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ABSTRACT

Tabular log abstracts objects and events in the real-world system and reports their
updates to reflect the change of the system, where one can detect real-world in-
consistencies efficiently by debugging corresponding log entries. However, recent
advances in processing text-enriched tabular log data overly depend on large lan-
guage models (LLMs) and other heavy-load models, thus suffering from limited
flexibility and scalability. This paper proposes a new framework, GraphLogDe-
bugger, to debug tabular log based on dynamic graphs. By constructing heteroge-
neous nodes for objects and events and connecting node-wise edges, the frame-
work recovers the system behind the tabular log as an evolving dynamic graph.
With the help of our dynamic graph modeling, a simple dynamic Graph Neural
Network (GNN) is representative enough to outperform LLMs in debugging tab-
ular log, which is validated by experimental results on real-world log datasets of
computer systems and academic papers.

1 INTRODUCTION

Tabular log data plays a crucial role in representing and tracking the state and evolution of real-
world systems. These logs are structured as rows of log entries, each capturing an event involving
certain objects and their attributes at a specific time point. Common examples include system logs
recording computing services (Zhu et al., 2023a), research logs tracking scientific publication activi-
ties (Clement et al., 2019), and interaction logs from multi-agent systems powered by large language
models (LLMs) (Zhang et al., 2025b). Debugging of tabular logs is essential: it allows practitioners
to detect anomalies in the original systems through efficient inspection of associated log records.

Log anomaly detection (He et al., 2016) has therefore been a long-standing research field in different
niche areas, where data distributions are invariant or have little change. Existing frameworks (Du
et al., 2017; Meng et al., 2019; Zhang et al., 2019; Pei et al., 2020; Guo et al., 2021; Chen &
Tsourakakis, 2022) benefit from manually defined data structures or templates for log parsing which
are often tailored to certain domains and thus yield absolute success in specific areas like com-
puter system log or financial event log. However, due to this domain-specific principle, designing a
general-purpose log debugger always remains challenging.

Efforts to overcome this challenge have led to two main lines of work, as shown in Figure 1. One
stream focuses on graph modeling of the log data (Cheng et al., 2020; Zehra et al., 2021; Pang
et al., 2025), where information in tabular log is gathered in a unified data structure: the graph,
such as constructing knowledge graphs or text-rich dynamic graphs for computer system log (Sui
et al., 2023; Li et al., 2023). Although these methods are both efficient and powerful, many of them
lack flexibility: they still customize static graph structures for certain domains. Another stream
explores LLM-based solutions, such as LLM prompting (Yu et al., 2023; Qi et al., 2023; Park,
2024) or retrieval-augmented generation (RAG) (Pan et al., 2024; Zhang et al., 2025a; Wang et al.,
2025) pipelines. While these methods demonstrate general capabilities in text-based reasoning, thus
showing potential of generalization, they often come with significant drawbacks: high computational
costs, slow inference, and difficulty scaling to long log streams or resource-constrained settings.

Inspired by the idea to unify multimodal information in dynamic graphs (Feng et al., 2025), we pro-
pose GraphLogDebugger, a general and efficient framework for debugging tabular logs through
dynamic graph modeling. Our core idea is to interpret tabular log entries as the evolving state of a
hidden system, which can be reconstructed as a dynamic heterogeneous graph. We treat objects and
events as different types of nodes with text embeddings empowered by modern language embed-
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Figure 1: Comparing GraphLogDebugger with two existing lines of works. Processing log
with domain-specific graphs requires custom text parsing, which lacks flexibility. LLM-based log
processing overcomes this shortcoming by the general comprehension skills of LLMs, but suffers
from poor efficiency. GraphLogDebugger combines the advantages of graph representation and
those of LLMs and balances well generalizability and scalability.

ding models, and use the tabular structure to generate time-stamped connections between them. As
new log entries arrive, they incrementally update the dynamic graph, capturing both structural and
temporal dependencies. This formulation allows us to apply a lightweight dynamic Graph Neural
Network (GNN) to perform online anomaly detection by evaluating the likelihood of new connec-
tions. Our approach avoids reliance on heavy LLMs while still capturing rich semantic and rela-
tional information in the data. Experimental results on real-world datasets from computer system
logs and scientific publication logs validate the effectiveness of our approach. Despite its simplicity,
our dynamic GNN framework outperforms LLM-based baselines in both accuracy and efficiency,
demonstrating that dynamic graph modeling is a highly expressive yet lightweight alternative. Our
contributions can be summarized as follows:

• We introduce a novel view of tabular logs as dynamic heterogeneous graphs, bridging the
gap between structured attributes and semantic reasoning, and redefine the framework of
online log anomaly detection, where object-event connections in each incoming log are
evaluated through link prediction on the evolving graph.

• We propose a lightweight GNN-based debugger that can efficiently and accurately detect
anomalies without using LLMs, and validate its performance on real-world datasets with
diverse modalities.

2 RELATED WORKS

Tabular Log Processing. Many real-world logs include structured, time-stamped tabular at-
tributes alongside annotated text fields. Examples come from financial prices paired with event
series (Tetlock, 2007; Ruiz et al., 2012; Dong et al., 2024), scientific publication metadata (Clement
et al., 2019; Kinney et al., 2023), healthcare records (Johnson et al., 2023), computer system
logs (Zhu et al., 2023a), and multi-agent system reports (Zhang et al., 2025b). A key challenge
in processing tabular logs with machine learning lies in capturing multi-attribute correlations while
maintaining comprehension of their semantics (Wu et al., 2025). One common approach integrates
main attributes recognized by human priors into structured data (Yang et al., 2018; Zhao & Feng,
2022; Koval et al., 2024), and then subsequently augments the representation by retrieval (Kurisinkel
et al., 2024; Xiao et al., 2025). This modeling achieves good performance in domain-specific data,
but lacks flexibility and generalizability for adaptation to other fields (Gardner et al., 2024).

An emerging alternative leverages Large Language Models (LLMs) (Brown et al., 2020), which have
demonstrated strong generalizability in understanding, predicting, and generating tabular data (Liu
et al., 2023; Zhang et al., 2024b; Fang et al., 2024; Wang et al., 2024b). By parsing diverse logs
into a unified format with LLMs (Zhong et al., 2024), these models can be applied to downstream
tasks that require reasoning capabilities, such as predicting stock prices (Yu et al., 2023), electricity
demand (Wang et al., 2024a), and future events (Shi et al., 2023; Ye et al., 2024). However, LLM-
based approaches often suffer from high overheads, complex deployment, and limited throughput.
There remains a strong need for lighter-weight alternatives with comparable performance.

