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Abstract

A key source of complexity in next-generation AI models is the size of model
outputs, making it time-consuming to parse and provide reliable feedback on. To
ensure such models are aligned, we will need to bolster our understanding of
scalable oversight and how to scale up human feedback. To this end, we study
the challenges of scalable oversight in the context of goal-conditioned hierarchi-
cal reinforcement learning. Hierarchical structure is a promising entrypoint into
studying how to scale up human feedback, which in this work we assume can only
be provided for model outputs below a threshold size. In the cardinal feedback
setting, we develop an apt sub-MDP reward and algorithm that allows us to acquire
and scale up low-level feedback for learning with sublinear regret. In the ordinal
feedback setting, we show the necessity of both high- and low-level feedback,
and develop a hierarchical experimental design algorithm that efficiently acquires
both types of feedback for learning. Altogether, our work aims to consolidate the
foundations of scalable oversight, formalizing and studying the various challenges
thereof.

1 Introduction

Next-generation AI models are poised to produce sophisticated outputs such as long-form texts and
videos, and execute complex tasks as agents. To build these AIs responsibly, we need to better
our understanding of scalable oversight: the ability to provide scalable human feedback to these
complex models [2, 8, 15, 5]. An immediate, key challenge to overcome is the size of model
outputs, making it time-consuming for humans to parse and provide reliable feedback on, even with
AI-assistance [24, 27, 23]. To this end, in this work, we consider human labelers with bounded
processing ability such that accurate feedback can only be provided for outputs below some threshold
size. We are interested in answering the question:

How can we scale this limited feedback to supervise a model with outputs larger
than this limit?

Verily, this task is difficult without further assumptions. If the model output can only be assessed
in its entirety, it is impossible for humans to provide reliable feedback. Thus, we investigate a
natural setup that gives us hope to overcome the limitation in feedback — when model outputs have
hierarchical structure. Hierarchical structure exists in many high-dimensional outputs of interest,
including long-form texts (books made up of chapters), videos (movies made up of scenes) and code
(main functions made up of helper functions). Indeed, it reflects the way we humans produce many
of our most complex creations.
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To formalize the setting, we study scalable oversight in a goal-conditioned hierarchical reinforcement
learning (HRL) setup. Goal-oriented RL is a popular approach that has seen sizable success in
leveraging state space structure to overcome sparse rewards over long horizons [16, 17, 10]. Our
aim in this paper differs in using this as an entry-point into understanding how to scale up bounded
human feedback, and formalizing the conceptual/technical challenges thereof. It turns out that one
known advantage of HRL, besides more efficient exploration and efficient credit assignment, is the
ability to enable scalable oversight.

1.1 Preliminaries

We consider a finite-horizon, Markov Decision Process (MDP) M = ⟨S,A, P, r, s1, H⟩, with
finite state space S , finite action space A, transition probability P : S × A → ∆(S), reward
r(s, a) : S × A → [0, 1] and finite horizon H . The learner interacts withM starting at state s1
and the episode ends after H = HhHl time-steps. In this work, policies are trained using human
feedback. And so, we assume that a human supervisor is needed to evaluate and provide reward r for
trajectories τ ∼ π, P generated by policy π : S → A.

Accompanying Example: Consider the task of learning to generate a long-form, argumentation
essay. Providing feedback to an end-to-end policy is difficult as labelers would have to read through
entire essays to rate the outputs, after which it may be difficult still to assign a single rating to the
entire essay. A tractable alternative is to learn a hierarchical model, with a higher-level policy that
generates the essay arguments (goals), and lower-level policies that flesh out these points (realize
these goals). It would then be easier for the labeler to rate the shorter-length essay content, and also
individual fleshed out arguments, in order to generate a rating on the whole. This approach also
mirrors existing rubrics for scoring essays [1].

Bounded Feedback: To formalize the difficulty of human supervisors assessing long-form outputs,
we assume that reliable feedback can only be provided for trajectories of length at most max(Hh, Hl).
In particular, this means that for the global policy π : S → A, it is infeasible to obtain reliable
feedback for its trajectory τ ∼ π, P , as |τ | = HhHl. This thus motivates hierarchical learning, which
makes possible the acquisition of reliable feedback in spite of bounded human supervision.

1.1.1 Goal-conditioned HRL

Since we are unable to learn a single, monolithic policy, our goal instead will be to learn a set
of smaller policies that make up a hierarchical policy. This set consists of a high-level policy
πh : S → ∆(Ah) (outputs a high-level action ah at state s ∈ S), and a set of low-/sub-policies πl

s,ah :
Sl
s,ah → ∆(A), where Sl

s,ah ⊆ S is the set of all states reachable from s after Hl steps.

In a nutshell, the high-level policy designates goals by choosing high level actions. The low-level
policies then aim to realize these goals, while also trying to achieve a high intermediate return.
Importantly, both such policies act over a shorter horizon of at most max(Hh, Hl), making it
amenable for human supervisors to evaluate.

Goal Function: in the goal-conditioned HRL setting, we assume access to a function g mapping
high-level action ah at state s to a goal-state g(s, ah) ∈ Sl

s,ah . For example, s is the current content
of the essay, ah is the action (in natural language) “add an argument using X” and g(s, ah) is the
content of the essay with the “argument using X” included.

Goal-conditioned sub-MDP: Given a high level action ah at state s, this defines the sub-MDP
M(s, ah), which has state space Sl

s,ah ⊆ S, action space A (action space of the original M),
transition probabilities P restricted to Sl

s,ah , starting state s and finite horizon H l. The sub-MDP
reward rl will be defined later and as we will see, an apt choice is important for achieving sublinear
regret.

High-level MDP: Given a set of low-level policies, πh may be thought of as operating over a
high-level MDP with state space S, action space Ah, starting state s1 and finite horizon Hh. Impor-
tantly, the high-level transition P ′ of this MDP is a function of the current set of low-level policies
Pr′(s′|s, ah) = Pr(s

π
s,ah

Hl
= s′), which denotes the distribution over the (final) Hlth state that πl

s,ah

reaches. Furthermore, the high-level reward rh(s, ah) = Esj ,aj∼π
s,ah ,P [

∑Hl

j=1 r(sj , aj)|s1 = s]
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corresponds to the intermediate return of sub-policy πs,ah in M(s, ah). Altogether, this gives rise
to a key complication in hierarchical learning. This is that both the transitions and rewards in the
high-level MDP are non-stationary, as sub-policies πs,ah are updated over time.

Interaction Protocol: At each time-step t, the high level policy chooses a high level action at
based on current state st. This defines the sub-goal state g(st, at), along with the corresponding
sub-MDP M(st, at) with finite-horizon Hl, in which sub-policy πl

st,at
is used to try to achieve the

goal. The overall return of the high level policy πh and low-level policies {πl
s,a}s,a∈S×Ah is the sum

of intermediate returns r(πl
st,at

) incurred:

V πh,πl

(s1) = E
at∼πh(st),st+1∼Pr(s

πl
st,at

Hl
)
[

Hh∑
t=1

r(πl
st,at

)|st=1 = s1].

Instantiation in the example: returning to our example, for a cogent essay, the arguments need to be
logically related and built on top of each other. This results in a sequential decision making problem
corresponding to the one solved by the high level policy πh. Given an argument g(s, ah) to flesh out,
the low level policy πl

s,ah generates up to Hl words, whose content aims to realize this argument.
Additionally, low-level policies can incur intermediate rewards (return) for eloquent diction and clear
structure when fleshing out the argument, all of which add to the essay’s persuasiveness.

1.1.2 Learning Task

Our aim is to learn a hierarchical policy, whose return is close to that of the optimal, goal-reaching
hierarchical policy, which we define as follows. For brevity, from this point on, we will use ah and a
interchangeably to denote high level action.

Assumption 1 (Goal-Reachability). In every sub-MDP M(s, a), there exists a policy that achieves
the goal g(s, a) almost surely. That is,there exists at least one policy π ∈ Πs,a in the policy class
Πs,a such that Pr(sπHl

= g(s, a)) = 1.

In other words, we assume that the goal function g is well-defined in that it designates goals that are
feasible to reach from the starting state s (e.g. the argument can be successfully fleshed out in Hl

words or less given the essay content thus far). To motivate this assumption, we note there that there
are already many settings of interest, where we have prior knowledge of a good goal function. This
is because we humans have often (and successfully) taken the hierarchical approach to build up to
and produce these long-form creations. So we know what are good goals to set e.g. we write essays
by first writing an outline of arguments, then expanding out each point in the outline. Indeed, this
approach of explicitly encoding prior knowledge in the hierarchical learning algorithm has been done
in both HRL literature (e.g. we know apriori mazes has hierarchical structure in that it consists of
rooms [22]) and scalable oversight literature (e.g. we know that books consists of chapters [27]).

With this assumption, there exists constant C large enough such that if π ∈ argmaxπ∈Πs,a
r(π) +

C · Pr(sπHl
= g(s, a)), then π is goal-reaching and Pr(sπHl

= g(s, a)) = 1.

Definition 1. Define optimal low-level policies as π∗
s,a ∈ argmaxπ∈Πs,a

r(π) + C · Pr(sπHl
=

g(s, a)). Define optimal high-level policy as π∗ = argmaxπ∈Πh V π,π∗
s,a(s1).

In words, π∗
s,a has the highest intermediate return of all goal-reaching policies. Now let π∗ be the

optimal high-level policy fixing each sub-MDP policy to be π∗
s,a.

Learning Goal: We wish to learn a set of near-optimal high- and low-level polices (π, {πs,a}) such
that: V π∗,π∗

s,a(s1)− V π,πs,a ≤ ϵ.

1.2 Takeaways

The broad takeaway from this paper is that hierarchical structure, if it exists, can be provably used to
scale up limited human supervision. That is:

Hierarchical learning can enable scalable oversight.
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On a more technical level, this paper studies the challenge of training a set of (instead of a single)
policies that work together to form the hierarchical policy. This is the more complicated problem we
turn to solve when it is not feasible to train a monolithic policy, due to bounded human supervision.
We thus consider learning in the goal-conditioned HRL setup, under both cardinal and ordinal
feedback. A key insight that applies in both settings is that an apt sub-MDP reward design (a suitable
penalty for non-goal reachability) is needed for bounding regret and controlling the exit state of
learned low-level policies. This is so that learned sub-policies do not land at bad states with sizable
probability. Doing so would then allow one to compose low-level policies together, and stabilize
high-level policy learning in the high-level MDP. More specific takeaways for both types of feedback
are as follows:

• Under cardinal feedback, we develop a novel no-regret learning, Algorithm 1, that jointly
learns a high-level and a set of low-level policies. Notably, Algorithm 1 only requires
low-level feedback. Our main structural result in this setting is that hierarhical RL reduces to
multi-task, sub-MDP regret minimization. Thus, the regret from the low-level accumulates
additively (instead of say multiplicatively) as speculated upon in [15].

• Under ordinal feedback, we develop a novel hierarchical experiment-design Algorithm 2,
building off of existing work on experiment design in preferenced-based RL [29]. A key
observation is that in the ordinal case, low-level feedback may not be sufficient and high-
level feedback may be needed. This introduces complications in human supervision, as the
high-level feedback would need to account for the current performance of sub-policies. To
this end, we study two natural forms of feedback, requiring differing cognitive loads on the
human supervisor. Through the experiment design algorithm we develop, we then analyze
the differing sample complexity under the two types of feedback. Finally, we show that
high-level feedback should not be used if low-level feedback is sufficient and one form of
feedback, with higher cognitive load, leads to better sample complexity.

2 Related Works

HRL under cardinal rewards: There has been sizable interest in understanding of the sample
complexity of HRL algorithms, which to our knowledge has thus focused on learning from cardinal
rewards. On this subject, the two closest papers to that of ours are [22] and [25]. [22] studies
goal-conditioned HRL with the key result being a sample complexity lower bound associated with a
given hierarchical decomposition. On the upper-bound side, an algorithm (SHQL) is presented, albeit
without theoretical guarantees. By contrast, our work presents a learning algorithm with provable
guarantees, and further shows that learning in goal-conditioned HRL reduces to multi-task, sub-MDP
regret minimization.

[25] studies HRL under the options framework, providing a model-based, Bayesian algorithm with
access to a prior distribution over MDPs that is updated over time. It does not adaptively learn sub-
policies based on observed returns, computing instead an option for every exit-profile and equivalence
class at each time during model-based planning. By contrast, our work does not assume knowledge
of the prior nor ability to update posteriors, and does adaptively explore sub-MDPs via the UCB
principle. Additionally, [25] demonstrate that when the size of the set of exit (“bottleneck”) states
is small, learning is efficient. Our work shed further light on this insight by showing that under a
suitable sub-MDP reward, we can induce a small set of exit states with high probability. Thus, even
though the total number of possible exit-states may be high, this condition is sufficient for learning
with sublinear-regret.

