
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DEBUGGING TABULAR LOG AS DYNAMIC GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Tabular log abstracts objects and events in the real-world system and reports their
updates to reflect the change of the system, where one can detect real-world in-
consistencies efficiently by debugging corresponding log entries. However, recent
advances in processing text-enriched tabular log data overly depend on large lan-
guage models (LLMs) and other heavy-load models, thus suffering from limited
flexibility and scalability. This paper proposes a new framework, GraphLogDe-
bugger, to debug tabular log based on dynamic graphs. By constructing heteroge-
neous nodes for objects and events and connecting node-wise edges, the frame-
work recovers the system behind the tabular log as an evolving dynamic graph.
With the help of our dynamic graph modeling, a simple dynamic Graph Neural
Network (GNN) is representative enough to outperform LLMs in debugging tab-
ular log, which is validated by experimental results on real-world log datasets of
computer systems and academic papers.

1 INTRODUCTION

Tabular log data plays a crucial role in representing and tracking the state and evolution of real-
world systems. These logs are structured as rows of log entries, each capturing an event involving
certain objects and their attributes at a specific time point. Common examples include system logs
recording computing services (Zhu et al., 2023a), research logs tracking scientific publication activi-
ties (Clement et al., 2019), and interaction logs from multi-agent systems powered by large language
models (LLMs) (Zhang et al., 2025b). Debugging of tabular logs is essential: it allows practitioners
to detect anomalies in the original systems through efficient inspection of associated log records.

Log anomaly detection (He et al., 2016) has therefore been a long-standing research field in different
niche areas, where data distributions are invariant or have little change. Existing frameworks (Du
et al., 2017; Meng et al., 2019; Zhang et al., 2019; Pei et al., 2020; Guo et al., 2021; Chen &
Tsourakakis, 2022) benefit from manually defined data structures or templates for log parsing which
are often tailored to certain domains and thus yield absolute success in specific areas like com-
puter system log or financial event log. However, due to this domain-specific principle, designing a
general-purpose log debugger always remains challenging.

Efforts to overcome this challenge have led to two main lines of work, as shown in Figure 1. One
stream focuses on graph modeling of the log data (Cheng et al., 2020; Zehra et al., 2021; Pang
et al., 2025), where information in tabular log is gathered in a unified data structure: the graph,
such as constructing knowledge graphs or text-rich dynamic graphs for computer system log (Sui
et al., 2023; Li et al., 2023). Although these methods are both efficient and powerful, many of them
lack flexibility: they still customize static graph structures for certain domains. Another stream
explores LLM-based solutions, such as LLM prompting (Yu et al., 2023; Qi et al., 2023; Park,
2024) or retrieval-augmented generation (RAG) (Pan et al., 2024; Zhang et al., 2025a; Wang et al.,
2025) pipelines. While these methods demonstrate general capabilities in text-based reasoning, thus
showing potential of generalization, they often come with significant drawbacks: high computational
costs, slow inference, and difficulty scaling to long log streams or resource-constrained settings.

Inspired by the idea to unify multimodal information in dynamic graphs (Feng et al., 2025), we pro-
pose GraphLogDebugger, a general and efficient framework for debugging tabular logs through
dynamic graph modeling. Our core idea is to interpret tabular log entries as the evolving state of a
hidden system, which can be reconstructed as a dynamic heterogeneous graph. We treat objects and
events as different types of nodes with text embeddings empowered by modern language embed-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

09/24/2025 Edison Split stocks into 10

09/19/2025 Grape, Pick Grape sells the stock to Pick

09/24/2025 Edison Split stocks into 10 09/24/2025 Edison Split stocks into 10

Time Company Event

09/19/2025 Grape, Pick Grape sells the stock to Pick

Time Company Event

09/19/2025 Grape, Pick Grape sells the stock to Pick

G

Pred

Obj

Pick

SellStock
Pred

Obj

Pick

SellStock
Pred

Obj

Pick

SellStock

Sub

Pred

Obj

Grape

Pick

SellStock

P

Time: 09/19/2025,

Entity: Graph,

Pick

Event: Sell the

stock

Label:

Positive

Reason:

…

G

P

Step 1: Domain-

specific triplet

parsing

Step 2: Domain-

specific

knowledge graph

Step 3: GNN

link prediction

Step 1: Unified

Structured LLM

prompting

Step 2: LLM

processing

Step 3: Extracting

outputs from the

response

Step 1: Two-branch

node extraction

Step 2:

Heterogeneous

dynamic graph

Step 3: GNN

link prediction

09/24/2025 Edison Split stocks into 10

09/19/2025 Grape, Pick Grape sells the stock to Pick

09/24/2025 Edison Split stocks into 10

Time Company Event

09/19/2025 Grape, Pick Grape sells the stock to Pick

object

embeddings

object

node
event

node

object

node

LLM-based Log Processing GraphLogDebuggerDomain Graph Log Processing

text embedding

model

Figure 1: Comparing GraphLogDebugger with two existing lines of works. Processing log
with domain-specific graphs requires custom text parsing, which lacks flexibility. LLM-based log
processing overcomes this shortcoming by the general comprehension skills of LLMs, but suffers
from poor efficiency. GraphLogDebugger combines the advantages of graph representation and
those of LLMs and balances well generalizability and scalability.

ding models, and use the tabular structure to generate time-stamped connections between them. As
new log entries arrive, they incrementally update the dynamic graph, capturing both structural and
temporal dependencies. This formulation allows us to apply a lightweight dynamic Graph Neural
Network (GNN) to perform online anomaly detection by evaluating the likelihood of new connec-
tions. Our approach avoids reliance on heavy LLMs while still capturing rich semantic and rela-
tional information in the data. Experimental results on real-world datasets from computer system
logs and scientific publication logs validate the effectiveness of our approach. Despite its simplicity,
our dynamic GNN framework outperforms LLM-based baselines in both accuracy and efficiency,
demonstrating that dynamic graph modeling is a highly expressive yet lightweight alternative. Our
contributions can be summarized as follows:

• We introduce a novel view of tabular logs as dynamic heterogeneous graphs, bridging the
gap between structured attributes and semantic reasoning, and redefine the framework of
online log anomaly detection, where object-event connections in each incoming log are
evaluated through link prediction on the evolving graph.

• We propose a lightweight GNN-based debugger that can efficiently and accurately detect
anomalies without using LLMs, and validate its performance on real-world datasets with
diverse modalities.

2 RELATED WORKS

Tabular Log Processing. Many real-world logs include structured, time-stamped tabular at-
tributes alongside annotated text fields. Examples come from financial prices paired with event
series (Tetlock, 2007; Ruiz et al., 2012; Dong et al., 2024), scientific publication metadata (Clement
et al., 2019; Kinney et al., 2023), healthcare records (Johnson et al., 2023), computer system
logs (Zhu et al., 2023a), and multi-agent system reports (Zhang et al., 2025b). A key challenge
in processing tabular logs with machine learning lies in capturing multi-attribute correlations while
maintaining comprehension of their semantics (Wu et al., 2025). One common approach integrates
main attributes recognized by human priors into structured data (Yang et al., 2018; Zhao & Feng,
2022; Koval et al., 2024), and then subsequently augments the representation by retrieval (Kurisinkel
et al., 2024; Xiao et al., 2025). This modeling achieves good performance in domain-specific data,
but lacks flexibility and generalizability for adaptation to other fields (Gardner et al., 2024).

An emerging alternative leverages Large Language Models (LLMs) (Brown et al., 2020), which have
demonstrated strong generalizability in understanding, predicting, and generating tabular data (Liu
et al., 2023; Zhang et al., 2024b; Fang et al., 2024; Wang et al., 2024b). By parsing diverse logs
into a unified format with LLMs (Zhong et al., 2024), these models can be applied to downstream
tasks that require reasoning capabilities, such as predicting stock prices (Yu et al., 2023), electricity
demand (Wang et al., 2024a), and future events (Shi et al., 2023; Ye et al., 2024). However, LLM-
based approaches often suffer from high overheads, complex deployment, and limited throughput.
There remains a strong need for lighter-weight alternatives with comparable performance.

Dynamic Graphs. Graph Neural Networks (GNNs) have become a foundational paradigm for
learning on graph-structured data (Kipf, 2016; Hamilton et al., 2017; Gilmer et al., 2017). Static

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

GNN models have benefited from advances in message passing (Battaglia et al., 2018), architec-
tural depth (Li et al., 2021; Dwivedi et al., 2020), and inductive scalability (Hamilton et al., 2017).
However, many real-world systems are dynamic, motivating models that capture both structural and
temporal dependencies. Early approaches used recurrent layers or time-aware embeddings (Li et al.,
2017; Seo et al., 2018) to extend static GNNs to dynamic settings (Pareja et al., 2020; Sankar et al.,
2020; Kumar et al., 2019). Recent methods have embraced memory modules (Rossi et al., 2020)
and temporal encoding (Xu et al., 2020) for finer-grained modeling of time-stamped interactions.
Building on this trajectory, ROLAND (You et al., 2022) offers a framework that adapts static GNNs
to dynamic graphs via hierarchical state propagation and live-update evaluation, which inspires new
advances in benchmarks (Longa et al., 2023; Huang et al., 2023; Zhang et al., 2024a), architec-
tures (Zhu et al., 2023b), explainability (Chen & Ying, 2023), and robustness (Zhang et al., 2023b).

