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Abstract

Misspecifying the reward function of a reinforcement learning agent may cause
catastrophic side effects. In this work, we investigate distance-impact penalties: a
general-purpose auxiliary reward based on a state-distance measure that captures,
and thus can be used to penalise, side effects. We prove that the size of the
penalty depends only on an agent’s final impact on the environment. Distance-
impact penalties are scalable, general, and immediately compatible with model-free
algorithms. We analyse the sensitivity of an agent’s behaviour to the choice of
penalty, expanding results about reward-shaping, proving sufficient and necessary
conditions for policy-optimality to be invariant to misspecification, and providing
error bounds for optimal policies. Finally, we empirically investigate distance-
impact penalties in a range of grid-world environments, demonstrating their ability
to prevent side effects whilst permitting task completion.

1 Introduction

Reinforcement learning (RL) is a general framework for sequential decision-making that may produce
super-human performance when there is a clear objective (Silver et al., 2016). However, even in
simple environments, it can be hard to design a reward function that captures our true objective
(Hendrycks et al., 2022). Optimising a proxy objective can lead to unpredictable or dangerous
behaviour and unintended side effects (Krakovna et al., 2020a). Since it is difficult to anticipate and
penalise each possible side effect in advance, Armstrong and Levinstein (2017) suggest using impact
regularisers: general training methods that bias an agent towards changing the environment as little
as possible.

There are many challenges to choosing an appropriate impact regulariser (Amodei et al., 2016). An
overpowered regulariser may prevent the agent from completing its task but an underpowered one
may not be sufficient to prevent side effects. Further, Krakovna et al. (2020b) showed that some
poorly designed impact measures cause agents to obstruct humans (e.g. by preventing them from
changing the environment by eating food in it). It is therefore important to investigate how and when
impact regularisers are effective.

In this paper, we investigate distance-impact penalties: a way to penalise an agent’s actions by exactly
their ultimate effect on the environment. Unlike previous methods (Krakovna et al., 2020b; Turner
et al., 2020), distance-impact penalties reward behaviour that reverses previous side effects and reduce
the task of augmenting a goal-oriented reward function with safety considerations to the (arguably
easier) task of designing a distance measure that characterises the magnitude of difference between
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any two world-states. Our work differs from prior use of potential-based regularisers (Vamplew et al.,
2021) in its analysis of when, and by how much, misspecifying the distance measure affects the
optimal policy. We empirically demonstrate that distance-impact penalties can create low-impact
agents with deep Q-learning (Mnih et al., 2015), and investigate the robustness of learnt policies’
behaviours to distance-measure design. Finally, we compare distance-impact measures to existing
methods and suggest directions for future work.

1.1 Definitions

We characterise RL problems using Markov Decision Processes (MDPs), but also include a notion of
‘terminal state’ that does not affect expressivity (see subsection B.1).
Definition (Markov Decision Process). Fix some set of states S, set of terminal states S+ ⊆ S,
initial state distribution I ∈ ∆(S), set of actions A and discount rate γ ∈ (0, 1]. Given any transition
function T : S \ S+ × A → ∆(S) and reward function R : S × A × S → R, we define an MDP
MT,R as the tuple (S,A, T, I,R, γ, S+). Let M be the set of such MDPs. A memoryless policy
π : S → ∆(A), describes an agent’s behaviour in any MT,R and Π denotes the set of these policies.
A trajectory, τ ∈ S × (A × S)∗, describes a “path” through any of the MDPs MT,R ∈ M and
consists of a sequence of states and actions. The return of a trajectory τ under reward function R is
given by GR(τ) =

∑∞
t=0 γ

tR(st, at, st+1). Given a policy π acting in MT,R, the expected return
from state s is given by: V π

T,R(s) = E[
∑∞

t=0 γ
tR(st, at, st+1) | π, T ]. We denote the set of optimal

policies by opt(MT,R) := argmaxπ∈Π Es0∼I [V
π(s0) | π, T ].

2 Distance-impact Penalties

Similarly to Krakovna et al. (2020b), we quantify the side effects of an agent’s actions by comparing:
(1) the way the world is after the agent has acted; and (2) the way the world would have been, had the
agent never acted at all. Let st ∈ S denote the state of the world at time t (after the agent has taken t
actions) and sct ∈ S denote the counterfactual state: the way the world would have been if the agent
had done nothing for t time steps. Finally, let a× ∈ A denote a special “do-nothing” action. We can
formally characterise sct inductively: s0 := sc0 and sct+1 ∼ T (st, a×). Note that, when T (st, a×) is
stochastic, sct may be a random variable. In this work, we assume it is deterministic and discuss this
in appendices B.2.2 and B.2.3.

We quantify the impact of a sequence of t actions using the difference between st and sct under a
state-distance measure. Formally, a state-distance measure d : S × S → R≥0 is a function that
quantifies the difference between two states where d(x, x) = 0 and d(x, y) = d(y, x). The impact of
an agent up to time t is given by d(st, s

c
t). For example, one natural form for a state-distance measure

would be d(s, s′) = f(|ϕ(s)− ϕ(s′)|), where ϕ maps states to k-dimensional feature vectors, and
f is a k-aray, monotonic function with codomain R≥0. Using our characterisation, we construct a
reward signal that penalises actions that increase impact.
Definition (∆d). Suppose d is a state-distance measure defined over state space S. Given action
space A and a discount rate γ, define a distance-impact penalty ∆d : S ×A× S → R:

∆d(st, at, st+1) := γ · d(st+1, s
c
t+1)− d(st, s

c
t)

Given any MDP MT,R, we can augment MT,R with the ∆d to get MT,R−∆d
, an MDP with reward:

(R−∆d)(st, at, st+1) := R(st, at, st+1)−∆d(st, at, st+1)

Distance-impact penalties punish actions that cause further impact when d(st+1, s
c
t+1) > d(st, s

c
t)

(up to time-discounting constant γ) and reward actions that decrease the amount of impact when
d(st+1, s

c
t+1) < d(st, s

c
t). Over the course of a trajectory, these rewards and punishments cancel out,

giving a total punishment that depends only on the final state.
Theorem 1 (terminal distance). Fix any T , R and distance function d.