Dynamic Graphs. Graph Neural Networks (GNNs) have become a foundational paradigm for
learning on graph-structured data (Kipf, 2016; Hamilton et al., 2017; Gilmer et al., 2017). Static
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GNN models have benefited from advances in message passing (Battaglia et al., 2018), architec-
tural depth (Li et al., 2021; Dwivedi et al., 2020), and inductive scalability (Hamilton et al., 2017).
However, many real-world systems are dynamic, motivating models that capture both structural and
temporal dependencies. Early approaches used recurrent layers or time-aware embeddings (Li et al.,
2017; Seo et al., 2018) to extend static GNNs to dynamic settings (Pareja et al., 2020; Sankar et al.,
2020; Kumar et al., 2019). Recent methods have embraced memory modules (Rossi et al., 2020)
and temporal encoding (Xu et al., 2020) for finer-grained modeling of time-stamped interactions.
Building on this trajectory, ROLAND (You et al., 2022) offers a framework that adapts static GNNs
to dynamic graphs via hierarchical state propagation and live-update evaluation, which inspires new
advances in benchmarks (Longa et al., 2023; Huang et al., 2023; Zhang et al., 2024a), architec-
tures (Zhu et al., 2023b), explainability (Chen & Ying, 2023), and robustness (Zhang et al., 2023b).

Log Anomaly Detection. Log-based anomaly detection has long been a critical task for system
reliability, and early neural approaches typically rely on sequence modeling via LSTMs (Du et al.,
2017), CNNs (Lu et al., 2018), and autoencoders (Zhang et al., 2021; Castillo et al., 2022; Zhang
et al., 2023a). Others incorporate adversarial training (Duan et al., 2021; He et al., 2023), or temporal
networks (Zhang et al., 2019; Yang et al., 2021). More recently, pretrained language models have
been adopted for log anomaly detection, either via fine-tuning (Guo et al., 2021; Lee et al., 2023)
or prompt-based pipelines (Qi et al., 2023; Liu et al., 2024). Retrieval-augmented (No et al., 2024;
Pan et al., 2024; Zhang et al., 2025a) methods have further pushed semantic understanding in LLM-
based methods. As mentioned, while machine learning-based methods are highly domain-specific,
LLM-based methods show some generalizability at a high cost.

One potential solution towards general and scalable methods for log debugging is to introduce dy-
namic graphs, where tabular log is considered as an evolving system and maintained in a dynamic
graph. Early exploration makes use of knowledge graphs (Hogan et al., 2021) with domain spe-
cific parsing to generate triplets (Cheng et al., 2020; Zehra et al., 2021; Sui et al., 2023). Recent
advances adopt dynamic graphs with text-rich nodes to represent tabular log (Li et al., 2023; Pang
et al., 2025). Nevertheless, these works are either domain specific or LLM-based, yet not escaping
from the dilemma between generalizability and scalability.

3 PRELIMINARIES

Tabular log is the data modality used to report the update of real-world systems from the perspective
of states and relations. It can be formally defined by a time series X = {x0, x1, x2, ..., xN−1}
annotated by a timestamps sequence t0 < t1 < t2 < ... < tN−1, where each of xn is a log entry
that contains different attributes xm

n in the table: xn = {x0
n, x

1
n, x

2
n, ..., x

M−1
n }. Summarizing the

general case of tabular log data in finance (Dong et al., 2024), healthcare (Johnson et al., 2023),
academics (Clement et al., 2019), and other systems (Zhu et al., 2023a), we can separate attributes
in the tabular log into three types:

• Object: Attributes that represent stand-alone objects in the tabular log, such as companies
in the financial news log and cities in the medical record log.

• Event: Attributes that describe an event with text, for example, news content in the finan-
cial news log and record content in the medical record log. These attributes are usually the
center of log entries, where other attributes supplement details and involved objects of the
event. Without loss of generality, one log entry only has one Event attribute, because we
could merge the text sections of different event attributes into one.

• Feature: Attributes that describe features related to the event or objects. For instance, the
age is a feature of the patient object in the medical record log. Timestamp tn is a special
type of feature that provides the details about the time of the event.

In practice, we find that Objects and Features are mutually convertible. For example, the address of
the company could be either an independent object or a feature of the company object in the financial
log. Hence, the arrangement of Objects and Features is a hyperparameter that needs pre-definition.

While tabular log abstracts the change of real-world systems, it is expected that we could detect
inconsistencies of the system from the corresponding tabular log. Based on the above categorization,
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we could then define three types of anomalies and corresponding anomaly detection tasks in the
tabular log. Give a log entry xn = {x0

n, x
1
n, x

2
n, ..., x

M−1
n } in the tabular log X:

• Object anomaly: Let {o0n, o1n, o2n, ..., oP−1
n }(P < M) be the object set. We have label

yn = {y0n, y1n, y2n, ..., yP−1
n }, where ymn = 0 means that opn is a normal object and ymn = 1

means that opn is an abnormal object for the log entry xn.
• Event anomaly: Let sn be the event. We have a label yn, where yn = 0 means that sn is

a normal event and yn = 1 means that sn is an abnormal event for the log entry xn.
• Feature anomaly: Let {f0

n, f
1
n, f

2
n, ..., f

Q−1
n }(Q < M) be the feature set. We have label

yn = {y0n, y1n, y2n, ..., yQ−1
n }, where yqn = 0 means that oqn is a normal feature and yqn = 1

means that oqn is an abnormal feature for the log entry xn.
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Figure 2: GraphLogDebugger framework. The frame-
work checkpoints the GNN θ and the dynamic graph snap-
shot Gn. When a new log entry emerges, we first extract a
sub-graph gn and use it to update the dynamic graph. Then,
we predict the links introduced by gn in the dynamic graph
by GNN θ, whose results indicate the anomaly.

Considering the tabular log X as an
online system where new log entries
come dynamically in time order, we
could then define the anomaly de-
tection in tabular log as an online
anomaly detection task:
Definition 3.1 (Online Anomaly
Detection of Tabular Log). Given
an online system that dynamically
produces log entry xn, online
anomaly detection for tabular
log predicts its anomaly label yn
based on historical log entries
Xn = {x0, x1, x2, ..., xn−1}

Notably, object anomaly and feature
anomaly are isomorphic. Consider-
ing the fact that objects and features
are convertible, the rest of this pa-
per only studies object anomaly and
event anomaly. Table 3 summarizes
all used variables.

