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Abstract

In learning tasks with label noise, improving model robustness against overfitting is a pivotal
challenge because the model eventually memorizes labels, including the noisy ones. Identifying
the samples with noisy labels and preventing the model from learning them is a promising
approach to address this challenge. When training with noisy labels, the per-class confidence
scores of the model, represented by the class probabilities, can be reliable criteria for assessing
whether the input label is the true label or the corrupted one. In this work, we exploit this
observation and propose a novel discriminator metric called confidence error and a sieving
strategy called CONFES to differentiate between the clean and noisy samples effectively. We
provide theoretical guarantees on the probability of error for our proposed metric. Then, we
experimentally illustrate the superior performance of our proposed approach compared to
recent studies on various settings, such as synthetic and real-world label noise. Moreover, we
show CONFES can be combined with other state-of-the-art approaches, such as Co-teaching
and DivideMix to further improve model performance∗.

1 Introduction

The superior performance of deep neural networks (DNNs) in numerous application domains, ranging from
medical diagnosis (De Fauw et al., 2018; Liu et al., 2019) to autonomous driving Grigorescu et al. (2020)
mainly relies on the availability of large-scale and high-quality data (Sabour et al., 2017; Marcus, 2018).
Supervised machine learning in particular requires correctly annotated datasets to train highly accurate
DNNs. However, such datasets are rarely available in practice due to labeling errors (leading to label noise)
stemming from high uncertainty (Beyer et al., 2020) or lack of expertise (Peterson et al., 2019). In medical
applications, for instance, there might be a disagreement between the labels assigned by radiology experts
and those from the corresponding medical reports (Majkowska et al., 2020; Bernhardt et al., 2022), yielding
datasets with noisy labels. Hence, it is indispensable to design and develop robust learning algorithms that

∗The code is available at: https://github.com/reihaneh-torkzadehmahani/confes
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are able to alleviate the adverse impact of noisy labels during training. Throughout this paper, we will refer
to these methods as label noise learning methods.

In the literature, there are different types of label noise including symmetric noise, pairflip noise, and
instance-dependent noise. In symmetric noise a sample is allocated a random label, while in pairflip noise
the label of a sample is flipped into the adjacent label (Patrini et al., 2017; Xia et al., 2020; Bai et al., 2021).
In real-world scenarios, a corrupted label assigned to a sample depends on the feature values and the true
label of the sample, known as instance-dependent noise (Liu, 2021; Zhang et al., 2021b). Training DNNs in
the presence of label noise can lead to memorization of noisy labels and consequently, reduction in model
generalizability (Zhang et al., 2021a; Chen et al., 2021b).

Some of the existing studies for dealing with label noise focus on learning the noise distribution. Patrini
et al. (2017); Berthon et al. (2021); Yao et al. (2021); Xia et al. (2019); Yao et al. (2020) model the noise
distribution as a transition matrix, encapsulating the probability of clean labels being flipped into noisy ones
and leverage loss correction to attenuate the effect of the noisy samples.

Other studies (Cheng et al., 2020; Xia et al., 2021; Wei et al., 2020) learn the clean label distribution and
capitalize on regularization or selection of reliable samples to cope with the noisy labels. A main challenge in
this line of work, also known as sample sieving (or sample selection), is to find a reliable criterion (or metric)
that can efficiently differentiate between clean and noisy samples. The majority of the previous studies (Jiang
et al., 2018; Han et al., 2018; Yu et al., 2019) employ the loss value to this end, where the samples with
small loss values are considered to likely be clean ones (small-loss trick). A prior study (Zheng et al., 2020)
proposes a confidence-based criterion and shows the label is likely noisy if the model confidence in that label
is low. Our work lies in this category of confidence-based sieving metrics.

Since learning noise distributions is challenging, it is rarely used in practice. Sample sieving methods, on
the other hand, have multiple unsolved problems: They might not always be capable of effectively filtering
out noisy labels without supplementary assistance (e.g., additional model in Co-teaching). Moreover, their
performance might not be satisfactory in the presence of certain types of noises such as instance-dependent
or higher levels of noise. This motivates us to develop new metrics and learning algorithms that are more
robust against various types and levels of label noise with minimal additional computational overhead.

Contributions. Our main contributions can be summarized as follows:

• We introduce a novel metric called confidence error to efficiently discriminate between clean and noisy
labels. The confidence error metric is defined as the difference between the softmax outputs/logits
of the predicted and original label of a sample. Moreover, we provide a theoretical bound on the
probability of error for the proposed metric. Our theoretical analysis and observations indicate there
exists a clear correlation between the confidence error value and the probability of being clean. That
is, a sample with a lower confidence error has a much higher probability to be a clean sample than a
noisy one.

• We then integrate the confidence error criterion into a learning algorithm called CONFidence Error
Sieving (CONFES) to robustly train DNNs in the instance-dependent, symmetric, and pairflip label
noise settings. The CONFES algorithm computes the confidence error associated with training
samples at the beginning of each epoch and only incorporates a subset of training samples with lower
confidence error values during training (i.e., likely clean samples).

• We validate our findings experimentally showing that CONFES significantly outperforms the state-
of-the-art learning algorithms in terms of accuracy on typical benchmark datasets for label noise
learning including CIFAR-10/100 (Krizhevsky et al., 2009) and Clothing1M (Xiao et al., 2015). The
superiority of CONFES becomes particularly pronounced in scenarios where the noise level is high or
when dealing with more intricate forms of noise such as instance-dependent noise.

• We moreover demonstrate that combining CONFES with other learning algorithms including Co-
teaching (Han et al., 2018), JoCor (Wei et al., 2020), and DivideMix (Li et al., 2020) provides further
accuracy gain, illustrating synergy between CONFES and the existing research endeavors in the field
of learning with label noise.
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2 Related Work

Overcoming the memorization of noisy labels plays a crucial role in label noise learning and improves model
generalization by making the training process more robust to label noise (Zhang et al., 2021a; Arpit et al.,
2017; Natarajan et al., 2013). The research community mainly tackled the memorization problem by adjusting
the loss function (known as loss correction), using implicit/explicit regularization techniques, or refining the
training data and performing sample sieving.

