
Under review at the LMRL workshop, ICLR 2025

GUMBEL-SOFTMAX SCORE AND FLOW MATCHING FOR
DISCRETE BIOLOGICAL SEQUENCE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce Gumbel-Softmax Score and Flow Matching, a generative
framework that relies on a novel Gumbel-Softmax interpolation between smooth
categorical distributions to one concentrated at a single vertex by defining
a time-dependent temperature parameter. Using this interpolant, we explore
Gumbel-Softmax Flow Matching by deriving a parameterized velocity field
transports smooth categorical distributions to the vertices of the simplex. We
alternatively present Gumbel-Softmax Score Matching which learns to regress the
gradient of the probability density. Our approach enables controllable generation
with tunable temperatures and stochastic Gumbel noise during inference, enabling
efficient de novo sequence design. Our experiments demonstrate state-of-the-art
performance in conditional DNA promoter design and strong results in de novo
sequence-only protein generation.

1 INTRODUCTION

Generative modeling has transformed the design of biological sequences, enabling de novo generation
of proteins (Madani et al., 2023; Ferruz et al., 2022; Nisonoff et al., 2024), DNA regulatory elements
(Stark et al., 2024; Nisonoff et al., 2024), and peptides (Bhat et al., 2025; Chen et al., 2023; Tang et al.,
2024). However, generating structured sequences in discrete spaces remains an open challenge due to
the inherent non-differentiability of categorical variables. Traditional autoregressive models, such as
ProtGPT2 (Ferruz et al., 2022) and ProGen2 (Madani et al., 2023), learn sequence distributions by
iteratively predicting tokens, but suffer from compounding errors, bias accumulation, and limited
global coherence. To address these issues, generative models based on diffusion (Austin et al., 2021;
Wang et al., 2024; Shi et al., 2024; Sahoo et al., 2024) and flow matching (Gat et al., 2024; Stark
et al., 2024; Nisonoff et al., 2024) have been developed to enable non-autoregressive sampling of
sequences.

Discrete diffusion models, such as Masked Discrete Language Models (MDLMs) (Shi et al., 2024;
Sahoo et al., 2024) and Denoising Diffusion Probabilistic Models (D3PMs) (Austin et al., 2021),
iteratively reconstruct sequences by modeling forward and reverse noise processes in a Markovian
framework. These approaches have demonstrated success in DNA sequence design (Stark et al., 2024;
Nisonoff et al., 2024), protein generation (Wang et al., 2024; Goel et al., 2024), and recently, multi-
objective generation of therapeutic peptides (Tang et al., 2024). However, they face inefficiencies due
to their reliance on expensive iterative denoising steps. More recently, discrete flow matching has
emerged as a powerful alternative, learning continuous-time velocity fields to efficiently transport
categorical distributions from noise to data (Gat et al., 2024; Stark et al., 2024; Nisonoff et al., 2024;
Davis et al., 2024). These methods have enabled state-of-the-art results in DNA regulatory element
design (Stark et al., 2024; Nisonoff et al., 2024) and discrete sequence modeling (Gat et al., 2024).

Despite these advances, discrete flow models on the simplex remain underexplored, particularly
for de novo protein design. To address this gap, we introduce Gumbel-Softmax Score and Flow
Matching, a framework that transforms noisy to clean data in the continuous simplex space using a
Gumbel-Softmax interpolant (Jang et al., 2017). By our parameterization of the velocity field and
score functions, we enable controllable generation with dynamic temperature scaling and tunable
stochasticity during inference.

Our key contributions are as follows:

1

Under review at the LMRL workshop, ICLR 2025

1. Gumbel-Softmax Flow Matching. We introduce Gumbel-Softmax Flow Matching (GS-FM),
a generative framework that leverages temperature-controlled Gumbel-softmax interpolants for
smooth transport from noisy to clean distributions on the simplex. We define a new velocity
field that follows a mixture of learned interpolations between categorical distributions that
converges to high-quality sequences (Section 3).

2. Dynamic-Temperature Tuning. Since the temperature parameter controls the sharpness of the
resulting categorical distribution after applying the Gumbel-softmax transformation, we propose
a method of modulating the temperature parameter at inference time based on a token-wise
predicted uncertainty (Section 3.3).

3. Gumbel-Softmax Score Matching. As an alternative generative framework using the same
Gumbel-softmax interpolant, we propose Gumbel-Softmax Score Matching (GS-SM) that
estimates the gradient of probability density at varying temperatures to enable sampling from
high-density regions on the simplex (Section 4).

4. Biological Sequence Generation. We apply our model to conditional DNA promoter design and
de novo protein sequence generation, demonstrating that it achieves state-of-the-art sequence
diversity and perplexity compared to autoregressive and discrete diffusion-based baselines
(Section 5).

Our results highlight the potential of discrete flow and score matching for biomolecular sequence
generation, offering several theoretical and empirical advantages over autoregressive models and
discrete diffusion models. We believe our framework will serve as a foundation for future advances
in sequence-based biological design.

2 PRELIMINARIES

We consider a noisy uniform distribution over the (V − 1)-dimensional simplex p0(x0) and a clean
distribution p1(x1) over discrete samples x1 ∼ D from a dataset D. The challenge of generative
modeling over the simplex consists of defining a mapping ψ that smoothly interpolates between p0
and p1. Then, we can generate samples from p1 by first sampling from p0 the applying a learned
vector field that maps from p0 to p1.

2.1 THE GUMBEL-SOFTMAX DISTRIBUTION

The Gumbel-Softmax distribution or Concrete distribution (Jang et al., 2017; Maddison et al., 2016)
is a categorical distribution over the interior of the (V − 1)-dimensional simplex ∆V−1 that smoothly
interpolates between discrete one-hot samples to uniform categorical distributions by varying a
temperature parameter τ > 0.

While the argmax function returns a one-hot vector defined as a vertex of the simplex, the Gumbel-
Softmax function is a relaxation of discrete random variables onto the interior of the simplex
∆V−1 = {x ∈ RV |xi ∈ [0, 1],

∑V
j=1 xj = 1}. This continuous relaxation is achieved by adding

i.i.d. sampled Gumbel noise gi = − log(− logUi)), where U ∼ Uniform(0, 1), scaling down by the
temperature parameter τ > 0, and applying the continuous softmax function across the distribution
such that the elements sum to 1. Given parameters πi ∈ (ϵ,∞) representing the original logits of each
category where ϵ is a small constant to avoid division by 0, the Gumbel-Softmax random variable is
given by

xi =
exp

(
log πi+gi

τ

)
∑V

j=1 exp
(

log πj+gj
τ

) (1)

We observe that as τ → 0 and πi = max(δik, ϵ) denoting a one-hot distribution at the kth vertex, the
distribution converges to a one-hot vector where xk → 1 and xj → 0 for all j ̸= k. Conversely, as
τ →∞, the distribution approaches a uniform distribution where xj → 1

V for all j ∈ [1, V].

2

Under review at the LMRL workshop, ICLR 2025

2.2 DISCRETE FLOW MATCHING

Flow matching is a generative framework that aims to transform noisy samples x0 ∼ p0 from a
source distribution p to clean samples x1 ∼ p1 where p1 is the data distribution. This transformation
is approximated through a learnable velocity vector field uθt that generates the distribution pt
interpolating between p0 and p1. The flow or interpolant ψt(x0|x1) : [0, 1] ×∆V−1 ×∆V−1 →
∆V−1 is a bijection that maps a noisy distribution x0 on the interior of the simplex to the intermediate
distribution xt at time t, which satisfies the constraints ψ0(x0|x1) = x0 and ψ1(x0|x1) = x1 ∼ pt.
Therefore, we define the velocity field as the derivative of the flow concerning time t.

ut(xt|x1) =
d

dt
ψt(x0|x1) (2)

where ut ∈ Txt
∆V−1 and Txt

∆V is the set of tangent vectors to the manifold at point xt. For a
velocity field ut to generate pt, it must satisfy continuity equation, a partial differential equation
given by

∂

∂t
pt +∇ · (ptut) = 0 where ∇ · (ptut) =

V∑
i=1

∂

∂xt,i
(ptut) (3)

where∇· is the divergence operator that describes the total outgoing flux at a point.

The flow matching (FM) objective is to train a parameterized model uθt (xt, t) to approximate ut
given a noisy sample xt at time t ∈ [0, 1] by minimizing the squared norm

LFM = Et,xt

∥∥uθt (xt)− ut(xt)
∥∥2 (4)

But since ut(x) is a joint transformation between two complex distributions and intractable, we
condition the velocity field on a specific data point x1 and compute the conditional flow-matching
loss given by

LCFM = Et,xt

∥∥uθt (xt)− ut(xt|x1)
∥∥2 (5)

which is tractable and has the same gradient as the unconditional flow-matching loss ∇θLFM =
∇θLCFM (Lipman et al., 2022; Tong et al., 2023). Among existing discrete flow matching methods,
there are two methods of defining a discrete flow: defining the interpolant ψt(x0|x1) that connects
a noisy sample x0 to a clean one-hot sample x1 and defining the probability path which pushes
density from the prior distribution p0 to the target data distribution p1. In this work, we define a new
temperature-dependent interpolant and derive the corresponding velocity field.

2.3 SCORE MATCHING GENERATIVE MODELS

Score matching (Song & Ermon, 2019) is another generative matching framework that learns the
gradient of a probability density path ∇xt

log pt(xt) of the interpolation between noisy and clean
data. By parameterizing the score function with sθ(xt, t), we can minimize the score matching loss.

