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Position: Humans Co-exist, So Must Embodied Artificial Agents.
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Abstract

Modern embodied artificial agents excel in static,
predefined tasks but fall short in dynamic and
long-term interactions with humans. On the other
hand, humans can adapt and evolve continuously,
exploiting the situated knowledge embedded in
their environment and other agents, thus contribut-
ing to meaningful interactions. This position pa-
per introduces the concept of co-existence for em-
bodied artificial agents and argues that it is a pre-
requisite for meaningful, long-term interaction
with humans. We take inspiration from biology
and design theory to understand how human and
non-human organisms foster entities that co-exist
within their specific niches. Finally, we propose
key research directions for the machine learning
community to foster co-existing embodied agents,
focusing on the principles, hardware and learning
methods responsible for shaping them.

1. Introduction
Modern artificial intelligence systems have shown remark-
able performance across diverse tasks such as the high-
quality generation of data (image, text, video) (Ho et al.,
2020; Achiam et al., 2023; Lu et al., 2023), the creation of
interactive world models (Bruce et al., 2024; Alonso et al.,
2024), and outperforming humans in complex decision-
making tasks (Silver et al., 2016; Vinyals et al., 2019;
Vasco et al., 2024). Fundamentally, three ingredients have
been mostly responsible for this recent surge in perfor-
mance: the creation of large-scale models (Vaswani et al.,
2023; Dosovitskiy et al., 2021), the curation (or creation)
of internet-scale datasets (Schuhmann et al., 2022; Hebart
et al., 2023) and a computationally-intensive offline training
process (Radford et al., 2021; Zhai et al., 2022; Brown
et al., 2020). This recipe has also been replicated for
real-world robotic systems, resulting in the creation of

1Anonymous Institution, Anonymous City, Anonymous Region,
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<anon.email@domain.com>.
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large-scale datasets of expert-level interaction data in the
real-world (O’Neill et al., 2023) and in simulation envi-
ronments (Wang et al., 2023). This approach has led to
progresses in learning generalist robotic policies, able to
perform a wide variety of manipulation and navigation
tasks (Black et al., 2024; Zeng et al., 2024).

As a community, we now envision concrete use cases of
embodied artificial agents1 for human interaction. Despite
their remarkable progress in controlled environments (Bro-
han et al., 2023), embodied agents still struggle to gain a
foothold in real-world, in-the-wild, scenarios (Auger, 2022).
Rodney Brooks’ famous quip, “The world is its own best
model” is often used to encapsulate the problem of con-
ceiving and deploying embodies artificial agents in the real
world (Bharadhwaj, 2024). However, we highlight that
this challenge does not emerge only from the complex and
dynamic nature of the real world (which makes the opti-
mization problem dynamic as well): it also emerges from
the fact that the real world is constantly being viewed as an
optimization problem (Stanley & Lehman, 2015). Interac-
tion in-the-wild instead is co-constructed with the humans
in-the-wild (Frauenberger, 2019), which is at odds with the
dominant problematize-solve-optimize-deploy workflow of
the machine learning community (Jordan et al., 2024).

We argue that our current approach to agent design is
unsuitable for meaningful long-term interaction with
humans. In Section 2, we discuss why current embodied
artificial agents are unable to cope with the strong dynamic
nature of human interaction and their inability to partici-
pate in its ongoing evolution. We emphasize the need for
a new paradigm for co-existing embodied agents: sys-
tems capable of continuously leveraging the diverse and
situated knowledge of both the user and the environment,
highlighted in Figure 1, to establish meaningful and recipro-
cal interactions with the elements of its system. In Section 3,
we provide a formal definition of co-existence, meaning,
and reciprocity in the context of embodied artificial agents.
In Section 4 we look to biology and design theory, two
fields that are epistemically grounded in the real world, to

1We follow Paolo et al. (2024) that defines embodied artificial
agents as “agents that interact with their physical environment,
emphasizing sensorimotor coupling and situated intelligence”.
Throughout this paper, we use the terms agent, embodied agent,
and embodied artificial agent interchangeably for simplicity.
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Figure 1. Current agents exist in the real-world, leveraging knowledge obtained from large-scale datasets and specific expert-level datasets
to interact. We argue that embodied artificial agents must not only adapt to scenarios such as the ones pictured above but participate in
their continual evolution. To do so, they must co-exist: be able to establish meaningful and reciprocal interactions with the user and its
particular environment by leveraging their diverse and situated knowledge. To this end, agents should engage the end user as a designer,
i.e., the connoisseur of their own situation. We depict four environments where humans possess situated knowledge that lies outside of the
scope of large-scale and expert datasets: a) a toy store; b) an exploratory dance class; c) a construction site; d) a messy workshop.

understand how co-existence might look in the context of
embodied agents 2. We showcase how biological organisms
leverage properties of the real world to take form during
development (converge), and evolve in times of environmen-
tal changes (diverge). Similarly, we explore the concept of
the double diamond (Sharp et al., 2023), and explain how
this convergent and divergent process can be envision as a
framework to how humans interact with embodied artificial
agents in the future.

In Section 5 we discuss alternative viewpoints to co-
existence and in Section 6 we highlight key research di-
rections for the machine learning community to develop
co-existing agents. We focus on the learning methods that
enable co-existence, the physical subtract that sustains it,
and the principles responsible for shaping it. Additionally,
we discuss the ethical considerations in designing embodied
agents that co-evolve and play a role in shaping the future
of human interactions. We hope that the ideas in this work
serve as a bridge, enabling the machine learning community
to actively engage with the design research community in
forging a path toward co-existing embodied agents.