4 GRAPHLOGDEBUGGER

We first integrate tabular log to a
heterogeneous dynamic graph (Sec-
tion 4.1). Then, we reformulate on-
line anomaly detection of tabular log
as dynamic graph anomaly detec-
tion(Section 4.2). Finally, we apply
a dynamic GNN to debug the tabular
log (Section 4.3).

4.1 INTEGRATING ONLINE TABULAR LOG TO DYNAMIC GRAPHS

Objects and events in the same log entry are naturally connected in the tabular log, from which we
could construct graphs. To this end, we first define the graph structure within one log entry. As
shown in Figure 2 (upper section), we build nodes v for both objects and the unique event in the new
log entry. Each event and all its objects are connected by an edge e. This yields a sub-graph gn for
each log entry xn.

Figure 2 (middle section) illustrates the composition of a dynamic graph G that stores the information
of all historical log entries. This dynamic graph gathers all sub-graphs of log entries. We merge
identical object nodes so that these sub-graphs are connected. Note that every event node should be
unique. Every time a new log entry xn emerges, we construct a sub-graph gn accordingly and merge
it into the dynamic graph G. We denote the snapshot of G at time point tn by Gn.
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Algorithm 1: GraphLogDebugger: Online
training for dynamic-graph anomaly detec-
tion
Input : Training logXtrain = {xt0 , . . . , xtK−1};

GNN θ; text embedding model F ;
negative sampling ratio ρ; threshold τ ;

Output: Trained parameters θ⋆, dynamic graph
snapshot GtK

1 Initialize G : V = ∅, E = ∅
2 for k = 0, . . . ,K − 1 do

// Integrate the incoming log entry
3 Build sub-graph gk: creating nodes for

object set Vo
k and event set Ve

k in xtk and
connecting object-event pairs in xtk with
edges

4 G ← (V ∪ Vo
k , E)

5 Positive set E+k ← object-event links in gk.
6 Negatives E−k by drawing ρ · |E+k |

non-existent object–event pairs in G.

// Embed nodes
7 Compute object embeddings ho with GNN

θ: ho = fθ(G)
8 Compute new event embeddings he with text

embedding model F : he = F(Ve
k)

// Predict links & Compute the loss
9 For each pair (o, e) ∈ E+k ∪ E

−
k , compute

score so,e = σ(MLP(reduce(ho, he))).
10 Compute balanced BCE loss Lk on labels (1

for E+k , 0 for E−k ) and update
θ ← θ − η∇θLk.

// Updating the dynamic graph
11 G ← (V ∪ Ve

k , E)
12 Repeat Step 1-10 for epochs
13 return θ

Algorithm 2: GraphLogDebugger: Online
evaluation for dynamic-graph anomaly de-
tection
Input : Test log Xtest = {xtK , . . . , xtN−1};

trained GNN θ⋆; last snapshot GtK ;
text embedding model F ; threshold τ

Output: Per-time link predictions {Rtn}N−1
n=K ;

updated snapshot GtN

1 Initialize G ← GtK and load θ⋆

2 for n = K, . . . , N − 1 do
// Integrate the incoming log entry

3 Build sub-graph gn from xn with object set
Vo
n, new event set Ve

n, and observed links
E+n

4 G ← (V ∪ Vo
k , E)

// Embed nodes
5 Compute object embeddings on current

snapshot: ho = fθ⋆(G)
6 Compute embeddings for new events

(time-aware): he = F(Ve
n)

// Predict links
7 For each (o, e) ∈ E+n , compute

so,e = σ(MLP(reduce(ho, he))) and set
ℓ̂o,e = ⊮[so,e ≥ τ ]

8 Link prediction results:
Rtn ← {(o, e, so,e, ℓ̂o,e) | (o, e) ∈ E+n }

// Update the dynamic graph
9 Accepted links

Ê+n = {(o, e) ∈ E+n | ℓ̂o,e = 1}
10 Accepted new events

V̂e
n = {e ∈ Ve

n | ∃o : (o, e) ∈ Ê+n }.
11 G ← ( V ∪ V̂e

n, E ∪ Ê+n )

12 return {Rtn}N−1
n=K and GtN = G

4.2 DEBUGGING TABULAR LOG GRAPHS AS DYNAMIC GRAPHS

Following the above integration, we transfer the online anomaly detection of tabular log defined in
Section 3 into an anomaly detection problem of dynamic graph G (Ekle & Eberle, 2024):

• Object anomaly detection: The object anomaly occurs when the edge e between an object
node and an event node is abnormal in the latest sub-graph gn. This anomaly could then
be detected by link prediction in the dynamic graph G (You et al., 2022), where a GNN is
applied to predict the likelihood of e. If the likelihood exceeds a threshold, we consider the
edge as normal. Otherwise, we consider the edge as an anomaly.

• Event anomaly detection: The event anomaly occurs when an abnormal event s is placed
in the wrong entry in the latest sub-graph gn. This means that all edges between this event
are anomalies. We can therefore apply link prediction to all edges in the sub-graph and
threshold the overall predicted likelihoods to determine the anomaly label of the event.

In a nutshell, the goal of our anomaly detection in Section 3 is equivalent to predicting the likelihood
of all edges in the latest log entry sub-graph gn, based on the dynamic graph snapshot Gn that stores
all historical log entries of tabular log Xn. We finally transfer the online anomaly detection of
tabular log into an anomaly detection problem in dynamic graphs, with notations omitted to Table 3:

Definition 4.1 (Online Anomaly Detection of Tabular Log (Dynamic Graph)). Given the snap-
shot Gn of a dynamic graph G = {Gn}N−1

n=0 and the new coming sub-graph gn = Gn+1 \ Gn, the
goal is to predict the label yn of links in gn.

5
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Table 1: Statistics and details of the four datasets for tabular log debugging.