Adjusting the loss function according to the noise transition probabilities is an effective method for decreasing
the adverse impact of noisy samples during the training but comes at the cost of accurate estimation of the
transition matrix (Patrini et al., 2017). Previous studies have paved the way for this non-trivial estimation in
different ways. For instance, T-Revision (Xia et al., 2019) estimates the transition matrix without requiring
anchor points (the data points whose associated class is known almost surely), which play an important
role in the effective learning of the transition matrix. Dual-T (Yao et al., 2020) first divides the transition
matrix into two matrices that are easier to estimate and then aggregates their outputs for a more accurate
estimation of the original transition matrix.

Another line of work improves model generalization by introducing regularization effects suitable for learning
with noisy labels. The regularization effect may be injected implicitly using methods such as data augmentation
and inducing stochasticity. For example, Mixup (Zhang et al., 2018) augments the training data using a
convex combination of a pair of examples and the corresponding labels to encourage the model to learn a
simple interpolation between the samples. SLN (Stochastic Label Noise) (Chen et al., 2021a) introduces a
controllable noise to help the optimizer skip sharp minima in the optimization landscape.

Although the implicit regularization techniques have been proven effective in alleviating overfitting and
improving generalization, they are insufficient to tackle the label noise challenge (Song et al., 2022). Thus, the
community came up with explicit regularization approaches such as ELR (Early-Learning Regularization) (Liu
et al., 2020) and CDR (Xia et al., 2021). ELR is based on the observation that at the beginning of training,
there is an early-learning phase in which the model learns the clean samples without overfitting the noisy
ones. Given that, ELR adds a regularization term to the Cross-Entropy (CE) loss, leading the model output
toward its own (correct) predictions at the early-learning phase. Similarly, CDR first groups the model
parameters into critical and non-critical in terms of their importance for generalization and then penalizes
the non-critical parameters.

A completely different line of work is sample sieving/selection, which aims to differentiate the clean samples
from the noisy ones and employ only the clean samples in the training process. The previous works in this
direction exploit loss-based or confidence-based metrics as the sample sieving criteria. MentorNet (Jiang
et al., 2018) uses an extra pre-trained model (mentor) to help the main model (student) by providing it
with small-loss samples. The decoupling algorithm (Malach & Shalev-Shwartz, 2017) trains two networks
simultaneously using the samples on which the models disagree about the predicted label. Co-teaching (Han
et al., 2018) cross-trains two models such that each of them leverages the samples with small-loss values
according to the other model. Co-teaching+ (Yu et al., 2019) improves Co-teaching by considering clean
samples as those that not only have small loss but also those on which the models disagree. JoCoR (Wei
et al., 2020) first computes a joint-loss to make the outputs of the two models become closer, and then
it considers the samples with small loss as clean samples. The utilization of two models in MentorNet,
decoupling, Co-teaching, Co-teaching+, and JoCoR leads to a computational inefficiency that is twice as high
compared to traditional training methods. LRT (Zheng et al., 2020) employs the likelihood ratio between the
model confidence in the original label and its own predicted label and then selects the samples according to
their likelihood ratio values. Our work is closely related to LRT as both employ a confidence-based metric for
sample sieving. However, our metric is an absolute metric that captures the difference between the model’s
confidence in the given label and the predicted label. In contrast, LRT is a relative metric that is more
sensitive to the model’s quality.

Our study belongs to the category of sample selection methods and capitalizes on model confidence to
discriminate between the clean and noisy samples akin to LRT, without the need for training an additional
model as required by methods like Co-teaching.

3



Published in Transactions on Machine Learning Research (09/2023)

3 CONFES: CONFidence Error based Sieving

We first provide a brief background on the training process for the classification task. Then, we introduce the
proposed confidence error metric and provide a theoretical analysis of its probability of error. Afterward, we
present the CONFES algorithm, which capitalizes on confidence error for effective sample sieving.

3.1 Background

We assume a classification task on a training dataset D = {(xi, yi) | xi ∈ X, yi ∈ Y }n
i=1, where n is the number

of samples and X and Y are the feature and label (class) space, respectively. The neural network model
F(Xb; θ) ∈ Rm×k is a k-class classifier with trainable parameters θ that takes mini-batches Xb of size m as
input. In real life, a sample might be assigned the wrong label (e.g., due to human error). Consequently, clean
(noise-free label) training datasets might not be available in practice. Given that, we assume Ỹ = {ỹi}n

i=1 and
D̃ = {(xi, ỹi)}n

i=1 indicate the noisy labels and noisy dataset, respectively. The training process is conducted
by minimizing the empirical loss (e.g., cross-entropy) using mini-batches of samples from the noisy dataset:

min
θ

L(F(Xb; θ); Ỹb) = min
θ

1
m

m∑
i=1

L(F(xi; θ), ỹi), (1)

where L is the loss function and (Xb, Ỹb) is a mini-batch of samples with size m from the noisy dataset D̃.
Table 1 provides a comprehensive summary of all the notations used in the theoretical analysis, along with
their respective definitions.

Table 1: Summary of notations and their definitions
Notation Defenition Notation Defenition
(xi, ỹi) Sample i with features xi and possibly noisy label ỹi y′

i Predicted label for a sample i
n Total number of samples k Total number of classes/labels
F(·; θ) A classifier with weights θ H∗(·) The optimal Bayes classifier
σ(·) Softmax activation function C(l) Model confidence for label l
Pj(·) True conditional probability for label j P̃j(·) Noisy conditional probability for label j
L(·) Loss function (e.g., cross-entropy) τlj The probability that label l is flipped to label j
v The best prediction of Baye’s optimal classifier w The second-best prediction of Baye’s optimal classifier
α Sieving threshold EC(·) Confidence error for a sample
ϵ Maximum approximation error of the classifier ψ A placeholder variable
O Order/asymptotic notation (the upper bound of complexity) µ, β, γ Tsybakov noise condition variables(µ ∈ (0, 1], β, γ > 0)

In the presence of label noise, the efficiency of the training process mainly depends on the capability of the
model to distinguish between clean and noisy labels and to diminish the impact of noisy ones on the training
process. In this study, we propose an elegant metric called confidence error for efficient sieving of the samples
during training.