2. Current Embodied Agents Exist

Recent advancements in perception, learning and hardware
systems have enabled embodied agents to successfully per-
form complex actions in unstructured environments (Ho
et al., 2020; Achiam et al., 2023; Lu et al., 2023). We praise
these advancements and believe that the current paradigm

2Our position builds on past parallels between computers and
biological processes (Winograd & Flores, 1986; Brooks, 1991;
Clark, 2001) towards an everyday reality with such agents.

(based on multimodal foundation models for perception,
reasoning and interaction) is sufficient for these agents to
exist with humans and their environment.

However, we argue that the disregard of the issues per-
taining to current embodied agents can have technical and
cultural repercussions if employed widespread in our soci-
eties. In particular, we focus on two fundamental properties
of these agents: their stagnant nature, a consequence of
having their abilities fixed at a specific moment in time, and
their generic nature, due to their instantiation based solely
on large amounts of data. As current embodied agents are
stagnant and generic, their widespread adoption risks con-
ditioning the evolution of their interactions towards overly
homogeneous ones, a phenomenon we denote by steam-
rolling.

2.1. Current embodied agents are stagnant

Currently, to train embodied agents we implicitly assume
that there exists a predefined underlying data distribution
(e.g., over the sentences people use when feeling happy, or
over the possible socially accepted distances from humans
while navigating a crowded room), from which we can
extract representative examples to train and evaluate the
agent. Furthermore, it is assumed that this data distribution
is static in time. As such, most of the knowledge acquisition
and behavior exploration by the agent happens before it is
deployed in a specific environment3. This inability to deal

3Some recent approaches for training embodied AI agents
mimic the generative pretraining of language models and addi-
tionally use a fine-tuning phase to adapt the overall behavior of the
agent to a specific task. However, we note that the fine-tuning data
distribution is also itself predefined and static.

2
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with changes in their own knowledge and their environment
leads to their stagnant nature.

Humans will adapt and change their behavior according to
the environment they are situated in, but also participate
in its shaping (Dourish, 2001). A classic example can be
found in medical record cards in hospital beds: Nygren &
Henriksson (1992) found that the physical properties of the
card (e.g., the handwriting, wear, tear, other marks) were
contributing to the physician’s decisions pertaining to both
the patient and the activities surrounding their care. The
hospital’s culture and workflows are not converging to a
“fixed” version, rather, they are perpetually evolving as the
people, the environment and their interactions change. This
is not only happening on a high functioning level: Vergunst
& Ingold show that even lower level motor skills, such as the
way humans walk, are highly socialized and both culturally
and contextually dependent. Therefore, a stagnant agent
placed in this system would not be able to participate in this
mutual shaping, as its behavior is a function of knowledge of
a fixed point in time, which can be outdated at deployment
time. Even a well-adapted agent at deployment will drift
from the culture as the system evolves.

2.2. Current embodied agents are generic

Recent advances in machine learning have focused on ex-
tracting broad patterns (e.g., grammar and social norms)
from large-scale data to bootstrap the behavior of embod-
ied agents (Szot et al., 2023; Yuan et al., 2024). While
learning general rules is valuable, we emphasize the crucial
distinction between being generic and being general. Gen-
eral knowledge captures fundamental principles that apply
broadly across most, if not all, cases. In contrast, generic
knowledge is applied across many situations without ac-
counting for their specific nuances or contextual diversity.
By learning generic information from large-scale datasets,
agents reinforce (potentially harmful) biases that exist on
such data (Parreira et al., 2023): for example, image gener-
ation models produce images of white men for the prompt

”a software engineer” and women with darker skin tone for
the prompt ”a housekeeper” (Bianchi et al., 2023). Cur-
rent embodied agents, which often employ these large-scale
models for interaction purposes, also rely on generic knowl-
edge. Exploiting only generic knowledge is also inefficient.
For example, compare a highly controlled space such as a
factory, where workbenches and machines are specifically
configured, to a home or office space. Each instance of a
home or office is unique and contains situated knowledge
that is specific to its configuration and the humans in it
(Dourish, 2001). An agent that relies solely on generic
knowledge, is at a clear disadvantage against an agent that
also exploits situated knowledge and, just as importantly,
contributes to the ongoing exploration and exploitation of
culture and workflow in the space (Gillet et al., 2024).

2.3. Current embodied agents steamroll

The nature of current embodied agents poses technical, prac-
tical, and moral risks. When a stagnant and generic agent is
placed in a dynamic environment, surrounded by adaptive
agents such as humans, then it is the adaptive elements that
change. This means that the non-adopting agent is not par-
ticipating in the continually changing dynamic environment.
With widespread adoption, the cultures and workflows of
these environments begin to converge towards the ones dic-
tated by the stagnant and generic agents. We denote this
phenomenon by steamrolling.

This phenomenon can already be observed in the recent use
of large language models (LLMs) for text generation: Geng
& Trotta estimates that 35% of all scientific paper abstracts
in computer science are now written in “LLM-style”. “Lan-
guage does not mirror the social; it also helps to create it”
writes Coeckelbergh. In the context of embodied artificial
agents, we expect steamrolling to inhibit the divergent, evo-
lution of behavior in each particular environment, in favor
of reinforcing existing behavior.

Steamrolling impacts not only human behavior but also the
future capabilities of the agents we develop: a model trained
on a progressively narrower distribution (such as data cu-
rated from its own outputs) suffers from rapid degradation in
the quality of its generated output (Shumailov et al., 2024).