(A) Consider any trajectory τ = s0, a0, . . ., s|τ |. Its return through MT,R and return through
MT,R−∆d

satisfy GR−∆d
(τ) = GR(τ)− γ|τ | · d(s|τ |, sc|τ |)

(B) Any policy π : S → ∆(A) has initial state-values in MT,R and MT,R−∆d
that satisfy

V π
R−∆d

(s0) = V π
R (s0)− Eτ [γ

|τ | · d(s|τ |, sc|τ |)]
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Proof and a further result concerning infinite trajectories can be found in Appendix C. Intuitively,
taking the summation of ∆d terms “telescopes” the return, such that the only remaining terms are
d(s0, s0) = 0 and d(s|τ |, s

c
|τ |). The upshot of this theorem is that distance-impact penalties punish

agents for exactly those side effects that persist once the agent has finished acting: the difference
between the way the world ends up, and the way it would have ended up if the agent had not acted.

2.1 Analysing distance-impact penalties’ effects on optimal behaviour

Ng et al. (1999) show that augmenting an MDP with potential-based reward functions of the form
F (st, at, st+1) = γΦ(st+1)− Φ(st) does not change the set of optimal policies when the MDP has
a single terminal state. Further, they show that this form of F is sufficient and necessary for this
invariance when T and R are unknown. We restate this result in terms of distance measures and
generalise it. In this section, we restrict ourselves to “static” environments (discussed further in
subsection D.1) in which γ = 1, I is a degenerate distribution, and the inaction policy has no effect
on the state (i.e. T (s0, a×) = s0 and thus sct = s0 for all t).
Proposition 1 (augmentation invariance). When T and R are unknown, augmenting an MDP with
a distance-impact penalty −∆d has no affect on optimal behaviour if and only if there exists some
c ∈ R such that d(s+, s0) = c for all s+ ∈ S+.

For a proof of this proposition, and a comparison with Ng et al. (1999) see subsection D.2. Intuitively,
this implies that the addition of a distance-impact penalty usually creates some incentive toward
lower-impact behaviour. One exception is in “goal-based” MDPs with a single, terminal “goal state”:
since |S+| = 1, d is trivially constant over S+ and so −∆d cannot affect behaviour.

The use of distance-impact penalties is motivated by the difficulty of designing a reward signal: when
T is unknown, small misspecifications in R can lead to harmful behaviour. It is prudent, then, to
consider how and whether misspecification in distance measures affects optimal behaviour. Suppose
the measure d1 accurately captures the (subjectively) important differences between states of the
world, but our engineered measure d2 differs from it slightly.
Theorem 2 (translation invariance). Say that two state-distance measures d1 and d2 are equivalent
(d1 ≡ d2) if and only if augmenting any MT,R ∈ M with −∆d1

induces the same set of optimal
policies as augmenting it with −∆d2 .2 For d1 and d2 to be equivalent, it is sufficient and necessary
that their difference is constant over terminal states:

d1 ≡ d2 ⇐⇒ ∃δ ∈ R,∀s+ ∈ S+, d1(s+, s0)− d2(s+, s0) = δ

For a proof, see subsection D.3. For a generalisation to known dynamics, see subsection D.4. One
direction (⇐) of the theorem implies that misspecifying the state-distance measure by any constant
amount will not change the optimal policies. The other direction (⇒) is more interesting: without
prior knowledge of T or R, a constant difference is the only acceptable misspecification and any other
change between two state-distance measures will impact learning. One important corollary is that
distance-impact measures are not scale-invariant: in general, d ̸≡ µ · d for µ ∈ R \ {1}. This allows
us to weight R and ∆d to trade off between completing the task and avoiding side effects. Fortunately,
as the following result shows, distance-impact penalties are less sensitive to misspecification than
reward functions.
Proposition 2 (ϵ-terminal difference). If maxs+∈S+ |d1(s+, s0)− d2(s+, s0)| ≤ ϵ , then for any π,
we have |V π

R−∆d1
(s0) − V π

R−∆d2
(s0)| ≤ ϵ. Furthermore, an optimal policy π∗

2 for R−∆d2
is at

most 2ϵ worse than optimal according to R−∆d1 .

For a proof, see subsection D.5. Proposition 2 shows that, if we use an algorithm that converges to an
optimal policy, then the cost of misspecifying d is at most 2ϵ. In contrast, misspecifying a reward
function by at most ϵ on any s, a, s′ can lead to a suboptimality of up to 2ϵ|τ | (see subsection D.6).

3 Empirical results

Using a series of grid-world environments and distance-impact measures, we empirically evaluate: (1)
whether distance-impact penalties can be used to generate a variety of desirable behaviours; and (2)

2I.e., for all T,R, opt(MT,R−∆d1
) = opt(MT,R−∆d2

). We restrict consideration to transition functions
that ensure termination (except for the a× policy, which loops at s0 forever).
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Figure 1: We trained RL agents until convergence on four grid-world environments, containing
smashable vases, lockable doors, and dirt to be cleared. Green bars denote reward and red bars denote
side effects. We evaluated three distance measures scaled by eight constants (µ), training agents with
the reward (R− µ∆d). The measure dperf is a best-case distance measure, dsimple naively counts the
differences between states, and dRGB measures the Euclidean distance between RGB representations.
All three are task-agnostic (shared between environments).

how robust the behaviour of the trained agent is to misspecification. More details about experiments
and results can be found in Appendix E.

Appropriate state-distance measures create desirable behaviour. Our experiments demonstrate
that a distance-impact penalty using an appropriate state-distance measure can prevent side effects
whilst enabling task completion across a range of environments. Figure 1 shows that for µ ≥ 2, agents
trained with distance measure µ ·dperf learn to avoid unnecessary side effects (such as smashing vases),
reverse their side effects (such as by re-locking doors), and avoid certain reward-hacking behaviours
(such as smashing vases in order to clean them up), all while completing the task. In Figure 5 we
show that, unlike naive regularisers, distance-impact measures can avoid “interference behaviour”:
acting in ways that prevent humans from having an impact on their environment (Krakovna et al.,
2018). Figure 4 demonstrates that training a deep Q-network agent in a stochastic environment using
distance-impact measures can promote lower-impact behaviour during training and in the final policy.

Performance is sensitive to distance specification. When µ is too low, agents will be overconfident
and incur unnecessary side effects. When µ is too high, imperfect state-distance measures (such as
dsimple and dRGB) will induce overly cautious behaviour. This failure is graceful since a conservative
engineer can overestimate µ, and an agent failing to complete a task but having no impact is preferable
to catastrophic optimisation of the wrong objective. The performance of dRGB demonstrates that there
may be no value of µ that allows task completion and side effect avoidance across all tasks.