3.2 Confidence Error as the Sieving Metric

Consider a sample s = (xi, ỹi) from the noisy dataset D̃. The k-class/label classifier F(xi; θ) takes xi as
input and computes the weight value associated with each class as output. Moreover, assume σ(·) is the
softmax activation function such that σ(F(xi; θ)) ∈ [0, 1]k takes classifier’s output and computes the predicted
probability for each class. We define the model confidence for a given label l ∈ {1, . . . , k} associated with
sample s as the prediction probability assigned to the label:

C(l) = σ(F(xi; θ))(l) (2)
The class with the maximum probability is considered as the predicted class, i.e. y′

i, for sample s:
y′

i = arg max
j∈{1, ..., k}

σ(j)(F(xi; θ)), (3)

The confidence error EC(s) for sample s is defined as the difference between the probability assigned to the
predicted label y′

i and the probability associated with the original label ỹi:

EC(s) = C(y′
i) − C(ỹi), (4)
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where EC(s) ∈ [0, 1]. In other words, the confidence error states how much the model confidence in the
original class is far from the model confidence in the predicted class. The confidence error of zero implies
that the original and predicted classes are the same.

3.3 Probability of Error

In the following, we theoretically prove the probability that confidence error wrongly identifies noisy labels as
clean ones and vice versa is bounded. Presume H∗ is a Bayes optimal classifier that predicts the correct label
according to the true conditional probability Pj(x) = Pr[y = j|x]. Consider v = H∗(x) = arg maxj Pj(x) as
the H∗’s best prediction and w = arg maxj,j ̸=v Pj(x) as its second best prediction. Define P̃j(x) as the noisy
conditional probability, and ϵ as the maximum approximation error of the classifier F :

P̃j(x) = Pr[ỹ = j|x] =
k∑

l=1
Pr[ỹ = j|y = l] ∗ Pl(x) =

k∑
l=1

τlj ∗ Pl(x), ϵ = max
x,j

[∣∣∣C(j) − P̃j(x)
∣∣∣] ,

where τlj represents the probability that the label l is flipped to label j. Presume the true conditional
probability P meets the multi-class Tsybakov noise condition (Zheng et al., 2020), which guarantees the
presence of a margin (region of uncertainty) around the decision boundary separating different classes.
This implies that the true conditional probabilities are sufficiently apart, and there is a reasonable level of
distinguishability between the classes.
Lemma 1. Given the true conditional probability P satisfying the multi-class Tsybakov noise condition,
there exists α = min

{
1,minx τỹỹ Pw(x) +

∑
l ̸=ỹ τlỹ ∗ Pl(x)

}
such that

Pr
[
ỹ = H∗(x), C(ỹ)(x) < α

]
≤ β [O(ϵ)]γ , (5)

for constants µ ∈ (0, 1], β, γ > 0, and ϵ < µminj τjj .

Proof. The proof can be found in Zheng et al. (2020).

In simple terms, Lemma 1 states that if a label is noisy and the model confidence in that label is low, the label
has a limited probability of being correct. The probability of correctness is determined by ϵ, the maximum
approximation error for the model, which tends to be small in practical scenarios (Zheng et al., 2020). In
other words, Lemma 1 implies that the error bound for model confidence is small in practice.

Now, we provide the error bound for our proposed metric. We consider two possible error cases: (I) the label
is noisy according to the optimal Bayes classifier H∗, but our metric recognizes it as clean, and (II) the label
is clean based on H∗, but our metric identifies it as noisy. In the following theorem, we show the probability
of making any of these two errors is bounded.
Theorem 1. Given that the true conditional probability P satisfies the multi-class Tsybakov noise condition
for constants µ ∈ (0, 1], β, γ > 0, and ϵ < µ minj τjj , we have:

Case (I): Let the threshold α = max
x

{
−σ(ỹ)(x) + τy′y′Pw(x) +

∑
l,l ̸=y′ τly′Pl(x)

}
, then:

Pr [ỹ ̸= H∗(x), EC(x, ỹ) ≤ α] ≤ β [O(ϵ)]γ + ψ. (6)

Case (II): Let the threshold α = min
x

{
σ(y′)(x) − τỹỹPw(x) −

∑
l,l ̸=ỹ τlỹPl(x)

}
, then:

Pr [ỹ = H∗(x), EC(x, ỹ) > α] ≤ β [O(ϵ)]γ . (7)

Proof. In Case (I), the predicted label is either the same as the Bayes optimal classifier’s or not:

Pr [ỹ ̸= H∗(x), EC(x, ỹ) ≤ α] = Pr [ỹ ̸= H∗(x), EC(x, ỹ) ≤ α,H∗(x) = y′] +
Pr [ỹ ̸= H∗(x), EC(x, ỹ) ≤ α,H∗(x) ̸= y′]

(8)
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Simplifying the terms and using the definition of H∗(x) yields:

Pr [ỹ ̸= H∗(x), EC(x, ỹ) ≤ α] ≤ Pr [Pw(x) ≤ Py′(x), EC(x, ỹ) ≤ α] + Pr [ỹ ̸= v, v ̸= y′] (9)

By substituting the definition of confidence error, we have:

Pr [ỹ ̸= H∗(x), EC(x, ỹ) ≤ α] ≤ Pr
[
Pw(x) ≤ Py′(x), σ(y′)(x) − σ(ỹ)(x) ≤ α

]
+ Pr [ỹ ̸= v, v ̸= y′] (10)

Then, we set Pr [ỹ ̸= v, v ̸= y′] = ψ and substitute σ(y′)(x) with P̃y′(x)−ϵ based on the definition of maximum
approximation error:

Pr [ỹ ̸= H∗(x), EC(x, ỹ) ≤ α] ≤ Pr
[
Pw(x) ≤ Py′(x), P̃y′(x) ≤ α+ σ(ỹ)(x) + ϵ

]
+ ψ (11)

Next, we expand the P̃y′ term:

Pr [ỹ ̸= H∗(x), EC(x, ỹ) ≤ α] ≤

Pr
[
Pw(x) ≤ Py′(x),

(
τy′y′Py′(x) +

∑
l ̸=y′

τly′ ∗ Pl(x)
)

≤ α+ σ(ỹ)(x) + ϵ

]
+ ψ,

(12)

and simplify the resulting inequality as follows:

Pr [ỹ ̸= H∗(x), EC(x, ỹ) ≤ α] ≤ Pr
[

Pw(x) ≤ Py′(x) ≤
σ(ỹ)(x) + α−

∑
l ̸=y′ τly′ ∗ Pl(x)

τy′y′
+ ϵ

τy′y′

]
+ ψ (13)

Then, we substitute the defined threshold α:

Pr [ỹ ̸= H∗(x), EC(x, ỹ) ≤ α] ≤ Pr
[
Pw(x) ≤ Py′(x) ≤ Pw(x) + ϵ

τy′y′

]
+ ψ (14)

Utilizing the multi-class Tsybakov noise condition completes the proof for the first case:

Pr [ỹ ̸= H∗(x), EC(x, ỹ) ≤ α] ≤ β

[
ϵ

τy′y′

]γ

+ ψ (15)

Similarly, we calculate the bound for Case (II) as follows:

Pr [ỹ = H∗(x), EC(x, ỹ) > α] = Pr [ỹ = H∗(x), EC(x, ỹ) > α,H∗(x) ̸= y′] +
Pr [ỹ = H∗(x), EC(x, ỹ) > α,H∗(x) = y′] .