Log Anomaly Detection. Log-based anomaly detection has long been a critical task for system
reliability, and early neural approaches typically rely on sequence modeling via LSTMs (Du et al.,
2017), CNNs (Lu et al., 2018), and autoencoders (Zhang et al., 2021; Castillo et al., 2022; Zhang
et al., 2023a). Others incorporate adversarial training (Duan et al., 2021; He et al., 2023), or temporal
networks (Zhang et al., 2019; Yang et al., 2021). More recently, pretrained language models have
been adopted for log anomaly detection, either via fine-tuning (Guo et al., 2021; Lee et al., 2023)
or prompt-based pipelines (Qi et al., 2023; Liu et al., 2024). Retrieval-augmented (No et al., 2024;
Pan et al., 2024; Zhang et al., 2025a) methods have further pushed semantic understanding in LLM-
based methods. As mentioned, while machine learning-based methods are highly domain-specific,
LLM-based methods show some generalizability at a high cost.

One potential solution towards general and scalable methods for log debugging is to introduce dy-
namic graphs, where tabular log is considered as an evolving system and maintained in a dynamic
graph. Early exploration makes use of knowledge graphs (Hogan et al., 2021) with domain spe-
cific parsing to generate triplets (Cheng et al., 2020; Zehra et al., 2021; Sui et al., 2023). Recent
advances adopt dynamic graphs with text-rich nodes to represent tabular log (Li et al., 2023; Pang
et al., 2025). Nevertheless, these works are either domain specific or LLM-based, yet not escaping
from the dilemma between generalizability and scalability.

3 PRELIMINARIES

Tabular log is the data modality used to report the update of real-world systems from the perspective
of states and relations. It can be formally defined by a time series X = {x0, x1, x2, ..., xN−1}
annotated by a timestamps sequence t0 < t1 < t2 < ... < tN−1, where each of xn is a log entry
that contains different attributes xm

n in the table: xn = {x0
n, x

1
n, x

2
n, ..., x

M−1
n }. Summarizing the

general case of tabular log data in finance (Dong et al., 2024), healthcare (Johnson et al., 2023),
academics (Clement et al., 2019), and other systems (Zhu et al., 2023a), we can separate attributes
in the tabular log into three types:

• Object: Attributes that represent stand-alone objects in the tabular log, such as companies
in the financial news log and cities in the medical record log.

• Event: Attributes that describe an event with text, for example, news content in the finan-
cial news log and record content in the medical record log. These attributes are usually the
center of log entries, where other attributes supplement details and involved objects of the
event. Without loss of generality, one log entry only has one Event attribute, because we
could merge the text sections of different event attributes into one.

• Feature: Attributes that describe features related to the event or objects. For instance, the
age is a feature of the patient object in the medical record log. Timestamp tn is a special
type of feature that provides the details about the time of the event.

In practice, we find that Objects and Features are mutually convertible. For example, the address of
the company could be either an independent object or a feature of the company object in the financial
log. Hence, the arrangement of Objects and Features is a hyperparameter that needs pre-definition.

While tabular log abstracts the change of real-world systems, it is expected that we could detect
inconsistencies of the system from the corresponding tabular log. Based on the above categorization,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

we could then define three types of anomalies and corresponding anomaly detection tasks in the
tabular log. Give a log entry xn = {x0

n, x
1
n, x

2
n, ..., x

M−1
n } in the tabular log X:

• Object anomaly: Let {o0n, o1n, o2n, ..., oP−1
n }(P < M) be the object set. We have label

yn = {y0n, y1n, y2n, ..., yP−1
n }, where ymn = 0 means that opn is a normal object and ymn = 1

means that opn is an abnormal object for the log entry xn.
• Event anomaly: Let sn be the event. We have a label yn, where yn = 0 means that sn is

a normal event and yn = 1 means that sn is an abnormal event for the log entry xn.
• Feature anomaly: Let {f0

n, f
1
n, f

2
n, ..., f

Q−1
n }(Q < M) be the feature set. We have label

yn = {y0n, y1n, y2n, ..., yQ−1
n }, where yqn = 0 means that oqn is a normal feature and yqn = 1

means that oqn is an abnormal feature for the log entry xn.

5 Block_123Receive message … DataReceiver

6 Block_123Receive message … DataReceiver

7 Block_123Receive message … DataReceiver

Time BlockEvent

1 Block_123Receive message …

Component

DataReceiver

2 Block_123Receive message … DataReceiver

3 Block_123Receive message … DataReceiver

4 Block_123Receive message … DataReceiver

GAT

ℎ𝑒

ℎ𝑜

−

Link prediction

head (MLP)

GraphLogDebugger

text embedding

model

object embedding

event embedding

graph snapshot 𝐺𝑛

GNN 𝜃

Input: tabular log

Merge sub-

graph 𝒈𝒏

Anomaly!

Load

Output

object node:

Block_123

(existing)

object node:

DataReceiver

(existing)

event node:

time=4,

event=Receive...

graph snapshot 𝐺𝑛+1

object

embedder

Figure 2: GraphLogDebugger framework. The frame-
work checkpoints the GNN θ and the dynamic graph snap-
shot Gn. When a new log entry emerges, we first extract a
sub-graph gn and use it to update the dynamic graph. Then,
we predict the links introduced by gn in the dynamic graph
by GNN θ, whose results indicate the anomaly.

Considering the tabular log X as an
online system where new log entries
come dynamically in time order, we
could then define the anomaly de-
tection in tabular log as an online
anomaly detection task:
Definition 3.1 (Online Anomaly
Detection of Tabular Log). Given
an online system that dynamically
produces log entry xn, online
anomaly detection for tabular
log predicts its anomaly label yn
based on historical log entries
Xn = {x0, x1, x2, ..., xn−1}

Notably, object anomaly and feature
anomaly are isomorphic. Consider-
ing the fact that objects and features
are convertible, the rest of this pa-
per only studies object anomaly and
event anomaly. Table 3 summarizes
all used variables.

4 GRAPHLOGDEBUGGER

We first integrate tabular log to a
heterogeneous dynamic graph (Sec-
tion 4.1). Then, we reformulate on-
line anomaly detection of tabular log
as dynamic graph anomaly detec-
tion(Section 4.2). Finally, we apply
a dynamic GNN to debug the tabular
log (Section 4.3).

4.1 INTEGRATING ONLINE TABULAR LOG TO DYNAMIC GRAPHS

Objects and events in the same log entry are naturally connected in the tabular log, from which we
could construct graphs. To this end, we first define the graph structure within one log entry. As
shown in Figure 2 (upper section), we build nodes v for both objects and the unique event in the new
log entry. Each event and all its objects are connected by an edge e. This yields a sub-graph gn for
each log entry xn.

Figure 2 (middle section) illustrates the composition of a dynamic graph G that stores the information
of all historical log entries. This dynamic graph gathers all sub-graphs of log entries. We merge
identical object nodes so that these sub-graphs are connected. Note that every event node should be
unique. Every time a new log entry xn emerges, we construct a sub-graph gn accordingly and merge
it into the dynamic graph G. We denote the snapshot of G at time point tn by Gn.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1: GraphLogDebugger: Online
training for dynamic-graph anomaly detec-
tion
Input : Training logXtrain = {xt0 , . . . , xtK−1};

GNN θ; text embedding model F ;
negative sampling ratio ρ; threshold τ ;

Output: Trained parameters θ⋆, dynamic graph
snapshot GtK

1 Initialize G : V = ∅, E = ∅
2 for k = 0, . . . ,K − 1 do

// Integrate the incoming log entry
3 Build sub-graph gk: creating nodes for

object set Vo
k and event set Ve

k in xtk and
connecting object-event pairs in xtk with
edges

4 G ← (V ∪ Vo
k , E)

5 Positive set E+k ← object-event links in gk.
6 Negatives E−k by drawing ρ · |E+k |

non-existent object–event pairs in G.

// Embed nodes
7 Compute object embeddings ho with GNN

θ: ho = fθ(G)
8 Compute new event embeddings he with text

embedding model F : he = F(Ve
k)

// Predict links & Compute the loss
9 For each pair (o, e) ∈ E+k ∪ E

−
k , compute

score so,e = σ(MLP(reduce(ho, he))).
10 Compute balanced BCE loss Lk on labels (1

for E+k , 0 for E−k) and update
θ ← θ − η∇θLk.