3. Future Embodied Agents Must Co-exist

3.1. Definition of co-existence

Long-term interactions between humans and embodied arti-
ficial agents have been extensively studied by the robotics
community (Leite et al., 2013; de Graaf et al., 2016; La-
ban et al., 2024), focusing on specific properties of the
interaction such as acceptance (de Graaf et al., 2016), en-
gagement (Rakhymbayeva et al., 2021; Leite et al., 2014)
and disclosure (Naneva et al., 2020; Ligthart et al., 2019).
Here we take a holistic view of the long-term interactions
of embodied agents within a system and provide a general-
purpose, formal definition of co-existence.

Definition: An embodied artificial agent is co-existing
in a system if it sustains meaningful and reciprocal
interactions with humans and their environment over
time.

Consider a system S = {A,H,E} consisting of an embod-
ied agent At present in a specific environment Et alongside
a human user Ht, at a given time t. There exists a quality
function QO(t) that overall describes the system and its
evolution, measured from the point of view of an observer

3
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O ∈ S 4. The quality function is influenced by the inter-
actions between the agent, user and the environment. We
note that the goal of the agent does not necessarily align
with this quality function as it may be independent of its
intended task (e.g., a household robot assisting with chores
may perform its tasks efficiently but disrupt the human’s
workflow and create frustration).

We can define two categories of interactions within this
system. A unilateral interaction Xt → Yt occurs if the state
of element Y of the system at the next time step (t+ 1) is
influenced by element X , while the next state of X remains
independent of Y ,

Yt+1 = fY (Yt, Xt, yt, xt), Xt+1 = fX(Xt, xt), (1)

where fX , fY are unknown and dynamic transition func-
tions, and xt, yt are the actions of X and Y at time t. Sim-
ilarly a reciprocal interaction Xt ↔ Yt occurs if the next
state of both elements are mutually influenced,

Yt+1 = fY (Yt, Xt, yt, xt), (2)
Xt+1 = fX(Xt, Yt, xt, yt). (3)

Interactions influence the long-term quality of the system,
which can be measured after a (system-dependent) time
horizon threshold TS . We define a meaningful interaction as
one that, given sufficient time (i.e., in the long-term), does
not decrease the overall quality of the system, as evaluated
by all elements of the interaction, compared to the absence
of such interaction. Formally,

∃TS > t,∀t′ > TS ,∀O ∈ {X,Y } :

QO(t
′ | Xt → Yt) ≥ QO(t

′ | ∅), (4)

where ∅ denotes no interaction and the conditional quality
function QO(t

′ | Xt) indicates the value of the quality
function at t′ given that process X occurred at t < t′. A
co-existing agent A∗ is then defined as an agent able to
maintain reciprocal and meaningful interactions in the long
term. Intuitively, this means that, in the long run, the agent
benefits the system more than its removal would. Formally,

∃TS > t,∀t′ > TS ,∀O ∈ {A∗, H} : (5)

QO

(
t′ | A∗

t ↔ (Ht, Et), Ht ↔ Et

)
≥ QO

(
t′ | Ht ↔ Et

)
.

In Appendix A we present additional considerations and dis-
cuss the limitations of our formulation of co-existence, such
as the existence of a single human user and the closed nature
of the system. In Appendix B, we examine whether cur-
rent embodied agents already co-exist and provide examples
illustrating why they fall short.

4We do not provide a concrete instantiation of the quality func-
tion as it is system-dependent: it can encapsulate several properties
of human-robot interaction, some previously enumerated.

3.2. Properties of Co-existing Embodied Agents

Situated A co-existing agent A∗ should actively lever-
age the fact that it is situated within a specific environment.
Rather than relying solely on pretrained knowledge, the
agent should leverage the unique situated knowledge em-
bedded in the user and their environment. This capability
reflects the agent’s speciation to its particular system. For-
mally, this can be expressed as:

∃TS > t,∀t′ > TS , (6)
∀O ∈ {A∗, H},∀O′ ∈ {A∗, H ′} : (7)

QO

(
t′ | A∗

t ↔ (Ht, Et)
)
> Q′

O′

(
t′ | A∗

t ↔ (H ′
t, E

′
t)
)
,

where we define a distinct system S′ = {A∗, E′, H ′} with
its own quality function Q′

O′(t), but involving the same
agent. Note that, contrary to the generic nature of current
embodied agents, we argue that the behavior of co-existing
agents should be such that it improves the quality of their
specific system, even if the same behavior would result in a
overall quality decrease in other distinct systems.

Mutable A co-existing agent A∗ should be capable of
continuously adapting its behavior while also influencing the
behavior of other elements within the system. Formally, this
adaptability relates to the concept of reciprocal interactions:

∃TS > t,∀t′ > TS ,∀O ∈ {A∗, H} : (8)

QO

(
t′ | (Ht, Et) ↔ A∗

t

)
> QO

(
t′ | (H ′

t, E
′
t) → A∗

t

)
.

This condition implies that co-existing agents and humans
should be able to mutually shape each other in ways that
enhance the overall quality of the system. In contrast, the
stagnant nature of current embodied systems often necessi-
tates forcefully adapting the human user (through training)
or modifying the environment to fit the agent.