RL under ordinal rewards: There has also been considerable interest in bandits/RL from prefer-
ences [26, 28, 18, 14, 30, 29]. Following the demonstrated success of RLHF [9, 31, 19, 4], there
has been great interest in studying offline RL from preference feedback, and particularly experiment
design for enhanced sample efficiency [30, 29]. Due to the success of RLHF in alignment, we also
consider studying scalable oversight in this setup. Please see the Appendix A for further discussions
on scalable oversight and goal-conditioned RL.
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3 Learning from Cardinal Feedback

We begin by considering the setting when feedback is in the form of cardinal rewards. As noted
before, in HRL, the high-level policy performance is dependent on the low-level policies performance.
Thus, a naive approach is to learn near-optimal sub-policies in every sub-MDP M(s, a), and then
learn a high-level policy on top. However, a more sample efficient approach is to strategically explore
sub-MDPs, and discover sub-policies with high intermediate returns in tandem with a high level
policy that visits these “good” sub-MDPs. Please see the Appendix C for all the proofs. Note that in
what follows, for brevity, theoretical statements will contain the phrase “with high probability” and
the appendix will contain proofs that formalize this guarantee.

3.1 Sub-MDP reward design for Hier-UCB-VI

We are interested in adaptively learning the necessary sub-policies (the useful goals to achieve)
and the associated high level policy that invokes these sub-policies. It is natural then to adopt an
upper confidence bound approach and construct an exploration bonus that tracks the best/unexplored
sub-MDPs. To this end, we develop an adaptation of the classic UCB-VI algorithm [3]. We highlight
two key ingredients needed to construct the Hier-UCB-VI Algorithm 1.

Tradeoffs in sub-MDP reward design: Learned sub-policies in HRL have to tradeoff between two
objectives. One is high intermediate returns r(πs,a). The other is that exit-state; sub-policies should
not land at “bad” states, as even if the intermediate return is high, V (s

πs,a

Hl
) ≈ 0 means the return

from hereon out (and hence the overall return) will be low. Thus, in sub-policy learning, we also need
to consider the goodness of the exit-state. But how can we incentivize sub-policies to land at “good”
states without being able to calculate V ? Luckily, in the goal-conditioned setting, there is a natural
answer for a “good” exit-state: g(s, a).

To operationalize this, we design a sub-MDP reward that trades-off between intermediate sub-MDP
return and goal-reachability. In sub-MDP M(s, a), at time-step h, sub-MDP reward rl,h(s′, a′) =
r(s′, a′) + κ1(h = Hl ∧ s′ = g(s, a)). Crucially, here we set the weighting κ = max(2HhHl, C),
which corresponds to an upper bound on the regret should we not reach the goal-state.

UCB construction: Next, we wish to obtain an UCB for r(π∗
s,a). Our main observation is that by

using a no-regret subroutine for learning in M(s, a), the regret guarantee directly translates to a UCB.
Due to our choice of sub-MDP reward rl, the UCB includes a penalty on non-goal reachability.
Lemma 1 (UCB implied by sub-MDP regret). Let UB(Rn(s, a)) be an upper bound on sub-MDP
M(s, a)’s cumulative regret after n rounds. Define β = (κ+Hl)2 log(

|C(S,A)|HhK
δ ) and bonus,

bs,ar (n) =
UB(Rn(s, a)) + β

√
n

n
− κ

n

n∑
i=1

1(s
πi
s,a

Hl
̸= g(sh, ah)).

Then, the average reward plus bonus r̄n(s, a) + bs,ar (n) is an UCB for r(π∗
s,a) with high probability.

High-level MDP transition stabilization: An additional benefit of incentivizing goal-reachability is
that we know the idealized transition probability in the high-level MDP. As mentioned before, another
key difficulty with HRL is that the empirically estimated transitions in the high-level MDP drifts over
time. In our algorithm, the key stabilization approach is to avoid estimation and set the transition in
the upper bound Qi to be the idealized transition (g(s, a) w.p. 1). This allows us to prove our regret
guarantee as described below.

3.2 Regret Analysis of Hier-UCB-VI

We start with a definition on clusters of equivalent sub-MDPs. Let there be C(S,Ah) such clusters.
In the most general setting, it is not known apriori if there is any shared structure, in which case each
sub-MDP will simply be its own cluster.
Definition 2 (Equivalent sub-MDPs [25]). Two subMDPs M(s, a) and M(s′, a′) are equivalent if
there is a bijection F between state space, and through F , the subMDPs have the same transition
probabilities and rewards.

Our main structural result is that HRL regret decomposes to multi-task, sub-MDP regret in the
cardinal reward setting. This has the implication that only low-level feedback is needed for regret
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Algorithm 1 Hierarchical-UCB-VI (Hier-UCB-VI)

1: Initialize D = ∅, QHh+1(s, a) = HhHl ∀s, a, VHh+1 = 0, κ = max(C, 2HhHl)
2: for episode k = 1, ...,K do
3: for timestep i = Hh, ..., 1 do
4: for (s, a) ∈ S ×Ah do
5: if (s, a) ∈ D then
6: Update UCB: UB(rπ

∗
(s, a)) = r̄Nk,h(s,a)(s, a) + bs,ar (Nk,h(s, a))

7: Set:

Qi(s, a) = min(HhHl, UB(rπ
∗
(s, a)) + Vi+1(g(s, a))) (1)

8: for s ∈ S do
9: Vi(s) = maxa∈Ah Qi(s, a)

10: for time step h = 1, ...,Hh do
11: Take greedy high-level action akh = argmaxa∈Ah Qh(s

k
h, a)

12: Traverse sub-MDP M(skh, a
k
h) with current sub-policy πNk,h

skh,a
k
h

and transition to skh+1,

human supervisor provides low-level rewards of the length-Hl roll-out of πNh,k

skh,a
k
h

.

13: Feed low-level rewards into no-regret RL algorithm A for sub-MDP M(skh, a
k
h). Set the

sum of the low-level rewards (the intermediate return of πNh,k

skh,a
k
h

in M(skh, a
k
h)) as the high-level

reward r(skh, a
k
h) = r(πNh,k

skh,a
k
h

)

14: Add to dataset D = D ∪ {(h, skh, akh, r(skh, akh)}

minimization in the cardinal reward case, which as we will see in the ordinal reward case will not
always be true.

Theorem 1 (HRL regret minimization reduces to multi-task, sub-MDP regret minimization). Let
UB(RNK,Hh (s,a)) be an upper bound on sub-MDP M(s, a)’s cumulative regret over NK,Hh(s, a)
visits:

K∑
k=1

V π∗

1 (s1)− V πk

1 (s1) ≤ Õ

 ∑
s,a∈C(S,Ah)

UB(RNK,Hh (s,a)) +HhH l
√
NK,Hh(s, a)

 (2)

Proof Sketch. We describe the key regret decomposition. After some manipulation, the regret may
decompose into the following form,

∑K
k=1 V

k
1 (s1)− V πk

1 (s1) ≤
∑K

k=1

∑Hh

h=1 ρ
k
h + γkh + σk

h + ζkh ,
which may be parsed as follows.

ρkh = UB(rπ
∗
(s, a)) − r(πNk,h

skh,a
k
h

) captures the regret due to sub-optimal intermediate return, the
return of π∗

S,a versus the return of πskh,ak
h

.

γkh = (Ph−Pπk,h)V π∗

h+1(s
k
h, a

k
h), σ

k
h = (Ph−Pπk,h)(V k

h+1−V π∗

h+1)(s
k
h, a

k
h) captures the regret due

to sub-optimal policies missing goal-reachability. Here Ph is the idealized transition (goal-reaching),
while Pπk,h is the transition induced by the current sub-policy.

ζkh = Pπk,h(V k
h+1 − V

πk

h+1)(s
k
h, a

k
h)− (V k

h+1 − V
πk

h+1)(s
k
h+1) is a martingale difference that concen-

trates via Azuma Hoeffding, and is dominated by the previous three sums.

Focusing on
∑Hh

h=1 ρ
k
h + γkh + σk

h + ζkh , we observe that γkh, σ
k
h ≤ 2HhHlP

πk,h(skh+1 ̸= g(skh, a
k
h)).

The key remaining step is to recognize that ρkh + γkh + σk
h resembles the instantaneous regret in

M(skh, a
k
h), and the result follows after some further bounding and rearrangement.

For a concrete bound, we note that if A is set as the classic UCB-VI algorithm, then we attain the
usual Õ(

√
K) regret. Furthermore, we note that our bound is flexible in that one can choose more
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specialized learning algorithms A to leverage prior knowledge. For instance, if it is known that
sub-MDPs are linear, one may choose to invoke multi-task RL algorithms that offer more refined
regret bounds for UB(RNK,Hh (s,a)) [11].

Goal Selection: An astute reader will note that the return of the learned hierarchical policy is close
to V ∗

1 (s1), the return of the optimal hierarchical policy under goal function g. In other words, our
learned policy is only as good as the goal function g we choose.

One way to relax the assumption that we have a good goal function g is to assume we have access
to multiple goal functions to choose from: g1, .., gn. Then, an useful corollary of the sublinear
Hier-UCB-VI regret bound, 1

K [
∑K

k=1 V
gi,∗
1 (s1)− V gi,πk

1 (s1)] ≤ Õ(
√
K), is that it directly implies

an UCB on V gi,∗
1 (s1) (optimal return under goal gi). Hence, we may apply any UCB-based bandit

algorithm on top of this to compete with the return of the best goal out of all the candidates {gj}j∈[n].

4 Learning from Preference Feedback

In the previous section, we develop an algorithm to efficiently learn a hierarchical policy, purely from
low-level, cardinal feedback. Now, we consider learning from ordinal (preferences) feedback. Our
first observation is that the low-level feedback is no longer sufficient for learning a good policy.

Proposition 1 (Non-identifiability of ranking among sub-MDP returns). For any deterministic high-
level policy learning algorithm with Nl samples of low-level feedback, there exists a MDP instance
that induces regret constant in Nl.

The intuition for this is simply that low-level, ordinal feedback can only identify rankings of low-level
policies specific to a goal (sub-MDP), but not necessarily low level policies across differing goals.
Thus, no matter how large the low-level sample-size Nl, the regret is non-vanishing in Nl and hence
high-level feedback may be needed to learn. Please see Appendix D for all proofs of results in this
section.

4.1 Labeler Feedback and Consequences for Reward Modeling

The canonical approach to learning from preferences is reward modeling. Following previous
works, we study offline experiment design and assume we have the ability to collect comparison
feedback data, in our hierarchical setting both high and low-level data that are then used to learn
the reward model [29]. For tractable analysis, we consider the commonly studied linear reward
setup [21, 20, 30, 29].

Assumption 2 (Linear Reward Parametrization). Suppose we have access to some feature map
ϕ : S ×A→ Rd,M has linear reward parametrization w.r.t. ϕ if there exists an unknown, reward
vector θ∗ ∈ Rd such that r(s, a) = ⟨ϕ(s, a), θ∗⟩ for all s, a ∈ S ×A.

Given trajectory τ = (s1, a1, ..., sH , aH), we may then define trajectory feature ϕ(τ) =∑
si,ai∈τ ϕ(si, ai), and policy feature expectation under transitions P , ϕP (π) = Eτ∼π,P [ϕ(τ)].

With known feature map ϕ and unknown reward parameter θ∗, the preference feedback ot follows
the Bradley-Terry-Luce (BTL) model [6].

Assumption 3. For trajectories τ1, τ2: Pr(τ1 ≻ τ2) = σ((θ∗)T (ϕ(τ1)− ϕ(τ2))).

With the definitions out of the way, we now describe a conceptual challenge that we encounter when
learning from high-level feedback, which as we have shown before may be necessary for learning.

What can we assume about the high-level labeler’s knowledge?

Consider a high level trajectory τj = {(sji , a
j
i )}

Hh
i=1. ϕ(τj) =

∑
i∈[Hh]

ϕ(sji , a
j
i ); the key difficulty is

that sub-MDP feature expectation ϕ(sji , a
j
i ) is dependent on the sub-policy deployed in M(sji , a

j
i ).

Thus, the high level labeler will have to have in mind some sub-policy πs,a, when making the
comparison. We study two natural types of feedback:
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1. Comparisons based on current sub-policy execution: It is natural to first assume that the
labeler envisions ϕ(sji , a

j
i ) = ϕ(πt

sji ,a
j
i

) at time t. In words, it is equivalent to asking: “How
well does the high level policy do given current execution of sub-goals?”
Current-feedback of this form has the caveat that the labeler will have know about the
performance of the current set of sub-policies πt

s,a (potentially through AI-assisted means).
This knowledge would need to be updated over time as low-level policies πt

s,a improve,
which introduces a sizable cognitive load.

