-malicious user119

could contribute. Users with distance values exceeding the threshold will be excluded. Assume120

that the class-conditional distances (v(c)) are Uniform on [0, bc] for each class c, where bc is the121

maximum possible change to the output layer of class c through local training by a non-malicious122

user. Therefore, the threshold can be generated by estimating the maximum of bc for any class.123

Let m represent the total number of classes, equation 1 shows that under the assumption, twice the124

maximum of the class-conditional distance (2max(v(c))) is a practical estimation of the upper bound125

of bc,∀c ∈ [1, ...,m].126

∀c ∈ [1, ...,m], v(c) ∼ Uniform(0, bc), let j = argmax
c

(bc) such that bj = max
c

(bc) .

max
c

(
v(c)

)
≥ v(j) =⇒ E

[
max

c

(
v(c)

)]
≥ E

[
v(j)

]
=

bj
2

=⇒ E
[
2×max

c

(
v(c)

)]
≥ bj (1)

Since the validation user is non-malicious, their distance vector serves as a good representation for127

other non-malicious users. Therefore, we estimate the threshold τ by setting τ = 2 × max(vT ),128

where vT ∈ Rm is the distance vector of the validation user and max(·) means getting the maximum129

value of the vector vT . Then, the maximum distance value (max(vj)) of each selected user will be130

compared with the threshold (τ ) to determine the final list of users who can participate in the update.131

A user with a maximum distance smaller than the threshold is considered a benign user, while a132

user with a maximum distance larger than or equal to the threshold will be removed. However, this133

naive threshold is very unstable, and a lucky malicious user can get past it in some rounds due to134

the instability. Therefore, we make an additional modification, global-min mean smoothing, to this135

basic threshold to address the concern.136

Global-Min Mean Smoothing. A straightforward way to stabilize the threshold value is smoothing137

methods. However, in the early communication rounds, the naive threshold value rapidly decreases138

as the model starts making connections between inputs and output classes. Therefore, applying a139

smoothing method early will result in a relatively high threshold, which may let attackers bypass it.140

When the naive threshold (τ ) decreases rapidly, we do not wish to use any previous communication141

rounds for the smoothing.142

Figure 2: Comparison of the global min-
mean smoothing with the base (naive) thresh-
old and various smoothing methods.

Therefore, we propose to use the lowest observed value143

(Global Min) of τ as the starting point of smoothing. Let144

τt represent the naive estimation of the threshold in round145

t, the smoothed threshold τ̃ at round n is given by146

τ̃ =
1

n− ts + 1

n∑
t=ts

τt,

where ts is the round that when the global min is observed.147

Details of the global-min mean smoothing is described148

in Algorithm 2. As τt shrinks, we observe new global149

minimums, and the start of the threshold smoothing is150

reset. In addition, when our estimate stabilizes, previous151

values are leveraged to smooth the threshold, which keeps152

lucky malicious users from getting past a volatile threshold.153

Figure 2 compares our global min-mean smoothing with154

the naive threshold and various smoothing techniques. The155

global min-mean smoothing best captures the naive threshold’s early behavior while providing156

remarkable stability improvements. Additionally, when our threshold encounters a new global157

minimum, it provides a conservative estimate to prevent malicious users while re-learning cutoff158

behavior over the next few rounds.159

Algorithm 2 Global-Min Mean Smoothing
Notation: Let (τ1, · · · , τn−1, τn) denote the sequence of values that we wish to smooth.

1: procedure GLOBAL-MIN MEAN SMOOTHING(τ1, · · · , τn−1, τn)
2: Record the location of global minimum: i = argmin

t∈[1,...,n]

τt

3: Subset to a sequence starting with the global min: {τt}nt=i = {τi, · · · , τn}
4: return average of sequence subset, {τt}nt=i
5: end procedure
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4 EXPERIMENTS160

4.1 Setting161

Federated Learning. We start by giving further specifications regarding the federated learning162

environment. Our interest is training a global model over M communication rounds with N users.163

Each iteration randomly selects K users, using a specified proportion of the total users, to participate164

in the model update. After local training, the next global model is the average returned model165

weights by the FedAvg procedure. We focus our experiments on the ResNet18 model architecture; a166

standard object recognition classifier initially proposed in [4]. We assume that all users, including167

malicious, have complete control over all aspects of local training, such as learning rate, the number168

of epochs, and the model weights they return. For simplicity, we select two main sets of training169

hyper-parameters for benign and malicious users. The malicious users will poison a given proportion170

of their local data by adding their backdoor trigger to the input and changing the training label to the171

target class. They intend for the model to associate the trigger with the target class and hence have172

the future global model identify any input with the trigger as belonging to the target class.173