// Updating the dynamic graph
11 G ← (V ∪ Ve

k , E)
12 Repeat Step 1-10 for epochs
13 return θ

Algorithm 2: GraphLogDebugger: Online
evaluation for dynamic-graph anomaly de-
tection
Input : Test log Xtest = {xtK , . . . , xtN−1};

trained GNN θ⋆; last snapshot GtK ;
text embedding model F ; threshold τ

Output: Per-time link predictions {Rtn}N−1
n=K ;

updated snapshot GtN

1 Initialize G ← GtK and load θ⋆

2 for n = K, . . . , N − 1 do
// Integrate the incoming log entry

3 Build sub-graph gn from xn with object set
Vo
n, new event set Ve

n, and observed links
E+n

4 G ← (V ∪ Vo
k , E)

// Embed nodes
5 Compute object embeddings on current

snapshot: ho = fθ⋆(G)
6 Compute embeddings for new events

(time-aware): he = F(Ve
n)

// Predict links
7 For each (o, e) ∈ E+n , compute

so,e = σ(MLP(reduce(ho, he))) and set
ℓ̂o,e = ⊮[so,e ≥ τ]

8 Link prediction results:
Rtn ← {(o, e, so,e, ℓ̂o,e) | (o, e) ∈ E+n }

// Update the dynamic graph
9 Accepted links

Ê+n = {(o, e) ∈ E+n | ℓ̂o,e = 1}
10 Accepted new events

V̂e
n = {e ∈ Ve

n | ∃o : (o, e) ∈ Ê+n }.
11 G ← (V ∪ V̂e

n, E ∪ Ê+n)

12 return {Rtn}N−1
n=K and GtN = G

4.2 DEBUGGING TABULAR LOG GRAPHS AS DYNAMIC GRAPHS

Following the above integration, we transfer the online anomaly detection of tabular log defined in
Section 3 into an anomaly detection problem of dynamic graph G (Ekle & Eberle, 2024):

• Object anomaly detection: The object anomaly occurs when the edge e between an object
node and an event node is abnormal in the latest sub-graph gn. This anomaly could then
be detected by link prediction in the dynamic graph G (You et al., 2022), where a GNN is
applied to predict the likelihood of e. If the likelihood exceeds a threshold, we consider the
edge as normal. Otherwise, we consider the edge as an anomaly.

• Event anomaly detection: The event anomaly occurs when an abnormal event s is placed
in the wrong entry in the latest sub-graph gn. This means that all edges between this event
are anomalies. We can therefore apply link prediction to all edges in the sub-graph and
threshold the overall predicted likelihoods to determine the anomaly label of the event.

In a nutshell, the goal of our anomaly detection in Section 3 is equivalent to predicting the likelihood
of all edges in the latest log entry sub-graph gn, based on the dynamic graph snapshot Gn that stores
all historical log entries of tabular log Xn. We finally transfer the online anomaly detection of
tabular log into an anomaly detection problem in dynamic graphs, with notations omitted to Table 3:

Definition 4.1 (Online Anomaly Detection of Tabular Log (Dynamic Graph)). Given the snap-
shot Gn of a dynamic graph G = {Gn}N−1

n=0 and the new coming sub-graph gn = Gn+1 \ Gn, the
goal is to predict the label yn of links in gn.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Statistics and details of the four datasets for tabular log debugging.

Dataset Domain #Entries #Objects Event Attr. Obj Attr. Anomaly Type
Arxiv Sci. Pub. 20,000 17316 title authors Event/Object
HDFS System Log 20,000 2150 Content Component,EventId,BlockId Object
Analyst Finance 20,000 3901 headline publisher Event
Landslide Geology 20,000 8565 description title, category,trigger,country Object

4.3 DESIGNING THE GNN FOR DYNAMIC GRAPH ANOMALY DETECTION

Figure 2 (bottom section) demonstrates the basic process of using our GNN to predict link anomaly
labels. For details, our GNN θ takes the dynamic graph snapshot Gn and the incoming sub-graph
gn as inputs and predicts the likelihood of all links in gn. The GNN consists of three parts: the node
embedder, the GNN backbone, and the prediction head. First, the node embedder offers heteroge-
neous embeddings for all objects in Gn and gn and event nodes in Gn. We exclude new events in gn
because we do not expect the outputs of the model will be interfered with by the graph structure in
gn. We assign a unique learnable embedding for each object, and use a pre-trained text embedding
model to embed existing events. We also concatenate a time embedding to the event embedding
based on the coming time tn for event s. Our GNN backbone is adapted from the graph attention
network (GAT) (Veličković et al., 2017), where we use two separate MLPs to map objects and events
to the same space and apply GAT layers for message passing. The prediction head predicts the link
between all object-event pairs in gn. We first compare object embeddings after GAT layers and event
text embeddings by reduction. We then pass the result to an MLP with Sigmoid activation to get the
likelihood. We omit more details in the design space of the model in Appendix A.3.

Our GNN is trained under the setting of unsupervised anomaly detection (Pang et al., 2021): We
separate the dataset into a training split and a test split by chronological order. In the training stage,
all links in gn are normal, and we provide negative examples for training by randomly sampling
object-event pairs that are not connected. We append these fraud links to the ground-truth links
to balance the label distribution and use them to train the GNN. After backpropagation, we finally
update the dynamic graph snapshot Gn with subgraph gn. Alg 1 summarizes the training algorithm.

In the test stage, we first resume the GNN as well as the latest dynamic graph snapshot Gn. This
achieves the warm start of our debugger system. Then, we construct sub-graphs from the coming log
entries and take them as parts of the evolving dynamic graph G that we succeed from the pre-trained
GNN. The evaluation process is summarized in Alg 2.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. Our work provides a general framework of debugging different types of tabular log under
the online setting. To validate this point, we span our experiments over datasets covering four
different fields: (1) Arxiv: Tabular log recording the timestamps (from 2007-2025), the title and the
authors of machine learning papers from the Arxiv (Clement et al., 2019) API; (2) HDFS: system
log of Hadoop Distributed File System designed to run on commodity hardware (Xu et al., 2009; Zhu
et al., 2023a), including the event content together with the objects related to the event; (3) Analyst:
the commentary records on the finance by analysts, including title, author, and other features of
posts 1; (4) Landslide: event catalog reporting the global landslide 2. These datasets contain both
text-rich attributes and categorical attributes with diversified semantics, thus being challenging to
process in one framework efficiently. Table 1 demonstrates the basic statistics of our four datasets.

We limit the maximum length of all tabular logs to 20,000 by slicing the original datasets. This is
because LLM-based baseline methods are costly and not scalable, as discussed in the introduction.
To ensure randomness, we randomly pick slices with a length of 20,000 from the whole sliced
dataset. For datasets with multiple object attributes, we evaluate object anomaly detection, while for
those with only one object attribute, we evaluate event anomaly detection, where event and object
anomaly detection are equivalent. We summarize the basic setting of our four datasets in Table 1.

1www.kaggle.com/datasets/miguelaenlle/massive-stock-news-analysis-db-for-nlpbacktests
2https://catalog.data.gov/dataset/global-landslide-catalog-export

6

www.kaggle.com/datasets/miguelaenlle/massive-stock-news-analysis-db-for-nlpbacktests
https://catalog.data.gov/dataset/global-landslide-catalog-export

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Our proposed GraphLogDebugger outperforms representative baselines on detection
effectiveness and efficiency across diverse methods and datasets. Higher is better for detection
effectiveness; lower GFLOPs and higher Throughput are preferred for efficiency. “*” suggests some
baselines always predict non-anomaly cases, leading to a 0 prediction, recall, and F1 score.

Dataset: Arxiv Task: Event Anomaly

Method Detection Effectiveness Efficiency

Acc. Prec. Recall F1 GFLOPs Throughput (it/s)

MLP 0.570 ± 0.205 0.556 ± 0.189 0.893 ± 0.331 0.676 ± 0.028 11.35 825.0 ±1429.0
RAG (Llama3-70b,k=5) 0.408 ± 0.038 0.426 ± 0.026 0.527 ± 0.029 0.471 ± 0.019 ∼ 105 0.204 ± 0.009
RAG (GPT-oss-20b,k=5) 0.770 ± 0.106 0.771 ± 0.157 0.773 ± 0.014 0.772 ± 0.085 ∼ 104 0.145 ± 0.018
RAG (Llama3-70b,k=10) 0.377 ± 0.014 0.400 ± 0.004 0.493 ± 0.038 0.442 ± 0.014 ∼ 105 0.204 ± 0.015
RAG (GPT-oss-20b,k=10) 0.803 ± 0.090 0.798 ± 0.099 0.813 ± 0.087 0.805 ± 0.087 ∼ 104 0.149 ± 0.014

GraphLogDebugger (Ours) 0.957 ± 0.040 0.920 ± 0.069 1.000 ± 0.000 0.959 ± 0.037 40.39 627.662 ± 7.623

Dataset: Arxiv Task: Object Anomaly

Method Detection Effectiveness Efficiency

Acc. Prec. Recall F1 GFLOPs Throughput (it/s)