(16)

Upon simplifying the terms and substituting the definition of confidence error, we have:

Pr [ỹ = H∗(x), EC(x, ỹ) > α] ≤

Pr
[
Pw(x) ≤ Pỹ(x), σ(y′) − σ(ỹ) > α

]
+ Pr

[
ỹ = H∗(x) = y′, σ(y′) − σ(ỹ) > α

] (17)

Substituting the definition of ϵ yields the following expression:

Pr [ỹ = H∗(x), EC(x, ỹ) > α] ≤ Pr
[
Pw(x) ≤ Pỹ(x), σ(y′) − α > σ(ỹ) ≥ P̃ỹ(x) − ϵ

]
+ 0 (18)

Then, we expand the P̃ỹ term,

Pr [ỹ = H∗(x), EC(x, ỹ) > α] ≤

Pr

Pw(x) ≤ Pỹ(x), σ(y′) − α > σ(ỹ) ≥ τỹỹPỹ(x) +
∑
l ̸=ỹ

τlỹ ∗ Pl(x) − ϵ

 (19)
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and simplify it as follows:

Pr [ỹ = H∗(x), EC(x, ỹ) > α] ≤ Pr
[

Pw(x) ≤ Pỹ(x) ≤
σ(y′)(x) − α−

∑
l ̸=ỹ τlỹ ∗ Pl(x)

τỹỹ
+ ϵ

τỹỹ

]
(20)

Substituting the threshold α based on its definition and employing the multi-class Tsybakov noise condition
results in the following inequality:

Pr [ỹ = H∗(x), EC(x, ỹ) > α] ≤ β

[
ϵ

τỹỹ

]γ

, (21)

which completes the proof of Theorem 1.

This theorem establishes that the probability of error in distinguishing between clean and noisy samples is
bounded if we utilize the confidence error as the sieving criterion. In the following, we present CONFES,
which capitalizes on the confidence error metric for sieving the samples in label noise scenarios.

3.4 CONFES algorithm

Previous studies (Bai et al., 2021; Liu et al., 2020) show that deep neural networks tend to memorize noisy
samples, which can have a detrimental effect on the model utility. Therefore, it is crucial to detect the noisy
samples and alleviate their adverse impact, especially in the early steps of training. The CONFES algorithm
takes this into consideration by sieving the training samples using the confidence error metric and completely
excluding the identified noisy samples during training. CONFES (Algorithm 1) consists of three main steps
at each epoch: (1) Sieving samples, (2) building the refined training set, and (3) training the model.

Algorithm 1: Confidence error based sieving (CONFES)
Input: Noisy training dataset D̃ = {(xi, ỹi)}n

i=1, model Fθ, number of training epochs T , initial sieving
threshold α, number of warm-up epochs Tw, batch size m

Output: Trained model Fθ

1 for i = 0, . . . , T − 1 do
2 αi = max(α - i · α

Tw
, 0) /* Set sieving threshold */

3 Dc
i = {s ∈ D̃ | EC(s) ≤ αi} /* Compute confidence error using equation 4 and sieve clean samples */

4 Da
i = Dc

i ⊕ {(xj , ỹj) ∈ Dc
i s.t. j=1, . . . , size(D̃) - size(Dc

i )} /* Build new dataset(clean⊕duplicate) */
5 for mini-batch β = {(xj , ỹj)}m

j=1 ∈ Da
i do

/* Train the model on new dataset */
6 Update model Fθ on mini batch β using equation 1

7 return Trained model Fθ

In the sieving step, the confidence error for each training sample is computed using Equation 4; then, the
samples whose confidence error is less than or equal to αi (sieving threshold at epoch i) are considered as
clean, whereas the remaining samples are assumed to be noisy and excluded from training. The per-epoch
sieving threshold αi is computed using two hyper-parameters: the initial sieving threshold α, and the number
of warm-up epochs Tw, where αi is linearly reduced from α to zero during Tw warm-up epochs. The idea
of adaptive sieving threshold αi is based on the observation that generalization occurs in the initial epochs
of training, while memorization gradually unfolds afterward (Stephenson et al., 2021; Liu et al., 2020). We
capitalize on the warm-up mechanism using an adaptive sieving threshold by training the model on a carefully
selected subset of samples, which are potentially clean labels according to their confidence error values, instead
of using all samples from the beginning of the training, laying a solid foundation for the learning process.

In the second step, a new training dataset is created by concatenating (⊕) only the identified clean samples
and their augmentations (duplicates) such that this dataset becomes as large as the initial training set. This
is based on the fact that sieving the clean samples results in a reduction in the number of training samples

7
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due to the exclusion of noisy samples. Duplication of the clean samples accounts for this reduction and
emphasizes learning the potentially clean samples. Moreover, in line with a previous study (Carlini et al.,
2023), which indicates duplication is a very strong promoter of learning, duplicating clean samples produces
a very strong learning signal which improves the algorithm overall. Finally, the model is trained on this
augmented dataset.

4 Evaluation

We draw a performance comparison between CONFES and recent baseline approaches on three label noise
settings: symmetric, pairflip, and instance-dependent. In the following, we first describe the experimental
setting and then present and discuss the comparison results. Moreover, we provide additional results regarding
the effectiveness of the confidence error metric and CONFES algorithm in sieving the samples as well as the
sensitivity of CONFESS to its hyper-parameters.