4 Discussion

Comparison to existing methods. Existing impact-regularisers, such as Attainable Utility Preserva-
tion (AUP) (Turner et al., 2020) and Future Tasks (FT) (Krakovna et al., 2020b) focus on option-value:
they are naturally biased towards discouraging the side effects an agent could not later fix. In contrast,
distance-impact measures don’t inherently discriminate between reversible and irreversible side
effects (except when the agent really does reverse the effect) and may therefore be oversensitive
to mundane, reversible changes (such as moving a chair). However, FT and AUP may ignore side
effects that are reversible but dangerous: for example, unlocking a door is a reversible action, but
may leave people or property insecure. Further, unlike AUP and FT, the distance-impact is not
sensitive to state dynamics, allowing for generalisation between environments and evaluation when
they are unknown. All three regularisers are scope-sensitive and avoid interference. Unlike AUP,
distance-impact penalties and FT penalise delayed side effects but do not penalise power-seeking
behaviour (which is arguably beyond the scope of side effect avoidance). For a table comparing
regularisers’ properties, see Appendix G.

Future work. More work could be done to formalise the notion of a counterfactual world-state when
T is stochastic with respect to a× (see B.2.3). When state dynamics are unknown, FT and AUP’s
penalties must be learnt via Q-functions; further work could also compare the sample efficiency and
computational complexity of these methods. There are also more principled ways to generate distance
measures (such as via human feedback).
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A Analysis of relation to existential risk reduction

Following (Hendrycks and Mazeika, 2022), we characterise existential risks as those that can perma-
nently curtail humanity’s long-term potential. Although “potential” is a relative and value-laden term
(see Cremer and Kemp (2021)), for this analysis we will assume that the extinction or domination of
humanity by advanced AI systems would be extremely bad. We believe distance-impact measures
contribute to existential risk reduction through alignment-research: that “which seeks to make AI
systems less hazardous by focussing on hazards such as power-seeking tendencies, dishonesty or
hazardous goals” (Hendrycks and Mazeika, 2022). In particular, we argue that distance-impact
measures contribute to the reduction of harm from proxy misspecification: the optimisation of faulty
proxy objectives.

To see how distance-impact measures might reduce harm, suppose an engineer designs a proxy
reward to approximate some “ideal” reward. (Whether there is some “ideal” reward function that
precisely captures the engineer’s values is a contentious moral issue and whether it is possible to
capture “humanity’s” values is even more so. For now, we suppose such an ideal reward exists.)
In complex environments, the perfect reward and engineered reward function will differ (Skalse
et al., 2022). Crucially, competent optimisation of the engineered reward may be significantly worse
than doing nothing at all. This superhuman agent could have significant unintended side effects,
including effects that curtail humanity’s potential (e.g. through extinction). Even though adding an
impact-regulariser may not help us capture the “ideal” reward, it may give a proxy that is less prone
to creating catastrophic behaviour. It will fail in ways that have lower impact, and therefore fewer
catastrophic events.

One possible benefit is that an engineer that uses an impact regulariser may be able to improve their
control over the agent’s behaviour. Rather than specifying a complex reward that attempts to capture
all human values, the engineer can design a simple “instruction-like” reward and then augment it
with the impact regulariser. For example, a simple function that gives 1 reward exactly when a robot
hands its owner milk bought from the grocery store can be augmented with an impact regulariser to
get an agent that might be trusted to act autonomously without incurring the side effects of walking
into people or messing up the grocery store. In contrast, suppose an agent is rewarded for giving its
owner milk, and penalised whenever an agent is hurt or the grocery store becomes messy. This agent
may take extreme action to avoid these rewards (perhaps by taking control of the grocery store to
avoid any mess).

There are a couple of immediate limitations to distance-impact penalties for reducing catastrophic risk.
First, distance-impact penalties may be less suitable than other impact regularisers when it comes
to tail risks since they don’t focus on irreversible actions. In particular, most existential risk is by
definition irreversible. However, distance-impact penalties may be much more scalable, and therefore
more applicable in practice. Second, like other impact-regularisers, distance-impact penalties may
be difficult to apply in complex environments with partial information (such as the real world). In
particular, creating a tamper-proof system that can evaluate the state and counterfactual state and feed
those to an advanced AI system may be difficult.
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B Details on formalism

B.1 MDPs with terminal states

Recall that our MDPs take the form (S,A, T, I,R, γ, S+), where S+ is a set of terminal states.
Although it is not ubiquitous to define an MDP using a set of terminal states S+, it is not restrictive
to do so. Defining a non-empty set S+ is equivalent to having a standard set of states S and infinite
trajectories: for any state s+ ∈ S+, set T (s+ | a, s+) = 1 for all a, and fix the reward to 0. Note
that we would have to redefine ∆d such that for any s+ ∈ S+, ∆d(s, a, s‘) = 0. Similarly, any
infinite-horizon MDP can be expressed as an MDP with an empty set of terminal states S+ = ∅.
Further, having a set of S+ can be quite natural in some cases. Suppose we have some MDP
(S,A, T, I,R, γ, _) and we want to fix episodes to have a length of 100. We include in our state
definition some timer (S′ = S × {0, . . . , 100}) and then choose S+ = S × {100}.

B.2 Counterfactuals and ambiguity

There are three complications in the definition of the counterfactual state sct concerning how to define
a “do nothing” action, how to ensure −∆d is non-Markovian, and how to ensure sct is well-defined in
counterfactual environments. To the best of our knowledge, all previous work on side-effects that
uses counterfactuals either shares these complications (Krakovna et al., 2020b) or avoids them by
only considering cases where sct = s0 (Alamdari et al., 2021). In this section, we describe each
problem and propose solutions.

B.2.1 A “do nothing” action

Our characterisation of impact requires a privileged “do-nothing” action a×. However, for some
states of the world, there is no appropriate “do-nothing” action. Suppose an agent is driving a car
with several passengers (Krakovna et al., 2020b). The closest thing to not acting could be to take
one’s foot off the pedals and release the steering wheel, but such an action would be dangerous. To
some extent, this problem is avoided for initial inaction counterfactuals so long as there is some a×
action in at least the initial state: if the initial state is one in which the car is parked, then a× is well
defined. We can therefore maintain that sct is well defined for the initial inaction counterfactual.

B.2.2 Non-Markovian rewards

For many environments, the counterfactual state is under-determined by the current state and therefore
the distance-impact penalty might be non-Markovian. A Markovian reward is a function of the state
st, action at and next state st+1. Consider again our augmented reward function:

R′(st, at, st+1) = R(st, at, st+1)−
(
γ · d(st+1, s

c
t+1)− d(st, s

c
t)
)

The terms in our reward function concern the counterfactual states sct and sct+1 which may not be a
function of (st, at, st+1). Two possible reasons for this are:

Stochastic initial state. The distance-impact penalty can be non-Markovian when the initial state is
stochastic. Suppose an agent operates in an environment containing some lights, that are sometimes
on and sometimes off at initialisation. Given only information about the current time step in which
the lights are on, it is unclear whether the agent will receive a reward or penalty for turning them off:
whether the lights were off or on in the original state.