Lscore = Ept(xt) ∥∇x log pt(xt)− sθ(xt, t)∥2 (6)

Similarly to flow matching, directly learning ∇x log pt(xt) is intractable, so we learn the conditional
probability path∇x log pt(xt|x1) conditioned on x1 ∼ p1(x1) by minimizing

Lscore = Ept(xt|x1),p1(x1) ∥∇x log pt(xt|x1)− sθ(xt, t)∥2 (7)

which we show in Appendix B.1 equals the unconditional score function by expectation over x1.

3 GUMBEL-SOFTMAX FLOW MATCHING

Next we describe Gumbel-Softmax Flow Matching (GS-FM), a novel simplex-based flow matching
method that defines the noisy logits at each time step with the Gumbel-Softmax transformation,
enabling smooth interpolation between noisy and clean data by modulating the temperature τ(t),
which changes as a function of time.

3

Under review at the LMRL workshop, ICLR 2025

Figure 1: Overview of Gumbel-Softmax Score and Flow Matching. Gumbel-softmax transformations
are applied to clean one-hot sequences for varying temperatures dependent on time. The embedded noisy
distributions are passed into a DiT flow or score model and error prediction model to predict the conditional flow
velocity and score function.

3.1 DEFINING THE GUMBEL-SOFTMAX INTERPOLANT

We propose a new definition of the discrete probability path by gradually decreasing the temperature
of a Gumbel-Softmax categorical distribution as a function of time where the maximum probability
corresponds to the target token. First, we define a monotonically decreasing function τ(t) ∈ (0,∞)
to prevent the Gumbel-Softmax distribution from being undefined at τ = 0.

τ(t) = τmax exp(−λt) (8)

where τmax is the initial temperature set to a large number so that the categorical distribution resembles
a uniform distribution, λ controls the decay rate, and t is the time that goes from t = 0 to t = 1.

Now, we define the conditional interpolant xt = ψt(x0|x1 = ek) with t ∈ [0, 1] as

ψt(x0|x1 = ek) =

exp

(
log(δik+ϵ)+

gi
β

τ(t)

)
∑V

j=1 exp

(
log(δjk+ϵ)+

gj
β

τ(t)

) (9)

where τ(t) = τmax exp(−λt), δik is the Kronecker delta function that returns 1 when i = k and 0
otherwise, and ϵ = 10−5 prevents computing the undefined log(0) with i ̸= k. This interpolant
ensures that the probability of observing the target token increases as a function of 1 + δikt and the
distribution becomes more concentrated at the target vertex through a decaying temperature function
τ(t). Gumbel noise gi = − log(− log(Ui)) where Ui ∼ Uniform(0, 1) is applied during training to
ensure that the model learns to reconstruct a clean sequence given contextual information.

This definition of the flow satisfies the boundary conditions. For t = 0, τ(t) = τmax which produces
a near-uniform distribution ψ0(x0|x1) ≈ 1

V . For t = 1, exp(−λt) → 0 (faster decay for larger λ)
and τ(t)→ 0, meaning the flow trajectory converges to the corner of the simplex corresponding to
the one-hot vector ψ1(x0|x1) ≈ x1.

3.2 REPARAMETERIZING THE VELOCITY FIELD

From our definition of the Gumbel-Softmax interpolant, we derive the conditional velocity field
ut(x0|x1) by taking the derivative of the flow (Appendix A.1).

ut,i(x0|x1 = ek) =

{
λ exp(λt)

τmax
· xt,i

∑
j

(
xt,j · (1− δjk)

)
i = k

λ exp(λt)
τmax

· xt,i
∑

j

(
xt,j · (−δjk)

)
i ̸= k

(10)

We observe that the velocity field points toward the target category x1 = ek at a rate proportional
to xt,k(1− xt,k), indicating that the magnitude of the velocity field is maximized at xt,k = 1

2 and
zero when xt,k ∈ {0, 1}. Contrarily, the velocity field points away from all other vertices at a rate
proportional to −xt,ixt,k. This means that the velocity field vanishes both at the vertex and the
(V − 2)-dimensional face directly opposite to the vertex similar to Dirichlet FM, overcoming the
pathological behavior of Linear FM.

4

Under review at the LMRL workshop, ICLR 2025

Proposition 1. The conditional velocity field preserves probability mass and lies on the tangent
bundle at point xt on the simplex Txt

∆V−1 = {ut ∈ RV |⟨1, ut⟩ = 0}. Proof in Appendix A.2.

Our goal is to train a parameterized model to predict the velocity field ut(xt) given a noisy categorical
distribution xt. Instead of directly regressing ut(xt|x1) conditioned on data samples x1, we train a
denoising model that reconstructs the clean one-hot distribution xθ(xt, t) after applying the Gumbel-
Softmax transformation. Then, we compute the predicted velocity field via the equation

uθt (xt) =
λ exp(λt)

τmax
xt ⊙

(
xθ⟨xt,1− xθ⟩+ (1− xθ)⟨xt,−xθ⟩

)
(11)

where θ minimizes the denoising loss given by

Ldenoise =
1

L

L∑
ℓ=1

∥xθ(xt, t)− x1∥2 (12)

Proposition 2 (Equality of Denoising and Flow Matching Objectives). Minimizing the
conditional flow matching loss is equivalent to minimizing the denoising loss such that
argminθ

[
Ept(xt)∥ut(xt|x1) − uθt (xt)∥2

]
= argminθ

[
Ept(xt)∥x1 − xθ∥2

]
. Proof in Appendix

A.2.

3.3 CONTROLLABLE FLOW PATHS WITH DYNAMIC TEMPERATURES

Given that the reverse process interpolates between smooth distributions on the interior of the simplex,
the model needs to learn the path toward a clean distribution from only noisy token distributions.
This could prevent the model from effectively decoding tokens given the context of already sharp
neighboring distributions, especially for high simplex dimensions. To ensure more accurate flows,
we train an error prediction model similar to that of (Zhang et al., 2024) that estimates the squared
loss between the predicted clean distribution xθ(xt, t) from the denoising model and the one-hot
distribution x1

Lerror =
1

L

L∑
ℓ=1

∥∥Eϕ(xt, t)− ∥xθ(xt, t)− x1∥2
∥∥2 (13)

With the predicted error, we modulate the time-dependent temperature during inference with τϕ(t) =
τ(t) − α(||Eϕ(xt, t|| − ϵ) which increases the temperature for ||Eϕ(xt, t|| > ϵ and reduces the
temperature for ||Eϕ(xt, t|| < ϵ scaled by a constant α.

4 GUMBEL-SOFTMAX SCORE MATCHING

As an alternative to our flow matching framework, we propose Gumbel-Softmax Score Matching
(GS-SM), a score-matching method that learns the gradient of the probability density (defined as
the score) ∇xt

log pt(xt) associated with the Gumbel-Softmax interpolant. We find that Gumbel-
Softmax score matching performs superior to flow matching for increasing simplex dimensions,
specifically for de novo protein design.

4.1 THE EXPONENTIAL GUMBEL-SOFTMAX DISTRIBUTION

When computing Gumbel-softmax random variables, the exponentiation of small values associated
with low-probability tokens can result in numerical underflow. Since the logarithm of 0 is unde-
fined, this could result in numerical instabilities when computing the log-probability density. To
avoid instabilities, we leverage ExpConcrete probability distributions (Maddison et al., 2016) that
satisfies z ∼ ExpConcrete(τ, π) such that exp(z) ∼ GumbelSM(τ, π). Formally, the ith entry of an
ExpConcrete random variable is defined as

zi =
log πi + gi

τ
− log

V∑
j=1

exp

(
log πj + gj

τ

)
(14)

The gradient of the log-probability density of this distribution is given by

∇xj
log pt(xt|x1) = −τ(t) + τ(t)V · SM

(
log(δik + ϵ)− τ(t)xi

)
(15)

5

Under review at the LMRL workshop, ICLR 2025

4.2 LEARNING THE GUMBEL-SOFTMAX PROBABILITY DENSITY

Given that the Gumbel-Softmax interpolant naturally converges towards the one-hot target token
distribution, it follows that learning the evolution of probability density across training samples would
enable generation in regions with high probability density. Our goal is to train a parameterized model
to learn to estimate the gradient of the log-probability density of the Gumbel-Softmax interpolant
such that the gradient converges at regions with high probability density. To achieve this, we define
the score parameterization similar to (Mahmood et al., 2024), given by

sθ(xt, t) = −τ(t) + τ(t)V · SM
(
fθ(xt, t)

)
where sθ(xt, t) ≈ ∇xj

log pt(xt) (16)

where θ minimizes the reparameterized score-matching loss

Lscore(θ) =
1

L

L∑
ℓ=1

∥∥∥∥[− τ(t) + τ(t)V · SM(log(δik + ϵ)− τ(t)xi)
]
−
[
− τ(t) + τ(t)V · SM(fθ(xt, t)

]∥∥∥∥2

=
1

L

L∑
ℓ=1

τ(t)2V 2
∥∥SM

(
log(δik + ϵ) + τ(t)xt,i

)
− SM(fθ(xt, t)

)∥∥2 (17)

The softmax function applied after parameterization ensures dependencies are preserved across the
predicted output vector which defines the rate of probability flow towards each vertex.