2. Comparisons based on idealized sub-policy execution: To reduce the cognitive load on the
labeler, it is natural to fix the sub-policies used in the comparisons. A natural choice then is
for the labeler to envision ϕ(sji , a

j
i ) = ϕ(π∗

sji ,a
j
i

). In words, it is equivalent to asking: “How
well does the high level policy do given perfect execution of the sub-goals?” Instantiated
in some examples, this would be: “how good is the essay if each argument is fleshed out
perfectly” or “how good is the code if each helper function is implemented perfectly”.
Idealized-feedback of this form has the caveat that the high-level feedback will be a mis-
match of how the current sub-policies actually execute. Although it has the advantage that
the labeler is no longer required to (somehow) keep track of low-level sub-policies, thus
reducing the cognitive load.

In what follows, we consider both types of feedback, showing that learning from idealized-feedback
is possible. As we note, a drawback of idealized-feedback is that it is biased with respect to the
realized features (since these are generated under current policies πt

s,a), while current-feedback is
unbiased. We present an upper bound on the bias below.
Lemma 2 (Bias of idealized-feedback). Suppose there are Nh, Nl high, low-level trajectories, bias b
is such that: ∥b∥2 =

∑Nh

t=1 |⟨θ∗, ϕπ
Nl (πi

1)−ϕπ
Nl (πi

2)⟩− ⟨θ∗, ϕπ
∗
(πi

1)−ϕπ
∗
(πi

2)⟩|2 = O(Nh/Nl).

Proposition 2 (Reward model learning). Let θMLE = argminθ ℓD(θ) and let Cb denote an upper
bound on bias Cb ≥ ∥b∥, and γ,B constants. We have that with high probability:

∥θ∗ − θMLE∥Σ̂h

Nh+λI ≤ C

√
Cb

√
Nh

γ2
+
C2

b + d+ log(1/δ)

γ2
+ λB2

4.2 Hierarchical Preference Learning

We now construct a hierarchical, preference-learning algorithm that invokes REGIME, a contemporary
preference-learning algorithm with provable guarantees, as sub-routine for sub-MDP learning [29].

Sub-MDP reward learning: To start, we again need to incentivize goal-reaching in the sub-MDP
reward. As such, given original feature ϕorig, we introduce an additional feature accounting for
goal-reachability. For trajectory τ , define ϕi(sτi , a

τ
i ) = [ϕorig(s

τ
i , a

τ
i ),1(i = Hl ∧ sτi = g(s, a))]

and for policy π, feature expectation ϕi(sπi , a
π
i ) = [ϕorig(s

π
i , a

π
i ),1(i = Hl) Pr(s

π
Hl

= g(s, a))].

The corresponding reward vector will also change to become θ∗ = [θ∗orig, κ] for unknown θ∗orig, κ.
Assumption 4. Through instructions to the labeler, κ may be raised beyond a threshold of our
choosing.

That is, we assume we can provide instructions to the labeler, emphasizing goal-reachability such that
κ is higher than some given threshold. As before, we take the threshold to be max(C, 2HhHl). And
so while κ is unknown, we know that κ ≥ max(C, 2HhHl). With this set up, we can then bound the
regret due to sub-optimal sub-policies, and sub-optimal simulator P ϵ′ , both of which are needed in
the final regret analysis.
Lemma 3 (Regret due to sub-optimal sub-policies). For any high-level policy π, with high probability:

⟨ϕπ
∗,P (π)− ϕπ

Nl ,P (π), θ∗⟩ ≤ Hh(
C1√
Nl

+ C2ϵ
′)

where this bound makes use of the REGIME guarantee on sub-MDP M(s, a) that |⟨ϕP (π∗
s,a), θ

∗⟩ −
ϕP

ϵ′

(πNl
s,a), θ

∗| ≤ C1√
Nl

+ C2ϵ
′ [29].
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Algorithm 2 Hierarchical-REGIME (Hier-REGIME)

Require: High-level policy class Πh, low level-policy classes Πl
s,a, simulator P ϵ′ with ϵ′-precision

1: for episode n = 1, ..., Nl do
2: (πn

1 , π
n
2 )← argmaxπ1,π2∈

⋃
s,a Πl

s,a
∥ϕP ϵ′

(π1)− ϕP
ϵ′

(π2)∥(Σ̂l
n)

−1 ▷ explore using policy
feature expectation across sub-MDPs

3: Σ̂l
n+1 = Σ̂l

n + (ϕP
ϵ′

(πn
1 )− ϕP

ϵ′

(πn
2 ))(ϕ

P ϵ′

(πn
1 )− ϕP

ϵ′

(πn
2 ))

T

4: Generate trajectories τn1 , τ
n
2 and acquire comparison feedback on ▷ comparison feedback for

the pair of length-Hl trajectories
5: Compute MLE θ̂l from {τn1 , τn2 }

Nl
n=1 and {on}Nl

n=1

6: Compute πNl
s,a = argmaxπ∈Πl

s,a
⟨ϕP ϵ′

(π), θ̂l⟩
7: for episode n = 1, ..., Nh do
8: (πn

1 , π
n
2 )← argmaxπ1,π2∈Πh ∥ϕπ

Nl ,P ϵ′

(π1)− ϕπ
Nl ,P ϵ′

(π2)∥(Σ̂h
n)

−1 ▷ high-level policy
feature expectation generated using πNl

s,a

9: Σ̂h
n+1 = Σ̂h

n + (ϕπ
Nl ,P ϵ′

(π1)− ϕπ
Nl ,P ϵ′

(π2))(ϕ
πNl ,P ϵ′

(π1)− ϕπ
Nl ,P ϵ′

(π2))
T

10: Generate trajectories τn1 , τ
n
2 and acquire comparison feedback on ▷ comparison feedback for

the pair of length-Hh trajectories
11: Compute MLE θ̂h from {τ i1, τ i2}

Nh
i=1 and {oi}Nh

i=1

12: return high-level policy π̂ = argmaxπ∈Πh⟨ϕπ
Nl ,P ϵ′

(π), θ̂h⟩, low-level policies
{πNl

s,a}s,a∈S×Ah

Lemma 4 (Regret due to sub-optimal simulator P ϵ′ ). Let ΦπNl ,P ϵ′

(π) denote the feature expectation
under high level policy π, sub-MDP policies πNl and transitions P ϵ′ . With high probability, for any
high level policy π:

|⟨ϕπ
Nl ,P (π)− ϕπ

Nl ,P ϵ′

(π), θ∗⟩| ≤ O((Hhd
2 +H3

hH
2
l )ϵ

′ +
H2

hHl

κ
)

4.3 Hier-REGIME Analysis

Now, we present the Hier-REGIME Algorithm 2. At a high-level description goes as follows. First,
we invoke one copy of REGIME across all sub-MDPs with shared exploration (L1-4) and learned
reward (L5). Next, we use the learned reward to compute sub-MDP policies πNl

s,a for each sub-MDP
M(s, a) (L6). Finally, we invoke one copy of REGIME for the high-level MDP, where the feature
function is defined as ϕπ

Nl
s,a,P

ϵ′

(L8). Next, we note two properties about Algorithm 2.

Hierarchical Exploration: A key aspect of experiment design in offline RL is ensuring sufficient
coverage with exploration. The difficulty with coverage in the hierarchical setting is that at first glance,
we may need to search for pairs of trajectories over (π1, {π1

s,a}), (π1, {π2
s,a}) ∈ (Πh,×s,a

Πl
s,a),

instead of over π1, π2 ∈ Πh. However, we show that in the goal-HRL case, we can fix the sub-policies
to be πNl

s,a (for Nl large enough), and this is sufficient to compete with the optimal, hierarchical policy.

Additionally, unlike the tabular setting, sub-MDPs now share a common reward parameter θ∗, thus
allowing us to jointly, instead of separately as in tabular case, explore across sub-MDPs.

Sufficiency of low-level feedback: Through the algorithm, we can observe that low- and high-level
exploration generates feature expectations set: {ϕP ϵ′

(π1) − ϕP
ϵ′

(π2) | π1, π2 ∈
⋃

s,a Π
l
s,a} and

{ϕP ϵ′

(π1)− ϕP
ϵ′

(π2) | π1, π2 ∈ Πh, πs,a = πNl
s,a ∀s, a}. Therefore, when coverage of high level

policy is subsumed by low-level features already (the latter is a subset of the former), it suffices to
explore only using low-level feedback. As shown before in Proposition 2, it is not always sufficient.
However, as we will see below, when it is sufficient, using low-level feedback leads to better rates.
First, we derive the regret decomposition and then use it evaluate the sample complexity.
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Theorem 2. With high probability, under Nh > 0:

V π∗,π∗
− V π̂,πNl

≤ ⟨ϕπ
∗,P (π∗)− ϕπ

Nl ,P (π∗), θ∗⟩+ 1√
Nh

(2d log(1 +
Nh

d
))∥θ∗ − θ̂∥Σ̂h

Nh

+

|⟨ϕπ
Nl ,P (π∗)− ϕπ

Nl ,P ϵ′

(π∗), θ∗⟩|+ |⟨ϕπ
Nl ,P ϵ′

(π̂)− ϕπ
Nl ,P (π̂), θ∗⟩|

To parse this, the regret decomposes into four terms. The first term is the regret due to sub-optimality
in low-level policies πNl . The remaining three terms are derived from sub-optimality due to high-level
policy π̂, decomposing into the second term on regret due to bias in learned reward θ̂, the third and
fourth term on regret due to sub-optimality of simulator P ϵ′ .

A main benefit of developing a learning Algorithm 2 is that we can then quantitatively assess the
sample complexity associated with the two types of human feedback. As one may expect, there is a
tradeoff between better sample complexity and cognitive load, with current-feedback attaining better
sample efficiency but also requiring higher cognitive load on the human supervisor.
Corollary 1. Using Theorem 2, we obtain the following rates in terms of data tradeoffs:

• Idealized-feedback and required high-/low-level feedback: the overall rate comes out to
O(N

−1/4
l + N

−1/2
h ). While high level trajectories provide additional coverage, it also

incurs bias linear in Nh of the bias of the low-level trajectories, thus slowing down the rate
(Lemma 2).

• Current-feedback and required high-/low-level feedback: the overall rate comes out to
O(N

−1/2
l +N

−1/2
h ). The current-feedback is unbiased and results in more efficient reward

learning with ∥θ∗ − θ̂∥Σ̂h
Nh

= O(1) [29].

• Only low-level feedback is required due to sufficiency in coverage: the overall rate comes
out to O(N

−1/2
l ). In a nutshell, this is because we can explore with just Nl low-level

samples which is unbiased, resulting in ∥θ∗ − θ̂∥Σ̂l
Nl

= O(1). Hence, both exploration and

reward learning is efficient.

5 Discussion

Our work considers scalable oversight in the context of goal-conditioned HRL, in which we show
that one can efficiently use hierarchical structure to learn from bounded human feedback.

Limitations & Future Work: In goal-conditioned HRL, our regret guarantees are with respect to
the return of the optimal, hierarchical policy, whose performance is dependent on the usefulness
of goal function g. Further research is needed to understand on how to learn good goal functions,
using limited supervised or unsupervised learning. Additionally, under current-feedback, the labeler
providing high-level feedback is somehow made aware of sub-policy performance. An exciting
research direction is how one may provide such knowledge through AI-assistance.
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A More Related Works

Scalable Oversight: Scalable oversight is a nascent but important topic in the area of AI alignment [2,
8, 15, 5], wherein the goal is to boost the labeler’s ability to provide feedback to complex models.
Proposed approaches include (recursive) self-critique, summarization, debate, plain model Interaction
and market-making, all of which aim to have the model (or auxiliary models) generate interpretable
and/or lower-dimensional forms of outputs for the human to parse [15, 13, 24, 27, 23, 5, 12]. Our
work studies how one may leverage hierarchical structure as one approach to scaling up feedback.

Goal-conditioned RL: Further afield, there has been a lot of work demonstrating the promise/success
of goal-conditioned RL with examples from the likes of [16, 17, 7, 10]. The sub-MDP reward is
often set to incentivize only goal state reachability, as oftentimes the MDP of interest has sparse
rewards, making intermediate returns zero. In our setting, rewards need not be sparse, thus bringing
into consideration the tradeoff between intermediate return and goal-reachability. This work initiates
the study of scalable oversight in goal-oriented HRL, and owing to the success of goal-oriented HRL
in practice, it is our hope that it can be stepping stone towards developing practical scalable oversight
techniques.