Importantly, changes in the agent’s behavior do not always
lead to an immediate improvement in system quality and
may sometimes have the opposite effect. As discussed in
Section 4, co-existing agents must be capable of generating
divergent behavior even within a closed system. This ability
is crucial for the long-term success of the system as it en-
ables the exploration of alternative solutions, not only in the
agent’s behavior but also in how its behavior impacts the
other elements of the system.

4. Co-existence Elsewhere
The challenge of developing artificial agents that co-exist
remains an open question. However, both biological and
human-designed systems offer valuable insights, having
produced entities that successfully co-adapt and support
meaningful interactions within their respective niches. In
this section, we explore research in biology and design that
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Figure 2. The evolution of co-existing embodied agents: a) The double diamond process, with its distinct problem/solution-focused
beginning and end; b) Removing the head and tail off the double diamond reveals a continuous and reflective engagement with technology
as demonstrated by the field of research through design; c) Revisiting Figure 1, by involving humans as design researchers, they are
encouraged to draw from their experience to integrate technology into existing contexts and to actively shape and explore new ones.

highlights the value of mutability and situated knowledge in
fostering co-existence5.

4.1. Co-existence in Biology

Biological systems offer a unique perspective on co-
existence, showing how living organisms evolve, adapt, and
sustain themselves in their own niches. Unlike current em-
bodied agents, which assume that all necessary knowledge
can be extracted from data and encoded, biology balances
encoded information with meaningful interactions with the
physical world to shape adaptation and survival. In this sec-
tion, we present examples from genetics and developmental
biology that explore how biology navigates this balance.

Not everything is in the genome Underlying the majority
of machine learning models is the assumption that all nec-
essary knowledge to act/decide optimally can be extracted
from data and subsequently exploited. However, biology
provides us with a perspective shift in regards to the nature
and role of data in the evolution of agents. To illustrate how
encoded information is only one part of what shapes bio-
logical organisms, we turn to the Human Genome Project
(Collins & Fink, 1995). When this project successfully se-
quenced the entire human genome it was widely believed
that the genome could define what humans are, a “instruc-
tion book for life”. However as Ball explains, the project
instead marked the beginning of a paradigm shift in biol-
ogy that de-throned the genome as an encrypted source
of life’s secrets. Instead it was shown that an organism is
not only defined by the genome but also by principles of
self-organization that are enacted by being situated in the

5Our focus on biology and design is intentional: these fields
are rooted in practice-based epistemologies, emphasizing creation
and interaction over mere evaluation.

physical world (Ball, 2023).

A striking example of this new reality can be seen in devel-
opmental biology, where the number, thickness, and size of
a rodent’s digits were not found to be encoded in the genome.
Instead, a timing of particular proteins (namely BMP, SOX9
and WNT) that disperse in physical space determines the
number of digits and the space between them (Raspopovic
et al., 2014). Raspopovic et al. discovered that they could
manipulate the activity of these proteins and could thus influ-
ence the number of digits formed and their thickness. This
example shows how the characteristics of the physical world
play a role in defining information and intelligence6, provid-
ing an extremely efficient way of acting in the world (Ball,
2023).

Biology is not an optimizer Leveraging the physical
world is not only about converging on optimally efficient
solutions but also about diverging from locally competitive
landscapes. It is a common misconception that biology is an
optimizer. As Stanley & Lehman write: “Early evolutionists
believed, and indeed many non experts still believe, that evo-
lution is progressive, moving towards some sort of objective
perfection, a kind of search for the über organism”. In fact,
“most evolutionary changes at the molecular level [DNA] are
caused not by Darwinian selection but by random drift of
mutated genes that are selectively neutral” (Yahara, 1999).
As an example, let us consider the protein HSP90, where
HSP denotes for “heat shock protein”. HSP90 was discov-
ered to have a kind of plasticity modulation effect on the

6These morphogenetic patterning processes are not only com-
monplace in biology but to the physical world at large. In 1952
Alan Turing published a mathematical model that predicted this
process (Turing, 1952), over time this mechanism was found to
account for phenomena outside of biology, including windswept
sand and solidified alloys and ant behavior (Ball, 2023).
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body plans of the common fruit fly. In warmer conditions,
this protein enables more variation in the morphology of
the fruit flies, in places such as its abdomen, bristles, eyes,
legs, thorax and wings (Rutherford & Lindquist, 1998). In
addition, these traits were able to be passed down imme-
diately to the next generation (Yahara, 1999). It is argued
that processes like the ones observed here played a large
part in periods of intense diversification in living organisms
during the Cambrian explosion (Ball, 2023). This alludes
to the idea that evolution, whilst highly divergent, is both
bound and liberated by the laws of nature: by using exist-
ing building blocks in creative ways, it is able to keep a
tension between convergence and divergence (Gerhart &
Kirschner, 2007), conditioning and stimulating exploration
and exploitation of novel solutions within its own laws.

4.2. Co-existence in Design

We have seen how biological organisms exploit being situ-
ated in the world to balance convergence and divergence in
order to foster coexistance in their physical setting. How-
ever, how a human could instantiate a similar process, with
their plans, goals, morals, and aesthetics is still unclear. The
answer lies in the divergent and convergent processes of de-
sign which cause an individual to engage reciprocally with
technology and its environment, as we highlight in Figure 2.