Dataset Domain #Entries #Objects Event Attr. Obj Attr. Anomaly Type
Arxiv Sci. Pub. 20,000 17316 title authors Event/Object
HDFS System Log 20,000 2150 Content Component,EventId,BlockId Object
Analyst Finance 20,000 3901 headline publisher Event
Landslide Geology 20,000 8565 description title, category,trigger,country Object

4.3 DESIGNING THE GNN FOR DYNAMIC GRAPH ANOMALY DETECTION

Figure 2 (bottom section) demonstrates the basic process of using our GNN to predict link anomaly
labels. For details, our GNN θ takes the dynamic graph snapshot Gn and the incoming sub-graph
gn as inputs and predicts the likelihood of all links in gn. The GNN consists of three parts: the node
embedder, the GNN backbone, and the prediction head. First, the node embedder offers heteroge-
neous embeddings for all objects in Gn and gn and event nodes in Gn. We exclude new events in gn
because we do not expect the outputs of the model will be interfered with by the graph structure in
gn. We assign a unique learnable embedding for each object, and use a pre-trained text embedding
model to embed existing events. We also concatenate a time embedding to the event embedding
based on the coming time tn for event s. Our GNN backbone is adapted from the graph attention
network (GAT) (Veličković et al., 2017), where we use two separate MLPs to map objects and events
to the same space and apply GAT layers for message passing. The prediction head predicts the link
between all object-event pairs in gn. We first compare object embeddings after GAT layers and event
text embeddings by reduction. We then pass the result to an MLP with Sigmoid activation to get the
likelihood. We omit more details in the design space of the model in Appendix A.3.

Our GNN is trained under the setting of unsupervised anomaly detection (Pang et al., 2021): We
separate the dataset into a training split and a test split by chronological order. In the training stage,
all links in gn are normal, and we provide negative examples for training by randomly sampling
object-event pairs that are not connected. We append these fraud links to the ground-truth links
to balance the label distribution and use them to train the GNN. After backpropagation, we finally
update the dynamic graph snapshot Gn with subgraph gn. Alg 1 summarizes the training algorithm.

In the test stage, we first resume the GNN as well as the latest dynamic graph snapshot Gn. This
achieves the warm start of our debugger system. Then, we construct sub-graphs from the coming log
entries and take them as parts of the evolving dynamic graph G that we succeed from the pre-trained
GNN. The evaluation process is summarized in Alg 2.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. Our work provides a general framework of debugging different types of tabular log under
the online setting. To validate this point, we span our experiments over datasets covering four
different fields: (1) Arxiv: Tabular log recording the timestamps (from 2007-2025), the title and the
authors of machine learning papers from the Arxiv (Clement et al., 2019) API; (2) HDFS: system
log of Hadoop Distributed File System designed to run on commodity hardware (Xu et al., 2009; Zhu
et al., 2023a), including the event content together with the objects related to the event; (3) Analyst:
the commentary records on the finance by analysts, including title, author, and other features of
posts 1; (4) Landslide: event catalog reporting the global landslide 2. These datasets contain both
text-rich attributes and categorical attributes with diversified semantics, thus being challenging to
process in one framework efficiently. Table 1 demonstrates the basic statistics of our four datasets.

We limit the maximum length of all tabular logs to 20,000 by slicing the original datasets. This is
because LLM-based baseline methods are costly and not scalable, as discussed in the introduction.
To ensure randomness, we randomly pick slices with a length of 20,000 from the whole sliced
dataset. For datasets with multiple object attributes, we evaluate object anomaly detection, while for
those with only one object attribute, we evaluate event anomaly detection, where event and object
anomaly detection are equivalent. We summarize the basic setting of our four datasets in Table 1.

1www.kaggle.com/datasets/miguelaenlle/massive-stock-news-analysis-db-for-nlpbacktests
2https://catalog.data.gov/dataset/global-landslide-catalog-export
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Table 2: Our proposed GraphLogDebugger outperforms representative baselines on detection
effectiveness and efficiency across diverse methods and datasets. Higher is better for detection
effectiveness; lower GFLOPs and higher Throughput are preferred for efficiency. “*” suggests some
baselines always predict non-anomaly cases, leading to a 0 prediction, recall, and F1 score.

Dataset: Arxiv Task: Event Anomaly

Method Detection Effectiveness Efficiency

Acc. Prec. Recall F1 GFLOPs Throughput (it/s)

MLP 0.570 ± 0.205 0.556 ± 0.189 0.893 ± 0.331 0.676 ± 0.028 11.35 825.0 ±1429.0
RAG (Llama3-70b,k=5) 0.408 ± 0.038 0.426 ± 0.026 0.527 ± 0.029 0.471 ± 0.019 ∼ 105 0.204 ± 0.009
RAG (GPT-oss-20b,k=5) 0.770 ± 0.106 0.771 ± 0.157 0.773 ± 0.014 0.772 ± 0.085 ∼ 104 0.145 ± 0.018
RAG (Llama3-70b,k=10) 0.377 ± 0.014 0.400 ± 0.004 0.493 ± 0.038 0.442 ± 0.014 ∼ 105 0.204 ± 0.015
RAG (GPT-oss-20b,k=10) 0.803 ± 0.090 0.798 ± 0.099 0.813 ± 0.087 0.805 ± 0.087 ∼ 104 0.149 ± 0.014

GraphLogDebugger (Ours) 0.957 ± 0.040 0.920 ± 0.069 1.000 ± 0.000 0.959 ± 0.037 40.39 627.662 ± 7.623

Dataset: Arxiv Task: Object Anomaly

Method Detection Effectiveness Efficiency

Acc. Prec. Recall F1 GFLOPs Throughput (it/s)

MLP 0.570 ± 0.000 0.538 ± 0.000 0.990 ± 0.000 0.697 ± 0.000 11.35 552.0 ± 167.0
RAG (Llama3-70b,k=5) 0.455 ± 0.033 0.468 ± 0.026 0.667 ± 0.100 0.550 ± 0.052 ∼ 105 0.208 ± 0.018
RAG (GPT-oss-20b,k=5) 0.597 ± 0.019 0.564 ± 0.016 0.850 ± 0.025 0.678 ± 0.004 ∼ 104 0.039 ± 0.018
RAG (Llama3-70b,k=10) 0.463 ± 0.019 0.474 ± 0.011 0.673 ± 0.052 0.556 ± 0.012 ∼ 105 0.154 ± 0.114
RAG (GPT-oss-20b,k=10) 0.598 ± 0.038 0.563 ± 0.023 0.880 ± 0.066 0.687 ± 0.035 ∼ 104 0.039 ± 0.004