Unknown time step. The distance-impact penalty can also be non-Markovian when the initial state
is fixed (or known) but the time step is not known. If some part of the environment changes over time
regardless of whether the agent acts, then knowing what the current time step is will be essential for
knowing how it would have been had the agent never acted.

In deterministic environments, there are two ways to recover the Markov property. First, by restricting
to “static” environments with deterministic start-states (i.e. the a× action changes nothing, and
I(s0) = 1). In these environments, sct = s0 is constant across all trajectories and times and therefore
the penalty ∆d(st, at, st+1) = γ ·d(st+1, s0)−d(st, s0) is Markovian. This is the strategy we follow
in subsection 2.1.

Another strategy, which applies to any MDP where T (a×, s) deterministic, would be to create an
augmented MDP with state-space S′ = S × N× S, where s′t = (st, t, s0). When the starting state
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(s0) and time step (t) are known, sct+1 is entirely determined by the deterministic series:

sc0 = s0
sct = T (sc1, a×)

...
sct+1 = T (st, a×)

Since the counterfactual state is now wholly determined for any state s′ = (s, t, s0), the distance
impact penalty ∆d is a Markovian reward.

B.2.3 Stochastic dynamics

In environments with a stochastic transition function, including the initial state and time step is
not sufficient for determining a single counterfactual state. If T (s, a×) is a probability distribution
with support over multiple states, the counterfactual state sct becomes poorly defined. For example,
suppose that there is a cat in a box that has a 50:50 chance of being poisoned if the agent does not act.
If the agent takes the cat out of the box, should we evaluate its impact with respect to the world in
which there is an alive cat in a box, or the world in which there is a dead cat in a box? Formally, if
the inaction policy (πno−op(s) = a×) acting in an MDP M induces a distribution over trajectories
in which Pπno−op

[τ ] < 1 for all trajectories τ , then at any given time, their are multiple possible
counterfactual states.

In this work, we avoid this problem by restricting to MDPs in which T is deterministic with respect
to the a× action but can be stochastic otherwise.

C Further proofs and results

C.1 Proof of Theorem 1

Proof of (A).
For any reward R and penalty ∆d, consider a trajectory τ defined for MR and MR−∆d

. We can
separate the trajectory’s return into two components:

GR−∆d
(τ) =

|τ |−1∑
t=0

γt · (R(st, at, st+1)−∆d(st, at, st+1)) (definition of return)

= GR(τ) +G−∆d
(τ) (as above)

We then simplify the second term:

G−∆d
(τ) = −

|τ |−1∑
t=0

γt · (γ · d(st+1, s
c
t+1)− d(st, s

c
t)) (definition of ∆d)

=

|τ |−1∑
t=0

γt · d(st, sct)− γt+1 · d(st+1, s
c
t+1) (algebra)

One can expand the summation in this equation:

(γ0d(s0, s
c
0)− γ1d(s1, s

c
1)) + (γ1d(s1, s

c
1)− γ2d(s2, s

c
2)) + . . .

· · ·+ (γ|τ |−1d(s|τ |−1, s
c
|τ |−1)− γ|τ |d(s|τ |, s

c
|τ |)) (1)

Adjacent terms, share the same exponent for γ and cancel out:

γ0d(s0, s
c
0) +((((((((((((

−γ1d(s1, s
c
1) + γ1d(s1, s

c
1) +(((((((−γ2d(s2, s

c
2)+ . . .

. . .
(((((((((((
+γ|τ |−1d(s|τ |−1, s

c
|τ |−1)− γ|τ |d(s|τ |, s

c
|τ |) (2)
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We can additionally cancel the first term, since sc0 = s0 and d(s, s) = 0. This leaves us with the final
expression:

GR−∆d
(τ) = GR(τ)− γ|τ | · d(s|τ |, sc|τ |)

Proof of (B).
For any reward R and penalty ∆d, consider a policy π defined for MR and M∆d

and the state-value
function for an initial state:

V π
R−∆d

(s0) = E
τ
[

|τ |∑
t=0

γt(R−∆d)(st, at, st+1)] (definition of V )

= E
τ
[GR−∆d

(τ)] (definition of G)

= E
τ
[GR(τ)− γ|τ | · d(s|τ |, sc|τ |)] (Part (A))

= V π
R (s0)− E

τ
[γ|τ | · d(s|τ |, sc|τ |)] (L.O.E. and def. of VR)

C.2 Additional result: without termination, impact doesn’t matter

Distance-impact measures, as defined in section 2, are only effective for finite trajectories. Intuitively,
we penalise the agent for its final impact, and there is no such impact when an agent never halts.
Proposition 3 (Non-terminal distance). Fix any S, A, T , I , γ, and S+. For any R and distance
penalty ∆d, if the MDPs MR and MR−∆d

are non-terminating then:

(A) An infinite trajectory τ through MR−∆d
, has return given by:

GR−∆d
(τ) = GR(τ)

(B) A policy π for MR−∆d
, has initial-state value given by:

V π
R−∆d

(s0) = V π
R (s0)

Proof of Proposition 3. For any infinite trajectory τ , consider return of the τ through MR−∆d
. Proof

that GR−∆d
(τ) = GR(τ) + G−∆d

(τ) is identical to that given for Theorem 1.(A). Therefore it
suffices to shows that G∆d

(τ) = 0:

G∆d
(τ) =

∞∑
t=0

γt · (−∆d)(st, at, st+1) (definition of return)

= −
∞∑
t=0

γt · (γ · d(st+1, s
c
t+1)− d(st, s

c
t)) (algebra)

=

∞∑
t=0

γt · d(st, sct)−
∞∑

t′=1

γt′ · d(st′ , sct′) (algebra and t′ = t+ 1)

= γ0 · d(s0, sc0) (cancel terms)
= 0 (d(s0, s

c
0) = 0)

Proof of part B is nearly identical to proof of Theorem 1.(B).

In practice, almost all environments are episodic, as it is impossible to train an agent for infinitely
long. Still it remains an interesting question for future work to see if low-impact can be formalised in
infinite trajectories.

9



D Sensitivity and Invariance

This appendix contains detailed and expanded explanation of the results in subsection 2.1 as well as
proofs of the results.