Proposition 3. The gradient of the ExpConcrete log-probability density is proportional to the gradient
of the Gumbel-softmax log-probability density such that ∇GS

xj
log pθ(xt|x1) ∝ ∇ExpGS

xj
log pθ(xt|x1).

Proof in Appendix B.2.

By minimizing Lscore, we obtain a model that effectively transports noisy categorical distributions
towards clean distributions in high-probability regions of the discrete state space.

5 EXPERIMENTS

5.1 PROMOTER DNA SEQUENCE DESIGN

Following the experimental procedures of previous works (Avdeyev et al., 2023; Stark et al., 2024),
we evaluate our flow-matching strategy on promoter DNA design and show superior performance to
diffusion and simplex flow-matching baselines.

Model MSE (↓)

Bit Diffusion (Bit Encoding) 0.041
Bit Diffusion (One-Hot Encoding) 0.040
D3PM-Uniform 0.038
DDSM 0.033
Language Model 0.033

Dirichlet FM 0.034
Fisher FM 0.029
Gumbel-Softmax FM (Ours) 0.029

Table 1: Evaluation of promoter DNA generation con-
ditioned on transcription profile. Mean squared error
between the predicted regulatory signal between the gen-
erated and original sequence with an input transcription
profile. Signals were predicted using pre-trained Sei
model (Chen et al., 2022a)

Setup. Promoter DNA is the strand of DNA ad-
jacent to a gene that binds to RNA polymerase
and transcription factors to promote gene tran-
scription and expression. The objective is to
train a flow model conditioned on the transcrip-
tion profile which can generate sequences that
minimize the MSE of the predicted regulatory
signal of the generated sequence against the sig-
nal of the original sequence with the input pro-
file using a pre-trained Sei model (Chen et al.,
2022a).

Training. Following (Stark et al., 2024),
we trained on a train/test/validation split of
88,470/3,933/7,497 sequences with a length of
1,024. For each batch of size 256, we applied
Gumbel-Softmax noise according to Equation
9 with τmax = 10.0 and λ = 1.0 for uniformly
distributed time steps t ∈ [0, 1]. The training
objective was to minimize the negative log loss
between the true one-hot tokens x0 and predicted clean logits xθ(xt, t) for varying degrees of noise.
We parameterized the denoiser with a 20-layer 1D CNN architecture following (Stark et al., 2024) for
a total of 100,000 steps using the AdamW optimizer and a learning rate of 10−4.

6

Under review at the LMRL workshop, ICLR 2025

Table 2: Evaluation metrics for generative quality of protein sequences. Metrics were calculated on 100
unconditionally generated sequences from each model, including EvoDiff and ProtGPT2. The arrow indicates
whether (↑) or (↓) values are better.

Model Params (↓) pLDDT (↑) pTM (↑) pAE (↓) Entropy (↑) Diversity (%) (↑)

Test Dataset (random 1000) - 74.00 0.63 12.99 4.0 71.8

EvoDiff 640M 31.84 0.21 24.76 4.05 93.2
ProtGPT2 738M 54.92 0.41 19.39 3.85 70.9
ProGen2-small 738M 49.38 0.28 23.38 2.55 89.3
Gumbel-Softmax Flow Matching (Ours) 198M 52.54 0.27 16.67 3.41 86.1
Gumbel-Softmax Score Matching (Ours) 198M 49.40 0.29 15.71 3.37 82.5

Results. We compared our Gumbel-Softmax FM model with Fisher FM (Davis et al., 2024) and
Dirichlet FM (Stark et al., 2024), two discrete flow matching models on the interior of the simplex
which are most closely related to our work. We also compare against discrete diffusion models
(Avdeyev et al., 2023; Chen et al., 2022b; Austin et al., 2021) and an autoregressive language model
baseline. Our generated sequences demonstrate lower signal MSE compared to diffusion baselines
and Dirichlet FM and comparable MSE to Fisher FM.

5.2 De Novo PROTEIN SEQUENCE DESIGN

Next, we evaluate the quality of unconditionally-generated de novo protein sequences with Gumbel-
Softmax SM and Gumbel-Softmax FM. Despite operating in the continuous simplex space with a
considerably smaller backbone model (198 million params), we demonstrate competitive generative
quality compared to discrete diffusion and autoregressive baselines.

Setup. Given the larger vocabulary size of protein sequences, we compared both the performance of
GS-FM and GS-SM for this task. For both models, we applied the Gumbel-Softmax transformation
with varying temperatures τ(t) for time steps t = 0→ 1 and τmax = 100.0 for score matching and
τmax = 10.0 for flow matching. The decay rates were set to λ = 3.0 for both models and the noise
scale was set to β = 2.0. The models were trained following Algorithm 1 for GS-FM and 3 for
GS-SM. Sampling was performed following Algorithm 2 and Algorithm 4.

Figure 2: Predicted structures of de novo generated proteins
from Gumbel-Softmax FM. The structures, pLDDT, pAE, and
pTM scores are predicted with ESMFold (Lin et al., 2023b)

Training. We collected 68M
Uniref50 and 207M OMG_PROT50
data (Suzek et al., 2007; Cornman
et al., 2024). A total of 275M pro-
tein sequences were first clustered to
remove singletons using MMseqs2 lin-
clust (Steinegger & Söding, 2018) (pa-
rameters: –min-seq-id 0.5 -c 0.9 –cov-
mode 1). We keep the sequences be-
tween lengths of 20 to 2500 and en-
tries with only wild-type residues to
avoid effects from outliers. The sin-
gleton sequences are removed. The
resulting representative sequences un-
dergo random 0.8/0.1/0.1 data splitting. We trained for 5 epochs on 7 NVIDIA A100 GPUs.

Results. We compare the quality of our protein generation method against state-of-the-art de novo
protein sequence generation models including the discrete diffusion model EvoDiff (Alamdari et al.,
2023), large language model ProtGPT2 (Ferruz et al., 2022), and the autoregressive model ProGen2
(medium) (Nijkamp et al., 2023). For 100 unconditionally generated sequences per model, we
compute the pLDDT, pTM, pAE scores using ESMFold (Lin et al., 2023a) as well as the entropy
and pseudo-perplexity. We also compute the overall diversity in the generated sequences. Additional
details on evaluation metrics are given in Appendix D.2. BLASTp runs for the proteins we generated
indicate no homologs hits, highlighting again the novelty of the proteins we generated and indicating
that our model is not sub-sampling from known homologous protein sequences. As summarized in
Table 2, both Gumbel-Softmax SM and Gumbel-Softmax FM produce proteins with comparable

7

Under review at the LMRL workshop, ICLR 2025

pLDDT, pTM, and pAE scores to discrete baselines without significantly compromising sequence
entropy and diversity.

6 CONCLUSION

In this work, we introduce Gumbel-Softmax Score and Flow Matching, a novel discrete framework
that learns interpolations between noisy and clean data by modulating the temperature of the Gumbel-
Softmax distribution. Our method extends discrete flow models to categorical sequence spaces
without requiring simplex constraints or predefined transition matrices, allowing for efficient and
flexible discrete transport. By parameterizing probability velocity fields directly in the discrete
domain, we overcome limitations of existing discrete generative models, such as the reliance on
iterative denoising in discrete diffusion (Austin et al., 2021; Wang et al., 2024; Shi et al., 2024; Sahoo
et al., 2024) or the restrictive probability constraints in Dirichlet and Fisher Flow Matching (Stark
et al., 2024; Davis et al., 2024).

We apply our model to two key biological sequence generation tasks: conditional DNA promoter
design and de novo protein sequence generation. For promoter design, GUMBEL-SOFTMAX FLOW
generates functional DNA sequences with enhanced transcriptional activity, outperforming previous
discrete generative approaches. For protein sequence generation, our method enables the design of
structurally-feasible proteins while maintaining sequence diversity and uniqueness against known
proteins. Unlike discrete diffusion and autoregressive models, our approach operates in the continuous
multi-dimensional simplex space, enabling smooth, controllable transport from uniform categorical
distributions to clean sequences.

By bridging discrete flow matching with Gumbel-Softmax reparameterization, our work provides a
scalable and theoretically grounded framework for discrete sequence modeling. Future directions
include extending the approach to multi-objective sequence optimization, incorporating task-specific
priors to enhance design constraints, and applying Gumbel-Softmax FM to other structured biological
design problems, such as RNA sequence engineering and regulatory circuit design.

7 MEANINGFULNESS STATEMENT

Gumbel-Softmax Score and Flow Matching introduces a principled approach for discrete biological
sequence generation, addressing the challenge of smooth interpolation between noisy and structured
sequences. By leveraging temperature-controlled Gumbel-Softmax transformations, this framework
enables precise, controllable sampling for applications in DNA regulatory design and de novo protein
generation. Its ability to efficiently model categorical distributions without restrictive probability
constraints makes it a powerful tool for advancing biomolecular design, with potential implications
in synthetic biology, drug discovery, and therapeutic development.

REFERENCES

Sarah Alamdari, Nitya Thakkar, Rianne van den Berg, Neil Tenenholtz, Robert Strome, Alan M.
Moses, Alex X. Lu, Nicolò Fusi, Ava P. Amini, and Kevin K. Yang. Protein generation with
evolutionary diffusion: sequence is all you need. September 2023. doi: 10.1101/2023.09.11.556673.
URL http://dx.doi.org/10.1101/2023.09.11.556673.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 2021. doi: 10.48550/ARXIV.2107.03006. URL https://arxiv.org/abs/2107.
03006.