4.1 Experimental Setup

Datasets. We utilize the CIFAR-10/100 datasets (Krizhevsky et al., 2009) and make them noisy using
different types of synthetic label noise. Furthermore, we incorporate the Clothing1M dataset (Xiao et al.,
2015), a naturally noisy benchmark dataset widely employed in previous studies. CIFAR-10/100 contain 50000
training samples and 10000 testing samples of shape 32 × 32 from 10/100 classes. For the CIFAR datasets,
we perturb the training labels using symmetric, pairflip, and instance-dependent label noise introduced in Xia
et al. (2020), but keep the test set clean. Following data augmentation/preprocessing procedure in previous
works (Liu et al., 2020; Li et al., 2020), the training samples are horizontally flipped with probability 0.5,
randomly cropped with size 32×32 and padding 4×4, and normalized using the mean and standard deviation
of the dataset. Clothing1M is a real-world dataset of 1 million images of size 224 × 224 with noisy labels
(whose estimated noise level is approximately 38% (Wei et al., 2022; Song et al., 2019)) and 10k clean test
images from 14 classes. Following prior studies (Liu et al., 2020; Li et al., 2020), the data augmentation steps
performed on the clothing1M dataset include 256 × 256 resizing, 224 × 224 random cropping, and random
horizontal flipping. In clothing1M, the number of samples for each class is imbalanced. We follow Li et al.
(2020) and sample a class-balanced subset of the training dataset at each epoch.

State-of-the-art methods. On all considered datasets, we compare CONFES with the most recent related
studies including (1) standard cross-entropy loss (CE), (2) Co-teaching (Han et al., 2018) that cross-trains
two models and uses the small-loss trick for selecting clean samples and exchanges them between the two
models, (3) ELR (Liu et al., 2020), an early-learning regularization method that leverages the model output
during the early-learning phase, (4) CORES2 (Cheng et al., 2020), a sample sieving approach that uses
confidence regularization which leads the model towards having more confident predictions, (5) PES (Bai
et al., 2021), a progressive early-stopping strategy, (6) SLN (Chen et al., 2021a) that improves regularization
by introducing stochastic label noise, and (7) LRT, a confidence based algorithm that leverages likelihood
ratio values for sample selection. Co-teaching, CORES2, and LRT are based on sample sieving, whereas ELR
and SLN are regularization-based methods. For all methods, the specific hyper-parameters are set according
to the corresponding manuscript or the published source code if available.

Parameter Settings and Computational Resources. We conduct the experiments on a single GPU
system equipped with an NVIDIA RTX A6000 graphic processor and 48GB of GPU memory. Our method
is implemented in PyTorch v1.9. For all methods, we evaluate the average test accuracy on the last five
epochs, and for co-teaching, we report the average of this metric for the two networks. Following previous
works (Li et al., 2020; Bai et al., 2021), we train the PreActResNet-18 (He et al., 2016) model on CIFAR-10
and CIFAR-100 using the SGD optimizer with momentum of 0.9, weight decay of 5e-4, and batch size of
128. The initial learning rate is set to 0.02, which is decreased by 0.01 in 300 epochs using cosine annealing
scheduler (Loshchilov & Hutter, 2017). For the Cloting1M dataset, we adopt the setting from Li et al. (2020)
and train the ResNet-50 model for 80 epochs. The optimizer is SGD with momentum of 0.9 and weight
decay of 1e-3. The initial learning rate is 0.002, which is reduced by factor of 10 at epoch 40. At each
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epoch, the model is trained on 1000 mini-batches of size 32. Note that ResNet-50 has been pretrained on
ImageNet (Deng et al., 2009).

4.2 Results

CIFAR-10/100 datasets. Tables 2 and 3 list test accuracy values for different noise types and noise rates
on CIFAR-10 and CIFAR-100 datasets respectively. According to these tables, CONFES outperforms the
competitors for all considered symmetric, pairflip, and instance-dependent noise types. Similarly, CONFES
delivers higher accuracy than the competitors for different noise rates. Moreover, as the noise level increases,
the accuracy gap between CONFES and its competitors widens in favor of CONFES. Figure 1 illustrates the
test accuracy versus epoch for the different learning algorithms. As shown in the figure, CONFES is robust
against overfitting because the corresponding test accuracy continues to increase as training moves forward,
and stays at the maximum after the model converges. Some of the other algorithms such as SLN and ELR,
on the other hand, suffer from the overfitting problem, where their final accuracy values are lower than the
maximum accuracy they achieve.
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Figure 1: Test accuracy for PreAct-ResNet18 trained on CIFAR-100: CONFES is robust against
overfitting, whereas some competitors including SLN and ELR suffer from overfitting; noise level is 40%.

Table 2: Test accuracy on CIFAR-10 for different noise types with noise level 40%.
Method Symmetric Pairflip Instance
CONFES (ours) 90.62±0.2 86.18±0.3 90.28±0.2
CE 66.61 ±0.4 59.25 ±0.1 66.04 ±0.2
Co-teaching (Han et al., 2018) 87.42 ±0.2 84.57 ±0.2 86.90±0.1
ELR (Liu et al., 2020) 85.74 ±0.2 86.15 ±0.1 85.37 ±0.3
CORES2 (Cheng et al., 2020) 83.90 ±0.4 58.38 ±0.6 76.71 ±0.4
LRT (Zheng et al., 2020) 85.47 ±0.3 59.25 ±0.3 80.53 ±0.9
PTD (Xia et al., 2020) 72.05 ±0.9 58.34 ±0.8 65.97 ±0.9
PES (Bai et al., 2021) 90.55 ±0.1 85.56 ±0.1 85.63 ±0.5
SLN (Chen et al., 2021a) 83.69 ±0.2 85.26 ±0.5 67.71 ±0.4

Combining CONFES with state-of-the-art algorithms. Table 4 shows the accuracy values of CoTeach-
ing, JoCor, and DivideMix if confidence error is used as the discriminator metric instead of the training
loss. As shown in the table, the accuracy from these algorithms is enhanced by 2-5% compared to their
baseline performance by combining them with CONFES, indicating that confidence error is not only effective
as the main building block of the proposed CONFES algorithm but also combined with other state-of-the-art
methods including DivideMix, which is a complex method employing data augmentation, and guessing or
refining the noisy labels rather than excluding them, which helps in utilizing the noisy samples and learning
their feature information.
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Table 3: Test accuracy on CIFAR-100 for various label noise types with different noise rates.
(a) Instance-dependent