GraphLogDebugger (Ours) 0.685 ± 0.065 0.637 ±0.082 0.870 ± 0.099 0.734 ± 0.024 40.39 592.073 ± 16.513

Dataset: HDFS Task: Object Anomaly

Method Detection Effectiveness Efficiency

Acc. Prec. Recall F1 GFLOPs Throughput (it/s)

MLP 0.799 ± 0.053 0.801 ± 0.052 0.989 ± 0.000 0.885 ± 0.032 1.4 479.0 ± 194.0
RAG (Llama3-70b,k=5) 0.165 ± 0.022 0 ± 0* 0 ± 0* 0 ± 0* ∼ 105 0.162 ± 0.085
RAG (GPT-oss-20b,k=5) 0.138 ± 0.029 0 ± 0* 0 ± 0* 0 ± 0* ∼ 104 0.183 ± 0.010
RAG (Llama3-70b,k=10) 0.173 ± 0.040 0 ± 0* 0 ± 0* 0 ± 0* ∼ 105 0.194 ± 0.004
RAG (GPT-oss-20b,k=10) 0.138 ± 0.029 0 ± 0* 0 ± 0* 0 ± 0* ∼ 104 0.192 ± 0.027

GraphLogDebugger (Ours) 0.989 ± 0.023 1.000 ± 0.000 0.987 ± 0.029 0.993 ± 0.015 5.57 529.999 ± 201.308

Dataset: Analyst Task: Event Anomaly

Method Detection Effectiveness Efficiency

Acc. Prec. Recall F1 GFLOPs Throughput (it/s)

MLP 0.948 ± 0.019 0.922 ± 0.064 0.980 ± 0.043 0.950 ± 0.016 5.58 1996.0 ± 454.0
RAG (Llama3-70b,k=5) 0.408 ± 0.038 0.426 ± 0.026 0.527 ± 0.029 0.471 ± 0.019 ∼ 105 0.204 ± 0.009
RAG (GPT-oss-20b,k=5) 0.770 ± 0.106 0.771 ± 0.157 0.773 ± 0.014 0.772 ± 0.085 ∼ 104 0.145 ± 0.018
RAG (Llama3-70b,k=10) 0.377 ± 0.014 0.400 ± 0.004 0.493 ± 0.038 0.442 ± 0.014 ∼ 105 0.204 ± 0.015
RAG (GPT-oss-20b,k=10) 0.803 ± 0.090 0.798 ± 0.099 0.813 ± 0.087 0.805 ± 0.087 ∼ 104 0.149 ± 0.014

GraphLogDebugger (Ours) 0.957 ± 0.040 0.921 ± 0.069 1.000 ± 0.000 0.959 ± 0.037 8.97 1037.6 ± 286.2

Dataset: Landslide Task: Object Anomaly

Method Detection Effectiveness Efficiency

Acc. Prec. Recall F1 GFLOPs Throughput (it/s)

MLP 0.831 ± 0.079 0.842 ± 0.180 0.841 ± 0.149 0.838 ± 0.056 5.58 5391.0 ± 328.0
RAG (Llama3-70b,k=5) 0.543 ± 0.074 0.944 ± 0.056 0.095 ± 0.156 0.168 ± 0.267 ∼ 105 0.355 ± 0.044
RAG (GPT-oss-20b,k=5) 0.611 ± 0.068 0.701 ± 0.050 0.389 ± 0.246 0.495 ± 0.195 ∼ 104 0.155 ± 0.136
RAG (Llama3-70b,k=10) 0.551 ± 0.034 0.904 ± 0.204 0.119 ± 0.102 0.208 ± 0.160 ∼ 105 0.321 ± 0.193
RAG (GPT-oss-20b,k=10) 0.623 ± 0.074 0.723 ± 0.081 0.397 ± 0.149 0.511 ± 0.144 ∼ 104 0.166 ± 0.008

GraphLogDebugger (Ours) 0.840 ± 0.080 0.798 ± 0.117 0.929 ± 0.059 0.858 ± 0.062 19.70 1334.13±108.40

Baselines. Our framework naturally generalizes to tabular log in different domains. Hence, we
mainly compare it to baselines which are generally capable of dynamically processing different
types of tabular log that contains text-rich and categorical attributes. MLP exploits a pretrained text
embedding model to embed events and a learnable embedding for objects. A 3-layer MLP is then
applied to map the embeddings to anomaly scores. We also compare a series of baselines based
on retrieval augmented generation (RAG) (Lewis et al., 2020), which is the mainstream method to
process general tabular log in the realistic scenario (Akhtar et al., 2025). We deploy RAG based on
two advanced open-sourced LLMs, Llama-3-70b (Dubey et al., 2024) and GPT-oss-20b (Agarwal
et al., 2025) with the 5 and 10 retrieval entries. The retrieval database is built on the whole training
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split and the seen log entries during the online evaluation. We construct specified prompts for
different datasets and omitted the description to Appendix A. Both MLP and all RAG baselines
use all-MiniLM-L6-v2 3 (Reimers & Gurevych, 2019) as the text embedding model. We do not
compare to baselines on log anomaly detection because all these methods are either template-based
or domain-specific, which cannot be applied to datasets other than computer system log.

Task. Following the setting of unsupervised anomaly detection (Liu et al., 2021; Schmidl et al.,
2022), our basic task is to output an anomaly score for each log entry xn at timestamp tn , where
higher scores denote more outlyingness (Han et al., 2022). In our task, we use 1 to denote anomalies
and 0 to denote normal examples in the ground-truth. We use the first 90% split of the dataset
for training, where both the log entries and their anomaly labels are available to access for methods.
Methods train the model on this training split or use it for the retrieval database. For the rest 10%, we
use it as the test split in our online evaluation, where methods can make use of the seen log entries but
their anomaly labels are not accessible. We study two types of anomalies in our experiments: object
anomalies and event anomalies. Following the definition in Section 3, we inject object anomalies
by swapping an object in the log entry with another existing object. To ensure that historical data
contains useful information, we only perturb existing objects in the history. Event anomalies are
generated similarly by swapping events. The anomaly rate is set to be 0.05.

Evaluation. We calculate the metrics for information retrieval: accuracy, precision, recall, and f1
score for the dataset. We also evaluate the efficiency of different methods by GFlops and through-
puts. During evaluation, we notice that LLM-based baselines tend to be very slow in processing
speed. Hence, we include all anomaly log entries and 50 random normal entries in a subset and
run RAG only on this subset. For other baselines and our methods, we obtain the prediction result
for the full test split but only compute the metric on the above subset for fair comparison. We run
experiments three times and post the average value of metrics with error bars.