Pavel Avdeyev, Chenlai Shi, Yuhao Tan, Kseniia Dudnyk, and Jian Zhou. Dirichlet diffusion score
model for biological sequence generation, 2023. URL https://arxiv.org/abs/2305.
10699.

Suhaas Bhat, Kalyan Palepu, Lauren Hong, Joey Mao, Tianzheng Ye, Rema Iyer, Lin Zhao, Tianlai
Chen, Sophia Vincoff, Rio Watson, Tian Z. Wang, Divya Srijay, Venkata Srikar Kavirayuni, Kseniia

8

http://dx.doi.org/10.1101/2023.09.11.556673
https://arxiv.org/abs/2107.03006
https://arxiv.org/abs/2107.03006
https://arxiv.org/abs/2305.10699
https://arxiv.org/abs/2305.10699

Under review at the LMRL workshop, ICLR 2025

Kholina, Shrey Goel, Pranay Vure, Aniruddha J. Deshpande, Scott H. Soderling, Matthew P. DeLisa,
and Pranam Chatterjee. De novo design of peptide binders to conformationally diverse targets with
contrastive language modeling. Science Advances, 11(4), January 2025. ISSN 2375-2548. doi:
10.1126/sciadv.adr8638. URL http://dx.doi.org/10.1126/sciadv.adr8638.

Kathleen M. Chen, Aaron K. Wong, Olga G. Troyanskaya, and Jian Zhou. A sequence-based global
map of regulatory activity for deciphering human genetics. Nature Genetics, 54(7):940–949, July
2022a. ISSN 1546-1718. doi: 10.1038/s41588-022-01102-2. URL http://dx.doi.org/10.
1038/s41588-022-01102-2.

Tianlai Chen, Madeleine Dumas, Rio Watson, Sophia Vincoff, Christina Peng, Lin Zhao, Lauren
Hong, Sarah Pertsemlidis, Mayumi Shaepers-Cheu, Tian Zi Wang, Divya Srijay, Connor Mon-
ticello, Pranay Vure, Rishab Pulugurta, Kseniia Kholina, Shrey Goel, Matthew P. DeLisa, Ray
Truant, Hector C. Aguilar, and Pranam Chatterjee. Pepmlm: Target sequence-conditioned gen-
eration of therapeutic peptide binders via span masked language modeling. arXiv, 2023. doi:
10.48550/ARXIV.2310.03842. URL https://arxiv.org/abs/2310.03842.

Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog bits: Generating discrete data using
diffusion models with self-conditioning, 2022b. URL https://arxiv.org/abs/2208.
04202.

Andre Cornman, Jacob West-Roberts, Antonio Pedro Camargo, Simon Roux, Martin Beracochea,
Milot Mirdita, Sergey Ovchinnikov, and Yunha Hwang. The omg dataset: An open metage-
nomic corpus for mixed-modality genomic language modeling. 2024. doi: 10.1101/2024.08.
14.607850. URL https://www.biorxiv.org/content/early/2024/08/17/2024.
08.14.607850.

Oscar Davis, Samuel Kessler, Mircea Petrache, Ismail Ilkan Ceylan, Michael Bronstein, and
Avishek Joey Bose. Fisher flow matching for generative modeling over discrete data. Advances
in Neural Information Processing Systems, 2024. doi: 10.48550/ARXIV.2405.14664. URL
https://arxiv.org/abs/2405.14664.

Noelia Ferruz, Steffen Schmidt, and Birte Höcker. Protgpt2 is a deep unsupervised language model
for protein design. Nature Communications, 13(1), July 2022. ISSN 2041-1723. doi: 10.1038/
s41467-022-32007-7. URL http://dx.doi.org/10.1038/s41467-022-32007-7.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky T. Q. Chen, Gabriel Synnaeve, Yossi Adi, and
Yaron Lipman. Discrete flow matching. Advances in Neural Information Processing Systems, 2024.
doi: 10.48550/ARXIV.2407.15595. URL https://arxiv.org/abs/2407.15595.

Shrey Goel, Vishrut Thoutam, Edgar Mariano Marroquin, Aaron Gokaslan, Arash Firouzbakht,
Sophia Vincoff, Volodymyr Kuleshov, Huong T. Kratochvil, and Pranam Chatterjee. Memdlm: De
novo membrane protein design with masked discrete diffusion protein language models. arXiv,
2024. doi: 10.48550/ARXIV.2410.16735. URL https://arxiv.org/abs/2410.16735.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
International Conference on Learned Representations, 2017. doi: 10.48550/ARXIV.1611.01144.
URL https://arxiv.org/abs/1611.01144.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Robert
Verkuil, Ori Kabeli, Yaniv Shmueli, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu,
Salvatore Candido, and Alexander Rives. Evolutionary-scale prediction of atomic-level protein
structure with a language model. Science, 379(6637):1123–1130, March 2023a. ISSN 1095-
9203. doi: 10.1126/science.ade2574. URL http://dx.doi.org/10.1126/science.
ade2574.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, Allan Dos Santos Costa, Maryam Fazel-Zarandi, Tom
Sercu, Salvatore Candido, and Alexander Rives. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123–1130, March 2023b.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling, 2022. URL https://arxiv.org/abs/2210.02747.

9

http://dx.doi.org/10.1126/sciadv.adr8638
http://dx.doi.org/10.1038/s41588-022-01102-2
http://dx.doi.org/10.1038/s41588-022-01102-2
https://arxiv.org/abs/2310.03842
https://arxiv.org/abs/2208.04202
https://arxiv.org/abs/2208.04202
https://www.biorxiv.org/content/early/2024/08/17/2024.08.14.607850
https://www.biorxiv.org/content/early/2024/08/17/2024.08.14.607850
https://arxiv.org/abs/2405.14664
http://dx.doi.org/10.1038/s41467-022-32007-7
https://arxiv.org/abs/2407.15595
https://arxiv.org/abs/2410.16735
https://arxiv.org/abs/1611.01144
http://dx.doi.org/10.1126/science.ade2574
http://dx.doi.org/10.1126/science.ade2574
https://arxiv.org/abs/2210.02747

Under review at the LMRL workshop, ICLR 2025

Ali Madani, Ben Krause, Eric R. Greene, Subu Subramanian, Benjamin P. Mohr, James M.
Holton, Jose Luis Olmos, Caiming Xiong, Zachary Z. Sun, Richard Socher, James S. Fraser,
and Nikhil Naik. Large language models generate functional protein sequences across diverse
families. Nature Biotechnology, 41(8):1099–1106, January 2023. ISSN 1546-1696. doi: 10.1038/
s41587-022-01618-2. URL http://dx.doi.org/10.1038/s41587-022-01618-2.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relax-
ation of discrete random variables, 2016. URL https://arxiv.org/abs/1611.00712.

Ahsan Mahmood, Junier Oliva, and Martin Andreas Styner. Anomaly detection via gumbel noise
score matching. Frontiers in Artificial Intelligence, 7, September 2024. ISSN 2624-8212. doi: 10.
3389/frai.2024.1441205. URL http://dx.doi.org/10.3389/frai.2024.1441205.

Erik Nijkamp, Jeffrey A. Ruffolo, Eli N. Weinstein, Nikhil Naik, and Ali Madani. Progen2: Exploring
the boundaries of protein language models. Cell Systems, 14(11):968–978.e3, November 2023.
ISSN 2405-4712. doi: 10.1016/j.cels.2023.10.002. URL http://dx.doi.org/10.1016/
j.cels.2023.10.002.

Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking guidance
for discrete state-space diffusion and flow models. arXiv, 2024. doi: 10.48550/ARXIV.2406.01572.
URL https://arxiv.org/abs/2406.01572.

William Peebles and Saining Xie. Scalable diffusion models with transformers, 2022. URL https:
//arxiv.org/abs/2212.09748.

Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T
Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. Advances in Neural Information Processing Systems, 2024. doi: 10.48550/ARXIV.2406.
07524. URL https://arxiv.org/abs/2406.07524.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K. Titsias. Simplified and
generalized masked diffusion for discrete data. arXiv, 2024. doi: 10.48550/ARXIV.2406.04329.
URL https://arxiv.org/abs/2406.04329.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution,
2019. URL https://arxiv.org/abs/1907.05600.

Hannes Stark, Bowen Jing, Chenyu Wang, Gabriele Corso, Bonnie Berger, Regina Barzilay, and
Tommi Jaakkola. Dirichlet flow matching with applications to dna sequence design, 2024. URL
https://arxiv.org/abs/2402.05841.

Martin Steinegger and Johannes Söding. Clustering huge protein sequence sets in linear time. Nature
communications, 9(1):2542, 2018.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding, 2021. URL https://arxiv.org/abs/2104.
09864.

Baris E Suzek, Hongzhan Huang, Peter McGarvey, Raja Mazumder, and Cathy H Wu. Uniref:
comprehensive and non-redundant uniprot reference clusters. Bioinformatics, 23(10):1282–1288,
2007.

Sophia Tang, Yinuo Zhang, and Pranam Chatterjee. Peptune: De novo generation of therapeutic
peptides with multi-objective-guided discrete diffusion. arXiv, 2024. doi: 10.48550/ARXIV.2412.
17780. URL https://arxiv.org/abs/2412.17780.

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport, 2023. URL https://arxiv.org/abs/2302.00482.