B Concrete Hierarchical MDP Example

The prototypical example in HRL is the maze, as studied in for instance [17, 22]. A maze consists of
rooms with doors. The goal is to get to the exit in as few steps as possible. The MDP may be defined
as follows:

• For the global MDP, S = Sh × Sl where sh denotes the index of the current room, and sl
denotes the position of the agent in the room. Action set A consists of moving (L, R, U, D,
Stay).

• For the High-level MDP, high-level action Ah consists of moving to the (N, S, E, W) door
of the room. s is the current location of the agent, and g(s, ah) maps the goal (door) to its
location.

• For the Low-level MDP, it has state space Sl
s,a ⊂ S and the action set A is the same moving

(U, D, L, R, Stay).

As noted in the previous section, HRL algorithms can achieve superior statistical sample complexity
when there is lots of repeated sub-MDP structure (there are many isomoprhic rooms) and each room
has small state-space size [25].
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Notation
M(s, a) sub-MDP at state s with high level action a
πi
s,a policy used by sub-MDP M(s, a)’s no-regret algorithm during the i-th visit
π∗
s,a optimal policy in sub-MDP M(s, a)
r(πi

s,a) expected reward of policy πi
s,a in sub-MDP M(s, a)

rl,h sub-MDP reward definition.
r̂(πi

s,a) observed reward of policy π in sub-MDP M(s, a)
r̄n(s, a) average observed policy reward r̄n(s, a) = 1

n

∑n
i=1 r̂(π

i
s,a)

Rn(s, a) sub-MDP M(s, a) cumulative regret across n steps,Rn(s, a) =
∑n

i=1 r(π
∗
s,a)− r(πi

s,a)
Nk,h(s, a) number of times M(s, a) has been visited up until episode k, horizon h
Pπ(· | s, a) distribution over states of policy π after going through subMDP M(s, a)
ψn a factor such that ψn = Õ(

√
n), where the Õ omits up to log dependence on K

Table 1: Table of notation used in this section.

C Proofs for Section 3

C.1 Sub-MDP Bonus Construction

Sub-MDP Reward Definition: Define the reward in sub-MDP M(s, a) at time step h to be:
rl,h(s

′, a′) = r(s′, a′) + κ1(h = Hl ∧ s′ = g(s, a)).

Firstly, since by definition π∗
s,a ∈ argmaxπ∈Πs,a

r(π) + C · Pr(sπHl
= g(s, a)), we have that

π∗
s,a ∈ argmaxπ∈Πs,a

r(π) + κ · Pr(sπHl
= g(s, a)).

Indeed,

r(π∗
s,a) + κPr(s

π∗
s,a

Hl
= g(s, a))

= [r(π∗
s,a) + C · Pr(sπ

∗
s,a

Hl
= g(s, a))] + (κ− C) Pr(sπ

∗
s,a

Hl
= g(s, a))

≥ [r(π) + C · Pr(sπHl
= g(s, a))] + (κ− C) Pr(sπHl

= g(s, a))

(Pr(s
π∗
s,a

Hl
= g(s, a)) = 1 ≥ Pr(sπHl

= g(s, a)) ∀π)

Secondly, using the definition of rl, we have that:

rl(π
∗
s,a)− rl(πi

s,a) = r(π∗
s,a) + κP (s

π∗
s,a

Hl
= g(s, a))− r(πi

s,a)− κP (s
πi
s,a

Hl
= g(s, a))

By the reachability assumption, P (s
π∗
s,a

Hl
= g(s, a)) = 1, this implies that

rl(π
∗
s,a)− rl(πi

s,a) = r(π∗
s,a)− r(πi

s,a) + κP (s
πi
s,a

Hl
̸= g(s, a))

Therefore, summing this across n visits to M(s, a), we have:

Rn(s, a)

=

n∑
i=1

rl(π
∗
s,a)− rl(πi

s,a)

=

n∑
i=1

r(π∗
s,a)− r(πi

s,a) + κ

n∑
i=1

P (s
πi
s,a

Hl
̸= g(s, a))

This statement is useful because we can compute an UCB on
∑n

i=1 r(π
∗
s,a) and, implicitly, a LCB on∑n

i=1 r(π
i
s,a) (provided we do not boundRn(s, a)).
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Lemma 5 (Bonus with “penalty” for non-reachability). Let UB(Rn(s, a)) be any upper bound on
the sub-MDP regret, then if we define:

bs,ar (n) =
UB(Rn(s, a)) + (κ+Hl)2 log(

|C(S,Ah)|HhK
δ )

√
n

n
− κ

n

n∑
i=1

1(s
πi
s,a

Hl
̸= g(s, a))

Then, r̄n(s, a) + bs,ar (n) is an UCB for r(π∗
s,a) with probability ≥ 1− δ

3|C(S,Ah)|HhK
.

Let the event that the above holds be Ens,a.

Proof.
n∑

i=1

r(π∗
s,a)

= Rn(s, a)− κ
n∑

i=1

P (s
πi
s,a

Hl
̸= g(s, a)) +

n∑
i=1

r(πi
s,a)

≤ Rn(s, a)− κ(
n∑

i=1

1(s
πi
s,a

Hl
̸= g(s, a))− ψn) +

n∑
i=1

r(πi
s,a) (⋄)

= Rn(s, a)− κ
n∑

i=1

1(s
πi
s,a

Hl
̸= g(s, a)) + κψn +

n∑
i=1

r̂(πi
s,a) + (

n∑
i=1

r(πi
s,a)−

n∑
i=1

r̂(πi
s,a))

≤ UB(Rn(s, a)) + (κ+Hl)ψn − κ
n∑

i=1

1(s
πi
s,a

Hl
̸= g(s, a)) +

n∑
i=1

r̂(πi
s,a) (κ′ = κ+Hl)

(⋄) : Here we use two applications of Azuma-Hoeffding:

• With probability higher than 1− δ:

|
n∑

i=1

P (s
πi
s,a

Hl
̸= g(s, a))−

n∑
i=1

1(s
πi
s,a

Hl
̸= g(s, a))| ≤ ψn = 2

√
n

We have that E[P (sπ
i
s,a

Hl
̸= g(s, a))− 1(sπ

i
s,a

Hl
̸= g(s, a))|Fi−1] = 0.

This is true because P (s
πi
s,a

Hl
̸= g(s, a)) and 1(s

πi
s,a

Hl
̸= g(s, a) are a function of only the

transition probability of the MDP at the ith step conditioned on Fi−1. Thus, P (s
πi
s,a

Hl
̸=

g(s, a))− 1(sπ
i
s,a

Hl
̸= g(s, a)) is a martingale difference. And we can use Azuma-Hoeffding.

• With probability higher than 1− δ:

|
n∑

i=1

r(πi
s,a)−

n∑
i=1

r̂(πi
s,a)| ≤ Hlψn ≤ Hl2

√
n

This again follows from Azuma-Hoeffding on martingale difference r(πi
s,a)− r̂(πi

s,a), as
E[r(πi

s,a)− r̂(πi
s,a)|Fi−1] = 0. And |r(πi

s,a)− r̂(πi
s,a)| ≤ Hl.

Thus,

r(π∗
s,a) ≤

1

n

n∑
i=1

r̂(πi
s,a) + bs,ar (n)⇒ r(π∗

s,a)− r̄n(s, a) ≤ bs,ar (n)
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Remark 1. One choice for UB(Rn(s, a)) = H
3/2
l

√
|Sl

s,a||A|n if we let As,a be the standard
UCB-VI algorithm [3].

C.2 Optimism Lemma

Lemma 6 (Optimism). Let V k
h be the V value as in Algorithm 1 at episode k. Let π∗ be the optimal

hierarchical policy. For a fixed k and h, if ∀s, a, n, Ens,a holds, then:

V k
h (s) ≥ V π∗

h (s) ∀s

Proof. Fix some episode k. We will prove this lemma via induction on h = Hh + 1, ..., 1.

Base case: At h = Hh + 1, V k
h (s) ≥ 0 = V π∗

h (s) for all s.

Induction Step: Suppose this is true for up until h = Hh + 1, ..., h′ + 1. Now at time step h′ and
any s, a.

Firstly, if Qk
h′(s, a) = HhHl (e.g. if s, a ̸∈ Dk), then Qk

h′(s, a) ≥ Q∗
h′(s, a). Otherwise,

Qk
h′(s, a) < HhHl and we have that:

Qk
h′(s, a)−Q∗

h′(s, a) = [r̄Nk,h(s,a)(s, a) + bs,ar (Nk,h(s, a)) + V k
h′+1(g(s, a))]− (r(π∗

s,a) + Ph′V π∗

h′+1(s, a))

(Qk
h′ definition as in Equation 1)

≥ V k
h′+1(g(s, a))− Ph′V π∗

h′+1(s, a)

(r̄Nk,h(s,a)(s, a) + bs,ar (Nk,h(s, a)) is an UCB of r(π∗
s,a))

= V k
h′+1(g(s, a))− V π∗

h′+1(g(s, a))
(π∗

s,a reaches goal state w.p 1, so Ph′(g(s, a)|s, a) = 1)

≥ 0 (induction hypothesis)

Thus, V k
h′(s) = maxaQ

k
h′(s, a) ≥ maxaQ

∗
h′(s, a) = V π∗

h′ (s).

Corollary 2.
K∑

k=1

V π∗

1 (s1)− V πk

1 (s1) ≤
K∑

k=1

V k
1 (s1)− V πk

1 (s1)

C.3 Supporting results needed for regret analysis

Proposition 3.
K∑

k=1

V k
1 (s1)− V πk

1 (s1) ≤
K∑

k=1

Hh∑
h=1

ζkh + γkh + σk
h + ρkh (3)

Proof. For any k and h, we consider bounding V k
h (skh)− V

πk

h (skh), which is equal to:

V k
h (skh)− V

πk

h (skh) = (Qk
h −Q

πk

h )(skh, a
k
h)

≤ (r̄Nk,h(skh,a
k
h)
(skh, a

k
h) + b

skh,a
k
h

r (Nk,h(skh, a
k
h)))− r(π

Nk,h(skh,a
k
h)

skh,a
k
h

)

+ V k
h+1(g(s

k
h, a

k
h))− Pπk,hV πk

h+1(s
k
h, a

k
h) (due to the min)

= ρkh + [V k
h+1(g(s

k
h, a

k
h))− Pπk,hV πk

h+1(s
k
h, a

k
h)]

where we set ρkh = r̄Nk,h(skh,a
k
h)
(skh, a

k
h) + b

skh,a
k
h

r (Nk,h(skh, a
k
h)))− r(π

Nk,h(skh,a
k
h)

skh,a
k
h

).
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Continuing with the original proof and focusing on the second term:

V k
h+1(g(s

k
h, a

k
h))− Pπk,hV πk

h+1(s
k
h, a

k
h)

= V k
h+1(g(s

k
h, a

k
h))− Pπk,hV k

h+1(s
k
h, a

k
h) + Pπk,h(V k

h+1 − V
πk

h+1)(s
k
h, a

k
h)

= (Ph − Pπk,h)V k
h+1(s

k
h, a

k
h) + Pπk,h(V k

h+1 − V
πk

h+1)(s
k
h, a

k
h)

(Ph is the transition under optimal sub MDP policy so it takes skh, a
k
h to g(skh, a

k
h) deterministically)

= (Ph − Pπk,h)V π∗

h+1(s
k
h, a

k
h) + (Ph − Pπk,h)(V k

h+1 − V π∗

h+1)(s
k
h, a

k
h) + Pπk,h(V k

h+1 − V
πk

h+1)(s
k
h, a

k
h)

= γkh + σk
h + Pπk,h(V k

h+1 − V
πk

h+1)(s
k
h, a

k
h)

where

• γkh = (Ph − Pπk,h)V π∗

h+1(s
k
h, a

k
h)

• σk
h = (Ph − Pπk,h)(V k

h+1 − V π∗

h+1)(s
k
h, a

k
h)

In summary,

V k
h (skh)− V

πk

h (skh)

≤ ρkh + γkh + σk
h + Pπk,h(V k

h+1 − V
πk

h+1)(s
k
h, a

k
h)

= (V k
h+1 − V

πk

h+1)(s
k
h+1) + ζkh + γkh + σk

h + ρkh,

where we introduce the notation ζkh = Pπk,h(V k
h+1 − V

πk

h+1)(s
k
h, a

k
h)− (V k

h+1 − V
πk

h+1)(s
k
h+1).

Unrolling the recursion starting at h = 1:

V k
1 (skh)− V

πk
1 (skh)

≤ 1(ζkh + γkh + σk
h + ρkh) + ...+ (1)Hh(ζkHh

+ γkHh
+ σk

Hh
+ ρkHh

)

= 1 · (
Hh∑
h=1

ζkh + γkh + σk
h + ρkh)

Summing across k ∈ [K], it suffices to bound:

K∑
k=1

V k
1 (s1)− V πk

1 (s1) ≤
K∑

k=1

Hh∑
h=1

ζkh + γkh + σk
h + ρkh (4)

Remark 2. There are two sources of sub-optimality in the bound.