The double diamond The design process often con-
verges to a design outcome, due to performance specifica-
tions (Cross, 2000), or intended functions or styles (Rodgers,
2011). In order to deliver an outcome, methods and heuris-
tics exist within each design discipline (Tomitsch et al.,
2020; Cross, 2000). But beneath these formalizations lies a
practice that is tacit and with an improvisational dimension.
This dimension is not only a function of expert knowledge
from formal education (industrial, mechanical, electrical,
graphical, architectural, etc.), but a craft-like knowledge
of their materials, and a situated understanding of how to
use them, built up over years of experience (Schön, 1983).
This process is popularly characterized by the UK Design
Council’s double diamond (Sharp et al., 2023), highlighted
in Figure 2. Initially when a designer receives a specifica-
tion, they begin to explore divergently how to think about
the problem: this involves reasoning about the materials,
context, people, social structures, and policy context of the
request (Tomitsch et al., 2020). Subsequently, they begin
to converge on a more concrete definition of the problem
and present it to the stakeholders involved. At this moment,
all stakeholders diverge again, exploring various designs
without limits as they explore the potential solution space.
Finally, the designer converges on a solution, synthesizing
all that they have learned to present a design that is on time,
budget, and to specification. The double diamond merges
a designer’s expertise with their situated knowledge and

experience.

The outcome-centered perspective inherent in the double
diamond brings with it the notion that a design should be
finished and then deployed in its “finished state” (Tonkin-
wise, 2004; Redström, 2017). Here we find an interesting
bridge to current embodied artificial agents: they too pass
through a phase of training and are only subsequently de-
ployed when they have reached a pre-defined threshold of
performance. In interaction design, this perspective lim-
its a finished design to its intended function. Despite the
efforts of human factors, user-centered design and partici-
patory design methods (Sharp et al., 2023), ethnographic
studies often reveal the user to be constantly spending time
and creative energy to configure these finished designs and
their intended functions into their own lives (Dourish, 2001;
Suchman, 2006; Dörrenbächer et al., 2022; Norman, 2010).
This has lead to the increasingly blurred line between what
constitutes a designer and a user of technology (Redström,
2017).

Research through design (or the continuous double di-
amond) The field of human-computer interaction (HCI)
has seen in the last two decades the rise of research through
design (RtD) (Koskinen, 2011) which supports the notion
that design is never finished. It is commonly framed as “an
active process of ideating, iterating, and critiquing potential
solutions, design researchers continually reframe the prob-
lem as they attempt to make the right thing” (Zimmerman
et al., 2007). At its core, RtD can be thought as a continuous
double diamond (see Figure 2), with its tail (problem) and
head (solution) lopped off. The design process then becomes
reflective: where the morals, lived experience, and aesthetic
preferences of the designer7 can inform their professional
training (La Delfa et al., 2020), leading to completely new
(divergent) ways of interacting with technology (Bewley
& Boer, 2018), or familiar (convergent) twists on existing
ones (Odom et al., 2019). We would like to emphasize that
a person does not require formal design training to practice
RtD: there are numerous examples from RtD that invite the
user to instantiate co-existing relationships with technology,
examples of which can be found in Appendix C.

4.3. From Elsewhere to Embodied Agents

By exploring co-existence in biology, we have shown that
living organisms leverage the physical world to offload the
need for encoding all necessary information for survival and
action, while also enabling diverse and adaptable behaviors.
By exploring co-existence in design, we have highlighted
RtD as a promising approach to balance convergence and di-

7As a first person method (Loke & Schiphorst, 2018) RtD can
trace its theoretical foundations back to embodiment (Lakoff &
Johnson, 1985).
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vergence in the interaction between humans and technology.
These ideas can be naturally extended to embodied agents:
leveraging the situated knowledge in the environment and
in the human user enables embodied agents to successfully
change, evolve and interact in a meaningful way within their
specific niches.

5. Alternative Views to Co-existence
AGI/ASI vs. co-existence While co-existence is a goal
and property in itself, other positions argue for different
goals and capabilities of long-term interactive artificial
agents within our societies. Paolo et al. argues in favor of
attempting to achieve artificial general intelligence (AGI),
describing the goal as “creat[ing] intelligence that either
parallels or exceeds human abilities”. For this goal, they
state that embodiment and situated intelligence are essential
conditions for achieving AGI. Similarly, Hughes et al., ar-
gue in favor of artificial superhuman intelligence (ASI) and
propose open-endedness as a prerequisite to ASI. Whilst we
share an understanding of the importance of embodiment
and open-endedness, neither position requires mutual co-
shaping for the widespread application of artificial agents
in human society. Despite its risks (Naudé & Dimitri, 2020;
McLean et al., 2023), proponents of AGI and ASI point to
the accelerated progress and benefit for humanity driven
by a single superior intelligence. Instead, we believe that
through the increase in diversity, co-existence aims for some-
thing more beneficial and robust: we place meaningful and
reciprocal interactions with humans at the center of our
proposal.

Unilateral alignment vs. co-existence Yang et al. state
that ”unified alignment between agents, humans and their
environment” is key to the success of agents in real-world
applications. They propose that agents not only align with
human users, but also with the environment and the agent’s
own constraints. Furthermore, they highlight the difficulty
of discovering human intentions due to partial observability,
temporality and stochasticity. Although they discuss the
need for agents that can align with evolving preferences,
a process they denote as continual alignment, they still as-
sume that preferences are something that is known by the
human a priori. They write: “the tasks assigned by humans
can be viewed as the initial inputs to the working system (es-
pecially to the agents), which reflects the underlying goals
and human intentions”. We instead believe that the human’s
goals are formed through interacting with the agent.

6. Towards Co-existing Embodied Agents
We have seem how both human and non-human organisms
evolve and coexist within their own niches. What can the
machine learning community learn from these processes?