10

http://dx.doi.org/10.1038/s41587-022-01618-2
https://arxiv.org/abs/1611.00712
http://dx.doi.org/10.3389/frai.2024.1441205
http://dx.doi.org/10.1016/j.cels.2023.10.002
http://dx.doi.org/10.1016/j.cels.2023.10.002
https://arxiv.org/abs/2406.01572
https://arxiv.org/abs/2212.09748
https://arxiv.org/abs/2212.09748
https://arxiv.org/abs/2406.07524
https://arxiv.org/abs/2406.04329
https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/2402.05841
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2412.17780
https://arxiv.org/abs/2302.00482

Under review at the LMRL workshop, ICLR 2025

Mingyang Wang, Shuai Li, Jike Wang, Odin Zhang, Hongyan Du, Dejun Jiang, Zhenxing Wu,
Yafeng Deng, Yu Kang, Peichen Pan, Dan Li, Xiaorui Wang, Xiaojun Yao, Tingjun Hou, and
Chang-Yu Hsieh. Clickgen: Directed exploration of synthesizable chemical space via modular
reactions and reinforcement learning. Nature Communications, 15(1), November 2024. ISSN
2041-1723. doi: 10.1038/s41467-024-54456-y. URL http://dx.doi.org/10.1038/
s41467-024-54456-y.

Xi Zhang, Yuan Pu, Yuki Kawamura, Andrew Loza, Yoshua Bengio, Dennis L. Shung, and Alexander
Tong. Trajectory flow matching with applications to clinical time series modeling, 2024. URL
https://arxiv.org/abs/2410.21154.

11

http://dx.doi.org/10.1038/s41467-024-54456-y
http://dx.doi.org/10.1038/s41467-024-54456-y
https://arxiv.org/abs/2410.21154

Under review at the LMRL workshop, ICLR 2025

A FLOW MATCHING DERIVATIONS

A.1 DERIVATION OF THE GUMBEL-SOFTMAX VELOCITY FIELD

We derive the conditional velocity field at a point xt with the Gumbel-Softmax interpolant ut(x0|x1 =
ei) by taking the derivative of the interpolant ψt(x0|x1 = ei).

ut(xt|x1 = ek) =
d

dt
ψt(x0|x1 = ek)

=
d

dt

exp
(

δik+ϵ
τmax exp(−λt)

)
∑V

j=1 exp
(

δjk+ϵ
τmax exp(−λt)

) (18)

Letting zi = exp
(

δik+ϵ
τmax exp(−λt)

)
, we have

ut(x0|x1 = ek) =
d

dt

exp(zi)∑
j exp(zj)

=

(∑V
j=1 exp(zj)

) (
d
dt exp(zi)

)
− exp(zi)

(
d
dt

∑V
j=1 exp(zj)

)
(∑V

j=1 exp(zj)
)2 (19)

First, we compute d
dt exp(zi)

d

dt
exp

(
δik + ϵ

τmax exp(−λt)

)
= exp(zi) ·

d

dt

(
δik + ϵ

τmax exp(−λt)

)
= exp(zi) ·

1

τmax
· d
dt

(
δik + ϵ

exp(−λt)

)
= exp(zi) ·

λ exp(λt)

τmax
· (δik + ϵ)

Then, we compute d
dt

∑
j exp(zj)

d

dt

V∑
j=1

exp

(
δjk + ϵ

τmax exp(−λt)

)
=

V∑
j=1

d

dt
exp

(
δjk + ϵ

τmax exp(−λt)

)

=

V∑
j=1

(
exp(zi) ·

λ exp(λt)

τmax
· (δjk + ϵ)

)
(20)

Then, substituting these terms back into the expression for ut, we get
ut,i(x0|x1 = ek)

=

(∑
j exp (zj)

)
· exp(zi) · λ exp(λt)

τmax
· (δik + ϵ)− exp (zi) ·

∑V
j=1

(
exp(zi) · λ exp(λt)

τmax
· (δjk + ϵ)

)
(∑

j exp (zj)
)2

=
exp(zi) · λ exp(λt)

τmax

(∑
j exp (zj)

)2
[(∑

j

exp(zj)

)
· (δik + ϵ)−

∑
j

(
exp(zj) · (δjk + ϵ)

)]

=
exp(zi) · λ exp(λt)

τmax

(∑
j exp (zj)

)2
[∑

j

exp(zj) [(δik + ϵ)− (δjk + ϵ)]

]

=
exp(zi)∑
j exp (zj)

λ exp(λt)

τmax

[∑
j

(
exp(zj)∑
j′ exp (zj)

· (δik − δjk)

)]

= ψ
(i)
t (x0|x1) ·

λ exp(λt)

τmax

[∑
j

(
ψ

(j)
t (x0|x1) · (δik − δjk)

)]

=
λ exp(λt)

τmax
xt,i

∑
j

(
xt,j · (δik − δjk)

)

12

Under review at the LMRL workshop, ICLR 2025

Since δij = 1 only when i is the index of the target token i = k and 0 otherwise, the velocity field
can be rewritten as

ut,i(x0|x1 = ek) =

{
xt,i · λ exp(λt)

τmax

∑
j

(
xt,j · (1− δjk)

)
i = k

xt,i · λ exp(λt)
τmax

∑
j

(
xt,j · (−δjk)

)
i ̸= k

(21)

Condensing this equation we get

ut(x0|x1 = ek) =
λ exp(λt)

τmax
xt ⊙

(
x1⟨xt,1− x1⟩+ (1− x1)⟨xt,−x1⟩

)
=
λ exp(λt)

τmax
xt ⊙

(
x1

∑
j ̸=k

xt,j + (1− x1)(−xt,k)
)

=
λ exp(λt)

τmax
[(xt ⊙ x1)(1− xt,k)− (xt ⊙ (1− x1))xt,k] (22)

A.2 PROOF OF FLOW MATCHING PROPOSITIONS

Propositiion 1 (Probability Mass Conservation) The conditional velocity field preserves probability
mass and lies on the tangent bundle at point xt on the simplex Txt

∆V−1 = {ut ∈ RV |⟨1, ut⟩ = 0}.
Proof. We show that the conditional velocity field derived from the Gumbel-Softmax interpolant
preserves probability mass such that

V∑
i=1

ut,i(xt|x1 = ek) = 0 (23)

Summing up the velocities for all i ∈ [1 . . . V] according to Equation 21, we have

∑
i

ut(x0|x1 = ek) =
λ exp(λt)

τmax
· xt,k

∑
j

(
xt,j · (1− δjk)

)
+
∑
i ̸=k

(
λ exp(λt)

τmax
· xt,i

∑
j

(
xt,j · (−δjk)

))

=
λ exp(λt)

τmax

xt,k∑
j ̸=k

xt,j +
∑
i ̸=k

xt,i(−xt,k)


= xt,k

∑
j ̸=k

xt,j − xt,k
∑
j ̸=k

xt,j

= 0 (24)

which proves that our velocity field preserves the probability mass at all times t.

Proposition 2 (Equality of Denoising and Flow Matching Objectives) Minimizing the conditional flow
matching loss is equivalent to minimizing the denoising loss such that argminθ

[
Ept(xt)∥ut(xt|x1)−

uθt (xt)∥2
]
= argminθ

[
Ept(xt)∥x1 − xθ∥2

]
.

Proof. We derived in Appendix 22 that the conditional velocity field ut(xt|x1) is given by

ut(x0|x1 = ek) =
λ exp(λt)

τmax
[(xt ⊙ x1)(1− xt,k)− (xt ⊙ (1− x1))xt,k] (25)

13

Under review at the LMRL workshop, ICLR 2025

Substituting the definition of the velocity field into the flow-matching loss, we obtain

Ept(xt)||ut(xt|x1)− uθ
t (xt)||2

=
λ2 exp(2λt)

τ2max

∣∣∣∣∣∣∣∣(1− xt,k)(xt ⊙ x1)− xt,k(xt ⊙ (1− x1))− (1− xt,k)(xt ⊙ xθ) + xt,k(xt ⊙ (1− xθ))

∣∣∣∣∣∣∣∣2
=
λ2 exp(2λt)

τ2max

∣∣∣∣∣∣∣∣[(1− xt,k)(xt ⊙ x1)− (1− xt,k)(xt ⊙ xθ)
]
−
[
xt,k(xt ⊙ (1− x1)) + xt,k(xt ⊙ (1− xθ))

]∣∣∣∣∣∣∣∣2
=
λ2 exp(2λt)

τ2max

∣∣∣∣∣∣∣∣(1− xt,k)(xt ⊙ x1 − xt ⊙ xθ)− xt,k(xt ⊙ (1− x1)− xt ⊙ (1− xθ))

∣∣∣∣∣∣∣∣2
=
λ2 exp(2λt)

τ2max

∣∣∣∣∣∣∣∣(1− xt,k)xt ⊙ (x1 − xθ)− xt,kxt ⊙ (1− x1 − 1+ xθ)

∣∣∣∣∣∣∣∣2
=
λ2 exp(2λt)

τ2max

∣∣∣∣∣∣∣∣(1− xt,k)xt ⊙ (x1 − xθ)− xt,kxt ⊙ (xθ − x1)

∣∣∣∣∣∣∣∣2
=
λ2 exp(2λt)

τ2max

∣∣∣∣∣∣∣∣(1− xt,k)xt ⊙ (x1 − xθ) + xt,kxt ⊙ (x1 − xθ)

∣∣∣∣∣∣∣∣2
=
λ2 exp(2λt)

τ2max

∣∣∣∣xt ⊙ (x1 − xθ)
∣∣∣∣2 (26)

Clearly, by minimizing Ldenoise = Ept(xt)||x1 − xθ||2, we also minimize the flow-matching loss
such that

argmin
θ

[
Ept(xt)||ut(xt|x1)− uθt (xt)||2

]
= argmin

θ

[
Ept(xt)||x1 − xθ||2

]
(27)

which proves the Theorem.