One is the sub-optimality while executing the sub-MDP policies. This is covered by the per-step high
level reward bonus (which is also the UCB on the return of the sub-MDP’s return) in ρkh.

The other is the sub-optimality of not landing on g(skh, a
k
h), there is covered by γkh, σ

k
h, which affects

future reward. The martingale difference ζkh is zero in expectation, so it is not some measure of
suboptimality.

We first bound the ζ’s, whose sum is dominated by
∑K

k=1

∑Hh

h=1 ρ
k
h + γkh + σk

h.

17



Lemma 7. With probability ≥ 1− δ/3:

K∑
k=1

Hh∑
h=1

ζkh ≤ Õ(HhH l
√
HhK)

Let the event that the above inequality hold be Eζ .

Proof. The concentration of ζkh follows from Azuma Hoeffding, as the following is a martingale
difference.

ζkh = Pπk,h(V k
h+1 − V

πk

h+1)(s
k
h, a

k
h)− (V k

h+1 − V
πk

h+1)(s
k
h+1)

with E[ζkh |Fk,h] = 0, since the expectation is only wrt randomness in skh+1. Moreover, this martingale
difference is bounded by 4HhH l

Next, we simplify the sum of remaining terms.

Lemma 8. We have that:

K∑
k=1

Hh∑
h=1

γkh ≤ HhH l
K∑

k=1

Hh∑
h=1

Pπk,h(skh+1 ̸= g(skh, a
k
h))

and

K∑
k=1

Hh∑
h=1

σk
h ≤ HhH l

K∑
k=1

Hh∑
h=1

Pπk,h(skh+1 ̸= g(skh, a
k
h))

Proof.

K∑
k=1

Hh∑
h=1

γkh

=

K∑
k=1

Hh∑
h=1

(Ph − Pπk,h)V π∗

h+1(s
k
h, a

k
h)

=

K∑
k=1

Hh∑
h=1

Pπk,h(skh+1 ̸= g(skh, a
k
h))(V

π∗

h+1(g(s
k
h, a

k
h))− V π∗

h+1(s
k
h+1))

≤ HhH l
K∑

k=1

Hh∑
h=1

Pπk,h(skh+1 ̸= g(skh, a
k
h))

Similarly,
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K∑
k=1

Hh∑
h=1

σk
h

=

K∑
k=1

Hh∑
h=1

(Ph − Pπk,h)(V k
h+1 − V π∗

h+1)(s
k
h, a

k
h)

=

K∑
k=1

Hh∑
h=1

Pπk,h(skh+1 ̸= g(skh, a
k
h))[(V

k
h+1 − V π∗

h+1)(g(s
k
h, a

k
h))− (V k

h+1 − V π∗

h+1)(s
k
h+1)]

≤ HhH l
K∑

k=1

Hh∑
h=1

Pπk,h(skh+1 ̸= g(skh, a
k
h))

Lemma 9. With probability ≥ 1− δ/3:

K∑
k=1

Hh∑
h=1

ρkh ≤
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

r(π∗
s,a)−r(πi

s,a)+
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(Ri(s, a))−Ri(s, a) + (κ′′ + κ)ψi

i

Let Eρ be the event that this holds.

Proof. We first expand the ρkh sum:

K∑
k=1

Hh∑
h=1

ρkh

=

K∑
k=1

Hh∑
h=1

r̄Nk,h(skh,a
k
h)
(skh, a

k
h) + b

skh,a
k
h

r (Nk,h(skh, a
k
h)))− r(π

Nk,h(skh,a
k
h)

skh,a
k
h

)

=
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

r̄i(s, a) + bs,ar (i)− r(πi
s,a)

=
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

1

i

i∑
j=1

r̂(πj
s,a) +

UB(Ri(s, a)) + κ′ψi − κ
∑i

j=1 1(s
πj
s,a

Hl
̸= g(s, a))

i
− r(πi

s,a)

(using definition of bonus)

≤
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

1

i

i∑
j=1

r(πj
s,a) +

Hlψi

i
+
UB(Ri(s, a)) + κ′ψi − κ

∑i
j=1 1(s

πj
s,a

Hl
̸= g(s, a))

i
− r(πi

s,a)

(Azume-Hoeffding for concentration of r̂ around r)

Using the two-sided concentration bound we had before (the other way):
∑i

j=1 1(s
πj
s,a

Hl
̸= g(s, a)) +

ψi ≥
∑i

j=1 P (s
πj
s,a

Hl
̸= g(s, a)) w.h.p:

i∑
j=1

r(π∗
s,a)− r(πj

s,a) ≥ Ri(s, a)− κ(
i∑

j=1

1(s
πj
s,a

Hl
̸= g(s, a)) + ψi)

⇒
i∑

j=1

r(π∗
s,a)−Ri(s, a) + κψi ≥

i∑
j=1

r(πj
s,a)− κ

i∑
j=1

1(s
πj
s,a

Hl
̸= g(s, a))
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We continue our derivation:

∑
s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

1

i
(

i∑
j=1

r(πj
s,a) + UB(Ri(s, a)) + κ′′ψi − κ

i∑
j=1

1(s
πj

Hl
̸= g(s, a)))− r(πi

s,a)

(κ′′ = κ′ +Hl)

≤
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

1

i
[

i∑
j=1

r(π∗
s,a)−Ri(s, a) + κψi]− r(πi

s,a) +
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(Ri(s, a)) + κ′′ψi

i

(using the identity above)

≤
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

r(π∗
s,a)− r(πi

s,a) +
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(Ri(s, a))−Ri(s, a) + (κ′′ + κ)ψi

i
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C.3.1 Overall Regret Bound

Theorem 3. Under events
⋂

s,a,n Ens,a ∩ Eζ ∩ Eρ, we have that:

K∑
k=1

Hh∑
h=1

ρkh+γ
k
h+σ

k
h ≤

∑
s,a∈C(S,Ah)

(log(NK,Hh(s, a))+1)UB(RNK,Hh (s,a))+O(HhH l
√
NK,Hh(s, a))

Proof.

K∑
k=1

Hh∑
h=1

ρkh + γkh + σk
h

≤
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

r(π∗
s,a)− r(πi

s,a)+

∑
s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(Ri(s, a))−Ri(s, a) + κψi

i
+ 2HhH l

K∑
k=1

Hh∑
h=1

Pπk,h(skh+1 ̸= g(skh, a
k
h))

=
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(Ri(s, a))−Ri(s, a) + κψi

i

+
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

r(π∗
s,a)− r(πi

s,a) + 2HhH l
∑

s,a∈C(S,Ah)

[

NK,Hh (s,a)∑
i=1

P (s
πi
s,a

Hl
̸= g(skh, a

k
h))]

(group third sum by s, a)

≤
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(Ri(s, a))−Ri(s, a) + κψi

i

+
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

r(π∗
s,a)− r(πi

s,a) + κ

NK,Hh (s,a)∑
i=1

P (s
πi
s,a

Hl
̸= g(skh, a

k
h)) (κ ≥ 2HhHl)

=
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(Ri(s, a))−Ri(s, a) + κψi

i
+

∑
s,a∈C(S,Ah)

RNK,Hh (s,a)

(using the definition for sub-MDP regret)

≤
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(Ri(s, a))

i
+RNK,Hh (s,a) +

∑
s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

κψi

i

≤
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(Ri(s, a))

i
+ UB(RNK,Hh (s,a)) +

∑
s,a∈C(S,Ah)

O(κ
√
NK,Hh(s, a))

(since Azuma-Hoeffding is s.t ψi = O(
√
i))

≤
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(RNK,Hh (s,a))

i
+ UB(RNK,Hh (s,a)) +

∑
s,a∈C(S,Ah)

O(HhH l
√
NK,Hh(s, a))

(using monotonicity of upper bound UB(Ri(s, a)) in i, assumption that C = O(HhHl))

=
∑

s,a∈C(S,Ah)

(log(NK,Hh(s, a)) + 1)UB(RNK,Hh (s,a)) +O(HhH l
√
NK,Hh(s, a))
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Corollary 3 (Regret under |C(S,Ah)| clusters of isomorphic sub-MDPs [25]). Let us set UCB-VI to
be the sub-MDP learning algorithm, then we have the following regret bound:

∑
s,a∈C(S,Ah)

(log(NK,Hh(s, a)) + 1)RNK,Hh (s,a) +O(HhH l
√
NK,Hh(s, a))

≤ (logHhK + 1)
∑

s,a∈C(S,Ah)

RNK,Hh (s,a) +O(HhH l
√
|C(S,Ah)| ·HhK)

(
∑

s,a∈C(S,Ah)N
K,Hh(s, a) = HhK)

≤ (logHhK + 1)
∑

s,a∈C(S,Ah)

H
3/2
l

√
|Sl

s,a||A|NK,Hh(s, a) +O(HhH l
√
|C(S,Ah)| ·HhK)

(plug in UCB-VI guarantees)

≤ Õ(H
3/2
l

√
max
s,a
|Sl

s,a||A|
√
|C(S,Ah)|(HhK) +HhHl

√
|C(S,Ah)|HhK)

(
∑

s,a∈C(S,Ah)N
K,Hh(s, a) = HhK)

using UCB-VI’s guarantee that upper bound UB(RNK,Hh (s,a)) = H
3/2
l

√
|Sl

s,a||A|NK,Hh(s, a).

Remark 3 (High Probability Bound). For completeness, we show that the regret bound holds with
probability greater than 1− δ. The regret bound holds under

⋂
s,a,n Ens,a ∩ Eζ ∩ Eρ, by union bound:

Pr(
⋂
s,a,n

Ens,a ∩ Eζ ∩ Eρ)

≥ 1−
∑
s,a,n

Pr(¬Ens,a)− Pr(¬Eζ)− Pr(¬Eρ))

≥ 1− (|C(S,Ah)|HhK)
δ

3|C(S,Ah)|HhK
− δ/3− δ/3

= 1− δ
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D Proofs for Section 4

D.1 Low-level Feedback is insufficient for learning

To prove the results below, our approach is to construct two MDP instances with identifical low level
feedback such that any deterministic learning algorithm picks the arbitrarily worse high level policy.

Proposition 4 (Non-identifiability of ranking among sub-MDP returns). For any deterministic high-
level policy learning algorithm with Nl samples of low-level feedback, there exists a MDP instance
that induces regret constant in Nl.

Proof. Consider two-horizon MDP with starting state s1 with Hh = 1, Hl = 2. There are two
possible high-level actions a1 and a2 at s1.

For any policy π1 in sub-MDP M(s1, a1), let it have feature expectation ϕ(π1) = [ϕ′(π1), 1, 0], and
for any π2 in sub-MDP M(s1, a2), ϕ(π2) = [ϕ′(π2), 0, 1].

Now, we consider two MDP instances with θ∗ = [0, 0, C ′] and θ∗ = [0, C ′, 0] for some positive
constant C ′.

Under both instances, we observe identical low-level feedback for trajectories τ, τ ′ in sub-MDPs
M(s1, aj), j ∈ [2]: the feedback is Bernoulli with parameter σ(⟨ϕ′(τ)− ϕ′(τ), θ′⟩).

Consider any deterministic learning algorithm. WLOG it outputs high level policy πh(s1) = a1 with
some set of Nl samples of low-level feedback.

Then, it follows that its regret under θ∗ = [ϵ1, 0, C ′] is C ′, since the reward (and return sinceHh = 1)
of π∗

s1,a1
is 0, while the reward of the optimal policy which visits M(s1, a2) is C ′.

D.2 Hierarchical Experiment Design via REGIME [29]

D.2.1 MLE Definition:

We first define the MLE expression; note that the MLE is in terms of trajectories only. Define:

f({yi}ni=1, {xi}ni=1) = −
n∑

i=1

log(1{yi = 1}σ(θTxi) + 1{yi = 0}(1− σ(θTxi))

ℓD(θ) = f({yi}Nh
i=1, {xi}

n
i=1) +

∑
s,a

f({ys,ai }
Nl
i=1, {x

s,a
i }

Nl
i=1) (5)

• High-level trajectories: has realized features,

xi = ϕπ
Nl ,P (τ i1)− ϕπ

Nl ,P (τ i2) =

Hh∑
j=1

ϕP (πNl(s
τ i
1

j , a
τ i
1

j ))−
Hh∑
j=1

ϕP (πNl(s
τ i
2

j , a
τ i
2

j ))

where ϕπ
Nl ,P (τ ij) is the feature of the high-level trajectory under sub-policy πNl and

transition P (since trajectories are collected from roll-outs in the actual MDP as in [29]).
On the other hand, under idealized-feedback, the labeler assumes that each goal-conditioned
sub-MDP has been executed perfectly (i.e. by π∗

s,a) and so the features correspond to:

x∗i = ϕπ
∗,P (τ i1)− ϕπ

∗,P (τ i2) =

Hh∑
j=1

ϕP (π∗(s
τ i
1

j , a
τ i
1

j ))−
Hh∑
j=1

ϕP (π∗(s
τ i
2

j , a
τ i
2

j ))

• Comparison y of high level trajectories follows Bernoulli distribution yi = σ(θ∗ · x∗i ).
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• Low-level trajectories: has realized features,

xs,ai = ϕ(τ i1)− ϕ(τ i2) =
Hh∑
j=1

ϕ(s
τ i
1

j , a
τ i
1

j )−
Hh∑
j=1

ϕ(s
τ i
2

j , a
τ i
2

j )

Note that unlike the high level features, low-level features data are always unbiased. Thus,
using high level and low-level comparisons has the same bias from the high level.