This section outlines key research directions toward devel-
oping co-existing embodied artificial agents, focusing on
three fundamental aspects: the principles responsible for
shaping co-existence (what), the hardware that supports it
(where), and the methods that may enable it (how). Finally,
we address some ethical considerations of co-existence.

6.1. What fosters co-existence?

Achieving co-existing embodied agents goes beyond engi-
neering and optimization; it requires principles that shape
their evolution, integration, and interaction with users. This
section highlights two key principles: open-endedness for
continuous adaptation, and the user as a designer, whose
situated knowledge facilitates the development of the agent.

Open-Endedness Hughes et al. (2024) argues in favor
of open-endedness to design continuously evolving agents,
defining it as a property of systems that produce novel and
learnable artifacts from the perspective of an observer. We
agree that open-endedness is essential to achieve co-existing
agents, and highlight the shared importance of the observers
perspective between open-endedness and RtD. We see the
role of the observer as a driver of continuous change and
exploration, not just a creative optimizer for a specific task.

User as the Designer Often the user is seen as someone
who should not have to deal with the complexities that arise
from interacting with technology (Norman, 2010). In RtD,
this perspective is rejected in favor of seeing the user as
someone who has situated knowledge, or is a connoisseur of
their situation (Zimmerman et al., 2007; Loke & Schiphorst,
2018). This knowledge, including tacit, institutional, craft
or social knowledge, can help them mediate the agent’s
situatedness. We argue that this perspective is essential to
co-existence and should guide agents development.

6.2. Where do we foster co-existence?

We envision the engagement of the user as a co-shaper of
an agents sensing and acting capabilities, both around the
agent and within the agent itself.

The space around the agent Consider an instance of
an agent using an inside-out navigation system, such as
SLAM (Durrant-Whyte & Bailey, 2006) which is inherently
prone to drift. If an outside-in navigation system (such as a
Mocap system) is instead used, the agent can be designed
such that the situated human can configure the placement
of the beacons. Whilst this sounds like a poorly designed
system that requires constant maintenance8 research on AI
education has favored this practiced-based approach, as it

8As a comparison, we would like to highlight the resources
required to create and curate large-scale datasets.
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fosters a kind of tacit understanding of the capabilities and
limitations of the system (Flechtner & Stankowski, 2023).
This situated knowledge from the human user can help an
embodied agent co-exist in its environment.

The morphology of the agent Evolutionary robotics has
demonstrated that by changing the morphology of an arti-
ficial agent, you change their capabilities and limitations
(Pfeifer & Bongard, 2006). Additionally, advancements in
manufacturing technology is rapidly expanding the potential
forms an agent could take (Kriegman, 2020). This concept
has been explored in the context of human-drone interaction.
La Delfa et al. gave users a drone that could initially only
hover in place. By moving with the drone, the users were
able to selectively expand its perceptive field. As the field
grew in size, unique patterns of interaction emerged based
on its the shape and size. The mutability of the drone’s sen-
sory field allowed for a meaningful relationship to evolve.

6.3. How can we foster co-existence?

In their current form, even approaches designed to overcome
the assumption of a static optimization problem (e.g., as re-
inforcement learning, meta-learning, and continual learning)
seem unable to foster co-existence9. Instead, we urge the
community to explore two key directions: (i) leveraging
foundation models as external sources of knowledge rather
than end-to-end solutions, and (ii) integrating human-in-the-
loop learning with evolutionary algorithms.

Embracing foundation models as external Recent meth-
ods have used foundation models or composite systems
that incorporate foundation models to generate agent be-
havior (Brohan et al., 2023). While using these models
directly as policies is not sufficient for co-existing agents,
foundation models still have valuable properties that can
be leveraged (even if these are currently prone to halluci-
nations (Li et al., 2023b; Zhang et al., 2023)): they can act
as an external storage of generic knowledge that an agent
could query for bootstrapping purposes without replacing
situated knowledge. This external knowledge could help
decrease the memory and computation requirements to build
embodied agents. Additionally, foundation models could
serve as external teachers to agents to bootstrap their perfor-
mance (Yang et al., 2024a) and guide exploration (Kumar
et al., 2024) without replacing situated exploration. While
we understand these models can also be used for multimodal
perception and reasoning, we highlight the risk of embed-

9Reinforcement learning assumes a fixed reward structure in the
learning problem; meta-learning adapts within a predefined (fixed)
meta-distribution of possible scenarios the agent might encounter;
continual learning instead mitigates catastrophic forgetting, yet
does not reason about unknown unknowns (Lehman et al., 2025).
For an extended argument on why currently these methods fail in
the real-world, we refer the reader to Lehman et al. (2025)

ding such internal components of embodied agents with
generic and stagnant knowledge and encourage researchers
to consider using the real world “as its own best model”.

Learning and evolving with humans as we go To enable
mutability and speciation we advocate for human-in-the-
loop learning with evolutionary algorithms. Evolutionary
algorithms (Bäck & Schwefel, 1993; Li et al., 2023a) can
maintain diverse candidate solutions throughout the (con-
tinuous) learning process, allowing agents to execute mul-
timodal behavior, both divergent and convergent (Mouret
& Clune, 2015). When combined with interactive learning
paradigms (Zanzotto, 2019; Mosqueira-Rey et al., 2023),
such as by using preferences or demonstrations, the evo-
lution process can also be progressively shaped through
meaningful interactions with the human, allowing the agent
to deal with evolving goals and expectations.