Theorem. If pt(xt) > 0 for all xt ∈ Rd and t ∈ [0, 1], then LFM and LGS-FM are equal up to a
constant that is not dependent on θ, which means

∇θLGS-FM = ∇θLFM (28)

Proof. This proof extends that of (Lipman et al., 2022; Tong et al., 2023), which proved that the
conditional flow matching loss∇θLCFM = ∇θLFM under similar constraints.

From Equation 26, we derived the conditional flow-matching loss

Ept(xt)||ut(xt|x1)− uθt (xt, t)||2 =
λ2 exp(2λt)

τ2max
Ept(xt)

∣∣∣∣xt ⊙ (x1 − xθ)
∣∣∣∣2

=
λ2 exp(2λt)

τ2max
Ept(xt)

∣∣∣∣xtx1 − xtxθ

∣∣∣∣2
=
λ2 exp(2λt)

τ2max
Ept(xt)

[
||xt ⊙ x1||2 − 2⟨xt ⊙ x1,xt ⊙ xθ⟩+ ||xt ⊙ xθ||2

]
Taking the gradient with respect to θ, we have

∇θEpt(xt)||ut(xt|x1)− uθt (xt, t)||2 =
λ2 exp(2λt)

τ2max
∇θEpt(xt)

[
||xt ⊙ x1||2 − 2⟨xt ⊙ x1,xt ⊙ xθ⟩+ ||xt ⊙ xθ||2

]
=
λ2 exp(2λt)

τ2max

[
− 2∇θEpt(xt)⟨xt ⊙ x1,xt ⊙ xθ⟩+∇θEpt(xt)||xt ⊙ xθ||2

]
Given that the 2-norm is bilinear, we have

Ept(xt)||xt ⊙ x1||2 =

∫
xt

||xt ⊙ x1||2pt(xt)dxt

=

∫
xt

∫
x1

||xt ⊙ x1||2pt(xt|x1)p1(x1)dx1dxt

= Ep1(x1),pt(xt|x1)||xt ⊙ x1||2 (29)

14

Under review at the LMRL workshop, ICLR 2025

We also have

Ept(xt)⟨xtx1,xtxθ⟩ =
∫
xt

⟨xtx1,xtxθ⟩pt(xt)dxt

=

∫
xt

〈
xt

∫
x1

x1pt(xt|x1)p1(x1)dx1

pt(xt)
,xtxθ

〉
pt(xt)dxt

=

∫
xt

〈
xt

∫
x1

x1pt(xt|x1)p1(x1)dx1,xtxθ

〉
dxt

=

∫
xt

∫
x1

⟨xtx1,xtxθ⟩ pt(xt|x1)p1(x1)dx1dxt

= Ept(xt|x1),p1(x1)⟨xtx1,xtxθ⟩ (30)

Substituting these terms back into the gradient of the flow-matching loss, we get

∇θEpt(xt)||ut(xt|x1)− uθt (xt, t)||2

=
λ2 exp(2λt)

τ2max

[
− 2∇θEpt(xt)⟨xt ⊙ x1,xt ⊙ xθ⟩+∇θEpt(xt)||xt ⊙ xθ||2

]
=
λ2 exp(2λt)

τ2max

[
− 2∇θEpt(xt|x1),p1(x1)⟨xt ⊙ x1,xt ⊙ xθ⟩+∇θEpt(xt|x1),p1(x1)||xt ⊙ xθ||2

]
= ∇θEpt(xt|x1),p1(x1)||ut(xt|x1)− uθt (xt, t)||2 (31)

which concludes the proof.

B SCORE MATCHING DERIVATIONS

B.1 DERIVATION OF THE SCORE FUNCTION

We start by showing that the score function of the marginal probability density ∇xt
log pt(xt)

is proportional to the conditional probability density ∇xt log pt(xt|x1) given that pt(xt) =
Ex1∼pdata

[
pt(xt|x1)

]
.

Proof. Taking the gradient of the marginal log-density and substituting in the definition of pt(xt), we
have

∇xt log pt(xt) =
∇xtpt(xt)

pt(xt)

=
∇xt

Ex1∼pdata

[
pt(xt|x1)

]
pt(xt)

=
∇xt

∫
x1

[
p(x1)pt(xt|x1)

]
dx1

pt(xt)

=

∫
x1
p(x1)∇xtpt(xt|x1)dx1

pt(xt)

=

∫
x1
p(x1)pt(xt|x1)

∇xtpt(xt|x1)

pt(xt|x1)
dx1

pt(xt)

=

∫
x1

pt(xt|x1)p(x1)

pt(xt)︸ ︷︷ ︸
=pt(x1|xt)

∇xt
log pt(xt|x1)dx1

= Ex1∼pt(x1|xt) [∇xt
log pt(xt|x1)]

(32)

which proves that with the perfect model such that pt(x1) = p(x1|xt), the gradient of the marginal
log-probability density is exactly the expectation of the conditional log-probability density over the
training data∇xt log pt(xt) = Ex1∼pdata(x1) [∇xt log pt(xt|x1)].

15

Under review at the LMRL workshop, ICLR 2025

Theorem. The gradient of the log-probability density of the ExpConcrete distribution is given by

∇xi
log pt(xt|x1) = τ(t)− τ(t)V · SM

(
log(δik + ϵ)− τ(t)xi

)
(33)

Proof. First, we start by defining the probability density of the ExpConcrete distribution. From
(Maddison et al., 2016), we have

p(x) = (V − 1)!τV−1

(
V∑
i=1

πj exp(−τxj)

)(
V∏
i=1

πi exp(−τxi)

)
(34)

where xi is defined as a logit from the ExpConcrete distribution

xi =
log πi + gi

τ
− log

V∑
j=1

exp

(
log πj + gj

τ

)
(35)

Taking the logarithm of the probability path, we have

log pt(xt|x1) = log[(V − 1)!] + (V − 1) log τ + log

(
V∏
i=1

πi exp(−τxi)

)
− V log

V∑
j=1

πj exp(−τxj)

= log[(V − 1)!] + (V − 1) log τ +

V∑
i=1

log (πi exp(−τxi))− V log

V∑
j=1

exp (log (πj exp(−τxj)))

= log[(V − 1)!] + (V − 1) log τ +

V∑
i=1

(log πi − τxi)− V log

V∑
j=1

exp

(
log πj − τxj

)

= log[(V − 1)!] + (V − 1) log τ +

V∑
i=1

log πi −
V∑
i=1

τxi − V log

V∑
j=1

exp

(
log πj − τxj

)
Then differentiating with respect to the logit of a single token xj , we get

∇xj
log pt(xt|x1) = −∇xi

V∑
i=1

τxi −∇xi
V log

V∑
j=1

exp

(
log πj − τxj

)

= −τ − V

(
1∑V

j=1 exp(log πj − τxj)

)
exp(log πi − τxi)(−τ)

= −τ + τV

(
exp(log πi − τxi)∑V
i=1 exp(log πj − τxj)

)
︸ ︷︷ ︸

softmax

= −τ + τV · SM
(
log πi − τxi

)
(36)

Introducing time-dependence with τ(t) = τmax exp(−λt) and target token dependence with πj =
δjk + ϵ, we have

∇xi
log pt(xt|x1) = τ(t)− τ(t)V · SM

(
log(δik + ϵ)− τ(t)xi

)
(37)

B.2 PROOF OF SCORE MATCHING PROPOSITIONS

Proposition 3. The gradient of the ExpConcrete log-probability density is proportional to the gradient
of the Gumbel-softmax log-probability density such that∇GS

xj
log pθ(xt|x1) ∝ ∇ExpGS

xj log pθ(xt|x1).

Proof. As derived in (Maddison et al., 2016), the explicit probability density of the Gumbel-Softmax
distribution is defined as

p(x) = (V − 1)!τV−1

(
V∑
i=1

πi
xτi

)−V V∏
i=1

(
πi

xτ+1
i

)
(38)

16

Under review at the LMRL workshop, ICLR 2025

We now define the log-probability density of the Gumbel-Softmax distribution as

log p(x) = log[(V − 1)!] + (V − 1) log τ − V log

V∑
i=1

πi

xτi
+

V∑
i=1

log

(
πi

xτ+1
i

)

= log[(V − 1)!] + (V − 1) log τ − V log

V∑
i=1

πi

xτi
+

V∑
i=1

log (πi)− (τ + 1)

V∑
i=1

log(xi) (39)

Now, we introduce dependence on time t to define the conditional probability density pt(x0|x1 = ek)
as

log p(x) = log[(V − 1)!] + (V − 1) log τ(t)− V log

V∑
i=1

πi

x
τ(t)
i

+

V∑
i=1

log (πi)− (τ(t) + 1)

V∑
i=1

log(xi)

Taking the gradient with respect to a single token xt,j , we have

∇ExpGS
xj

log pt(xt|x1) = ∇xj

(
−V log

V∑
i=1

πi
xτi

)
−∇xj

(
(τ + 1)

V∑
i=1

log(xi)

)

= −V

 1∑V
i=1

πi

xτ
i

(−πjτ
xτ+1
j

)
− τ + 1

xj

=
τV

xj

(
πjx

−τ
j∑V

i=1 πix
−τ
i

)
− τ + 1

xj

=
τV

xj

(
exp(log(πjx

−τ
j))∑V

i=1 exp(log(πix
−τ
i))

)
− τ + 1

xj

=
τV

xj

(
exp(log πj − τxj)∑V
i=1 exp(log πi − τxi)

)
− τ + 1

xj

=
τV

xj
SM
(
log πi − τxi

)
− τ + 1

xj

=
1

xj

(
− τ + τV · SM

(
log πi − τxi

))
− 1

xj

=
1

xj

(
∇GS

xj
log pt(xt|x1)

)
− 1

xj
(40)

Therefore, we show that the gradients of the Gumbel-Softmax and ExpConcrete distributions are
proportional to each other. Furthermore, we derive that the score of ExpConcrete distribution further
amplifies the scores for tokens with low probabilities by dividing by xj and subtracting x−1

j .