GraphLogDebugger. The GNN architecture in GraphLogDebugger is a 3-layer GAT backbone
with a two-branch node embedder and an MLP prediction head. The node embedder uses 512-d
embeddings for objects and the text embedding of all-MiniLM-L6-v2 (Reimers & Gurevych, 2019)
for events, with an MLP to map them into the same space. The embedding size of GAT and the
prediction head is also 512. We train the GNN for 10 epochs under the learning rate 0.0001 on
Adam and the negative ratio 10 on the training split. Following You et al. (2022), we set the batch
size as 1 and use a window length of 100 to accelerate the processing.

5.2 MAIN RESULTS

Table 2 shows that GraphLogDebugger consistently outperforms both MLP and RAG-based base-
lines across all tabular log datasets on five tasks, in terms of detection performance and efficiency.

Effectiveness: GraphLogDebugger achieves the highest F1 scores across all tasks, outperforming
RAG baselines—especially in structurally complex domains like HDFS, where RAG methods fail
to detect meaningful anomalies (F1 = 0.0). Specifically, RAG baselines are completely fooled by
the anomaly pattern that their predicted labels depend on whether there is an existing record with
the same format in the retrieved examples, which does not contribute to a reasonable prediction.
Two tasks on the Arxiv dataset are the most difficult, where GraphLogDebugger still beats baselines
with a higher precision in not abusing anomaly prediction. Even in semantically rich settings such
as Analyst and LandSlide, where RAG baselines are expected to excel, our model surpasses them.

Efficiency: RAG approaches exhibit extremely low throughput (typically below 0.3 iterations per
second) due to the computational overhead of large language models. In contrast, GraphLogDe-
bugger achieves throughput of at least 500 per second, with significantly lower GFLOPs, enabling
real-time anomaly detection in high-throughput environments.

5.3 CASE STUDY: WHERE DOES RAG FAIL?
Method Correlation

RAG -0.1087
GraphLogDebugger 0.1561

It is natural that GraphLogDebugger yields advantages in
efficiency compared to the RAG-baseline, for the latter
relies on LLMs with billions of parameters. However, the

3https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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leading performance of GraphLogDebugger in detection needs further explanation, while RAG en-
joys the general comprehension and reasoning ability of modern LLMs. To this end, we study cases
from event anomaly detection of the Arxiv dataset. We choose this task because the degree of event
nodes can directly reflect the local graph density of the node-of-interest. We calculate the correlation
between event node degrees and the accuracy of GraphLogDebugger and that of RAG(GPT-oss-
20b,k=10). The result in the table shows that the accuracy of GraphLogDebugger is positively
correlated with the node degree, while the accuracy of RAG is negatively correlated with the
node degree. This indicates that GraphLogDebugger outperforms RAG on event nodes with rich
connections with objects, where semantics of these objects are necessary to detect the anomaly.

Case 1: Label=negative, RAG=positive, GraphLogDebugger=negative
Title: ”SymbioSim: Human-in-the-loop Simulation Platform for Bidirectional Continuing
Learning in Human-Robot Interaction”
Authors: ”Haoran Chen”, ”Yiming Ren”, ”Xinran Li”, ”Ning Ding”, ”Ziyi Wang”, ”Yuhan
Chen”, ”Zhiyang Dou”, ”Yuexin Ma”, ”Changhe Tu” (9 objects)
Reason (RAG): The author team composition, research domain mismatch, and unclear collabo-
ration patterns raise suspicions about the coherence of the record.
Case 2: Label=positive, RAG=negative, GraphLogDebugger=positive
Title: ”VERA: Explainable Video Anomaly Detection via Verbalized Learning of Vision-
Language Models”
Authors: ”Shubham Gupta”, ”Zichao Li”, ”Tianyi Chen”, ”Cem Subakan”, ”Siva Reddy”, ”Per-
ouz Taslakian”, ”Valentina Zantedeschi” (7 objects)
Reason (RAG): The record seems coherent, with individual authors’ expertise areas aligning
with the paper’s topic, although the team size is slightly larger than expected.
Case 3: Label=positive, RAG=positive, GraphLogDebugger=negative
Title: ”Transformer−1: Input-Adaptive Computation for Resource-Constrained Deployment”
Authors: ”Yitong Yin” (1 objects)
Reason (RAG): The record consists of a single author, which is consistent with similar papers
in the same research domain.

We further raise three cases above to investigate when and how GraphLogDebugger and RAG fail. In
Case 1, RAG predicts the normal example as abnormal because the limited retrieved examples do not
provide enough evidence to prove the coherence of the author team. By contrast, GraphLogDebug-
ger validates overall team consistency by checking the research background of every author, which
correctly predicts the negative label. Case 2 is complementary to Case 1, where GraphLogDebugger
is able to scan the research interest of every author and detect the anomaly accurately. However,
when the connected objects are few, such as in Case 3, GraphLogDebugger may not have enough
references based on the graph to make a correct judgment. In similar cases, RAG could then outper-
form GraphLogDebugger to recognize patterns in the number of authors in the same domain.

These cases provide insights on how graphs can benefit retrieval augmented generation. When the
key entry has dense connections with other entries, traditional retrieval based on similarity can-
not efficiently include enough entries to enhance the generation quality. With the help of modern
embedding models, graphs can be introduced to gather information in these multi-entry scenarios.

6 CONCLUSION

We propose a general framework to cover online debugging for heterogeneous tabular logs. By
modeling online log debugging as anomaly detection of dynamic graphs, our framework integrates
different types of log data into a unified modality by text embedding models, where a dynamic GNN
debugs the log through link prediction. Our framework shows good performance in four different
datasets while maintaining high efficiency compared to the mainstream RAG-based method.

Limitation. Our work explores combining dynamic GNNs and text embedding models to process
log data under the online setting, which indicates the potential to accelerate the online process of
data streams by a graph-based method. Nevertheless, our experiments mainly show this potential in
the bug detection setting. We leave the exploration of online bug correction to future work.
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ETHICS STATEMENT

Our work focuses on detecting inconsistencies in general tabular log data, which enhances the
progress of automated log data processing in real-world scenarios. While automation of log pro-
cessing may raise issues concerning hallucination or fraud reporting, our work does not explicitly
introduce new risks compared to existing research.