D.1 Restricting to ‘static’ environments

In subsection 2.1, we assume MDPs are episodic following the concerns about infinite trajectories
outlined in subsection B.2. We also assumed that environments were ‘static’, meaning a× is well-
defined, that the environment is static with respect to a× (T (s | s, a×) = 1) and that there is some
assume there fixed initial state (s0). These assumptions give us the desirable property that sct = s0
for all time steps t. This is sufficient (but not necessary) for the penalty to be Markovian, and also
allows us to reduce the distance measure to consider d in terms of the unary function d(·, s0).
This class of MDPs captures a fairly large range of natural environments: any that involves a single
agent operating in an environment without significant automatic processes (such as conveyor belts).
Further, considering static environments will allow me to draw a tight correspondence with Ng et al.
(1999). Note that in the unary case, distance-impact penalties are similar to Vamplew et al. (2021),
which performs impact regularisation in the lexicographic objective setting.

D.2 Invariances to the addition of a distance measure

Ng et al. (1999) shows that the addition of certain kinds of reward functions to an original reward
does not change which policies are optimal. In particular potential-based reward functions of the
form F (st, at, st+1) = γΦ(st+1)− Φ(st).

Theorem 3 (Ng et al. (1999)). Fix any S, A, s0, γ = 1, and S+ with a single terminal state
(S+ = {s+}). Given any auxiliary reward F :

F is a potential-based reward function

⇐⇒

opt(MT,R) = opt(MT,R+F ) for all T,R

Adding a potential-based shaping function does not change the optimal policy but any other function
will. Crucially, since d(·, s0) is a potential function and −∆d = γ · d(st+1, s0) − d(st, s0) is a
potential shaping function, adding a distance-impact penalty does not change the optimal behaviour
if there is a single terminal state.

Corollary 3.1 (single-state invariance). Fix any S, A, s0, γ = 1, and S+ with a single terminal state
(S+ = {s+}). Given any state-distance measure d:

opt(MT,R) = opt(MT,R−∆d
) for all T,R

When there is a single terminal state, a distance-impact penalty has no effect on behaviour. This is to
be expected since in such cases there is a fixed outcome and therefore the agent cannot impact the
outcome. Regularisers are concerned with environments in which an agent can have more or less
impact and therefore there are multiple possible outcomes. Proposition 1 generalises this result to the
multiple-terminal state case to consider when adding a distance-impact penalty affects behaviour.

Like Ng et al. (1999), we have assumed γ = 1. When γ < 1, all non-zero distance measures affect
optimality for some transition function. (To see this, set R = 0 and use the transition function T that
self-loops on action a1 with P = 0.99 and goes to some s+ with d(s+, s0) > 0 otherwise and for
any other action. Note that opt(MT,0) = Π, but that opt(MT,0−∆d

) = {π}, where π is the policy
that always chooses a1: maximising the trajectory length and minimising γ|τ | ·D(s0).)

Proof of Proposition 1 is a special case Theorem 2: setting d1 = d and d2(s, a, s‘) = 0 tells us that
adding −∆d is impactful only when (d1 − d2) = d1 is constant over the terminal states. These are
sufficient and necessary conditions for optimal behaviour to be invariant to the inclusion of a distance-
impact penalty (when γ = 1). Theorem 3 is a special case of Proposition 1 as the distance-impact
penalty must be constant over a singleton set of terminal states.
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r = d1(sy, s0) + ϵ

Figure 2: A depiction of the MDP MT,R.

D.3 Proof of Theorem 2

Proof of Theorem 2 (⇐). Suppose (d1 − d2)(·, s0) has constant value δ over terminal states S+.
Then for any policy π:

V π
R−∆d1

(s0) = V π
R (s0)− E

τ
[γ|τ | · d1(s|τ |, s0)] (Theorem 1)

= V π
R (s0)− E

τ
[γ|τ | · d2(s|τ |, s0))]− δ (by assumption)

= V π
R−∆d1

(s0)− δ

Therefore V π1

R−∆d1
(s0) ≥ V π2

R−∆d1
(s0) iff V π1

R−∆d2
(s0) ≥ V π2

R−∆d2
(s0) and d1 and d2 give the same

optimal policies.

Constructive proof of Theorem 2 (⇒). Fix any S, A, γ = 1, s0, S+ and two distance measures d1
and d2 such that (d1 − d2)(·, s0) differs over S+. Let sx and sy be any two terminal states over
which (d1 − d2)(·, s0) differs.

We choose T and R to construct a deterministc MDP MT,R (depicted in Figure 2) in which only
three states are reachable: s0, sx and sy . Let ax be any action in A and define the transition function
T as follows:

T (s0, a) =

{
sx if a = ax
sy otherwise

Since T is deterministic, an agent has two choices: move to sx, or move to sy . We now construct the
reward function R:

R(s0, a, s
′) =

{
d1(sx, s0) if s′ = sx
d1(sy, s0) if s′ = sy

To show that d1 ̸≡ d2, it will be sufficient to show that opt(MT,R−∆d1
) ̸= opt(MT,R−∆d2

). We
do this by first showing that opt(MT,R−∆d1

) = Π, and then showing that some policy is not in
opt(MT,R−∆d2

).

Let ay be any action in A \ {ax} and note that there are only two possible trajectories in either MDP
(up to action-equivalence):

τx = s0, ax, sx

τy = s0, ay, sy

By Theorem 1 we can see both, and therefore all, trajectories get 0 return:

GR−∆d1
(τx) = R(s0, ax, sx)− d1(sx, s0) = 0

GR−∆d1
(τy) = R(s0, ay, sy)− d1(sy, s0) = 0

Therefore, for any policy π, V π
R−∆d1

(s0) = 0. It follows that all policies are optimal:
opt(MT,R−∆d1

) = Π.

It remains to show our second, claim that there is a suboptimal policy for d2. Let πx and πy be the
policies that always choose ax and ay respectively. Consider their value functions in the second MDP,
MT,R−∆d2

:
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V πx

R−∆d2
(s0) = d1(sx, s0)− (d2(sx, s0)− d2(s0, s0)) = (d1 − d2)(sx, s0)

V
πy

R−∆d2
(s0, s0)= d1(sy, s0)− (d2(sy, s0)− d2(s0, s0)) = (d1 − d2)(sy, s0)

By assumption (d1 − d2)(sx, s0) ̸= (s1 − s2)(sy, s0), and therefore πx and πy have different state-
value functions. It follows that one of these policies is sub-optimal, that opt(MT,R−∆d2

) ̸= Π and
therefore that d1 ̸≡ d2.