6.4. Should we foster co-existence?

It’s important to state that co-existence gives users the abil-
ity to shape and be shaped by embodied agents. This carries
the inherent risk of manipulation of the agent’s behavior by
malicious users and vice versa. We highlight the importance
of developing agents that have the ability to recognize harm-
ful behavior and respond in a manner that upholds safety,
fairness, and accountability. By giving users the respon-
sibility to shape the agents in their environment enables
them to do so in their own particular way. This results in
a heterogeneous population of bespoke agents. Local and
diverse groups have been shown to exhibit strong innova-
tive capabilities and pro-social behavior, both in human and
AI collectives (Lai et al., 2024). We anticipate that groups
including co-existing agents will have similar properties,
leading to an increase of the quality of their systems.

7. Conclusion
In this paper, we have argued that the current paradigm for
designing embodied artificial agents is fundamentally ill-
suited for meaningful, long-term human interaction. We
proposed co-existence as a new paradigm for the design of
embodied agents that emphasizes meaningful, reciprocal
interactions sustained over time. Drawing from biology and
design, we showed how human and non human organisms
leverage the physical world in convergent and divergent
ways. We outlined key research directions for co-existing
agents, emphasizing open-ended, human-in-the-loop learn-
ing and the user’s role in shaping both behavior and morphol-
ogy. We envision a future where artificial agents don’t just
exist but co-exist, actively shaping and adapting to humans
and their environments.
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ticulating mechanical sympathy for somaesthetic human–
machine relations. In Proceedings of the 2024 ACM
Conference on Designing Interactive Systems, pp. 1–18,
2024b. doi: https://doi.org/10.1145/3643834.3661514.

Laban, G., Kappas, A., Morrison, V., and Cross, E. S. Build-
ing long-term human–robot relationships: Examining
disclosure, perception and well-being across time. Inter-
national Journal of Social Robotics, 16(5):1–27, 2024.

Lai, S., Potter, Y., Kim, J., Zhuang, R., Song, D., and Evans,
J. Position: Evolving AI collectives enhance human diver-
sity and enable self-regulation. In Forty-first International
Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=u6PeRHEsjL.

Lakoff, G. and Johnson, M. Metaphors we live by. Univ. of
Chicago Press, Chicago, Ill., 5. [dr.] edition, 1985. ISBN
9780226468006.

Lehman, J., Meyerson, E., El-Gaaly, T., Stanley, K. O.,
and Ziyaee, T. Evolution and the knightian blindspot
of machine learning. arXiv preprint arXiv:2501.13075,
2025.

Leite, I., Martinho, C., and Paiva, A. Social robots for
long-term interaction: a survey. International Journal of
Social Robotics, 5:291–308, 2013.

Leite, I., Castellano, G., Pereira, A., Martinho, C., and Paiva,
A. Empathic robots for long-term interaction: evaluating
social presence, engagement and perceived support in
children. International Journal of Social Robotics, 6:
329–341, 2014.

Li, N., Ma, L., Yu, G., Xue, B., Zhang, M., and Jin, Y. Sur-
vey on evolutionary deep learning: Principles, algorithms,
applications, and open issues. ACM Computing Surveys,
56(2):1–34, 2023a.

Li, Y., Du, Y., Zhou, K., Wang, J., Zhao, W. X., and Wen,
J.-R. Evaluating object hallucination in large vision-
language models. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing,
pp. 292–305, 2023b.

Ligthart, M., Neerincx, M. A., and Hindriks, K. V. Getting
acquainted for a long-term child-robot interaction. In
International Conference on Social Robotics, pp. 423–
433. Springer, 2019.

Loke, L. and Schiphorst, T. The somatic turn in human-
computer interaction. Interactions, 25(5):54–5863, Au-
gust 2018. ISSN 1072-5520. doi: 10.1145/3236675. URL
https://doi.org/10.1145/3236675.

Lu, H., Yang, G., Fei, N., Huo, Y., Lu, Z., Luo, P., and Ding,
M. Vdt: General-purpose video diffusion transformers
via mask modeling. arXiv preprint arXiv:2305.13311,
2023.

McLean, S., Read, G. J. M., Thompson, J., Baber,
C., Stanton, N. A., and Salmon, P. M. The risks
associated with artificial general intelligence: A
systematic review. 35(5):649–663, 2023. ISSN
0952-813X. doi: 10.1080/0952813X.2021.1964003.
URL https://doi.org/10.1080/0952813X.
2021.1964003. Publisher: Taylor & Francis eprint:
https://doi.org/10.1080/0952813X.2021.1964003.

Mosqueira-Rey, E., Hernández-Pereira, E., Alonso-Rı́os, D.,
Bobes-Bascarán, J., and Fernández-Leal, Á. Human-in-
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A. Additional Notes on the Definition of
Co-existence.

Closed system For simplification, we have implicitly as-
sumed that our system is closed, meaning that the quality
of the interaction is only influenced by the elements within
the system (environment, human and agent). We have also
assumed that there is a single human user in the system.
However, we can easily extend this to open systems and
multiple users by considering the correspondent interaction
terms with additional elements external to the system (e.g.,
external societal rules, other members of a sport team), with-
out a change on the definition of co-existence. We expect
that the effect of these additional interactions to be depen-
dent on each specific system.

Evolution of the quality of a system We would also like
to highlight that we do not expect the quality of the system
to be monotonically increasing over time – in fact, we argue
that it should not. As discussed in Section 3.2, co-existing
agent must have the ability to explore and exploit divergent
behaviors that may only increase the quality of the system
in the long term.