MLP 0.570 ± 0.000 0.538 ± 0.000 0.990 ± 0.000 0.697 ± 0.000 11.35 552.0 ± 167.0
RAG (Llama3-70b,k=5) 0.455 ± 0.033 0.468 ± 0.026 0.667 ± 0.100 0.550 ± 0.052 ∼ 105 0.208 ± 0.018
RAG (GPT-oss-20b,k=5) 0.597 ± 0.019 0.564 ± 0.016 0.850 ± 0.025 0.678 ± 0.004 ∼ 104 0.039 ± 0.018
RAG (Llama3-70b,k=10) 0.463 ± 0.019 0.474 ± 0.011 0.673 ± 0.052 0.556 ± 0.012 ∼ 105 0.154 ± 0.114
RAG (GPT-oss-20b,k=10) 0.598 ± 0.038 0.563 ± 0.023 0.880 ± 0.066 0.687 ± 0.035 ∼ 104 0.039 ± 0.004

GraphLogDebugger (Ours) 0.685 ± 0.065 0.637 ±0.082 0.870 ± 0.099 0.734 ± 0.024 40.39 592.073 ± 16.513

Dataset: HDFS Task: Object Anomaly

Method Detection Effectiveness Efficiency

Acc. Prec. Recall F1 GFLOPs Throughput (it/s)

MLP 0.799 ± 0.053 0.801 ± 0.052 0.989 ± 0.000 0.885 ± 0.032 1.4 479.0 ± 194.0
RAG (Llama3-70b,k=5) 0.165 ± 0.022 0 ± 0* 0 ± 0* 0 ± 0* ∼ 105 0.162 ± 0.085
RAG (GPT-oss-20b,k=5) 0.138 ± 0.029 0 ± 0* 0 ± 0* 0 ± 0* ∼ 104 0.183 ± 0.010
RAG (Llama3-70b,k=10) 0.173 ± 0.040 0 ± 0* 0 ± 0* 0 ± 0* ∼ 105 0.194 ± 0.004
RAG (GPT-oss-20b,k=10) 0.138 ± 0.029 0 ± 0* 0 ± 0* 0 ± 0* ∼ 104 0.192 ± 0.027

GraphLogDebugger (Ours) 0.989 ± 0.023 1.000 ± 0.000 0.987 ± 0.029 0.993 ± 0.015 5.57 529.999 ± 201.308

Dataset: Analyst Task: Event Anomaly

Method Detection Effectiveness Efficiency

Acc. Prec. Recall F1 GFLOPs Throughput (it/s)

MLP 0.948 ± 0.019 0.922 ± 0.064 0.980 ± 0.043 0.950 ± 0.016 5.58 1996.0 ± 454.0
RAG (Llama3-70b,k=5) 0.408 ± 0.038 0.426 ± 0.026 0.527 ± 0.029 0.471 ± 0.019 ∼ 105 0.204 ± 0.009
RAG (GPT-oss-20b,k=5) 0.770 ± 0.106 0.771 ± 0.157 0.773 ± 0.014 0.772 ± 0.085 ∼ 104 0.145 ± 0.018
RAG (Llama3-70b,k=10) 0.377 ± 0.014 0.400 ± 0.004 0.493 ± 0.038 0.442 ± 0.014 ∼ 105 0.204 ± 0.015
RAG (GPT-oss-20b,k=10) 0.803 ± 0.090 0.798 ± 0.099 0.813 ± 0.087 0.805 ± 0.087 ∼ 104 0.149 ± 0.014

GraphLogDebugger (Ours) 0.957 ± 0.040 0.921 ± 0.069 1.000 ± 0.000 0.959 ± 0.037 8.97 1037.6 ± 286.2

Dataset: Landslide Task: Object Anomaly

Method Detection Effectiveness Efficiency

Acc. Prec. Recall F1 GFLOPs Throughput (it/s)

MLP 0.831 ± 0.079 0.842 ± 0.180 0.841 ± 0.149 0.838 ± 0.056 5.58 5391.0 ± 328.0
RAG (Llama3-70b,k=5) 0.543 ± 0.074 0.944 ± 0.056 0.095 ± 0.156 0.168 ± 0.267 ∼ 105 0.355 ± 0.044
RAG (GPT-oss-20b,k=5) 0.611 ± 0.068 0.701 ± 0.050 0.389 ± 0.246 0.495 ± 0.195 ∼ 104 0.155 ± 0.136
RAG (Llama3-70b,k=10) 0.551 ± 0.034 0.904 ± 0.204 0.119 ± 0.102 0.208 ± 0.160 ∼ 105 0.321 ± 0.193
RAG (GPT-oss-20b,k=10) 0.623 ± 0.074 0.723 ± 0.081 0.397 ± 0.149 0.511 ± 0.144 ∼ 104 0.166 ± 0.008

GraphLogDebugger (Ours) 0.840 ± 0.080 0.798 ± 0.117 0.929 ± 0.059 0.858 ± 0.062 19.70 1334.13±108.40

Baselines. Our framework naturally generalizes to tabular log in different domains. Hence, we
mainly compare it to baselines which are generally capable of dynamically processing different
types of tabular log that contains text-rich and categorical attributes. MLP exploits a pretrained text
embedding model to embed events and a learnable embedding for objects. A 3-layer MLP is then
applied to map the embeddings to anomaly scores. We also compare a series of baselines based
on retrieval augmented generation (RAG) (Lewis et al., 2020), which is the mainstream method to
process general tabular log in the realistic scenario (Akhtar et al., 2025). We deploy RAG based on
two advanced open-sourced LLMs, Llama-3-70b (Dubey et al., 2024) and GPT-oss-20b (Agarwal
et al., 2025) with the 5 and 10 retrieval entries. The retrieval database is built on the whole training

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

split and the seen log entries during the online evaluation. We construct specified prompts for
different datasets and omitted the description to Appendix A. Both MLP and all RAG baselines
use all-MiniLM-L6-v2 3 (Reimers & Gurevych, 2019) as the text embedding model. We do not
compare to baselines on log anomaly detection because all these methods are either template-based
or domain-specific, which cannot be applied to datasets other than computer system log.

Task. Following the setting of unsupervised anomaly detection (Liu et al., 2021; Schmidl et al.,
2022), our basic task is to output an anomaly score for each log entry xn at timestamp tn , where
higher scores denote more outlyingness (Han et al., 2022). In our task, we use 1 to denote anomalies
and 0 to denote normal examples in the ground-truth. We use the first 90% split of the dataset
for training, where both the log entries and their anomaly labels are available to access for methods.
Methods train the model on this training split or use it for the retrieval database. For the rest 10%, we
use it as the test split in our online evaluation, where methods can make use of the seen log entries but
their anomaly labels are not accessible. We study two types of anomalies in our experiments: object
anomalies and event anomalies. Following the definition in Section 3, we inject object anomalies
by swapping an object in the log entry with another existing object. To ensure that historical data
contains useful information, we only perturb existing objects in the history. Event anomalies are
generated similarly by swapping events. The anomaly rate is set to be 0.05.

Evaluation. We calculate the metrics for information retrieval: accuracy, precision, recall, and f1
score for the dataset. We also evaluate the efficiency of different methods by GFlops and through-
puts. During evaluation, we notice that LLM-based baselines tend to be very slow in processing
speed. Hence, we include all anomaly log entries and 50 random normal entries in a subset and
run RAG only on this subset. For other baselines and our methods, we obtain the prediction result
for the full test split but only compute the metric on the above subset for fair comparison. We run
experiments three times and post the average value of metrics with error bars.

GraphLogDebugger. The GNN architecture in GraphLogDebugger is a 3-layer GAT backbone
with a two-branch node embedder and an MLP prediction head. The node embedder uses 512-d
embeddings for objects and the text embedding of all-MiniLM-L6-v2 (Reimers & Gurevych, 2019)
for events, with an MLP to map them into the same space. The embedding size of GAT and the
prediction head is also 512. We train the GNN for 10 epochs under the learning rate 0.0001 on
Adam and the negative ratio 10 on the training split. Following You et al. (2022), we set the batch
size as 1 and use a window length of 100 to accelerate the processing.

5.2 MAIN RESULTS

Table 2 shows that GraphLogDebugger consistently outperforms both MLP and RAG-based base-
lines across all tabular log datasets on five tasks, in terms of detection performance and efficiency.

Effectiveness: GraphLogDebugger achieves the highest F1 scores across all tasks, outperforming
RAG baselines—especially in structurally complex domains like HDFS, where RAG methods fail
to detect meaningful anomalies (F1 = 0.0). Specifically, RAG baselines are completely fooled by
the anomaly pattern that their predicted labels depend on whether there is an existing record with
the same format in the retrieved examples, which does not contribute to a reasonable prediction.
Two tasks on the Arxiv dataset are the most difficult, where GraphLogDebugger still beats baselines
with a higher precision in not abusing anomaly prediction. Even in semantically rich settings such
as Analyst and LandSlide, where RAG baselines are expected to excel, our model surpasses them.