REPRODUCIBILITY STATEMENT

All implementation details of our method and baselines are given in Section 5 and Appendix A. We
will release at the time of publication.
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A APPENDIX

A.1 USE OF LLMS

We use ChatGPT to polish our introduction (Section 1) and generate the notation table (Table 3),
both of which have been checked manually. We also use ChatGPT to retrieve related works in the
tabular log processing part by searching machine-learning based log processing methods.

A.2 NOTATION

Table 3: Notation

Symbol Type Meaning
Tabular-log basics (Sec. 3)
X = {x0, . . . , xN−1} sequence Time-ordered tabular log (entries).
xn entry The n-th log entry.
t0 < · · · < tN−1 timestamps Arrival times of entries.
xm
n attribute value The m-th attribute in entry xn.

M integer Number of attributes per entry.
{o0n, . . . , oP−1

n } set Object attributes extracted from xn.
P integer Number of object attributes in xn (P < M ).
sn text / node Event attribute (one per entry; possibly text).
{f0

n, . . . , f
Q−1
n } set Feature attributes extracted from xn.

Continued on next page
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Symbol Type Meaning
Q integer Number of feature attributes in xn (Q < M ).
yn label Event anomaly label for xn (0 normal, 1 abnormal).
ypn label Object anomaly label for object opn (0/1).
yqn label Feature anomaly label for feature fq

n (0/1).
Graphs and dynamics (Sec. 4.1–4.2)
G dynamic graph Evolving heterogeneous graph over time.
Gn snapshot Graph snapshot at time tn (before merging gn).
gn subgraph Subgraph constructed from new entry xn.
Gn+1 \Gn graph diff Increment between consecutive snapshots; here equal

to gn.
V, E sets Node and edge sets of the current graph.
v, e node, edge A node or an edge (generic).
Vo
n node set Object nodes appearing in xn.

Ve
n node set New event nodes introduced by xn (events are

unique).
E+
k edge set Positive (observed) object–event links in gk.

E−
k edge set Negative samples (non-existent object–event pairs).

Ê+
n edge set Accepted/predicted-positive links at tn.

V̂e
n node set Accepted new events incident to Ê+

n .
Rtn set Per-time link predictions/results at tn.
{Gn}N−1

n=0 sequence The sequence of snapshots defining G.
GtK , GtN snapshots Snapshot after train time tK , and final snapshot at tN .
Modeling (GNN and scoring; Sec. 4.3)
θ parameters Trainable parameters of the GNN.
fθ(·) mapping GNN that computes object-node embeddings on G.
F encoder Text (and time-aware) embedding model for events.
ho, he vectors Object and event embeddings, respectively.
reduce(·, ·) operator Embedding combiner (e.g., concat/diff/dot).
MLP(·) mapping Multi-layer perceptron used for scoring.
σ(·) function Sigmoid activation.
so,e score Link-normality score for pair (o, e).
ℓ̂o,e label Predicted link label: ⊮[so,e ≥ τ ].
Lk loss Balanced BCE loss at training step k.
η scalar Learning rate.
τ threshold Operating threshold for prediction.
ρ ratio Negative sampling ratio.
Data splits and indices
Xtrain, Xtest sequences Training and test splits (chronological).
K integer Index/time that separates train and test.
N integer Total number of entries/snapshots.
k, n indices Training step k, evaluation time n.
tk, tn timestamps Times associated with steps/entries.

A.3 MODEL DESIGN SPACE

We compare two variants in our experiments: (i) Plain (ungated) GAT. We first concatenate the
entity-type and entity-ID embeddings and pass them through a feed-forward projection to obtain
the initial representation e0. We then run multi-layer, multi-head GATConv on an entity–entity
graph induced by shared content to propagate messages and obtain eGAT, which we use as the final
entity representation. (ii) Gated fusion. Starting from the same e0 and eGAT, we introduce a global
learnable scalar gate α and adaptively combine them via a sigmoid: e = (1−σ(α)), e0+σ(α), eGAT.
This biases toward e0 when the given signal is weak (or absent) and toward eGAT when the signal is
strong. Both variants share the same link-prediction head: we take the entity representation and the
content representation (text and time embeddings concatenated and then projected), compute their
element-wise difference, and feed it to an MLP to output the link probability
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A.4 ADDITIONAL VISUALIZATION

Figure 3 visualizes the distribution of anomaly likelihood scores of our five evaluation tasks. The
score distribution corroborates the main result in Table 2, that Analyst, Arxiv (Node), and HDFS are
three tasks relatively easy, with the score distribution of anomalies and normal examples separate
clearly. By contrast, the score of anomalies and normal examples mix up in Arxiv (Edge) and
Landslide, indicating that these datasets are more difficult.

Figure 3: Anomaly score distribution of five tasks by GraphLogDebugger. Score distributions
of anomalies and normal examples separate for simpler tasks and mix up for more difficult tasks.

A.5 PROMPTS IN RAG

We list the prompt we used in our RAG baseline as follows:

1 """ Build context for ArXiv dataset (authors and paper titles)."""
2 context = """You are an expert at analyzing author -paper relationships in

academic research.
3

4 DATASET CONTEXT: This is a dataset of academic papers with their authors
and titles.

5 - Entities (authors): Research authors who wrote the papers
6 - Content (titles): The titles of the academic papers
7 - Edge: A connection between an author and a paper title (indicating the

author contributed to that paper)
8

9 TASK: Determine if the specific author -paper connection (edge) should
exist based on historical patterns.

10

11 EDGE ANALYSIS TARGET:
12 """
13

14 context += f"Author: {entity_name }\n"
15 context += f"Paper Title: {content_name }\n\n"
16

17 if similar_contents:
18 context += "SIMILAR PAPERS AND THEIR AUTHORS (for reference):\n"
19 context += "Use these examples to understand what types of authors

typically work on similar papers .\n\n"
20
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21 for i, content_record in enumerate(similar_contents [:10]):
22 content = content_record.get('content ', '')
23 entities = content_record.get('related_entities ', [])
24 similarity = content_record.get('similarity ', 0.0)
25 num_records = content_record.get('num_records ', 0)
26

27 context += f"{i+1}. Paper Title: {content} (Similarity: {
similarity :.3f}, {num_records} records)\n"