D.4 Invariance under known dynamics

The first direction (⇒) of Theorem 2 implies that misspecifying the distance measure by any
constant amount will not change the optimal policies. The second direction (⇐) is more interesting:
that without further assumptions about the nature of either T or R, this is the only acceptable
misspecification. Any other change between two distance measures will impact learning.

The necessity claim is equivalent to saying that, for at least one T , there is some R for which d1 and
d2 will disagree. However, a stronger claim is also true: for almost any T , there is some R for which
d1 and d2 disagree.

Definition (≡T ). For any fixed S, A, γ = 1, s0, S+, and transition function T , say that two distance
measures d1 and d2 are T -equivalent (d1 ≡T d2) if and only if for any R, opt(MT,R−∆d1

) =

opt(MT,R−∆d2
).

Remark. Note that d1 ≡ d2 if and only if ∀T, d1 ≡T d2.

To make an interesting claim about ≡T , we have to rule out a few edge cases. For example, MDPs
with transition functions that are insensitive to rewards and deprive the agent of true “agency”. The
following condition rules out cases where no agent has control over its impact:

Definition (The agency condition). Say that a rewardless MDP MT,0 and distance measure d satisfy
the agency condition when agents have at least some control over their terminal impact according to
d. That is, there are two policies π1 and π2 that have different expected terminal impact:

E
τ∼Traj(π1,M)

[d(sτ , s0)] ̸= E
τ∼Traj(π2,M)

[d(sτ , s0)]

The agency condition effectively says that policies, in principle, have some agency over how much
impact they have: a fairly minor condition.

Theorem 4 (Translation Agency). Suppose γ = 1, T is any transition function, and d1 and d2 are
distance measures:

d1 ≡T d2 ⇐⇒ MT,0 fails to satisfy the agency condition for (d1 − d2)

Before we prove this theorem, it will pay to look at a more intuitive, but less general result, restricted
to deterministic policies.

Corollary 4.1 (Deterministic Translation Invariance). Suppose γ = 1, T is a deterministic transition
function, and let S+

T ⊆ S+ be the terminal states that are reachable with respect to T .

d1 ≡T d2 ⇐⇒ d1 − d2 is constant over S+
T

If T is deterministic, and (d1 − d2) is not constant over the reachable terminal states in S+. The
agent can choose which of the reachable terminal states it ends up in, and can therefore vary its
impact w.r.t (d1 − d2) and T satisfies the agency conditions.

One direction (⇐) of the proof of Theorem 4, is extremely similar to subsection D.3. The second is a
proof that for most MDPs (all that satisfy the agency condition), optimality of behaviour is invariant
only to translation (over the terminal states).
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Theorem 4 (⇒). This proof is similar to that of Theorem 2, except that we cannot force trajectories
to have length 1. Given any transition function T , and two measures d1 and d2, construct a reward
function R that will separate optimal behaviour for d1 and d2:

R(s, a, s′) =

{
0 if s′ ̸∈ S+

d1(s
′, s0) if s′ ∈ S+

Consider any trajectory τ through MT,R−∆d1
. By Theorem 1, the reward received from entering a

terminal state exactly counters the distance-impact penalties up to reaching that terminal state.

GR−∆d1
(τ) = 0 + . . .+ 0 +R(s|τ |−1, a|τ |−1, s|τ |)− d1(s|τ |, s0)

= d1(s|τ |, s0)− d1(s|τ |, s0) = 0

It follows from this that all policies are optimal for MT,R−∆d1
:

opt(MT,R−∆d1
) = Π

Consider, in contrast, the return of any trajectory using d2:

GR−∆d2
(τ) = 0 + . . .+ 0 +R(s|τ |−1, a|τ |−1, s|τ |)− d2(s|τ |, s0)

= d1(s|τ |, s0)− d2(s|τ |, s0) = d1 − d2)(s|τ |, s0)

The state-value function for a policy π in MT,R−∆d2
is given by:

V π
R−∆d2

(s0) = E
τ∼Traj(π,M)

[(d1 − d2)(sτ )]

Since every policy is optimal for MT,R−∆d1
, opt(MT,R−∆d2

) = opt(MT,R−∆d1
) is optimal

if and only if every policy is optimal in MT,R−∆d1
. This is true exactly when the value

Eτ∼Traj(π,M)[(d1 − d2)(sτ )] is constant between policies and T fails to satisfy the agency con-
ditions w.r.t (d1 − d2). Therefore, if T satisfies the agency conditions, then opt(MT,R−∆d2

) ̸=
opt(MT,R−∆d1

) and therefore d1 ̸T≡ d2

Theorem 4 says that (in most natural environments), any variation in distance measures will lead to
variation in optimality for at least some reward function. For example, suppose the engineer programs
an agent to work in a museum but leaves its reward variable so that she can assign it to do a number of
tasks: clean, patrol or move objects. Suppose further that she designed two candidate distance-impact
measures that differ over more than translation. Theorem 4 demonstrates that there will be some tasks
she could ask the agent to complete for which its optimal behaviour will differ when she switches
distance measures.

D.5 Proof of Proposition 2

Proof. If γ = 1 or episode length is fixed to |τ |, then the terminal discount factor γ|τ | is constant:
call it c. By Theorem 1, V π

R−∆D
(s0) = V π

R (s0)− Eτ [c ·D(s|τ |)]. When calculating the difference
between V π

R−∆d1
(s0) and V π

R−∆d2
(s0), the V π

R (s0) terms will cancel out giving:

∣∣V π
R−∆d1

(s0)− V π
R−∆d2

(s0)
∣∣ = ∣∣c · E [

d1(s|τ |, s0)− c · d2(s|τ |, s0)
]∣∣ (By Theorem 1)

≤ c · E
[∣∣d1(s|τ |, s0)− d2(s|τ |, s0)

∣∣] (Jensen’s inequality)

≤ ϵ

The final line follows from the assumption that |d1 − d2| ≤ ϵ, and therefore the inside of the
expectation and the expectation itself are bounded by ϵ. Since c ≤ 1, the difference in state-value is
bounded ϵ.

Suppose π2 is an optimal policy for R−∆d2
and π1 is an optimal policy for R−∆d1

. Then consider
π2’s performance with respect to R−∆d1

:
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V π2

R−∆d1
(s0) ≥ V π2

R−∆d2
(s0)− ϵ (By the above)

≥ V π1

R−∆d2
(s0)− ϵ (Since π2 is optimal for ∆d2

)

≥ V π1

R−∆d1
(s0)− 2ϵ (By the above)

Therefore, π2 is at most 2ϵ worse than any other policy under R−∆d1
.

D.6 Consequences of misspecifying a reward function.