Efficiency: RAG approaches exhibit extremely low throughput (typically below 0.3 iterations per
second) due to the computational overhead of large language models. In contrast, GraphLogDe-
bugger achieves throughput of at least 500 per second, with significantly lower GFLOPs, enabling
real-time anomaly detection in high-throughput environments.

5.3 CASE STUDY: WHERE DOES RAG FAIL?
Method Correlation

RAG -0.1087
GraphLogDebugger 0.1561

It is natural that GraphLogDebugger yields advantages in
efficiency compared to the RAG-baseline, for the latter
relies on LLMs with billions of parameters. However, the

3https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

8

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

leading performance of GraphLogDebugger in detection needs further explanation, while RAG en-
joys the general comprehension and reasoning ability of modern LLMs. To this end, we study cases
from event anomaly detection of the Arxiv dataset. We choose this task because the degree of event
nodes can directly reflect the local graph density of the node-of-interest. We calculate the correlation
between event node degrees and the accuracy of GraphLogDebugger and that of RAG(GPT-oss-
20b,k=10). The result in the table shows that the accuracy of GraphLogDebugger is positively
correlated with the node degree, while the accuracy of RAG is negatively correlated with the
node degree. This indicates that GraphLogDebugger outperforms RAG on event nodes with rich
connections with objects, where semantics of these objects are necessary to detect the anomaly.

Case 1: Label=negative, RAG=positive, GraphLogDebugger=negative
Title: ”SymbioSim: Human-in-the-loop Simulation Platform for Bidirectional Continuing
Learning in Human-Robot Interaction”
Authors: ”Haoran Chen”, ”Yiming Ren”, ”Xinran Li”, ”Ning Ding”, ”Ziyi Wang”, ”Yuhan
Chen”, ”Zhiyang Dou”, ”Yuexin Ma”, ”Changhe Tu” (9 objects)
Reason (RAG): The author team composition, research domain mismatch, and unclear collabo-
ration patterns raise suspicions about the coherence of the record.
Case 2: Label=positive, RAG=negative, GraphLogDebugger=positive
Title: ”VERA: Explainable Video Anomaly Detection via Verbalized Learning of Vision-
Language Models”
Authors: ”Shubham Gupta”, ”Zichao Li”, ”Tianyi Chen”, ”Cem Subakan”, ”Siva Reddy”, ”Per-
ouz Taslakian”, ”Valentina Zantedeschi” (7 objects)
Reason (RAG): The record seems coherent, with individual authors’ expertise areas aligning
with the paper’s topic, although the team size is slightly larger than expected.
Case 3: Label=positive, RAG=positive, GraphLogDebugger=negative
Title: ”Transformer−1: Input-Adaptive Computation for Resource-Constrained Deployment”
Authors: ”Yitong Yin” (1 objects)
Reason (RAG): The record consists of a single author, which is consistent with similar papers
in the same research domain.

We further raise three cases above to investigate when and how GraphLogDebugger and RAG fail. In
Case 1, RAG predicts the normal example as abnormal because the limited retrieved examples do not
provide enough evidence to prove the coherence of the author team. By contrast, GraphLogDebug-
ger validates overall team consistency by checking the research background of every author, which
correctly predicts the negative label. Case 2 is complementary to Case 1, where GraphLogDebugger
is able to scan the research interest of every author and detect the anomaly accurately. However,
when the connected objects are few, such as in Case 3, GraphLogDebugger may not have enough
references based on the graph to make a correct judgment. In similar cases, RAG could then outper-
form GraphLogDebugger to recognize patterns in the number of authors in the same domain.

These cases provide insights on how graphs can benefit retrieval augmented generation. When the
key entry has dense connections with other entries, traditional retrieval based on similarity can-
not efficiently include enough entries to enhance the generation quality. With the help of modern
embedding models, graphs can be introduced to gather information in these multi-entry scenarios.

6 CONCLUSION

We propose a general framework to cover online debugging for heterogeneous tabular logs. By
modeling online log debugging as anomaly detection of dynamic graphs, our framework integrates
different types of log data into a unified modality by text embedding models, where a dynamic GNN
debugs the log through link prediction. Our framework shows good performance in four different
datasets while maintaining high efficiency compared to the mainstream RAG-based method.

Limitation. Our work explores combining dynamic GNNs and text embedding models to process
log data under the online setting, which indicates the potential to accelerate the online process of
data streams by a graph-based method. Nevertheless, our experiments mainly show this potential in
the bug detection setting. We leave the exploration of online bug correction to future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work focuses on detecting inconsistencies in general tabular log data, which enhances the
progress of automated log data processing in real-world scenarios. While automation of log pro-
cessing may raise issues concerning hallucination or fraud reporting, our work does not explicitly
introduce new risks compared to existing research.

REPRODUCIBILITY STATEMENT

All implementation details of our method and baselines are given in Section 5 and Appendix A. We
will release at the time of publication.

REFERENCES

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-oss-20b model card. arXiv
preprint arXiv:2508.10925, 2025.

Siraaj Akhtar, Saad Khan, and Simon Parkinson. Llm-based event log analysis techniques: A survey.
arXiv preprint arXiv:2502.00677, 2025.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Martina Castillo, Antonio Pecchia, and Ugo Villano. Autolog: Anomaly detection by deep autoen-
coding of system logs. Expert Systems with Applications, 191, 2022.

Jialin Chen and Rex Ying. Tempme: Towards the explainability of temporal graph neural networks
via motif discovery. Advances in Neural Information Processing Systems, 36:29005–29028, 2023.

Tianyi Chen and Charalampos Tsourakakis. Antibenford subgraphs: Unsupervised anomaly detec-
tion in financial networks. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 2762–2770, 2022.

Dawei Cheng, Fangzhou Yang, Xiaoyang Wang, Ying Zhang, and Liqing Zhang. Knowledge graph-
based event embedding framework for financial quantitative investments. In Proceedings of the
43rd International ACM SIGIR Conference on Research and Development in Information Re-
trieval, pp. 2221–2230, 2020.

Colin B Clement, Matthew Bierbaum, Kevin P O’Keeffe, and Alexander A Alemi. On the use of
arxiv as a dataset. arXiv preprint arXiv:1905.00075, 2019.

Zihan Dong, Xinyu Fan, and Zhiyuan Peng. Fnspid: A comprehensive financial news dataset in time
series, 2024.

Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog: Anomaly detection and diagnosis
from system logs through deep learning. In Proceedings of the 2017 ACM SIGSAC conference on
computer and communications security, pp. 1285–1298, 2017.

Xiaoyu Duan, Shi Ying, Wanli Yuan, Hailong Cheng, and Xiang Yin. A generative adversarial
networks for log anomaly detection. Computer Systems Science & Engineering, 37(1), 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

Ocheme Anthony Ekle and William Eberle. Anomaly detection in dynamic graphs: A comprehen-
sive survey. ACM Transactions on Knowledge Discovery from Data, 18(8):1–44, 2024.

Xi Fang, Weijie Xu, Fiona Anting Tan, Jiani Zhang, Ziqing Hu, Yanjun Qi, Scott Nickleach, Diego
Socolinsky, Srinivasan Sengamedu, and Christos Faloutsos. Large language models (llms) on tab-
ular data: Prediction, generation, and understanding–a survey. arXiv preprint arXiv:2402.17944,
2024.

Tao Feng, Yexin Wu, Guanyu Lin, and Jiaxuan You. Graph world model. arXiv preprint
arXiv:2507.10539, 2025.

Josh Gardner, Juan C Perdomo, and Ludwig Schmidt. Large scale transfer learning for tabular data
via language modeling. Advances in Neural Information Processing Systems, 37:45155–45205,
2024.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. Pmlr, 2017.

Haixuan Guo, Shuhan Yuan, and Xintao Wu. Logbert: Log anomaly detection via bert. In 2021
international joint conference on neural networks (IJCNN), pp. 1–8. IEEE, 2021.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Songqiao Han, Xiyang Hu, Hailiang Huang, Minqi Jiang, and Yue Zhao. Adbench: Anomaly de-
tection benchmark. Advances in neural information processing systems, 35:32142–32159, 2022.

Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. Experience report: System log analysis for
anomaly detection. In 2016 IEEE 27th international symposium on software reliability engineer-
ing (ISSRE), pp. 207–218. IEEE, 2016.

Zhangyue He, Yanni Tang, Kaiqi Zhao, Jiamou Liu, and Wu Chen. Graph-based log anomaly detec-
tion via adversarial training. In International Symposium on Dependable Software Engineering:
Theories, Tools, and Applications, pp. 55–71. Springer, 2023.

Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard De Melo, Claudio Gutier-
rez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, et al.
Knowledge graphs. ACM Computing Surveys (Csur), 54(4):1–37, 2021.

Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele Rossi,
Jure Leskovec, Michael Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany. Temporal
graph benchmark for machine learning on temporal graphs. Advances in Neural Information
Processing Systems, 36:2056–2073, 2023.

Alistair EW Johnson, Lucas Bulgarelli, Lu Shen, Alvin Gayles, Ayad Shammout, Steven Horng,
Tom J Pollard, Sicheng Hao, Benjamin Moody, Brian Gow, et al. Mimic-iv, a freely accessible
electronic health record dataset. Scientific data, 10(1):1, 2023.

Rodney Kinney, Chloe Anastasiades, Russell Authur, Iz Beltagy, Jonathan Bragg, Alexandra Bu-
raczynski, Isabel Cachola, Stefan Candra, Yoganand Chandrasekhar, Arman Cohan, et al. The
semantic scholar open data platform. arXiv preprint arXiv:2301.10140, 2023.

TN Kipf. Semi-supervised classification with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Ross Koval, Nicholas Andrews, and Xifeng Yan. Financial forecasting from textual and tabular
time series. In Findings of the Association for Computational Linguistics: EMNLP 2024, pp.
8289–8300, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in tem-
poral interaction networks. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 1269–1278, 2019.

Litton Jose Kurisinkel, Pruthwik Mishra, and Yue Zhang. Text2timeseries: Enhancing financial
forecasting through time series prediction updates with event-driven insights from large language
models. arXiv preprint arXiv:2407.03689, 2024.

Yukyung Lee, Jina Kim, and Pilsung Kang. Lanobert: System log anomaly detection based on bert
masked language model. Applied Soft Computing, 146:110689, 2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Guohao Li, Matthias Müller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep as
cnns? IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926, 2017.

Yufei Li, Yanchi Liu, Haoyu Wang, Zhengzhang Chen, Wei Cheng, Yuncong Chen, Wenchao Yu,
Haifeng Chen, and Cong Liu. Glad: Content-aware dynamic graphs for log anomaly detection.
In 2023 IEEE International Conference on Knowledge Graph (ICKG), pp. 9–18. IEEE, 2023.

Tianyang Liu, Fei Wang, and Muhao Chen. Rethinking tabular data understanding with large lan-
guage models. arXiv preprint arXiv:2312.16702, 2023.

Yilun Liu, Shimin Tao, Weibin Meng, Feiyu Yao, Xiaofeng Zhao, and Hao Yang. Logprompt:
Prompt engineering towards zero-shot and interpretable log analysis. In Proceedings of the 2024
IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings,
pp. 364–365, 2024.

Yixin Liu, Zhao Li, Shirui Pan, Chen Gong, Chuan Zhou, and George Karypis. Anomaly detection
on attributed networks via contrastive self-supervised learning. IEEE transactions on neural
networks and learning systems, 33(6):2378–2392, 2021.

Alessandro Longa, Valerio Lachi, Giovanni Santin, Monica Bianchini, Bruno Lepri, et al. Graph
neural networks for temporal graphs: State of the art, open challenges, and opportunities. arXiv
preprint arXiv:2305.12472, 2023.

Siyang Lu, Xiang Wei, Yandong Li, and Liqiang Wang. Detecting anomaly in big data system logs
using convolutional neural network. In 2018 IEEE 16th Intl Conf on Dependable, Autonomic and
Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big
Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/-
DataCom/CyberSciTech), pp. 151–158. IEEE, 2018.

Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuqing Liu, Yihao Chen, Ruizhi
Zhang, Shimin Tao, Pei Sun, et al. Loganomaly: Unsupervised detection of sequential and quan-
titative anomalies in unstructured logs. In IJCAI, volume 19, pp. 4739–4745, 2019.

Geon No et al. Training-free retrieval-based log anomaly detection with pre-trained language mod-
els. Engineering Applications of Artificial Intelligence, 133, 2024.

Jonathan Pan, Wong Swee Liang, and Yuan Yidi. Raglog: Log anomaly detection using retrieval
augmented generation. In 2024 IEEE World Forum on Public Safety Technology (WFPST), pp.
169–174. IEEE, 2024.

Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. Deep learning for
anomaly detection: A review. ACM computing surveys (CSUR), 54(2):1–38, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yunhe Pang, Bo Chen, Fanjin Zhang, Yanghui Rao, Evgeny Kharlamov, and Jie Tang. Guard:
Effective anomaly detection through a text-rich and graph-informed language model. In Proceed-
ings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 2, pp.
2222–2233, 2025.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kaneza-
shi, Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional
networks for dynamic graphs. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 5363–5370, 2020.

Taejin Park. Enhancing anomaly detection in financial markets with an llm-based multi-agent frame-
work. arXiv preprint arXiv:2403.19735, 2024.

Yulong Pei, Fang Lyu, Werner Van Ipenburg, and Mykola Pechenizkiy. Subgraph anomaly detection
in financial transaction networks. In Proceedings of the First ACM International Conference on
AI in Finance, pp. 1–8, 2020.

Jiaxing Qi, Shaohan Huang, Zhongzhi Luan, Shu Yang, Carol Fung, Hailong Yang, Depei Qian, Jing
Shang, Zhiwen Xiao, and Zhihui Wu. Loggpt: Exploring chatgpt for log-based anomaly detection.
In 2023 IEEE International Conference on High Performance Computing & Communications,
Data Science & Systems, Smart City & Dependability in Sensor, Cloud & Big Data Systems &
Application (HPCC/DSS/SmartCity/DependSys), pp. 273–280. IEEE, 2023.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019. URL https://arxiv.org/
abs/1908.10084.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal graph networks for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637, 2020.

Eduardo J Ruiz, Vagelis Hristidis, Carlos Castillo, Aristides Gionis, and Alejandro Jaimes. Corre-
lating financial time series with micro-blogging activity. In Proceedings of the fifth ACM interna-
tional conference on Web search and data mining, pp. 513–522, 2012.

Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural rep-
resentation learning on dynamic graphs via self-attention networks. In Proceedings of the 13th
international conference on web search and data mining, pp. 519–527, 2020.

Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. Anomaly detection in time series: a
comprehensive evaluation. Proceedings of the VLDB Endowment, 15(9):1779–1797, 2022.

Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. Structured sequence
modeling with graph convolutional recurrent networks. In International conference on neural
information processing, pp. 362–373. Springer, 2018.

Xiaoming Shi, Siqiao Xue, Kangrui Wang, Fan Zhou, James Zhang, Jun Zhou, Chenhao Tan, and
Hongyuan Mei. Language models can improve event prediction by few-shot abductive reasoning.
Advances in Neural Information Processing Systems, 36:29532–29557, 2023.

Yicheng Sui, Yuzhe Zhang, Jianjun Sun, Ting Xu, Shenglin Zhang, Zhengdan Li, Yongqian Sun,
Fangrui Guo, Junyu Shen, Yuzhi Zhang, et al. Logkg: Log failure diagnosis through knowledge
graph. IEEE Transactions on Services Computing, 16(5):3493–3507, 2023.

Paul C Tetlock. Giving content to investor sentiment: The role of media in the stock market. The
Journal of finance, 62(3):1139–1168, 2007.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Jingru Wang, Wen Ding, and Xiaotong Zhu. Financial analysis: Intelligent financial data analysis
system based on llm-rag. arXiv preprint arXiv:2504.06279, 2025.

13

https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Xinlei Wang, Maike Feng, Jing Qiu, Jinjin Gu, and Junhua Zhao. From news to forecast: Inte-
grating event analysis in llm-based time series forecasting with reflection. Advances in Neural
Information Processing Systems, 37:58118–58153, 2024a.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin Eisenschlos, Vincent Perot, Zifeng Wang,
Lesly Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee, et al. Chain-of-table: Evolving
tables in the reasoning chain for table understanding. arXiv preprint arXiv:2401.04398, 2024b.

Xiaofeng Wu, Alan Ritter, and Wei Xu. Tabular data understanding with llms: A survey of recent
advances and challenges. arXiv preprint arXiv:2508.00217, 2025.

Mengxi Xiao, Zihao Jiang, Lingfei Qian, Zhengyu Chen, Yueru He, Yijing Xu, Yuecheng Jiang,
Dong Li, Ruey-Ling Weng, Min Peng, et al. Enhancing financial time-series forecasting with
retrieval-augmented large language models. arXiv preprint arXiv:2503.67890, 2025.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive represen-
tation learning on temporal graphs. arXiv preprint arXiv:2002.07962, 2020.

Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I Jordan. Detecting large-scale
system problems by mining console logs. In Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, pp. 117–132, 2009.

Hang Yang, Yubo Chen, Kang Liu, Yang Xiao, and Jun Zhao. Dcfee: A document-level chinese
financial event extraction system based on automatically labeled training data. In Proceedings of
ACL 2018, System Demonstrations, pp. 50–55, 2018.