28 context += f" Authors who worked on this paper: {', '.join(
entities) if entities else 'None '}\n\n"

29 else:
30 context += "No similar papers found in historical data.\n\n"
31

32 context += """ ANALYSIS QUESTION:
33 Based on the similar papers and their author patterns , should the

specified author -paper connection exist?
34

35 EVALUATION CRITERIA:
36 1. Research Domain Match: Does the author 's expertise align with the

paper 's topic?
37 2. Historical Patterns: Do authors with similar expertise appear in

similar papers?
38 3. Authorship Likelihood: Is it reasonable that this author would

contribute to this type of research?
39 4. Anomaly Detection: Does this connection seem unusual or out of place

compared to patterns in similar papers?
40

41 DECISION GUIDELINES:
42 - edge_exists = True: The author -paper connection makes sense based on

research area and historical patterns
43 - edge_exists = False: The author seems misplaced or unlikely to work on

this type of paper (anomalous edge)
44 - Consider the research fields , methodologies , and typical author

patterns shown in similar papers
45 - An edge is anomalous if the author appears completely unrelated to the

research domain of the paper
46

47 CONFIDENCE SCORING:
48 - High confidence (0.8 -1.0): Clear patterns in similar papers strongly

support/reject the connection
49 - Medium confidence (0.5 -0.7): Some evidence but less certain
50 - Low confidence (0.0 -0.4): Limited historical data or unclear patterns
51 """

Listing 1: Prompt: Arxiv

1 """ Build context for HDFS dataset (BlockId focus for detection)."""
2 context = """You are an expert at analyzing BlockId -log relationships in

HDFS distributed file system logs.
3

4 DATASET CONTEXT: This is a dataset of HDFS system logs with their Block
IDs and log contents.

5 - Primary Focus: Block IDs (e.g., blk_8215417782549978040 ,
blk_161475555609545016) - unique identifiers for HDFS data blocks

6 - Content (logs): The actual log messages and operations in the HDFS
system that involve specific blocks

7 - Edge: A connection between a Block ID and a log message (indicating the
block is involved in that log operation)

8

9 SPECIAL NOTE: For HDFS anomaly detection , we focus specifically on Block
ID connections to log messages.

10 Block IDs should appear BOTH in the BlockId column AND within the log
content itself.

11
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12 TASK: Determine if the specific Block ID-log connection (edge) should
exist based on historical patterns.

13

14 EDGE ANALYSIS TARGET:
15 """
16

17 context += f"Block ID: {entity_name }\n"
18 context += f"Log Content: {content_name }\n"
19 context += f"Content Analysis: Does '{entity_name}' appear in the log

content? {'YES' if entity_name in content_name else 'NO '}\n\n"
20

21 if similar_contents:
22 context += "SIMILAR LOG MESSAGES AND THEIR BLOCK IDs (for reference)

:\n"
23 context += "Use these examples to understand what types of Block IDs

typically appear in similar log messages .\n\n"
24

25 for i, content_record in enumerate(similar_contents [:10]):
26 content = content_record.get('content ', '')
27 entities = content_record.get('related_entities ', [])
28 similarity = content_record.get('similarity ', 0.0)
29 num_records = content_record.get('num_records ', 0)
30

31 block_ids = [e for e in entities if e.startswith('blk_')]
32 other_entities = [e for e in entities if not e.startswith('blk_')

]
33

34 context += f"{i+1}. Log Content: {content} (Similarity: {
similarity :.3f}, {num_records} records)\n"

35 context += f" Block IDs in this log: {', '.join(block_ids) if
block_ids else 'None '}\n"

36 if other_entities:
37 context += f" Other entities: {', '.join(other_entities

[:3]) }{'...' if len(other_entities) > 3 else ''}\n"
38 context += "\n"
39 else:
40 context += "No similar log messages found in historical data.\n\n"
41

42 context += """ ANALYSIS QUESTION:
43 Based on the similar log messages and their Block ID patterns , should the

specified Block ID-log connection exist?
44

45 EVALUATION CRITERIA:
46 1. Block ID Presence: Does the Block ID appear within the log content

itself? (This is crucial for HDFS)
47 2. Log Operation Match: Does the Block ID relate to the HDFS operation

described in the log?
48 3. Historical Patterns: Do similar Block IDs appear in similar log

messages?
49 4. HDFS Block Behavior: Is it reasonable that this Block ID would be

involved in this type of operation?
50 5. Content Consistency: Block ID should be consistent between the BlockId

column and the log content
51

52 DECISION GUIDELINES:
53 - edge_exists = True: The Block ID-log connection makes sense based on

HDFS block operations and historical patterns
54 - edge_exists = False: The Block ID seems unrelated to this log message (

anomalous edge)
55 - CRITICAL: If the Block ID does NOT appear in the log content , this is

likely anomalous
56 - Consider HDFS block operations like allocation , storage , replication

shown in similar messages
57 - An edge is anomalous if the Block ID appears completely unrelated to

the log operation
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58

59 CONFIDENCE SCORING:
60 - High confidence (0.8 -1.0): Clear Block ID patterns and content

consistency strongly support/reject the connection
61 - Medium confidence (0.5 -0.7): Some evidence but less certain about Block

ID relevance
62 - Low confidence (0.0 -0.4): Limited historical data or unclear Block ID

patterns
63

64 IMPORTANT: Focus specifically on Block ID relationships - Components and
Event IDs are secondary for this analysis.

65 """

Listing 2: Prompt: HDFS

1 """ Build generic context for unknown datasets."""
2 context = f"""You are an expert at analyzing entity -content relationships

.
3

4 EDGE ANALYSIS TARGET:
5 Entity: {entity_name}
6 Content: {content_name}
7

8 TASK: Determine if this entity -content connection should exist based on
historical patterns.

9 """
10

11 if similar_contents:
12 context += "\nSIMILAR EXAMPLES :\n"
13 for i, content_record in enumerate(similar_contents [:5]):
14 content = content_record.get('content ', '')
15 entities = content_record.get('related_entities ', [])
16 context += f"{i+1}. Content: {content }\n Related entities: {',

'.join(entities)}\n\n"
17

18 context += """
19 DECISION: Should this entity -content connection exist?
20 - edge_exists = True: The connection makes sense based on patterns
21 - edge_exists = False: The connection seems anomalous
22 """

Listing 3: Prompt: Analyst and Landslide
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