Method 20% 40% 60%
CONFES (ours) 73.59±0.2 69.68±0.2 59.48±0.1
CE 63.16 ±0.1 48.92 ±0.3 30.65 ±0.4
Co-teaching (Han et al., 2018) 71.12 ±0.3 66.55 ±0.3 57.18 ±0.2
ELR (Liu et al., 2020) 63.10 ±0.2 49.15 ±0.2 29.88 ±0.6
CORES2 (Cheng et al., 2020) 64.55 ±0.1 50.98 ±0.2 33.93 ±0.5
LRT (Zheng et al., 2020) 73.14 ±0.2 65.32 ±0.6 45.37 ±0.1
MentorMix (Jiang et al., 2020) 69.41 ±0.2 56.41 ±0.1 34.61 ±0.1
PES (Bai et al., 2021) 71.65 ±0.3 64.83 ±0.2 41.10 ±0.5
SLN (Chen et al., 2021a) 60.08 ±0.1 46.08 ±0.3 29.77 ±0.4

(b) Pairflip
Method 20% 30% 40%
CONFES (ours) 73.12±0.1 71.34±0.2 62.37±0.4
CE 64.31 ±0.3 55.77±0.1 45.62 ±0.4
Co-teaching (Han et al., 2018) 69.59 ±0.2 64.04 ±0.4 55.42 ±0.5
ELR (Liu et al., 2020) 62.05 ±0.5 54.44 ±0.2 44.31 ±0.3
CORES2 (Cheng et al., 2020) 63.85 ±0.2 54.88 ±0.3 45.34±0.2
LRT (Zheng et al., 2020) 71.70 ±0.1 60.78 ±0.1 46.24 ±0.2
MentorMix (Jiang et al., 2020) 69.65 ±0.1 62.01 ±0.1 50.97 ±0.2
PES (Bai et al., 2021) 71.73 ±0.4 68.28 ±0.3 59.18 ±0.2
SLN (Chen et al., 2021a) 61.82 ±0.3 53.67 ±0.2 45.72 ±0.2

(c) Symmetric
Method 20% 40% 60%
CONFES (ours) 73.89±0.1 69.63±0.2 60.65±0.1
CE 63.46 ±0.7 47.85 ±0.4 29.59 ±0.3
Co-teaching (Han et al., 2018) 71.54 ±0.3 66.26 ±0.1 58.82 ±0.1
ELR (Liu et al., 2020) 63.59 ±0.1 48.33 ±0.2 30.37 ±0.1
CORES2 (Cheng et al., 2020) 65.99 ±0.5 52.26 ±0.2 34.61 ±0.2
LRT (Zheng et al., 2020) 73.72 ±0.1 66.52 ±0.2 50.86 ±0.4
MentorMix (Jiang et al., 2020) 71.52 ±0.2 61.96 ±0.2 44.38 ±0.3
PES (Bai et al., 2021) 71.42 ±0.2 68.37 ±0.2 60.38 ±0.1
SLN (Chen et al., 2021a) 60.48 ±0.1 46.98 ±0.2 28.50 ±0.2

Table 4: Test accuracy for CONFES combined with other approaches on CIFAR-100 with noise rate 40%.
Method Symmetric Pairflip Instance
Co-teaching (Han et al., 2018) 66.26 ±0.1 55.42 ±0.5 66.55±0.3
CONFES-Co-teaching 69.94±0.1 57.90±0.2 69.51±0.1
Improvement +3.68 +2.48 +2.96
DivideMix (Li et al., 2020) 74.63±0.2 74.9±0.1 66.79±0.3
CONFES-DivideMix 76.31±0.2 76.51±0.1 69.03±0.1
Improvement +1.68 +1.61 +2.24
JoCoR (Wei et al., 2020) 67.05±0.2 54.96±0.3 67.46±0.2
CONFES-JoCoR 70.48±0.2 59.61±0.1 70.24±0.4
Improvement +3.43 +4.65 +2.78

Clothing1M dataset. Table 5 summarises the performance of methods on Clothing1M dataset. CORES2

and PES provide slight or no accuracy gain compared to the baseline cross-entropy training. CONFES, on
the other hand, outperforms the competitors including ELR and SLN.

Table 5: Test accuracy on Clothing1M dataset
Method CE ELR CORES2 PES SLN CONFES (ours)
Test accuracy 69.21% 71.39% 69.50% 69.18% 72.80% 73.24%

10



Published in Transactions on Machine Learning Research (09/2023)

Effectiveness of confidence error. We design an experiment to illustrate the effectiveness of the confidence
error metric: we employ the SGD optimizer and cross-entropy loss function to train PreActResNet18 on
CIFAR-100, where 40% of the labels are made noisy using the instance-dependent noise. At the beginning of
each epoch, the model computes the confidence error for all training samples and sorts them in ascending
order by the confidence error value. The model considers the first 60% of the samples with lower confidence
error values as clean and only incorporates them during training. This procedure is repeated for 200 epochs.
As shown in Figure 2, the distribution of confidence error values for the clean and noisy samples becomes
more and more dissimilar as the training process proceeds. For instance, at epoch 50, a sample with a high
confidence error (e.g. near 1.0) is much more likely to be a noisy sample than a clean one. Likewise, a
sample with a very low confidence error is probably clean. The extensions of this experiment to pairflip and
symmetric label noise are available at Figures 6-7 in the Appendix. These observations are highly consistent
with the theoretical analysis from Theorem 1, which states the probability of error (identifying noisy labels
wrongly as clean and vice versa) for the confidence error metric is bounded and low in practice.
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Figure 2: Distributions of confidence error values for clean and noisy samples progressively diverge
from each other as the training process continues. The experiment is conducted using PreAct-ResNet18 and
CIFAR-100 with noise level of 40%.

Why CONFES? We use our previous experimental setup and train the model with the naive cross-entropy
method and CONFES algorithm to answer this question. Figures 3a and 3b show the model confidence
for the noisy, clean, and predicted labels (averaged over the corresponding samples) with cross-entropy and
CONFES, respectively. According to Figure 3a, the confidence over noisy labels is very low at the early stages
of cross-entropy training. However, as the training proceeds, the model’s confidence in noisy labels increases.
At the end of the training, the model confidence over predicted and noisy labels is close to each other. This
indicates that the model has been misled by the noisy samples, wrongly considering them as the true labels
of the samples. CONFES, on the other hand, utilizes the model confidence error to distinguish between clean
and noisy samples and exclude the identified noisy samples during training. This results in consistently low
confidence for the noisy samples, but high confidence in clean and predicted labels throughout all training
stages, as shown in Figure 3b. This observation shows the importance of identifying noisy samples efficiently
and keeping confidence in them as low as possible as performed by the CONFES algorithm.