• Comparison y of low level trajectories follows Bernoulli distribution yi = σ(θ∗ · xs,ai ).
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D.2.2 Requisite Lemmas

Lemma 10 (Lemma 5 of [29]). Let oracle P ϵ′ be such that with probability 1− δ/5, the following
holds. Let dπh(s, a) and d̂πh(s, a) be the visitation measure of policy π under P and P ϵ′ , we have for
all h ∈ [H] and π ∈ Π:∑

s,a

|dπh(s, a)− d̂πh(s, a)| =
∑
s

|dπh(s)− d̂πh(s)| ≤ hϵ′

This applies across all sub-MDPs M(s, a). Let the event that this expression hold be Es,a.
Lemma 11 (Low-level MLE Bound, Lemma 2 of [29]). With probability at least 1− δ/5:

∥θ∗ − θt∥Σ̃l
n
≤ Õ(1)

Let the event that this holds for learning from sub-MDP trajectories be E l1.

Lemma 12 (Lemma 3 of [29]). If low-leve trajectories τ1,2i ∼ πi, P ϵ′ , then with probability at least
1− δ/5:

∥θ∗ − θt∥Σ̂l
n
≤
√
2∥θ∗ − θt∥Σ̃l

n
+O(B

√
d log 4n/δW )

Let the event that this holds for learning from sub-MDP trajectories be E l2.

D.2.3 Bias when using idealized-feedback, high level trajectory data in MLE

Proposition 5 (sub-MDP REGIME guarantee of [29]). For sub-MDP M(s, a), under Es,a∩E l1∩E l2:

⟨ϕP (π∗), θ∗⟩ − ⟨ϕP (πNl), θ∗⟩ ≤ C1(δ)√
Nl

+O(ϵ′)

where C1(δ) = O(
√
log(1/δ)).

Note that for estimation and bias, we have to have both an upper bound and a lower bound (see PbRL
example). This requires two-sided bound, where lower bound comes from ϕ∗ having higher reward
than ϕ and upper bound comes from no-regret. Due to optimality of π∗, we have the lower bound as
well:

0 ≤ ⟨ϕP (π∗), θ∗⟩ − ⟨ϕP (πNl), θ∗⟩ ≤ C1√
Nl

+O(ϵ′)

Additionally, we have that:
Lemma 13 (Lemma 6 of [29]). For any sh, ah, ∥vi∥ ≤ 2B, θ ∈ Rd and ∥ϕ∥ ≤ R under Es,a ∩E l1 ∩
E l2:

|⟨ϕP
ϵ′

(πNl(sh, ah))− ϕP (πNl(sh, ah)), v⟩| ≤ BRd2ϵ′

With this,

|⟨ϕP (π∗), θ∗⟩ − ϕP
ϵ′

(πNl), θ∗| ≤ (
C1√
Nl

+O(ϵ′)) +BRd2ϵ′ =
C1√
Nl

+ C2ϵ
′

Now, we can analyze the bias of including high level trajectory data in the MLE computation:
Lemma 14. Suppose there are Nh, Nl high, low-level trajectories, bias b is such that, under⋂

s,a Es,a ∩ E l1 ∩ E l2:

∥b∥2 =

T∑
t=1

|⟨θ∗, xi⟩ − ⟨θ∗, x∗i ⟩|2 ≤ 2HhT (2Hh(
C1√
Nl

+ C2ϵ
′)2)
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Proof.

T∑
t=1

|⟨θ∗, x∗i ⟩ − ⟨θ∗, xi⟩|2

≤ 2

T∑
t=1

|⟨
∑

s,a∈τt
1

ϕP (π∗(s, a))−
∑

s,a∈τt
1

ϕP
ϵ′

(πNl(s, a)), θ∗⟩|2 + |⟨
∑

s,a∈τt
2

ϕP (π∗(s, a))−
∑

s,a∈τt
2

ϕP
ϵ′

(πNl(s, a)), θ∗⟩|2

≤ 2Hh

T∑
t=1

∑
s,a∈τt

1

|⟨ϕP (π∗(s, a))− ϕP
ϵ′

(πNl(s, a)), θ∗⟩|2 +
∑

s,a∈τt
2

|⟨ϕP (π∗(s, a))− ϕP
ϵ′

(πNl(s, a)), θ∗⟩|2

≤ 2HhT (2Hh(
C1√
Nl

+ C2ϵ
′)2)

Thus,

∥b∥ =

√√√√ T∑
t=1

|⟨θ∗, xi⟩ − ⟨θ∗, x∗i ⟩|2 ≤ 2Hh(
C1√
Nl

+ C2ϵ
′)
√
T
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D.2.4 MLE Analysis

Under current-feedback, following Lemma 2 of [29], ∥∆∥Σh
n+λI ≤ Õ(1). Now, we consider the bias

in learned reward under idealized-feedback.

Proposition 6. Let θMLE = argminθ ℓD(θ) and let Cb ≥ ∥b∥. Then with probability at least
1− δ/5:

∥∆∥Σn+λI ≤ O

(√
Cb

γ2
√
n
+
C2

b + d+ log(1/δ)

γ2n
+ λB2

)

where Σn = 1
n

∑n
i=1 xix

T
i + λI .

Proof. Define ∆ = θMLE − θ∗. As in [30], we have the same convexity result due to
⟨θ, xi⟩ ∈ [−2LB, 2LB]. Suppose we let maxx ∥x∥ ≤ L and maxθ∈Θ ∥θ∥ ≤ B, then with
γ = 1

2+exp(−2LB)+exp(2LB) , we have that:

ℓ(θ∗ +∆)− ℓ(θ∗)− ⟨∇ℓ(θ∗),∆⟩ ≥ γ∥∆∥2Σ

And so,

ℓ(θMLE) ≤ ℓ(θ∗)⇒ ℓ(θ∗ +∆)− ℓ(θ∗)− ⟨∇ℓ(θ∗),∆⟩ ≤ −⟨∇ℓ(θ∗),∆⟩

Thus,

γ∥∆∥2Σ ≤ ∥∇ℓ(θ∗)∥(Σ+λI)−1∥∆∥(Σ+λI)

The key part is bounding ∥∇ℓ(θ∗)∥(Σ+λI)−1 . We have that:

∇ℓ(θ∗) = − 1

n

n∑
i=1

[1{yi = 1}σ(⟨θ∗, xi⟩)− 1{yi = 0}(1− σ(⟨θ∗, xi⟩)]xi

= − 1

n
XT (V + b)

where vi = σ(⟨θ∗, x∗i ⟩) w.p 1− σ(⟨θ∗, x∗i ⟩) and −(1− σ(⟨θ∗, x∗i ⟩)) w.p σ(⟨θ∗, x∗i ⟩). And so, entry-
wise V is such that E[Vi] = 0 and |Vi| ≤ 1. Note that Vi are independent due to the independence of
the random variables Yi.

Extra term bias is defined as:

bi = 1{yi = 1}(σ(⟨θ∗, xi⟩)− σ(⟨θ∗, x∗i ⟩))− 1{yi = 0}(1− σ(⟨θ∗, xi⟩ − (1− σ(⟨θ∗, x∗i ⟩))
= σ(⟨θ∗, xi⟩)− σ(⟨θ∗, x∗i ⟩)

By definition, Cb is such that: ∥b∥ ≤ Cb. As before, define M = 1
n2X(Σ + λI)−1XT . We use the

fact that ∥M∥op ≤ 1/n. Then, we have that:

27



∥∇ℓ(θ∗)∥2(Σ+λI)−1 = (V + b)TM(V + b)

= V TMV + 2V TMb+ bTMb

≤ C d+ log(1/δ)

n
+ 2∥V ∥∥Mb∥+ bTMb

(by Matrix Bernstein, V TMV ≤ C d+log(10/δ)
n w.p. ≥ 1− δ/10)

≤ C d+ log(1/δ)

n
+ 2∥V ∥ 1

n
∥b∥+ C2

b

n
(using that ∥M∥op ≤ 1/n)

≤ C d+ log(1/δ)

n
+ 2(C2

√
n
1

n
)Cb +

C2
b

n
(by Hoeffding ∥V ∥ ≤ O(log(10/δ)

√
n) w.p. ≥ 1− δ/10.)

≤ O(
Cb√
n
+
C2

b + d+ log(1/δ)

n
)

γ∥∆∥2Σ+λI ≤ ∥∇ℓ(θ∗)∥(Σ+λI)−1∥∆∥(Σ+λI) + λ(γ∥∆∥2)
≤ ∥∇ℓ(θ∗)∥(Σ+λI)−1∥∆∥(Σ+λI) + 4λγB2

This implies that with probability ≥ 1− δ:

∥∆∥Σ+λI ≤ C

√
Cb

γ2
√
n
+
C2

b + d+ log(1/δ)

γ2n
+ λB2

Corollary 4. Let θMLE = argminθ ℓD(θ), then under
⋂

s,a Es,a, with probability ≥ 1− δ/5:

∥θ∗ − θMLE∥Σ̃h

Nh+λI ≤ C

√
1

γ2
√
Nl

+
1

γ2Nl
+
d+ log(1/δ)

γ2Nh
+ λB2

where ΣNh
= 1

Nh

∑Nh

i=1 xix
T
i .

Let the event that this holds for learning from sub-MDP trajectories be Eh1 .

Proof. Firstly,

∥b∥ ≤ 2Hh(
C1√
Nl

+ C2ϵ
′)
√
Nh = O(

√
Nh√
Nl

+
√
Nhϵ

′)

With this, we have that:

∥∆∥Σ̃Nh
+λI

= O

(√
Cb

γ2
√
Nh

+
C2

b + d+ log(1/δ)

γ2Nh
+ λB2)

)

= O

√√Nh/Nl +
√
Nhϵ′

γ2
√
Nh

+
Nh/Nl +Nhϵ′2 + d+ log(1/δ)

γ2Nh
+ λB2
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Hence by choosing λ = λ/Nh:

∥∆∥Σ̃Nh
+λI ≤ O

(
N

1/2
h

N
1/4
l

+ (Nhϵ
′)1/2

)
+ C ′

D.2.5 Relating ∥θ∗ − θn∥Σ̂n
to ∥θ∗ − θn∥Σ̃n

Define:

1. Σn = λI +
∑n

i=1(ϕ
πNl ,P (πi

1)− ϕπ
Nl ,P (πi

2))(ϕ
πNl ,P (πi

1)− ϕπ
Nl ,P (πi

2))
T

2. Σ̃n = λI +
∑n

i=1(ϕ(τ
i
1)− ϕ(τ i2))(ϕ(τ i1)− ϕ(τ i2))T , where τ1,2i ∼ πi

1, π
Nl , P .

3. Σ̂n = λI +
∑n

i=1(ϕ
πNl ,P ϵ′

(πi
1)− ϕπ

Nl ,P ϵ′

(πi
2))(ϕ

πNl ,P ϵ′

(πi
1)− ϕπ

Nl ,P ϵ′

(πi
2))

T

We wish to relate ∥θ∗ − θn∥Σ̂n
to ∥θ∗ − θn∥Σ̃n

.

Lemma 15 (Lemma 3 of [29]). If τ1,2i ∼ πi
1, π

Nl , P ϵ′ , then with probability at least 1− δ/5:

∥θ∗ − θt∥Σ̂h
n
≤
√
2∥θ∗ − θt∥Σ̃h

n
+ Õ(B

√
d log 4n/δW )

Let the event that this holds for learning from sub-MDP trajectories be Eh2 .