Nature of QS and TS Finally, like all the elements in the
system, the operationalization and interpretation of the qual-
ity function QS is dynamic (meaning it changes over time)
and specific to every system. The same can be applied to the
time horizon TS : each particular system should have, even
if implicitly, a specific time horizon to access the evolution
of the system itself.

B. Are Current Embodied Agents Already
Co-existing?

Naturally, one might question whether current embodied
agents are already co-existing with humans. In this section,
we present examples and discussions on key challenges
preventing current agents from being co-existing.

Social Robots A prominent example of embodied agents
designed for human interaction are social robots (Breazeal
et al., 2016; Leite et al., 2013). Companies like Jibo and
Anki introduced social robots to the market with high expec-
tations, only to face eventual failure (Tulli et al., 2019). A
significant factor contributing to this is the challenge of sus-
taining long-term interactions by current embodied agents.
Without the ability to change through interaction and be-
come situated into their environment, social robots remain
ill-suited for prolonged use. They often succumb to the
novelty effect, where user engagement diminishes over time
as the robot’s initial appeal wears off (Reimann et al., 2023).

Bias-amplifying interaction Large language models have
been widely integrated into the architecture of embodied
agents (Xiang et al., 2024; Driess et al., 2023). These mod-
els have now been widely adopted by diverse user groups.
While most AI systems influence human behavior, they
themselves do not retain user-driven modifications beyond
the immediate context window. This lack of adaptability
is already problematic, as user-provided knowledge is not
incorporated. Worse, studies have shown that interacting
with slightly biased AI systems can amplify biases in users,
an effect not observed in human-human interactions (Glick-
man & Sharot, 2024). These systems not only fail to adapt
through interaction, reinforcing a unilateral dynamic, but
they also degrade overall system quality by increasing bias
in users. As LLMs are increasingly integrated into interac-
tive robots, these issues are likely to persist, if not worsen,
through prolonged human-robot interactions.

Just turn on the light Consider a robot designed to tidy
up homes and offices by identifying, classifying, and sorting
objects. In industrial settings, similar robotic failures require
expert technicians to debug classifiers, diagnose issues, and
retrain models with additional data, such as images cap-
tured under varied lighting conditions. However, relying
on expert interventions is impractical for home-deployed
robots. A more viable solution is for robots to make use
of humans situated knowledge within their environment.
Humans understand their space and might recognize how
the specific lighting affects object classification. Instead
of requiring an expert to retrain the system, a robot could
ask for help, prompting users to turn on the light and even
learning that turning on lights improves classification perfor-
mance. By adapting through situated interactions, the robot
avoids repeated failures and reduces the need for costly
expert intervention and large-scale data collection.

C. Potential Co-existing Technology Today
In this section, we highlight several examples of technology
with properties that foster co-existence.

Blo-Nut: A Mutable Interaction Interface Figure 3
shows Bewley & Boer’s ”Blo-Nut”, a silicone doughnut
that affords the user a blank slate to interact with. The ob-
ject inflates and deflates and can be programmed to music.
It’s non-humanoid shape affords interactions to the human
in ambiguous ways, which Sandry argues, is an opportu-
nity to build effective communication between humans and
artificial agents.

Motorid: a Shape-changing and autonomously balanc-
ing motorcycle Figure 4 shows Yamaha’s ”Motorid”, a
shape changing, self balancing motorcycle (Hara et al.,
2021). It has a twisting chassis and autonomous driving
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Figure 3. “Blo-Nut” is a silicone doughnut that affords the user a blank slate to interact with (Bewley & Boer, 2018). The object inflates
and deflates and can be programmed to music.

abilities that influence how riding the motorbike feels in
real time. This dramatically changes motorcycling from
its culture to its engineering principles. Whilst not a child
of the RtD method, but rather a concept bike, it balances
divergent and convergent themes. Blurring the definition of
what is a bike and an autonomous agent.

Mutable Perceptive Fields in Human-Drone Interaction
Figure 5 shows how humans can shape the perception of
embodied agents. Their size and shape played a role in
shaping how the users flew the drones and how they made
meaning with them (La Delfa et al., 2024b).

Mutable Morphology and Locomotion Figure 6 shows
how morphology can be changed and recover from damage,
re-learning how to walk Kriegman et al. (2019). The agent
learns how to walk through periodically inflating and deflat-
ing its individual cells, exploiting it’s own physical shape.
Although this does not involve a human user, it demon-
strates the value of mutable morphologies. For example,
we see great potential in mutable morphology to express
various mannerism through different gaits. Especially in
the context of Vergunst & Ingold’s work on the contextual
nature of walking. Thus culminating in rich, heterogeneous
populations of artificial agents at scale.
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Figure 4. Yamaha’s ”Motorid” is a shape changing, self balancing motorcycle (Hara et al., 2021). Its unique twisting chassis is able to
affect the ride feel in real time as well as drive autonomously.

Figure 5. “How to Train Your Drone” (La Delfa et al., 2024b): depicted here in orange, clear and blue are the sensory fields of the drones.
By interacting with the drone, its sensory field can be changed with human intention. However the consequences of such changes are not
always predictable. This work demonstrates the potential of interacting with the the sensing and acting capabilities of mutable agents.
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Position: Humans Co-exist, So Must Embodied Artificial Agents.

Figure 6. Self recovering locomoting voxels (Kriegman et al., 2019): by virtue of an evolutionary algorithm, the agent is relearning how to
walk by changing the inflation patterns of its individual cells.
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