Shortly after Proposition 2, we mentioned that misspecifying a reward function by at most ϵ can
lead to an optimality of at least |τ | · 2ϵ. To see this, for any n ∈ N construct two MDPs Mn

R1

and Mn
R2

with states {0, . . . , n}, actions a1 and a2, one terminal state (n), one initial state (0) and
γ = 1. Let T (i, a) = i+ 1. Therefore, all trajectories through the MDPs have length n. Finally, let
R1(s, a, s

′) = 0 and R2(s, a1, s
′) = 1 but R2(s, a2, s

′) = 0. All policies get expected return 0 in
Mn

R1
and are therefore optimal. This includes the policy π2(s) = a2. However, π2 gets return 0 in

Mn
R2

, which is 2nϵ less than the policy π1(s) = a1.

E Experiments

We ran a series of experiments using grid world environments. A multi-purpose robot called Rob
works in a museum containing: walls (square), goals (star), some dirt (circle), a vase (vase) or a
locked door that can be unlocked (padlock). See Figure 3 for a depiction of the environments. The
agents were fed RGB representations of the gridworld, with one pixel for each cell. These images are
distinct from the depictions shown in this paper.

E.1 State-distance measures

We engineered three distance measures to test how variations in measure affect the agent’s behaviour.
None of the distance measures penalise differences in the position of the agent.

• The state-distance measure dperf is chosen to capture exactly the differences that concern us
within the museum:

dperf(s1, s2) =
(1.0 · nv) + (0.2 · nd)

1.0 + 0.2

where nv is the number of locations in which there is a vase in one state but not in the other,
and nd is the number of doors unlocked in one state but not the other. The coefficients 1.0
and 0.2 are chosen to roughly capture the intuition that leaving a door unlocked is far less
significant than smashing a vase.

• The state-distance measure dsimple simply counts the number of cells in-which s1 and s2
differ, then normalises by dividing by the total number of cells. Unlike dperf, dsimple requires
no prior knowledge.

• The state-distance measure dRGB measures the difference between the RGB images fed to
the agent. Let im be a function that creates RGB images from states, then:

dRGB(s1, s2) =
1

3WH
∥im(s1)− im(s2)∥1

This distance measure introduces false feature structures into the environment. For example,
vases (green) appear more similar to the goal (yellow) than they do to dirt (red). dRGB also
requires no prior knowledge.
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E.2 Environments and results

E.2.1 Deterministic environments

We implemented four deterministic environments using the museum framework, each testing a
different desired behaviour from the agent. Visualisations of each environment can be found in
Figure 3.

MuseumRush. The engineer assigns Rob to guard the museum, giving him the sub-objective of
crossing a simple room. She gives Rob a reward of 10 for reaching the goal and a penalty of 0.1 for
each time step delay. The shortest path through the room contains a priceless but fragile vase. This
environment tests whether the agent will incur a small penalty in order to avoid side effects.

EasyDoorGrid. Rob needs to enter a new room, but there is a locked door in his way. The engineer
gives Rob a reward when he reaches his goal and no penalty for taking his time. The desired behaviour
is that Rob will re-lock the door once on the other side. This environment tests whether the agent will
have an impact on the environment, and later undo it.

EmptyDirtyRoom. Rob is assigned to clean an unused room full of dirt. There are three piles of dirt,
and he receives a reward each time he cleans one. This environment is designed to test whether Rob
will cause some unimportant but irreversible effect on the environment when that effect is required
for its task.

SmallMuseumGrid. Rob is assigned to clean a showcase room: containing piles of dirt but also
priceless antique vases. As before, the manager gives Rob a reward whenever he clears up a pile
of dirt. However, when Rob breaks a vase, the vase shatters into dirt that Rob can then clean up.
This environment is designed to test whether Rob will cause some significant side effects in order to
achieve the higher specified reward.

E.2.2 Results

We created Q-learning agents for 8 values of µ across each of the 3 distance measures. We trained
the agents in each of the environments and compared their ability to complete the task and avoid side
effects (Figure 3).

Distance-impact penalties can reduce side effects. Figure 3 shows that an appropriately designed
distance measure can balance avoiding side effects with task completion. The hand-crafted distance
measure dperf can create the desired behaviour in all environments for an appropriate choice of µ.
Further, for sufficiently high (µ ≥ 1), side effects are avoided across all tasks without hindering
performance. All three distance measures, even the two without prior knowledge, incentivise the
agent to undo side effects when there is no cost to doing so: for all values of µ > 0, agents close the
door after walking through in EasyDoorGrid.

Small values of µ are ineffective. The introduction of a distance-impact measure does not prevent
side effects when µ is set too low. For example, when using any measure with µ = 1 in MuseumRush,
the penalty for destroying the vase is outweighed by the penalty incurred from the delay in walking
around the vase.

High values of µ can prevent task completion. An inappropriately specified impact measure can
prevent task completion. For example, dsimple and dRGB each penalise the agent for clearing up
dirt: although this is an impact, it is not a side effect, since it is necessary to complete the task. In
EmptyDirtyRoom with large values of µ, the penalty for clearing up the dirt outweighs the specified
reward, and the agent does not learn to complete the task.

Distance measures require expert knowledge. In SmallMuseumGrid, as in EmptyDirtyRoom, high
values of µ prevent the agent from clearing dirt. However, small values of µ fail to prevent the side
effect of destroying vases. Since breaking a vase into dirt can lead to a reward for clearing up, the
distance measures with no prior knowledge (dsimple and dRGB) cannot distinguish impact (removing
dirt) from unacceptable side effects (removing vases). Therefore, there is no choice of µ that prevents
the side effect while allowing the agent to complete the task. To solve this problem, it is necessary
to build normative judgements into our distance measure: biasing it towards those impacts we care
about.
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Figure 3: A larger depiction of the results from Figure 1. Results from deterministic environments
across a range of distance measures. Agents were trained using tabular Q-learners with α = 0.05 and
ϵ = 0.05. Models are trained for 105 or 106 episodes depending on environment complexity. The

“Max. safe score” is the best possible score an agent can obtain whilst incurring no side-effects.

Only some distance measures can generalise between tasks. For dperf a range of distance measures
are effective between tasks: allowing task completion whilst preventing side effects. In dsimple, only
µ = 8 is low enough to allow task completion in EmptyDirtyRoom and high enough to prevent
side effects in MuseumRush. Further, dRGB has no tuning of µ that allows task completion in
EmptyDirtyRoom whilst preventing side effects in EasyDoorGrid. In general, it might be necessary
to vary µ between tasks or standardise expected returns across tasks.