Lin Yang, Junjie Chen, Zan Wang, Weijing Wang, Jiajun Jiang, Xuyuan Dong, and Wenbin
Zhang. Semi-supervised log-based anomaly detection via probabilistic label estimation. In
2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pp. 1448–1460.
IEEE, 2021.

Chenchen Ye, Ziniu Hu, Yihe Deng, Zijie Huang, Mingyu Derek Ma, Yanqiao Zhu, and Wei Wang.
Mirai: Evaluating llm agents for event forecasting. arXiv preprint arXiv:2407.01231, 2024.

Jiaxuan You, Tianyu Du, and Jure Leskovec. Roland: graph learning framework for dynamic graphs.
In Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining,
pp. 2358–2366, 2022.

Xinli Yu, Zheng Chen, Yuan Ling, Shujing Dong, Zongyi Liu, and Yanbin Lu. Temporal data meets
llm–explainable financial time series forecasting. arXiv preprint arXiv:2306.11025, 2023.

Samreen Zehra, Syed Farhan Mohsin Mohsin, Shaukat Wasi, Syed Imran Jami, Muhammad Shoaib
Siddiqui, and Muhammad Khaliq-Ur-Rahman Raazi Syed. Financial knowledge graph based
financial report query system. IEEE Access, 9:69766–69782, 2021.

Jiasheng Zhang, Jialin Chen, Menglin Yang, Aosong Feng, Shuang Liang, Jie Shao, and Rex Ying.
Dtgb: A comprehensive benchmark for dynamic text-attributed graphs. Advances in Neural In-
formation Processing Systems, 37:91405–91429, 2024a.

Lingzhe Zhang, Tong Jia, Mengxi Jia, Yifan Wu, Hongyi Liu, and Ying Li. Xraglog: A resource-
efficient and context-aware log-based anomaly detection method using retrieval-augmented gen-
eration. In AAAI 2025 Workshop on Preventing and Detecting LLM Misinformation (PDLM),
2025a.

Linming Zhang, Wenzhong Li, Zhijie Zhang, Qingning Lu, Ce Hou, Peng Hu, Tong Gui, and Sanglu
Lu. Logattn: Unsupervised log anomaly detection with an autoencoder based attention mecha-
nism. In International conference on knowledge science, engineering and management, pp. 222–
235. Springer, 2021.

Shaokun Zhang, Ming Yin, Jieyu Zhang, Jiale Liu, Zhiguang Han, Jingyang Zhang, Beibin Li,
Chi Wang, Huazheng Wang, Yiran Chen, et al. Which agent causes task failures and when?
on automated failure attribution of llm multi-agent systems. arXiv preprint arXiv:2505.00212,
2025b.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Xiaokang Zhang, Sijia Luo, Bohan Zhang, Zeyao Ma, Jing Zhang, Yang Li, Guanlin Li, Zijun Yao,
Kangli Xu, Jinchang Zhou, et al. Tablellm: Enabling tabular data manipulation by llms in real
office usage scenarios. arXiv preprint arXiv:2403.19318, 2024b.

Xinye Zhang, Xiaoli Chai, Minghua Yu, and Ding Qiu. Anomaly detection model for log based on
lstm network and variational autoencoder. In 2023 4th International Conference on Information
Science, Parallel and Distributed Systems (ISPDS), pp. 239–244. IEEE, 2023a.

Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang, Chunyu Xie, Xin-
sheng Yang, Qian Cheng, Ze Li, et al. Robust log-based anomaly detection on unstable log data.
In Proceedings of the 2019 27th ACM joint meeting on European software engineering conference
and symposium on the foundations of software engineering, pp. 807–817, 2019.

Zeyang Zhang, Xin Wang, Ziwei Zhang, Zhou Qin, Weigao Wen, Hui Xue, Haoyang Li, and Wenwu
Zhu. Spectral invariant learning for dynamic graphs under distribution shifts. Advances in Neural
Information Processing Systems, 36:6619–6633, 2023b.

Qihang Zhao and Xiaodong Feng. Utilizing citation network structure to predict paper citation
counts: A deep learning approach. Journal of Informetrics, 16(1):101235, 2022.

Aoxiao Zhong, Dengyao Mo, Guiyang Liu, Jinbu Liu, Qingda Lu, Qi Zhou, Jiesheng Wu,
Quanzheng Li, and Qingsong Wen. Logparser-llm: Advancing efficient log parsing with large
language models. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discov-
ery and Data Mining, pp. 4559–4570, 2024.

Jieming Zhu, Shilin He, Pinjia He, Jinyang Liu, and Michael R Lyu. Loghub: A large collection of
system log datasets for ai-driven log analytics. In 2023 IEEE 34th International Symposium on
Software Reliability Engineering (ISSRE), pp. 355–366. IEEE, 2023a.

Yifan Zhu, Fangpeng Cong, Dan Zhang, Wenwen Gong, Qika Lin, Wenzheng Feng, Yuxiao Dong,
and Jie Tang. Wingnn: Dynamic graph neural networks with random gradient aggregation win-
dow. In Proceedings of the 29th ACM SIGKDD conference on knowledge discovery and data
mining, pp. 3650–3662, 2023b.

A APPENDIX

A.1 USE OF LLMS

We use ChatGPT to polish our introduction (Section 1) and generate the notation table (Table 3),
both of which have been checked manually. We also use ChatGPT to retrieve related works in the
tabular log processing part by searching machine-learning based log processing methods.

A.2 NOTATION

Table 3: Notation

Symbol Type Meaning
Tabular-log basics (Sec. 3)
X = {x0, . . . , xN−1} sequence Time-ordered tabular log (entries).
xn entry The n-th log entry.
t0 < · · · < tN−1 timestamps Arrival times of entries.
xm
n attribute value The m-th attribute in entry xn.

M integer Number of attributes per entry.
{o0n, . . . , oP−1

n } set Object attributes extracted from xn.
P integer Number of object attributes in xn (P < M).
sn text / node Event attribute (one per entry; possibly text).
{f0

n, . . . , f
Q−1
n } set Feature attributes extracted from xn.

Continued on next page

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Symbol Type Meaning
Q integer Number of feature attributes in xn (Q < M).
yn label Event anomaly label for xn (0 normal, 1 abnormal).
ypn label Object anomaly label for object opn (0/1).
yqn label Feature anomaly label for feature fq

n (0/1).
Graphs and dynamics (Sec. 4.1–4.2)
G dynamic graph Evolving heterogeneous graph over time.
Gn snapshot Graph snapshot at time tn (before merging gn).
gn subgraph Subgraph constructed from new entry xn.
Gn+1 \Gn graph diff Increment between consecutive snapshots; here equal

to gn.
V, E sets Node and edge sets of the current graph.
v, e node, edge A node or an edge (generic).
Vo
n node set Object nodes appearing in xn.

Ve
n node set New event nodes introduced by xn (events are

unique).
E+
k edge set Positive (observed) object–event links in gk.

E−
k edge set Negative samples (non-existent object–event pairs).

Ê+
n edge set Accepted/predicted-positive links at tn.

V̂e
n node set Accepted new events incident to Ê+

n .
Rtn set Per-time link predictions/results at tn.
{Gn}N−1

n=0 sequence The sequence of snapshots defining G.
GtK , GtN snapshots Snapshot after train time tK , and final snapshot at tN .
Modeling (GNN and scoring; Sec. 4.3)
θ parameters Trainable parameters of the GNN.
fθ(·) mapping GNN that computes object-node embeddings on G.
F encoder Text (and time-aware) embedding model for events.
ho, he vectors Object and event embeddings, respectively.
reduce(·, ·) operator Embedding combiner (e.g., concat/diff/dot).
MLP(·) mapping Multi-layer perceptron used for scoring.
σ(·) function Sigmoid activation.
so,e score Link-normality score for pair (o, e).
ℓ̂o,e label Predicted link label: ⊮[so,e ≥ τ].
Lk loss Balanced BCE loss at training step k.
η scalar Learning rate.
τ threshold Operating threshold for prediction.
ρ ratio Negative sampling ratio.
Data splits and indices
Xtrain, Xtest sequences Training and test splits (chronological).
K integer Index/time that separates train and test.
N integer Total number of entries/snapshots.
k, n indices Training step k, evaluation time n.
tk, tn timestamps Times associated with steps/entries.

A.3 MODEL DESIGN SPACE

We compare two variants in our experiments: (i) Plain (ungated) GAT. We first concatenate the
entity-type and entity-ID embeddings and pass them through a feed-forward projection to obtain
the initial representation e0. We then run multi-layer, multi-head GATConv on an entity–entity
graph induced by shared content to propagate messages and obtain eGAT, which we use as the final
entity representation. (ii) Gated fusion. Starting from the same e0 and eGAT, we introduce a global
learnable scalar gate α and adaptively combine them via a sigmoid: e = (1−σ(α)), e0+σ(α), eGAT.
This biases toward e0 when the given signal is weak (or absent) and toward eGAT when the signal is
strong. Both variants share the same link-prediction head: we take the entity representation and the
content representation (text and time embeddings concatenated and then projected), compute their
element-wise difference, and feed it to an MLP to output the link probability

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.4 ADDITIONAL VISUALIZATION

Figure 3 visualizes the distribution of anomaly likelihood scores of our five evaluation tasks. The
score distribution corroborates the main result in Table 2, that Analyst, Arxiv (Node), and HDFS are
three tasks relatively easy, with the score distribution of anomalies and normal examples separate
clearly. By contrast, the score of anomalies and normal examples mix up in Arxiv (Edge) and
Landslide, indicating that these datasets are more difficult.