Attack and Baseline. To show the effectiveness of our method, we choose a setting in which the174

backdoor attack is strong. We force all malicious users to be included in the subset of selected users175

to update the global model each round after the start of the backdoor attack. Note that the selection of176

random users is a defense against malicious users by making it difficult for them to update the global177

model repeatedly. Additionally, we do not allow the validation user, a guaranteed benign user, to178

participate in any global model updates. We make these decisions to show the ability of our threshold179

to prevent even strong backdoor attacks against the global model. For our experiment, we test the180

proposed method and two other robust aggregation methods, Median and Trim-mean [15], against181

two state-of-the-art backdoor attacks in FL: Neurotoxin [17] and Distributed Backdoor Attacks182

(DBA) [14]. To further evaluate the effectiveness of the aggregation methods, we also vary the183

proportion of malicious attackers (10%, 40%) in selected users to test the defense methods under184

different attack strength levels.185

Data. The experiments are done on three different data sets: CIFAR10 [5], STL10 [2] and CI-186

FAR100 [5]. In each experiment, we randomly split the data between the users. For global model187

evaluation, we split the test set into two parts. We add the backdoor trigger to images in the second188

half and remove any target class observations. We measure model performance with classification ac-189

curacy using the first half as classification accuracy, and the proportion of the poisoned half predicted190

as the target class, known as attack success rate, to measure the extent that the backdoor attack has191

compromised the model. For a defense method, a good performance consists of a low attack success192

rate and high classification accuracy. In other words, both attacks are unsuccessful when the defense193

method is used, and the defense does not negatively influence the classification performance.194

4.2 Results195

We begin by considering a setting where 10% of the selected users is malicious each communication196

round. Figure 3 shows the performance of the three robust aggregation methods against DBA and197

Neurotoxin attacks on three data sets regarding classification accuracy and attack success rate. Our198

proposed method (TAG) nullifies the backdoor attack in each case without decreasing the classification199

accuracy of the original task. Furthermore, the model reaches a clear improvement in the model’s200

classification accuracy on the CIFAR-10 data set compared to the other two aggregation methods.201

The other two robust aggregation methods, coordinate-wise Median and Trim-mean, only prevent the202

backdoor attack on STL10 with Neurotoxin. We conclude that our method is a clear improvement to203

the existing robust aggregation methods for federated learning.204

We show that TAG can handle even stronger attack settings against state-of-the-art attacks in the205

following part. We consider testing the robust aggregation methods against DBA and Neurotoxin206

attacks with 40% malicious users in the selected set. These attacks are catastrophically successful207

against the current robust aggregation methods, see Figure 4, having a nearly perfect attack success208

rate after round 50 on all our data sets. However, our method, TAG, overcomes the backdoor extent209

of the initial rounds to prevent the attack against both CIFAR data sets. Although our defense method210

eventually could not withstand the Neurotoxin attack on STL10, we note that incredibly TAG delayed211

the attack’s success for nearly 90 communication rounds when nearly half of the users were malicious.212

TAG’s performance against DBA on STL10 is also unsatisfactory, but it still delays the attack’s213

success.214
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(a) Performance under DBA backdoor attack with 10% malicious users.

(b) Performance under DBA and Neurotoxin backdoor attacks with 10% malicious users.

Figure 3: Model performance under DBA and Neurotoxin backdoor attacks with 10% malicious users. The
proposed method TAG performs well in defending against backdoor attacks as the attack success rates are low.
Meanwhile, it does not affect the model’s classification performance on clean data. However, the other two
aggregations methods do not work well against backdoor attacks except on STL10 against Neurotoxin.

(a) Performance under DBA backdoor attack with 40% malicious users.

(b) Performance under DBA and Neurotoxin backdoor attacks with 40% malicious users.

Figure 4: Model performance under DBA and Neurotoxin backdoor attacks with 40% malicious users. The
proposed method TAG performs well in defending against the backdoor attacks on CIFAR10 and CIFAR100.
However, the other two aggregation methods do not work well on the three data sets.

5 Conclusion215

We believe our proposed method, Trusted Aggregation (TAG), is an essential advancement toward216

model security for the federated learning framework. While current robust aggregation methods217

fail to prevent mild backdoor attacks, TAG holds up against state-of-the-art attacks in unreasonably218

strong settings. Furthermore, TAG can act as a layer of model filtering in addition to current and219

future modifications to the choice of aggregation step.220
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