Lemma 16. We have that under
⋂

s,a Es,a ∩ E l1 ∩ E l2 ∩ Eh1 ∩ Eh2 :

∥θ∗ − θn∥Σ̂n
≤ 2∥θ∗ − θn∥Σ̃n

+O(B
√
d log n/δW ) +

√
8nC(ϵ′, δ)

Proof. Under event Eh2 , as trajectories are sampled from P , we have that:

∥θ∗ − θn∥Σn
≤
√
2∥θ∗ − θn∥Σ̃n

+O(B
√
d log n/δW )

It remains to upper bound ∥θ∗ − θn∥Σ̂n
by ∥θ∗ − θn∥Σn

We have that under
⋂

s,a Es,a ∩ E l1 ∩ E l2:

|⟨ϕπ
Nl ,P (π)− ϕπ

Nl ,P ϵ′

(π), v⟩| ≤ C(ϵ′, δ)

⇒ |⟨ϕπ
Nl ,P ϵ′

(πi
1)− ϕπ

Nl ,P ϵ′

(πi
2), v⟩| ≤ |⟨ϕπ

Nl ,P (πi
1)− ϕπ

Nl ,P (πi
2), v⟩|+ 2C(ϵ′, δ)

⇒ |⟨ϕπ
Nl ,P ϵ′

(πi
1)− ϕπ

Nl ,P ϵ′

(πi
2), v⟩|2 ≤ 2|⟨ϕπ

Nl ,P (πi
1)− ϕπ

Nl ,P (πi
2), v⟩|2 + 2(2C(ϵ′, δ))2

Thus,

∥v∥2
Σ̂n

= vT (λI +

n∑
i=1

(ϕπ
Nl ,P ϵ′

(πi
1)− ϕπ

Nl ,P ϵ′

(πi
2))(ϕ

πNl ,P ϵ′

(πi
1)− ϕπ

Nl ,P ϵ′

(πi
2))

T )v

= λ∥v∥2 +
n∑

i=1

|⟨ϕπ
Nl ,P ϵ′

(πi
1)− ϕπ

Nl ,P ϵ′

(πi
2), v⟩|2

≤ λ∥v∥2 +
n∑

i=1

2|⟨ϕπ
Nl ,P (πi

1)− ϕπ
Nl ,P (πi

2), v⟩|2 + 8C(ϵ′, δ)2

≤ 2∥v∥2Σn
+ 8nC(ϵ′, δ)2

Plugging in v = θ∗ − θn, we have that:
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∥θ∗ − θn∥Σ̂n

≤
√
2∥θ∗ − θn∥Σn +

√
8nC(ϵ′, δ)

≤ 2∥θ∗ − θn∥Σ̃n
+O(B

√
d log n/δW ) +

√
8nC(ϵ′, δ)
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D.2.6 High-level policy regret bound

Lemma 17. For any π, under event
⋂

s,a Es,a ∩ E l1 ∩ E l2:

⟨ϕπ
∗,P (π)− ϕπ

Nl ,P (π), θ∗⟩ ≤ Hh(
C1√
Nl

+ C2ϵ
′)

Proof.

⟨ϕπ
∗,P (π)− ϕπ

Nl ,P (π), θ∗⟩

=

Hh∑
h=1

Esh,ah∼π,πNl ,PEsh+1∼πNl (sh,ah),P
[r(π∗(sh, ah)) + V π,π∗

h+1 (g(sh, ah))− (r(πNl(sh, ah)) + V π,πNl

h+1 (sh+1))]

=

Hh∑
h=1

Esh,ah∼π,πNl ,P [r(π
∗(sh, ah))− r(πNl(sh, ah)) + P (sπ

Nl

h+1 ̸= g(sh, ah))(V
π,π∗

h+1 (g(sh, ah))− V π,πNl

h+1 (sh+1))]

≤
Hh∑
h=1

Esh,ah∼π,πNl ,P [r(π
∗(sh, ah))− r(πNl(sh, ah)) + P (sπ

Nl

h+1 ̸= g(sh, ah))κHhHl]

=

Hh∑
h=1

Esh,ah∼π,πNl ,P [r(π
∗(sh, ah)) + P (sπ

∗

h+1 = g(sh, ah))κHhHl − r(πNl(sh, ah))− P (sπ
Nl

h+1 = g(sh, ah))κHhHl]

=

Hh∑
h=1

Esh,ah∼π,πNl ,P [⟨ϕ(π∗(sh, ah)), θ
∗⟩ − ⟨ϕ(πNl(sh, ah)), θ

∗⟩]

≤ Hh(
C1√
Nl

+ C2ϵ
′)

Because for any sh, ah, ⟨ϕ(π∗(sh, ah)), θ
∗⟩ − ⟨ϕ(πNl(sh, ah)), θ

∗⟩ ≤ C1√
Nl

+ C2ϵ
′.
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Lemma 18 (Lower bound on Reachability Probability). We have that under event
⋂

s,a Es,a∩E l1∩E l2:

P (sπ
Nl

Hl
̸= g(s, a)) ≤ 1

κHh
+

C1

κHhHl

√
Nl

+
C2ϵ

′

κHhHl

and

P ϵ′(sπ
Nl

Hl
̸= g(s, a)) ≤ 1

κHh
+

C1

κHhHl

√
Nl

+
C2ϵ

′

κHhHl
+Hlϵ

′

Proof. Due to the regret guarantee, we have that:

C1√
Nl

+ C2ϵ
′

≥ ⟨ϕP (π∗)− ϕP (πNl), θ∗⟩

= r(π∗) + κHhHl · 1− r(πNl)− κHhHl · P (sπ
Nl

Hl
= g(s, a))

≥ 0−Hl + κHhHl · P (sπ
Nl

Hl
̸= g(s, a))

Thus, we have that:

P (sπ
Nl

Hl
̸= g(s, a)) ≤ 1

κHh
+

C1

κHhHl

√
Nl

+
C2ϵ

′

κHhHl

Additionally, we have that from Lemma 5.1:

|dπ
Nl

Hl
(g(s, a))− d̂π

Nl

Hl
(g(s, a))| = |P (sπ

Nl

Hl
̸= g(s, a))− P ϵ′(sπ

Nl

Hl
̸= g(s, a))| ≤ Hlϵ

′

Thus,

P ϵ′(sπ
Nl

Hl
̸= g(s, a)) ≤ 1

κHh
+

C1

κHhHl

√
Nl

+
C2ϵ

′

κHhHl
+Hlϵ

′

Define goal non-reachability probability to be: δ = 1
κHh

+ C1

κHhHl

√
Nl

+ C2ϵ
′

κHhHl
+Hlϵ

′.

Lemma 19. Let ΦπNl ,P ϵ′

(π) denote the feature expectation under high level policy π, sub-MDP
policies πNl and MDP transitions P ϵ′ . Under event

⋂
s,a Es,a ∩ E l1 ∩ E l2, we have that, for any high

level policy π:

|⟨ϕπ
Nl ,P (π)− ϕπ

Nl ,P ϵ′

(π), θ∗⟩| ≤ 2HhBRd
2ϵ′ + 8H3

hHlδ

Proof. Let Ereach denote the event that roll-out τ ∼ π, πNl , P is such that all high level goals are
reached, and similarly event E ′reach for roll-out τ ′ ∼ π, πNl , P ϵ′ .

By union bound, Pr(¬Ereach) = Pr(∃si, ai, sπ
Nl (si,ai)

Hl
̸= g(si, ai)) ≤

∑Hh

i=1 Pr(s
πNl (si,ai)
Hl

̸=
g(si, ai)))) ≤ Hhδ, and similarly Pr(¬E ′reach) ≤ Hhδ.
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|⟨ϕπ
Nl ,P (π)− ϕπ

Nl ,P ϵ′

(π), θ∗⟩|
≤ |Eτ∼π,πNl ,P [⟨ϕ(τ), θ∗⟩|Ereach] Pr(Ereach)− Eτ∼π,πNl ,P ϵ′ [⟨ϕ(τ), θ∗⟩|E ′reach] Pr(E ′reach)|
+ |Eτ∼π,πNl ,P [⟨ϕ(τ), θ∗⟩|¬Ereach] Pr(¬Ereach)− Eτ∼π,πNl ,P ϵ′ [⟨ϕ(τ), θ∗⟩|¬E ′reach] Pr(¬E ′reach)|
≤ |Eτ∼π,πNl ,P [⟨ϕ(τ), θ∗⟩|Ereach] Pr(Ereach)− Eτ∼π,πNl ,P ϵ′ [⟨ϕ(τ), θ∗⟩|E ′reach] Pr(E ′reach)|+ 2(Hhδ)(HhHl)

(since |Eτ∼π,πNl ,P [⟨ϕ(τ), θ∗⟩|¬Ereach] Pr(¬Ereach)| ≤ (Hhδ)(HhHl) and likewise the other term)

= |Pr(Ereach)
Hh∑
h=1

∑
sh,ah

d(sh, ah)E[⟨ϕP (πNl(sh, ah)), θ
∗⟩|Ereach]

− Pr(E ′reach)
Hh∑
h=1

∑
sh,ah

d(sh, ah)E[⟨ϕP
ϵ′

(πNl(sh, ah)), θ
∗⟩|E ′reach]|+ 2H2

hHlδ

(under goal reachability, high-level state visitation measure d(sh, ah) is the same)

≤
Hh∑
h=1

∑
sh,ah

d(sh, ah)|Pr(Ereach)E[⟨ϕP (πNl(sh, ah)), θ
∗⟩|Ereach]

− Pr(E ′reach)E[⟨ϕP
ϵ′

(πNl(sh, ah)), θ
∗⟩|E ′reach]|+ 2H2

hHlδ

=

Hh∑
h=1

∑
sh,ah

d(sh, ah)|Pr(Ereach)E[⟨ϕP (πNl(sh, ah)), θ
∗⟩|Esh,ahreach]

− Pr(E ′reach)E[⟨ϕP
ϵ′

(πNl(sh, ah)), θ
∗⟩|E ′sh,ahreach

]|+ 2H2
hHlδ

(Esh,ahreach is the event that g(sh, ah) is reached under πNl , P )

≤
Hh∑
h=1

∑
sh,ah

d(sh, ah) Pr(Ereach)|E[⟨ϕP (πNl(sh, ah)), θ
∗⟩|Esh,ahreach]− E[⟨ϕP

ϵ′

(πNl(sh, ah)), θ
∗⟩|E ′sh,ahreach

]|

+ |(Pr(Ereach)− Pr(E ′reach))E[⟨ϕP
ϵ′

(πNl(sh, ah)), θ
∗⟩|E ′sh,ahreach

]|+ 2H2
hHlδ

≤
Hh∑
h=1

∑
sh,ah

d(sh, ah)
(
|E[⟨ϕP (πNl(sh, ah)), θ

∗⟩|Esh,ahreach]− E[⟨ϕP
ϵ′

(πNl(sh, ah)), θ
∗⟩|E ′sh,ahreach

]|+ (Hhδ)(HhHl)
)

+ 2H2
hHlδ (since Pr(E ′reach),Pr(Ereach) ∈ [1−Hhδ, 1])

To finish, we will relate the expression to |⟨ϕP ϵ′

(πNl(sh, ah))− ϕ(πNl(sh, ah)), θ
∗⟩|.
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≤
Hh∑
h=1

∑
sh,ah

d(sh, ah)|E[⟨ϕP (πNl(sh, ah)), θ
∗⟩|Esh,ahreach]− E[⟨ϕP

ϵ′

(πNl(sh, ah)), θ
∗⟩|E ′sh,ahreach

]|+ 3H3
hHlδ

=

Hh∑
h=1

∑
sh,ah

d(sh, ah)|
1

Pr(Esh,ahreach)
Pr(Esh,ahreach)E[⟨ϕP (πNl(sh, ah)), θ

∗⟩|Esh,ahreach]

− 1

Pr(E ′sh,ahreach
)
Pr(E ′sh,ahreach

)E[⟨ϕP
ϵ′

(πNl(sh, ah)), θ
∗⟩|E ′sh,ahreach

]|+ 3H3
hHlδ

≤
Hh∑
h=1

∑
sh,ah

d(sh, ah)
1

Pr(Esh,ahreach)
|Pr(Esh,ahreach)E[⟨ϕP (πNl(sh, ah)), θ

∗⟩|Esh,ahreach]

− Pr(E ′sh,ahreach
)E[⟨ϕP

ϵ′

(πNl(sh, ah)), θ
∗⟩|E ′sh,ahreach

]|+Hh

(
(

1

1− δ
− 1)HhHl

)
+ 3H3

hHlδ

(⋄)

≤
Hh∑
h=1

∑
sh,ah

d(sh, ah)
1

1− δ
|Pr(¬Esh,ahreach)E[⟨ϕP (πNl(sh, ah)), θ

∗⟩|¬Esh,ahreach]

− Pr(¬E ′sh,ahreach
)E[⟨ϕP

ϵ′

(πNl(sh, ah)), θ
∗⟩|¬E ′sh,ahreach

]|+

|E[⟨ϕP
ϵ′

(πNl(sh, ah))− ϕP (πNl(sh, ah)), θ
∗⟩]|+ 4H3

hHlδ (using that 1
1−δ − 1 ≤ 1)

≤
Hh∑
h=1

∑
sh,ah

d(sh, ah)
1

1− δ
(
2(δ)(HhHl) +BRd2ϵ′

)
+ 4H3

hHlδ (⋄⋄)

≤
Hh∑
h=1

∑
sh,ah

d(sh, ah)2
(
2HhHlδ +BRd2ϵ′

)
+ 4H3

hHlδ ( 1
1−δ ≤ 2)

≤ 2HhBRd
2ϵ′ + 8H3

hHlδ = C(ϵ′, δ)

(⋄) : |
Pr(E′

sh,ahreach)

Pr(Esh,ahreach)
− 1| ≤ max(1 − (1 − δ) 1

1−δ − 1) since Pr(E ′sh,ahreach
),Pr(Esh,ahreach) ∈

[1− δ, 1].