Figure 3: Anomaly score distribution of five tasks by GraphLogDebugger. Score distributions
of anomalies and normal examples separate for simpler tasks and mix up for more difficult tasks.

A.5 PROMPTS IN RAG

We list the prompt we used in our RAG baseline as follows:

1 """ Build context for ArXiv dataset (authors and paper titles)."""
2 context = """You are an expert at analyzing author -paper relationships in

academic research.
3

4 DATASET CONTEXT: This is a dataset of academic papers with their authors
and titles.

5 - Entities (authors): Research authors who wrote the papers
6 - Content (titles): The titles of the academic papers
7 - Edge: A connection between an author and a paper title (indicating the

author contributed to that paper)
8

9 TASK: Determine if the specific author -paper connection (edge) should
exist based on historical patterns.

10

11 EDGE ANALYSIS TARGET:
12 """
13

14 context += f"Author: {entity_name }\n"
15 context += f"Paper Title: {content_name }\n\n"
16

17 if similar_contents:
18 context += "SIMILAR PAPERS AND THEIR AUTHORS (for reference):\n"
19 context += "Use these examples to understand what types of authors

typically work on similar papers .\n\n"
20

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

21 for i, content_record in enumerate(similar_contents [:10]):
22 content = content_record.get('content ', '')
23 entities = content_record.get('related_entities ', [])
24 similarity = content_record.get('similarity ', 0.0)
25 num_records = content_record.get('num_records ', 0)
26

27 context += f"{i+1}. Paper Title: {content} (Similarity: {
similarity :.3f}, {num_records} records)\n"

28 context += f" Authors who worked on this paper: {', '.join(
entities) if entities else 'None '}\n\n"

29 else:
30 context += "No similar papers found in historical data.\n\n"
31

32 context += """ ANALYSIS QUESTION:
33 Based on the similar papers and their author patterns , should the

specified author -paper connection exist?
34

35 EVALUATION CRITERIA:
36 1. Research Domain Match: Does the author 's expertise align with the

paper 's topic?
37 2. Historical Patterns: Do authors with similar expertise appear in

similar papers?
38 3. Authorship Likelihood: Is it reasonable that this author would

contribute to this type of research?
39 4. Anomaly Detection: Does this connection seem unusual or out of place

compared to patterns in similar papers?
40

41 DECISION GUIDELINES:
42 - edge_exists = True: The author -paper connection makes sense based on

research area and historical patterns
43 - edge_exists = False: The author seems misplaced or unlikely to work on

this type of paper (anomalous edge)
44 - Consider the research fields , methodologies , and typical author

patterns shown in similar papers
45 - An edge is anomalous if the author appears completely unrelated to the

research domain of the paper
46

47 CONFIDENCE SCORING:
48 - High confidence (0.8 -1.0): Clear patterns in similar papers strongly

support/reject the connection
49 - Medium confidence (0.5 -0.7): Some evidence but less certain
50 - Low confidence (0.0 -0.4): Limited historical data or unclear patterns
51 """

Listing 1: Prompt: Arxiv

1 """ Build context for HDFS dataset (BlockId focus for detection)."""
2 context = """You are an expert at analyzing BlockId -log relationships in

HDFS distributed file system logs.
3

4 DATASET CONTEXT: This is a dataset of HDFS system logs with their Block
IDs and log contents.

5 - Primary Focus: Block IDs (e.g., blk_8215417782549978040 ,
blk_161475555609545016) - unique identifiers for HDFS data blocks

6 - Content (logs): The actual log messages and operations in the HDFS
system that involve specific blocks

7 - Edge: A connection between a Block ID and a log message (indicating the
block is involved in that log operation)

8

9 SPECIAL NOTE: For HDFS anomaly detection , we focus specifically on Block
ID connections to log messages.

10 Block IDs should appear BOTH in the BlockId column AND within the log
content itself.

11

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

12 TASK: Determine if the specific Block ID-log connection (edge) should
exist based on historical patterns.

13

14 EDGE ANALYSIS TARGET:
15 """
16

17 context += f"Block ID: {entity_name }\n"
18 context += f"Log Content: {content_name }\n"
19 context += f"Content Analysis: Does '{entity_name}' appear in the log

content? {'YES' if entity_name in content_name else 'NO '}\n\n"
20

21 if similar_contents:
22 context += "SIMILAR LOG MESSAGES AND THEIR BLOCK IDs (for reference)

:\n"
23 context += "Use these examples to understand what types of Block IDs

typically appear in similar log messages .\n\n"
24

25 for i, content_record in enumerate(similar_contents [:10]):
26 content = content_record.get('content ', '')
27 entities = content_record.get('related_entities ', [])
28 similarity = content_record.get('similarity ', 0.0)
29 num_records = content_record.get('num_records ', 0)
30

31 block_ids = [e for e in entities if e.startswith('blk_')]
32 other_entities = [e for e in entities if not e.startswith('blk_')

]
33

34 context += f"{i+1}. Log Content: {content} (Similarity: {
similarity :.3f}, {num_records} records)\n"

35 context += f" Block IDs in this log: {', '.join(block_ids) if
block_ids else 'None '}\n"

36 if other_entities:
37 context += f" Other entities: {', '.join(other_entities

[:3]) }{'...' if len(other_entities) > 3 else ''}\n"
38 context += "\n"
39 else:
40 context += "No similar log messages found in historical data.\n\n"
41

42 context += """ ANALYSIS QUESTION:
43 Based on the similar log messages and their Block ID patterns , should the

specified Block ID-log connection exist?
44

45 EVALUATION CRITERIA:
46 1. Block ID Presence: Does the Block ID appear within the log content

itself? (This is crucial for HDFS)
47 2. Log Operation Match: Does the Block ID relate to the HDFS operation

described in the log?
48 3. Historical Patterns: Do similar Block IDs appear in similar log

messages?
49 4. HDFS Block Behavior: Is it reasonable that this Block ID would be

involved in this type of operation?
50 5. Content Consistency: Block ID should be consistent between the BlockId

column and the log content
51

52 DECISION GUIDELINES:
53 - edge_exists = True: The Block ID-log connection makes sense based on

HDFS block operations and historical patterns
54 - edge_exists = False: The Block ID seems unrelated to this log message (

anomalous edge)
55 - CRITICAL: If the Block ID does NOT appear in the log content , this is

likely anomalous
56 - Consider HDFS block operations like allocation , storage , replication

shown in similar messages
57 - An edge is anomalous if the Block ID appears completely unrelated to

the log operation

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

58

59 CONFIDENCE SCORING:
60 - High confidence (0.8 -1.0): Clear Block ID patterns and content

consistency strongly support/reject the connection
61 - Medium confidence (0.5 -0.7): Some evidence but less certain about Block

ID relevance
62 - Low confidence (0.0 -0.4): Limited historical data or unclear Block ID

patterns
63

64 IMPORTANT: Focus specifically on Block ID relationships - Components and
Event IDs are secondary for this analysis.

65 """

Listing 2: Prompt: HDFS

1 """ Build generic context for unknown datasets."""
2 context = f"""You are an expert at analyzing entity -content relationships

.
3

4 EDGE ANALYSIS TARGET:
5 Entity: {entity_name}
6 Content: {content_name}
7

8 TASK: Determine if this entity -content connection should exist based on
historical patterns.

9 """
10

11 if similar_contents:
12 context += "\nSIMILAR EXAMPLES :\n"
13 for i, content_record in enumerate(similar_contents [:5]):
14 content = content_record.get('content ', '')
15 entities = content_record.get('related_entities ', [])
16 context += f"{i+1}. Content: {content }\n Related entities: {',

'.join(entities)}\n\n"
17

18 context += """
19 DECISION: Should this entity -content connection exist?
20 - edge_exists = True: The connection makes sense based on patterns
21 - edge_exists = False: The connection seems anomalous
22 """

Listing 3: Prompt: Analyst and Landslide

20

	Introduction
	Related Works
	Preliminaries
	GraphLogDebugger
	Integrating online tabular log to dynamic graphs
	Debugging tabular log graphs as dynamic graphs
	Designing the GNN for dynamic graph anomaly detection

	Experiments
	Experimental settings
	Main Results
	Case study: Where does RAG fail?

	Conclusion
	Appendix
	Use of LLMs
	Notation
	Model Design Space
	Additional Visualization
	Prompts in RAG