C MODEL ARCHITECTURE

C.1 DIFFUSION TRANSFORMER

To parameterize our flow and score matching models, we leverage the Diffusion Transformer (DiT)
architecture (Peebles & Xie, 2022) which integrates time conditioning with adaptive layer norm
(adaLN) and positional information with Rotary Positional Embeddings (RoPE) (Su et al., 2021). Our
model consists of 32 DiT blocks, 16 attention heads, hidden dimension of 1024, and dropout of 0.1.

17

Under review at the LMRL workshop, ICLR 2025

Table 3: Diffusion Transformer Architecture

Layers Input Dimension Output Dimension
Sequence Distribution Embedding Module vocab size 1024

Feed-Forward + GeLU vocab size 1024
DiT Blocks ×32

Adaptive Layer Norm (time conditioning) 1024 1024
Multi-Head Self-Attention (h = 16)

+ Rotary Positional Embeddings 1024 1024
Dropout + Residual 1024 1024
Adaptive Layer Norm (time conditioning) 1024 1024
FFN + GeLU 1024 1024

DiT Final Block
Adaptive Layer Norm (time conditioning) 1024 1024
Linear 1024 vocab size

D EXPERIMENTAL DETAILS

D.1 HYPERPARAMETER SELECTION

Maximum Temperature τmax. The maximum temperature controls the uniformity of the probability
distribution at t = 0 when exp(−λt) = 1. Theoretically, the probability distribution is fully uniform
(i.e. ψ0(xt|x1) =

1
V when τmax → ∞. Empirically, we find that setting τmax = 10.0 ensures that

the distribution is near uniform at t = 0 even after applying Gumbel noise, satisfying the boundary
condition ψ0(xt|x1) ≈ 1

V .

Decay Rate λ. The decay rate determines how quickly the temperature drops as t→ 1. A decay rate
of λ = 1 means that the function becomes exp(−t) which drops the temperature to ≈ 0.367 at t = 1.
Since we want the temperature to approach 0 to increase the concentration of probability mass at
the vertex, we set λ = 3.0 such that τ(t) = τmax exp(−3.0t). For larger decay rates λ = 10.0, the
distribution converges too quickly to a vertex which may cause overfitting.

Stochasticity Factor β. We can tune the effect of the gumbel noise applied during inference by
scaling down by a factor β ≥ 1.0 such that gi =

− log(− log(Ui+ϵ)+ϵ)
β . For larger β, the stochasticity

decreases and for smaller β, the stochasticity increases. For Gumbel-Softmax SM, we found the best
performance for noise factors ranging between β = 6.0→ 8.0, which produced high diversity while
preserving foldable protein structures. For Gumbel-Softmax FM, we found the best performance for
much larger noise factors β = 1000.0→ 2000.0, which still had high diversity.

Step Size η and Integration Steps Nsteps. For Gumbel-Softmax FM, the step size is equal to
∆t = 1

Nsteps
since we are integrating the velocity field from t = 0 → 1. For Gumbel-Softmax SM,

the step size determines the rate of convergence to high-probability density regions. Small step
sizes η ≤ 0.1 increase computation cost and number of steps needed to converge. In contrast, larger
step sizes 0.1 ≤ η ≤ 1.0 increases speed of convergence but may overstep the high-density regions.
Empirically, we found that a step size of η = 0.5 is optimal with the number of integration steps
Nsteps = 100.

D.2 PROTEIN EVALUATION METRICS

We evaluate protein generation quality based on the following metrics computed by ESMFold (Lin
et al., 2023b).

1. pLDDT (predicted Local Distance Difference Test) measures residue-wise local structural
confidence on a scale of 0-100. Proteins with mean pLDDT > 70 generally correspond to
correct backbone prediction and more stable proteins.

2. pTM (predicted Template Modeling) measures global structural plausibility. High pTM corre-
sponds to high similarity between a predicted structure and a hypothetical true structure.

18

Under review at the LMRL workshop, ICLR 2025

3. pAE (predicted Alignment Error) measures the confidence in pair-wise positioning of residues.
Low pAE scores correspond to low predicted pair-wise error.

In addition, we compute:

1. Pseudo-perplexity is calculated using ESM2 which computes the feasibility of a protein
sequence based on the predicted probability of each token based on the previous tokens via the
equation:

PPL(x) = exp

(
− 1

L

L∑
ℓ=1

log p(xℓ|x<ℓ)

)

2. Token entropy measures the diversity of tokens within each sequence. It is defined as the
Shannon entropy, where pi is the probability of i-th unique token divided by the total number
of tokens N in the sequence.

E = −
N∑
i=1

pi log2(pi)

3. Diversity is calculated as 1− pairwise sequence identity within a batch of generated sequences
with equal length.

E IMPLEMENTATION DETAILS

Here, we provide the PyTorch inference procedure for Gumbel-Softmax FM, which contains the
following functions:

1. noisy_softmax: given a (B, L, V) tensor of logits for each sequence position, this
function adds i.i.d Gumbel noise values to each token and sequence dimension and scales
down by a temperature parameter generated by transforming expanded_t by the temperature
function τ(t) = τmax exp(−λt).

2. get_velocity_field: given a (B, L, V) tensor of noisy logits at time t and clean
logits (either one-hot from the ground-truth sequence during training or the predicted denoised
logits), this function returns a (B, L, V) tensor of velocities computed according to Equation
21.

3. flow_inference: flow-matching sampling of sequences from near uniform distribution
generated with temperature τmax by iteratively sharpening the distribution. For Nsteps uniformly
distributed time steps between t = 0→ 1, the function computes the velocity field given the
current logits xt using the get_velocity_field function where seq_one_hot is set
to the denoising model output. The argmax tokens of the final distribution are returned.

Listing 1: Gumbel-Softmax Flow Matching Inference

@torch.no_grad()
def flow_inference(self, x0, eps=1e-10):

B, L, V = x0.shape

x0 = self.noisy_softmax(x0, torch.zeros_like(x0))

xt = x0.clone()
xt = xt.to(self.device)

determine uniformly spaced time steps between 0 and 1
t_span = torch.linspace(0, 1, self.args.num_integration_steps, device

=self.device)

vocab_mask = torch.full_like(xt, float(’-inf’), device=self.device)
vocab_mask[:, :, 4:23] = 0.0

19

Under review at the LMRL workshop, ICLR 2025

for i, (s, t) in enumerate(zip(t_span[:-1], t_span[1:])):

expanded_t = t.unsqueeze(-1).unsqueeze(-1).expand(B, L, V)
temp = self.temperature_function(expanded_t)

model_out, error = self.forward(xt, t[None].expand(B))
model_out = model_out.to(self.device)
error = error.to(self.device)

pred_velocity = self.get_velocity_field(xt, model_out, expanded_t
)

pred_velocity = pred_velocity.to(self.device)

step_size = t - s
assert pred_velocity.shape == xt.shape, "shape mismatch"

xt = (xt + (step_size * pred_velocity)).to(self.device)
xt = self.noisy_softmax(xt, temp)

x1 = torch.argmax(xt, dim=-1)
seq = tokenizer.decode(x1.squeeze()).replace(" ", "")
return seq

def noisy_softmax(self, xt, expanded_t, noise_scale=10.0, eps=1e-20):
device = xt.device
B, L, V = xt.shape
vocab_mask = torch.full_like(xt, float(’-inf’), device=self.device)
vocab_mask[:, :, 4:23] = 0.0

temp = self.max_temp * torch.exp(-self.decay * expanded_t)

U = torch.rand(B, L, V).to(device)
gumbel_noise = -torch.log(-torch.log((U / noise_scale) + eps) + eps).

to(device)

xt = (xt + gumbel_noise) / temp
xt = torch.softmax(xt + vocab_mask, dim=-1)

return xt

def get_velocity_field(self, xt, seq_one_hot, expanded_t):
B, L, V = xt.shape

scaling = ((self.decay * torch.exp(self.decay * expanded_t)) / self.
max_temp).float().to(xt.device)

ones = torch.ones_like(seq_one_hot).float().to(xt.device)

inner_prod_target = torch.sum(xt * (ones - seq_one_hot), dim=-1,
keepdim=True) # (B, L, 1)

inner_prod_rest = torch.sum(xt * (- seq_one_hot), dim=-1, keepdim=
True)

velocity_target = scaling * xt * inner_prod_target * seq_one_hot
velocity_rest = scaling * xt * inner_prod_rest * (torch.ones_like(

seq_one_hot) - seq_one_hot)
velocity = velocity_target + velocity_rest

assert velocity.shape == xt.shape, "shapes do not match"
return velocity

Following a similar structure, we provide the PyTorch inference procedure for Gumbel-Softmax SM,
with the following functions:

20

Under review at the LMRL workshop, ICLR 2025

1. convert_to_expconcrete: given a (B, L, V) tensor of logits xt, this function ap-
plies the ExpConcrete transformation with scaled Gumbel noise and time-dependent temperature
according to Equation 14.