Furthermore, we employ the CONFES algorithm in the same setting as Figures 2 and 3 to calculate the
confusion matrix and empirically examine the error made by CONFES in differentiating between the clean
and noisy labels in practice. Figure 4 shows the confusion matrix for the CONFES algorithm. According
to the figure, CONFES is effective in recognizing the noisy samples from the beginning to the end of the
training, where it correctly identifies around 38% out of 40% of noisy samples. On the other hand, the
algorithm wrongly identifies many clean samples as noisy in the early epochs (around 27%). However, as
training moves forward, CONFES becomes more and more efficient in identifying the clean samples, where it
correctly recognizes around 55% out of 60% of the clean samples at the last epoch. Figure 8 in the Appendix,
moreover, visualizes the number of clean and noisy samples that CONFES identifies correctly for different
noise types and noise rates, which are consistent with those from confusion matrices.
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Figure 3: Effectiveness of CONFES: Using naive cross-entropy training (a), the model confidence over
noisy labels increases as the training moves forward. It implies that the model is misled by the noisy samples.
CONFES (b), however, differentiates the noisy samples from the clean ones and excludes the identified noisy
samples during training. This leads to very low model confidence over the noisy samples but high confidence
in clean and predicted labels throughout training.
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Figure 4: Confusion matrix for the CONFES algorithm: In early epochs, CONFES correctly identifies
the majority of noisy labels (around 38% out of 40%), but wrongly identifies many clean labels as noisy ones
(about 27%). As training proceeds, the algorithm not only still remains effective in identifying the noisy
labels (around 38% out of 40%) but also correctly recognizes the clean labels (about 55% out of 60%). The
model is PreActResNet18 trained on CIFAR-100 with instance-dependant label noise of rate 40%.

Sensitivity analysis of hyper-parameters. The initial sieving threshold α and number of warm-up
epochs Tw are the hyper-parameter of the proposed CONFES algorithm. The per-epoch sieving threshold is
computed using the aforementioned hyper-parameters. For CIFAR-100, we set α=0.2 and Tw=30 for all noise
types and noise rates. For CIFAR-10, the values of α and Tw are 0.1 and 25, respectively, for symmetric
and instance-dependent noise types. For Clothing1M, α and Tw are set to 0.05 and 3, respectively. We also
investigate the sensitivity of CONFES to its hyper-parameters using the CIFAR-100 dataset with noise rate
of 40% for symmetric, instance-dependent, and pairflip noise settings. To analyze the sensitivity to Tw, we set
α = 0.2 and use four different values for warm-up epochs: Tw ∈ {5, 20, 30, 50}. Similarly, we set Tw = 30 and
employ four different values for sieving threshold: α ∈ {0.1, 0.2, 0.3, 0.5}. As shown in Figure 5, the accuracy
reductions using the suboptimal hyper-parameter values compared to the optimal setting (α = 0.2 and
Tw = 30) are 1.6%, 2.3% and 4.1% for symmetric, instance-dependent, and pairflip noise settings, respectively,
at the worst case. This indicates that CONFES is relatively robust against hyper-parameter value choices,
making it easy to employ or tune by practitioners.
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Figure 5: Sensitivity analysis of CONFES to its hyper-parameters Tw(number of warm-up epochs)
and α (initial sieving threshold) for different noise types. The dataset is CIFAR-100 with a noise rate of 40%.

5 Discussion and Conclusion

We present the confidence error metric to effectively discriminate between noisy and clean samples in label
noise learning settings. Moreover, we theoretically prove the probability of error for the proposed metric is
bounded and experimentally show it is small in practice. We integrate the confidence error metric into a
learning algorithm called CONFES, which refines the training samples by keeping only the identified clean
samples and filtering out the noisy ones. Our experimental results verify the robustness of CONFES under
different noise types such as symmetric, pairflip, and instance-dependent, especially when noise levels are
high. We also demonstrate that confidence error can be employed by other algorithms including Co-teaching
and DivideMix to further improve the model accuracy.

CONFES versus baseline methods. According to the experimental results, CONFES outperforms all
baseline methods in the considered symmetric, pairflip, and instant-dependent noise settings. As the noise
rate increases, the efficiency of the CONFES algorithm becomes more apparent (e.g., noise rate of 60%
in CIFAR-100). Moreover, CONFES is robust to overfitting unlike some of its competitors such as SLN
and ELR. In terms of computational overhead, CONFES has one additional forward pass for constructing
the refined dataset, which only includes clean samples according to the confidence error metric. However,
methods such as Co-teaching (Han et al., 2018) employ two networks in the training process, which makes
them substantially less computationally efficient compared to our approach.

Although some methods such as PES (Bai et al., 2021) perform well in the presence of symmetric label
noise, their accuracy decreases in more complex noise settings such as instance-dependent, which is not the
case for CONFES. Additionally, the accuracy of some other baseline methods such as LRT (Zheng et al.,
2020) and MentorMix (Jiang et al., 2020) drastically reduces in a highly noisy setting (e.g., with 60% noise
rate). Approaches such as ELR (Liu et al., 2020) and PES (Bai et al., 2021) work well for "easy to classify"
datasets such as CIFAR-10, but their efficiency reduces on more challenging datasets including CIFAR-100
and Clothing1M. CONFES, on the other hand, outperforms the compared baselines in different noise types
(symmetric, instance-dependent, and pairflip), with various noise levels (i.e., 20%, 40% and 60%), and on
CIFAR-10, CIFAR-100 and the challenging Clothing1M datasets.
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CONFES versus LRT. Our work is related to the work from Zheng et al. (2020) which proposed a
confidence-based metric called likelihood ratio test (LRT) for sieving the clean samples. Our proposed
confidence error metric has at least two advantages over the likelihood ratio: (1) Confidence error enables the
algorithm to start performing the sample sieving in the early epochs of training. Using the sieving threshold
αi, the algorithm only incorporates the samples with confidence error less than αi in the training instead of
all samples. Applying a similar threshold to likelihood ratio in warm-up epochs delivers much lower accuracy
than using all samples based on our observations. (2) The confidence error is a more efficient metric than
the likelihood ratio for differentiating the clean samples from the noisy ones according to our experimental
results provided in Figure 10 in the Appendix, which are indeed consistent with the accuracy results provided
in the Evaluation section. Moreover, we empirically compared the probability of error for confidence error
and LRT on the CIFAR-100 dataset with different types and levels of noise. The results (Figure 9 in the
Appendix) show confidence error has a much smaller error rate in identifying noisy samples compared to LRT,
while its error rate in identifying clean samples is slightly worse than LRT. In sample sieving, misidentifying
noisy samples as clean ones (false negatives) is much more detrimental to utility than wrongly recognizing
clean samples as noisy (false positives). The latter issue can be alleviated with techniques such as clean data
duplication as employed by CONFES.