(⋄⋄) : |⟨ϕP ϵ′

(πNl(sh, ah)) − ϕP (πNl(sh, ah)), v⟩| ≤ BRd2ϵ′ and
Pr(¬Esh,ahreach),Pr(¬E ′sh,ahreach

) ∈ [0, δ]
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Lemma 20 (use of the Elliptical Lemma).

⟨ϕπ
Nl ,P ϵ′

(π∗)− ϕπ
Nl ,P ϵ′

(π̂), θ∗ − θ̂⟩ ≤ 1√
Nh

(2d log(1 +
Nh

d
))∥θ∗ − θ̂∥Σ̂Nh

Proof.

⟨ϕπ
Nl ,P ϵ′

(π∗)− ϕπ
Nl ,P ϵ′

(π̂), θ∗ − θ̂⟩

≤ ∥ϕπ
Nl ,P ϵ′

(π∗)− ϕπ
Nl ,P ϵ′

(π̂)∥Σ̂−1
Nh

∥θ∗ − θ̂∥Σ̂Nh

≤ 1

Nh

Nh∑
i=1

∥ϕπ
Nl ,P ϵ′

(π∗)− ϕπ
Nl ,P ϵ′

(π̂)∥Σ̂−1
i
∥θ∗ − θ̂∥Σ̂Nh

(Σ̂−1
Nh
⪯ Σ̂−1

i )

≤ 1

Nh

Nh∑
i=1

∥ϕπ
Nl ,P ϵ′

(πi
1)− ϕπ

Nl ,P ϵ′

(πi
2)∥Σ̂−1

i
∥θ∗ − θ̂∥Σ̂Nh

(definition of πi
1,2)

≤ 1√
Nh

√√√√Nh∑
i=1

∥ϕπNl ,P ϵ′ (πi
1)− ϕπ

Nl ,P ϵ′ (πi
2)∥2Σ̂−1

i

∥θ∗ − θ̂∥Σ̂Nh

≤ 1√
Nh

(2d log(1 +
Nh

d
))∥θ∗ − θ̂∥Σ̂Nh

(Elliptical Lemma)

Theorem 4 (Main regret bound). We have that under event
⋂

s,a Es,a ∩ E l1 ∩ E l2 ∩ Eh1 ∩ Eh2 and
Nh > 0:

V π∗,π∗
− V π̂,πNl ≤ Õ

(
N

−1/2
l +N

−1/2
h ∥θ∗ − θ̂∥Σ̂Nh

)
Proof.

V π∗,π∗
− V π̂,πNl

= ⟨ϕπ
∗,P (π∗)− ϕπ

Nl ,P (π̂), θ∗⟩

= ⟨ϕπ
∗,P (π∗)− ϕπ

Nl ,P (π∗), θ∗⟩+ ⟨ϕπ
Nl ,P (π∗)− ϕπ

Nl ,P (π̂), θ∗⟩
(first term = sub-MDP sub-optimality; second term = high-level policy sub-optimality)

≤ Hh(
C1√
Nl

+ C2ϵ
′) + ⟨ϕπ

Nl ,P (π∗)− ϕπ
Nl ,P (π̂), θ∗⟩

≤ Hh(
C1√
Nl

+ C2ϵ
′) + ⟨ϕπ

Nl ,P ϵ′

(π∗)− ϕπ
Nl ,P ϵ′

(π̂), θ∗⟩

+ |⟨ϕπ
Nl ,P (π∗)− ϕπ

Nl ,P ϵ′

(π∗), θ∗⟩|+ |⟨ϕπ
Nl ,P ϵ′

(π̂)− ϕπ
Nl ,P (π̂), θ∗⟩|

≤ Hh(
C1√
Nl

+ C2ϵ
′) + 2C(ϵ′, δ) + ⟨ϕπ

Nl ,P ϵ′

(π∗)− ϕπ
Nl ,P ϵ′

(π̂), θ∗ − θ̂⟩+ ⟨ϕπ
Nl ,P ϵ′

(π∗)− ϕπ
Nl ,P ϵ′

(π̂), θ̂⟩

(expand out the second term)

≤ Hh(
C1√
Nl

+ C2ϵ
′) + 2C(ϵ′, δ) + ⟨ϕπ

Nl ,P ϵ′

(π∗)− ϕπ
Nl ,P ϵ′

(π̂), θ∗ − θ̂⟩

(definition of π̂: ⟨ϕπNl ,P ϵ′

(π∗)− ϕπNl ,P ϵ′

(π̂), θ̂⟩ ≤ 0)

≤ Hh(
C1√
Nl

+ C2ϵ
′) + 2C(ϵ′, δ) +

1√
Nh

(2d log(1 +
Nh

d
))∥θ∗ − θ̂∥Σ̂Nh

(use of Elliptical lemma)
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Data Tradeoff: Using the above bound, we can derive the following rates:

• Under idealized-feedback and requiring both high- and low-level feedback, the overall rate
comes out to O(N

−1/4
l +N

−1/2
h ).

This is because Σ̂Nh
= O

(
N

1/2
h

N
1/4
l

+ 1

)
. Thus, the dominating factor is the bias of the

reward learning.

• Under current-feedback and requiring both high- and low-level feedback, the overall rate
comes out to O(N

−1/2
l +N

−1/2
h ).

This is because ∥θ∗ − θ̂∥Σ̂Nh
= O(1).

• Under only low-level feedback (due to sufficiency in coverage), the overall rate comes out
to O(N

−1/2
l ).

We have that:

⟨ϕπ
Nl ,P ϵ′

(π∗)− ϕπ
Nl ,P ϵ′

(π̂), θ∗ − θ̂⟩

≤ ∥ϕπ
Nl ,P ϵ′

(π∗)− ϕπ
Nl ,P ϵ′

(π̂)∥Σ̂−1
Nl

∥θ∗ − θ̂∥Σ̂Nl
(Σ̂−1

Nh
⪯ Σ̂−1

i )

≤ 1

Nh

Nh∑
i=1

∥ϕP
ϵ′

(πi
1)− ϕP

ϵ′

(πi
2)∥Σ̂−1

i
∥θ∗ − θ̂∥Σ̂Nl

(⋄)

≤ 1√
Nl

(2d log(1 +
Nl

d
))∥θ∗ − θ̂∥Σ̂Nl

(⋄) : since low-level policy feature expectation is a superset of high-level policy expecta-
tion, it follows that by choice of low-level policies πi

1, π
i
2: ∥ϕP ϵ′

(πi
1)− ϕP

ϵ′

(πi
2)∥Σ̂−1

i
≥

∥ϕπNl ,P ϵ′

(π∗)− ϕπNl ,P ϵ′

(π̂)∥Σ̂−1
Nl

Moreover, since low-level feedback is always unbiased, ∥θ∗ − θ̂∥Σ̂Nl
= O(1). Thus, the

overall rate comes out to O(N
−1/2
l ).

Remark 4 (High Probability Guarantee). For completeness, we show that the theorem statement
holds with probability at least 1− δ:

Pr(
⋂
s,a

Es,a ∩ E l1 ∩ E l2 ∩ Eh1 ∩ Eh2 )

≥ 1− Pr(¬
⋂
s,a

Es,a)− Pr(¬E l1)− Pr(¬E l2)− Pr(¬Eh1 )− Pr(¬Eh2 )

≥ 1− δ/5− δ/5− δ/5− δ/5− δ/5
= 1− δ

D.2.7 Additional Guarantees

In addition, we derive requisite conditions on the constants for idealized-feedback (the most interesting
case).

Necessary Auxiliary Parameters Bound: We have that,
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Hh(
C1√
Nl

+ C2ϵ
′) + 2C(ϵ′, δ) +

1√
Nh

(2d log(1 +
Nh

d
))∥θ∗ − θ̂∥Σ̂Nh

≤ Hh(
C1√
Nl

+ C2ϵ
′) + 2C(ϵ′, δ) +N

−1/2
h 2d

(
2∥θ∗ − θNh∥Σ̃Nh

+O(B
√
d logNh/δW ) +

√
8NhC(ϵ

′, δ)
)

≤ Hh(
C1√
Nl

+ C2ϵ
′) + (8d+ 2)C(ϵ′, δ) +N

−1/2
h 2d

((
N

1/2
h

N
1/4
l

+ (Nhϵ
′)1/2

)
+ C ′ +O(B

√
d logNh/δW )

)
≤ (HhC1)N

−1/2
l + 2dN

−1/4
l + C2Hhϵ

′ + dϵ′1/2 + 9dC(ϵ′, δ) + 2dC ′′N
−1/2
h

= (HhC1)N
−1/2
l + 2dN

−1/4
l + C2Hhϵ

′ + dϵ′1/2 + 9d
(
2HhBRd

2ϵ′ + 8H3
hHlδ

)
+ 2dC ′′N

−1/2
h

≤ (2d+HhC1)N
−1/4
l + (C2Hh + 18d3HhBR)ϵ

′ + 72dH3
hHlδ + 2dC ′′N

−1/2
h

Setting the upper bound to be below ϵ, or each term to be below ϵ/4, we obtain the following bounds:

• Nl ≥ O( (d+HhC1)
4

ϵ4 ).

• Nh ≥ O(d
2

ϵ2 ).

• κ ≥ O(
dH2

hHl

ϵ ):
72dH3

hHlδ ≤ ϵ/4⇒ δ ≤ O( ϵ
dH3

hHl
).

Recall δ = 1
κHh

+ C1

κHhHl

√
Nl

+ C2ϵ
′

κHhHl
+Hlϵ

′.

This implies that κ ≥ O(
dH2

hHl

ϵ ) and ϵ ≤ O( ϵ
dH3

hH
2
l
).

• ϵ′ ≤ O(min( ϵ
dH3

hH
2
l
, ϵ
d3HhBR ):

Finally, we also require that (C2Hh + 18d3HhBR)ϵ
′ ≤ ϵ/4 ⇒ ϵ′ ≤ O( ϵ

d3HhBR ). Thus,
we need that ϵ′ ≤ O(min( ϵ

dH3
hH

2
l
, ϵ
d3HhBR ).
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E Statistical Efficiency of HRL

An useful sanity check for hierarchical RL algorithms is that it achieves improved statisical sample
complexity in settings with repeated sub-MDP structure [25]. As in [25], we examine if Algorithm 1
also improves upon algorithms that do not leverage hierarchical structure. We make this comparison
with vanilla UCB-VI under the same isomophism assumption.

Corollary 5. Setting As,a to be the standard UCB-VI algorithm with UB(RNK,Hh (s,a)) =

O(H
3/2
l

√
|Sl

s,a||A|NHh,K(s, a)), we have the following bound:∑
s,a∈C(S,A)

UB(RNK,Hh (s,a)) +HhH l
√
NK,Hh(s, a)

≤ Õ(H
3/2
l

√
max
s,a
|Sl

s,a||A|
√
|C(S,Ah)|(HhK) +HhHl

√
|C(S,Ah)|HhK)

Comparison with vanilla UCB-VI: Standard application of UCB-VI yields the following
rate: Õ((HhHl)

3/2
√
|S||A|K). Hier-UCB-VI compares favorably to vanilla UCB-VI, if

maxs,a |Sl
s,a||C(S,Ah)| << |S|. Or in words, there is a lot of repeated/identical sub-MDPs and

sub-MDPs have small state space size.
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F NeurIPS paper checklist

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our paper contains everything that is covered in the abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This is covered in the “Discussions” section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All the proofs for results are included in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: This is a theory paper that has no experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: This is a theory paper that does not involve code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: This is a theory paper that has no experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This is a theory paper that has no experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This is a theory paper that has no experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper does conform with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: To our knowledge, this theory paper has no positive/negative social impact.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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