2. score_inference: score matching sampling from near uniform distributions generated
with temperature τmax by iteratively sharpening the distribution. For Nsteps uniformly distributed
time steps between t = 0 → 1, the function computes the predicted score function using
the parameterization described in Equation 16 and adds score scaled by step_size to the
ExpConcrete distribution. The argmax tokens of the final distribution are returned.

Listing 2: Gumbel-Softmax Score Matching Inference

@torch.no_grad()
def score_inference(self, x0, eps=1e-10):

B, L, V = x0.shape

temp = self.temperature_function(torch.zeros_like(x0))
x0 = x0.to(self.device)

xt = x0.clone()
xt = xt.to(self.device)

determine uniformly spaced time steps between 0 and 1
t_span = torch.linspace(0, 1, self.args.num_integration_steps, device

=self.device)

vocab_mask = torch.full_like(xt, float(’-inf’), device=self.device)
vocab_mask[:, :, 4:23] = 0.0

for i, (s, t) in enumerate(zip(t_span[:-1], t_span[1:])):
expanded_t = t.unsqueeze(-1).unsqueeze(-1).expand(B, L, V)
temp = self.temperature_function(expanded_t)

xt = torch.softmax(xt, dim=-1)
xt = self.convert_to_expconcrete(xt, temp)

pred = self.forward(xt, t[None].expand(B)).to(self.device)

score = -temp + (temp * V * torch.softmax(pred, dim=-1))

step_size = 0.5

assert score.shape == xt.shape, "shape mismatch"

xt = (xt + (score * step_size)).to(self.device)

xt = torch.softmax(xt + vocab_mask, dim=-1)
x1 = torch.argmax(xt, dim=-1)
seq = tokenizer.decode(x1.squeeze()).replace(" ", "")
return seq

def convert_to_expconcrete(self, xt, temp, noise_scale=10.0, eps=1e-20):
device = xt.device
B, L, V = xt.shape

log_logits = torch.log(torch.clamp(xt, min=eps, max=1.0)).to(device)

U = torch.rand(B, L, V).to(device)
gumbel_noise = -torch.log(-torch.log((U / noise_scale) + eps) + eps).

to(device)

xt = (log_logits + gumbel_noise) / temp
xt = xt - torch.logsumexp(xt, dim=-1, keepdim=True)

return xt

21

Under review at the LMRL workshop, ICLR 2025

F ALGORITHMS

In this section, we provide detailed procedures for the training and inference of the flow and score-
matching models. Algorithm 1 and 2 describe training and sampling with Gumbel-Softmax FM,
respectively. Algorithm 3 and 4 describe training and sampling with Gumbel-Softmax SM, respec-
tively. We refer to x as a single token in a sequence for simplicity, but in practice, the training and
sampling is conducted on a sequence of tokens of length L.

Algorithm 1 Training Gumbel-Softmax Flow-Matching

Inputs: Training sequences of one-hot vectors x1 ∈ D, parameterized denoising model xθ(xt, t) :
∆V−1 × [0, 1] → ∆V−1 that takes the noisy sequence xt at time t and returns the predicted
clean distribution, error prediction model Eϕ(xt, t), maximum temperature τmax, decay rate λ, and
learning rate η.
Output: Trained denoising model xθ(xt, t) and error prediction model Eϕ(xt, t)
procedure TRAINING

for x1 in batch do
Sample t ∼ Uniform(0, 1)
Set τ(t)← τmax exp(−λt)
for all simplex dimensions i = 1 to V do

Sample variable for Gumbel noise Ui ∼ Uniform(0, 1)
Sample Gumbel noise gi = − log(− log(Ui + ϵ) + ϵ)
Given the clean token x1 = ek, sample noisy sequence

xt,i ←
exp

(
log(δik+ϵ)+gi

τ(t)

)
∑

j exp
(

log(δjk+ϵ)+gj
τ(t)

)
end for
Predict xθ(xt, t)← DiTθ(xt, t)

Optimize denoising loss Ldenoise ← − 1
L

∑L
ℓ=1

∣∣∣∣x1 − xθ(xt, t)
∣∣∣∣2

θ ← θ + η∇θLdenoise
Predict error Eϕ(xt, t)← MLPϕ(xt, t)

Optimize error prediction loss Lerror =
1
L

∑L
ℓ=1

∣∣∣∣Eϕ(xt, t)− ||xθ(xt, t)− x1||2
∣∣∣∣2

ϕ← ϕ+ η∇ϕLerror
end for

end procedure

Algorithm 2 Unconditional Sampling from Gumbel-Softmax Flow-Matching

Inputs: Trained model xθ(xt, t) that takes the noisy sequence xt at time t and returns a probability
distribution, time step ∆t = 1

Nstep

Output: A clean sample x
procedure SAMPLING

Sample uniform distribution x0 ← 1
V

Set xt ← x0

for t = 0 to 1 do
Predict xθ ← xθ(xt, t)
Predict Eϕ ← Eϕ(xt, t)
Calculate conditional vector field

uθt (xt, t)←
λ exp(λt)

τmax
xt

(
xθ⟨xt,1− xθ⟩+ (1− xθ)⟨xt,−xθ⟩

)
Take step xt ← xt +∆t · uθt (xt, t)

end for
Sample sequence x← argmax(xt)
return x

end procedure

22

Under review at the LMRL workshop, ICLR 2025

Algorithm 3 Training Gumbel-Softmax Score Matching

Inputs: Training sequences of one-hot vectors x1 ∈ D, parameterized model fθ(xt, t) that takes
the noisy sequence xt at time t and returns the score (direction of probability density increase),
maximum temperature τmax, decay rate λ, and step size η.
Output: Trained score model sθ(xt, t)
procedure TRAINING

for x1 in batch do
Sample t ∼ Uniform(0, 1)
Set τ(t)← τmax exp(−λt)
for all simplex dimensions i = 1 to V do

Sample variable for Gumbel noise Ui ∼ Uniform(0, 1)
Sample Gumbel noise gi = − log(− log(Ui + ϵ) + ϵ)
Given the clean token x1 = ek, sample noisy sequence from ExpConcrete distribution

xt,i ←
log(δik + ϵ) + gi

τ(t)
− log

∑
j

exp

(
log(δjk + ϵ) + gj

τ(t)

)
end for
Predict fθ(xt, t)← DiTθ(xt, t)
Compute predicted score sθ(xt, t)← −τ(t) + τ(t)V · SM

(
fθ(xt, t)

)
Compute target score∇xt,i log pt(xt)← −τ(t) + τ(t)V · SM

(
log(δik + ϵ)− τ(t)xt,i

)
Optimize loss Lscore ← − 1

L

∑L
ℓ=1 ||sθ(xt, t)−∇xt

log pt(xt)||2
θ ← θ + η∇θLscore

end for
end procedure

Algorithm 4 Unconditional Sampling with Gumbel-Softmax Score Matching

Inputs: Trained score model sθ(xt, t), step size η, noise factor β
Output: Trained score model sθ(xt, t)
procedure TRAINING

x0 ← SM
(

log(1
V)+g

τmax

)
for t = 0→ 1 do

Convert logits to ExpConcrete with Gumbel noise g ∼ Gumbel(0, 1)

xt,i ←
log(xt,i) +

gi
β

τ(t)
− log

∑
j

exp

(
log(xt,j) +

gj
β

τ(t)

)
Calculate τ(t)← τmax exp(−λt)
Predict fθ(xt, t)← DiTθ(xt, t)
Compute predicted score sθ(xt, t)← −τ(t) + τ(t)V · SM

(
fθ(xt, t)

)
xt ← xt + ηsθ(xt, t)
xt ← SIMPLEXPROJ(xt)

end for
x1 ← argmax(xt)
return x1

end procedure

23

Under review at the LMRL workshop, ICLR 2025

Figure 3: Predicted structures of de novo generated proteins with Gumbel-Softmax FM and SM, demonstrating
diverse structural generation.

24

	Introduction
	Preliminaries
	The Gumbel-Softmax Distribution
	Discrete Flow Matching
	Score Matching Generative Models

	Gumbel-Softmax Flow Matching
	Defining the Gumbel-Softmax Interpolant
	Reparameterizing the Velocity Field
	Controllable Flow Paths with Dynamic Temperatures

	Gumbel-Softmax Score Matching
	The Exponential Gumbel-Softmax Distribution
	Learning the Gumbel-Softmax Probability Density

	Experiments
	Promoter DNA Sequence Design
	De Novo Protein Sequence Design

	Conclusion
	Meaningfulness Statement
	Flow Matching Derivations
	Derivation of the Gumbel-Softmax Velocity Field
	Proof of Flow Matching Propositions

	Score Matching Derivations
	Derivation of the Score Function
	Proof of Score Matching Propositions

	Model Architecture
	Diffusion Transformer

	Experimental Details
	Hyperparameter Selection
	Protein Evaluation Metrics

	Implementation Details
	Algorithms