In the future, we can extend our work by incorporating techniques such as semi-supervised learning to
perform label correction. We can also automate the selection process for sample sieve size by utilizing soft
clustering techniques to model confidence errors. This approach would eliminate the need for the initial
sieving threshold hyper-parameter (α). Furthermore, we can employ ensemble learning techniques including
Adaboost-like methodology. Leveraging the proposed confidence error metric and incorporating multiple
weak classifiers might improve the efficiency of sieving but can be computationally expensive.
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A Appendix

Further experiments on the effectiveness of confidence error. We extended the experiments
associated with Figure 2 of the main manuscript to the symmetric and pairflip label noise. Experiments are
conducted using PreAct-ResNet18 and CIFAR-100 with noise level of 40%.
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Figure 6: Distributions of confidence error values for pairflip label noise
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Figure 7: Distributions of confidence error values for symmetric label noise

Additional details on the experimental setup. For all experiments on the CIFAR-10, CIFAR-100,
and Clothing1M datasets, there are some general hyper-parameters such as learning rate, batch size, and
weight decay, specified in the original manuscript and are summarized in Table 6. The method-specific
hyper-parameters used in the experiments are set based on the corresponding manuscript or the published
source code: Co-teaching (Han et al., 2018)∗, ELR (Liu et al., 2020) †, CORES2 (Cheng et al., 2020)‡,
PES (Bai et al., 2021)§, SLN (Chen et al., 2021a) ¶, DivideMix (Li et al., 2020)‖, JoCoR (Wei et al., 2020)
∗∗, LRT (Zheng et al., 2020)††, MentorMix (Jiang et al., 2020)‡‡ and PTD (Xia et al., 2020)§§.

Instance-dependent label noise. In order to generate the instance-dependent label noise in the experi-
ments, we followed the previous works Cheng et al. (2020); Yao et al. (2020); Bai et al. (2021); Chen et al.
(2021a) and employed the following algorithm proposed in Xia et al. (2020):

∗https://github.com/bhanML/Co-teaching
†https://github.com/shengliu66/ELR
‡https://github.com/UCSC-REAL/cores
§https://github.com/tmllab/PES
¶https://github.com/chenpf1025/SLN
‖https://github.com/LiJunnan1992/DivideMix

∗∗https://github.com/hongxin001/JoCoR
††https://github.com/pingqingsheng/LRT
‡‡https://github.com/LJY-HY/MentorMix_pytorch
§§https://github.com/xiaoboxia/Part-dependent-label-noise
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Algorithm 2: Instance-dependent Label Noise Generation taken from Xia et al. (2020)
Input: Clean samples {(xi, yi)}n

i=1, Noise rate τ
Output: Noisy samples {(xi, ỹi)}n

i=1
1 Sample instance flip rates q ∈ RN from the truncated normal distribution N (τ, 0.12, [0, 1])
2 Independently samples w1, ..., wc from the standard normal distribution N (0, 12)
3 for i = 0, ..., n do
4 p = xi · wyi /* Generate instance dependent flip rate */
5 pyi = −∞ /* control the diagonal entry of the instance-dependent transition matrix */
6 p = qi · softmax(p) /* make the sum of the off-diagonal entries of the yi-th row to be qi */
7 pyi

= 1 − qi /* set the diagonal entry to be 1 − qi */

8 Randomly choose a label from the label space according to the possibilities p as noisy label yi

9 return Noisy samples {(xi, ỹi)}n
i=1

Table 6: General training hyperparameters (common for all methods of comparison).

CIFAR-10 CIFAR-100 Clothing1M
Model PreActResNet-18 PreActResNet-18 Pretrained ResNet-50
Batch size 128 128 32
Learning rate (lr) 2e-2 2e-2 2e-3
lr scheduler Cosine annealing Cosine annealing MultiStep
lr decay factor 100 100 10 at epoch 40
Weight decay 5e-4 5e-4 1e-3
Epochs 300 300 80
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Figure 8: The number of clean and noisy samples that CONFES correctly identifies on CIFAR-100 with
different noise types and noise rates. The dashed lines represent the total number of clean and noisy samples.
CONFES consistently achieves a high success rate in correctly distinguishing between clean and noisy samples.
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Figure 9: Comparison between the probability of error (lower is better) for CONFES (based on the proposed
confidence error metric) and the LRT algorithm (Zheng et al., 2020) (based on the likelihood ratio metric)
on the CIFAR-100 dataset with different noise types and noise rates. (noisy, selected) means the sample
is noise but wrongly selected by the algorithm to be incorporated in training. Likewise, (clean, rejected)
means the sample is clean but excluded by the algorithm during training. The probability of error is lower
for CONFES in the former case, whereas it is slightly higher in the latter case. Note that the former case is
more detrimental to the performance compared to the latter one.

20



Published in Transactions on Machine Learning Research (09/2023)

0.0 0.5 1.0
Likelihood ratio

0

1

2

3

4

Pr
ob

ab
ilit

y 
de

ns
ity

Clean
Noisy

(a) LRT

0.0 0.5 1.0
Confidence error

0.0

2.5

5.0

7.5

10.0 Clean
Noisy

(b) CONFES

Figure 10: Distributions of likelihood ratio employed in LRT(Zheng et al., 2020) and the proposed
confidence error metric used in CONFES at epoch 200. The distributions of confidence error for noisy and
clean samples are more dissimilar than that of likelihood ratio, indicating that confidence error is a more
effective metric than likelihood ratio for sieving the samples. The experimental setup is the same as Figure 2.
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