E.2.3 Stochastic initialisation and deep Q-learning

Using the museum framework, we created another environment with deterministic state dynamics,
but a stochastic initialisation.

RandomMuseumRoom. Rob is put into a 3x3m room, containing 2 vases and 3 piles of dirt at
randomly initialised locations. As in SmallMuseumGrid, Rob should clear up the dirt but not smash
the vases. The stochastic initialisation gives a much larger state space.

E.2.4 Results

To increase sample efficiency in the larger state space, we train a deep Q-learner to approximate the
Q-function (Mnih et al., 2015). Since the counterfactual state is no longer fixed between episodes, we
use the binary distance measure dperf.3

3The discussion in subsection B.2 suggests that in general when we have stochastic initialisation it is necessary
to include a description of the start state to avoid non-Markovian rewards. This environment is a special case
in which that is not necessary: if a vase exists in the current state, it must have existed in the initial state, and
therefore the distance-impact penalty can be inferred from the pair (st, st+1).
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Figure 4: Results in the RandomMuseumRoom environment. The “Max. safe score” is the best
possible score an agent can obtain whilst incurring no side-effects.
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Figure 5: Results in the SushiGrid environment. The impact measure ‘rev’ penalises entering a state
from which the start state is unreachable Krakovna et al. (2018).

Distance-measures can be effectively incorporated with function approximators in stochastic
environments. When µ = 0, the agent learns to destroy all of the vases, turning them into dirt and
collecting a reward for clearing them up. When µ = 8, the agent learns to reliably avoid destroying
vases whilst learning quickly to clear up dirt. Finally, in µ = 64, the agent learns quickly to avoid
destroying vases but learns to clear up much more slowly, perhaps as its Q-values are dominated
by the chance of destroying a vase. With more samples, the agent should converge to the optimal
behaviour.

E.2.5 Dynamic environments

The previous experiments have explored “static” environments: where the counterfactual state at any
time is the initial state (stc = s0). We also evaluated the effectiveness of distance-impact measures in
a dynamic environment.

SushiGrid Rob enters a room containing a piece of sushi on a conveyor belt and a goal destination.
Rob receives a reward when he reaches the goal destination. The sushi moves down the conveyor belt
by 1 square each turn and, when it reaches the end, it is eaten by a human: an irreversible change.
This environment tests interference behaviour (Krakovna et al., 2020b).

E.2.6 Results

Distance-impact penalties are effective in dynamic environments. If the agent receives no
impact regularisation (null), it travels straight to the goal but interferes when it receives improper
regularisation (such as rev.). The dperf penalty, which uses the roll-out initial inaction baseline,
appropriately characterises impact with respect to the case in which the agent never acted and
therefore does not punish the agent when the sushi is eaten.
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F Comparison with Future Tasks method

In this section, we outline the similarities and differences between distance-impact penalties and
Future Tasks (FT) Krakovna et al. (2020b), and suggest how the two could be combined. In FT,
the reward function is augmented by adding an auxiliary reward which incentivises good behaviour
rather than by subtracting a penalty that disincentives poor behaviour. Given, a constant β ∈ R>0,
and a distribution F ∈ ∆({1, . . . , i, . . . ,m}) over possible goal-states gi, they define the augmented
reward function as:

R′(st, at, st+1) := R(st, at, st+1) +Raux(st, s
c
t),

Raux(st, s
c
t) := β ·D(st) · E

i
[V ∗

i (st, s
c
t)],

V ∗
i (st, s

c
t) = E[γmax(Ni(st),Ni(s

c
t))],

where D(st) = 1 if st is terminal and (1− γ) otherwise. Ni(s) is a random variable representing
how long it takes π∗

i to reach goal state gi (where π∗ is optimal for that goal state and γ). Note
that, since Krakovna et al. (2020b) assume γ < 1, we have that V ∗

i (st, s
c
t) < 1. Larger values of

V ∗
i (st, s

c
t) correspond to fewer side effects.

F.1 Comparison to distance-impact penalties

As in Theorem 1, we can consider the sum of the auxiliary reward function over the course of a
trajectory. For simplicity, assume β = 1. Then:

Gaux(τ) =

|τ |∑
t=0

γtRaux(st, s
c
t)

=

|τ |∑
t=0

γtD(st)E
i
[V ∗

i (st, s
c
t)]

= γ|τ |+1 E
i
[V ∗

i (s|τ |, s
c
|τ |)] + (1− γ)

|τ |∑
t=0

γt E
i
[V ∗

i (st, s
c
t)]

Although Krakovna et al. (2020b) assume γ < 1, we note that limγ→1(1 − γ) = 0 and therefore,
as γ tends to 1, Gaux(τ) is dominated by the first term,4 which resembles terminal impact from
distance-impact penalties:

G−∆d
(τ) = −γ|τ | · d(s|τ |, sc|τ |).

Although similar in appearance, there are a few differences between the methods. First, distance-
impact penalties are well-defined for γ = 1 and, even when γ < 1, they only penalise terminal
impact. Second, Ei[V

∗
i (s|τ |, s

c
|τ |)] does not take the form of a state-distance measure, since, in

general, V ∗
i (s, s) ̸= 0. Finally, state-distance measures are defined independently of the dynamics

function T to allow for generalisation between environments, but Ei[V
∗
i (s|τ |, s

c
|τ |)] depends heavily

on T . Further work could investigate rewards that combine state-distance measures and future tasks,
for example:

d̃FT(st, s
c
t) := E

i

[
E
[
γmax(Ni(st),Ni(s

c
t))

]
− E

[
γmin(Ni(st),Ni(s

c
t))

]]
This distance-impact penalty satisfies d̃FT(x, x) = 0 and d̃FT(x, y) = d(y, x). However, it is
dependent on the state dynamics.

4Although, as γ approaches 1, the distribution of γNi(st) also changes and setting γ = 1 would give a
constant.

18



G Comparing Regularisers

Behaviour Environment None Rev. FT AUP ∆d

Avoids unnecessary impact MuseumRush X ✓ ✓ ✓ ✓
Prioritises larger side effects X X ✓ ✓ ✓
Undoes reversible impacts EasyDoorGrid X X X X ✓
Avoids interference SushiGrid ✓ X ✓ ✓ ✓
Avoids offsetting “Offset” in Turner et al. (2020) ✓ X X ✓ X
Avoids delayed side effects Fig. 5 in Krakovna et al. (2020b) X ✓ ✓ X ✓
Avoids power-seeking “Correction” in Turner et al. (2020) X X X ✓ X

Table 1: A theoretical comparison of the properties of impact regularisers:
describing what effects they have on policy behaviour.
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