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ABSTRACT

Fourier transform and its variants have made impressive progress in image en-
hancement, benefiting from their capability for global representation. How-
ever, previous works mainly operate in the spatial dimension, potentially under-
exploring the discriminative features inherent in the channel dimension. In this
study, we introduce the channel-dimension Fourier transform for image enhance-
ment, where the transformation is applied to channel-wise representation to en-
hance its discrimination ability of global representation. Specifically, we offer
three alternative implementations of the channel transform, performing operations
in 1) the global vector with its higher order moment, 2) the global vector divided
by groups in channel dimension, and 3) the Fourier features derived from spatial-
based Fourier transform. The above fundamental designs, serving as generic op-
erators, can be seamlessly integrated with existing enhancement network architec-
tures. Through extensive experiments across multiple image enhancement tasks,
such as low-light image enhancement, exposure correction, SDR2HDR trans-
lation, and underwater image enhancement, our proposed designs consistently
demonstrate performance gains. The code will be made publicly available.

1 INTRODUCTION

Image enhancement aims to recover a clear image from its degraded counterpart captured under un-
favorable light conditions or severe environments. Representative image enhancement tasks include
low-light image enhancement, exposure correction, SDR2HDR translation, and underwater image
enhancement, among others. The performance of image enhancement affects not only visual quality
but also the applications of computer vision techniques.

Deep learning-based methods have witnessed remarkable advancements in image enhancement and
shown powerful capability in modeling lightness and contrast adjustment procedures. A line of
works customizes degradation prior-aware paradigms to explicitly learn the lightness component,
such as curve-adjustment (Guo et al., 2020) and Retinex theory-based methods (Wei et al., 2018).
These studies typically divide the learning process into global and local components and may not
fully capture the dependencies within the feature space. In addition, another line of research concen-
trates on roughly designing complex networks to implicitly learn lightness and contrast enhancement
procedures (Xu et al., 2022). However, these approaches have not deeply explored the underlying
mechanism of image enhancement or introduced dedicated operations for handling global compo-
nents, thus constraining their ability to effectively learn lightness and contrast adjustment.

Fourier transform has demonstrated its effectiveness in global information modeling (Chi et al.,
2020). As a supplement to the aforementioned works, some endeavors have integrated Fourier
transform-based operations into image enhancement architectures to adjust global components (Li
et al., 2023; Huang et al., 2022). By employing Fourier transform on the spatial dimension, which
yields global statistical information for each channel, this operation improves the distinguishability
of various global representations and streamlines their learning process. Despite its effectiveness,
we argue that the discriminability of global representation can also be addressed by modeling the
channel distribution since the Gram matrix that connects the channel dimension information has
shown its advantages in modeling global style information. Learning in the channel-dimension
space using Fourier transform can enhance the discriminability of global representations and thus
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Figure 1: Motivation. (a) presents the different global representation formats (spatial-dimension
FFT, global pooling, our channel-dimension FFT) for image enhancement. (b) and (c) are conducted
in exposure correction on the SICE dataset. As shown in (b), employing a simple network coupled
with our proposed channel-dimension Fourier transform outperforms the compared global formats,
making our method a perfect fit for image enhancement tasks. (c) provides evidence that the channel
feature response of our channel-dimension Fourier transform is more discriminative across different
lighting conditions compared to the response curve of the compared global formats.

contribute to performance improvement. We present an example to show its ability of modeling
global information in Fig. 1.

In this work, we propose a novel Channel-dimension Fourier transform learning (CFTL) mechanism
for image enhancement. The primary objective of CFTL is to capture global discriminative represen-
tations by modeling channel-dimension discrepancy in an efficient global vector-based space. We
implement the simple yet effective CFTL with three straightforward steps: (1) Apply the Fourier
transform to the global averaged vector in the channel dimension; (2) Derive the amplitude and
phase components of the transformed features and perform the channel-wise modulation on them;
(3) Convert the obtained feature back to its original space through an inverse Fourier transform in
the channel dimension and then add it to the spatial features. As depicted in Fig. 1 (b), by employ-
ing Fourier transform over channel dimension, the simple network suggests the strongest ability for
fitting lightness adjustment, and the discriminability among different brightness representations is
improved, as shown in Fig. 1 (c). Therefore, applying the Fourier transform on the channel dimen-
sion brings an effective space for adjusting the global representation, which can contribute to image
enhancement tasks.

Following the above observations and analysis, we provide several implementation formats of the
channel-dimension Fourier transform in different spaces, as shown in Fig. 3: (1) Performing op-
erations in the global vector space with its different moment orders; (2) Performing operations on
the global vector divided by groups in channel dimension; (3) Performing operations on the Fourier
features converted by spatial-based Fourier transform. Across various image enhancement tasks,
our extensive experiments consistently demonstrate performance improvements achieved by incor-
porating CFTL into existing image enhancement network architectures. Furthermore, CFTL also
contributes to the development of a lightweight backbone, achieving an elegant balance between
effectiveness and efficiency.

Our contributions are summarized as follows: (1) We provide a new mechanism for image enhance-
ment tasks through revitalizing channel-dimension Fourier transform learning. This mechanism
enhances the discriminability of global representation through channel statistics modeling, which
further acts as a representative space to efficiently adjust global information. (2) We provide dif-
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ferent applicable formats of the Channel-dimension Fourier transform learning (CFTL) mechanism,
and conduct extensive experiments in various image enhancement tasks, demonstrating its potential
in wide-range applications. (3) Our proposed CFTL is compatible with existing image enhancement
network architectures, leading to performance improvement with negligible computation costs.

2 RELATED WORK

Image Enhancement. Image enhancement aims to improve the quality of low-visibility images
by adjusting the global lightness and contrast components, i.e., illumination, color, and dynamic
range. Different image enhancement tasks play different roles in various scenarios. In low-light im-
age enhancement, algorithms are tailored to enhance the visibility of images acquired in low-light
conditions (Chen et al., 2018; Zhang et al., 2021). For exposure correction, methods concentrate
on correcting images captured under both underexposure and overexposure scenes to normal ex-
posure (Yang et al., 2020; Afifi et al., 2021). For SDR2HDR translation, this task aims to convert
images from a low-dynamic range to a high-dynamic range (Chen et al., 2021a; He et al., 2020). For
underwater image enhancement, the contrast and color need to be adjusted (Li et al., 2019b). Since
recent approaches in image enhancement tasks leverage deep neural networks, adjusting global in-
formation (i.e., lightness, contrast) in an efficient space would effectively improve performance.

Fourier transform. Fourier transform is a popular technique for frequency domain analysis. This
transformation shifts the signal to a domain with global statistical properties and is consequently
utilized for various computer vision tasks. Fourier transform is a classic application extensively used
for domain generalization and adaptation because of its effective modeling of global information.
For instance, Xu et.al (Xu et al., 2021a) implement a Fourier-based data augmentation strategy to
generate samples with diverse styles for domain generation. Lee et.al (Lee et al., 2023) propose to
improve the normalization for domain generalization by recomposing its different components in
the Fourier domain. In another application, the Fourier transform mechanism is utilized to design
effective backbones, leveraging its ability to capture global information. For example, FFC (Chi
et al., 2020) is introduced to process partial features in the Fourier domain, enabling models to
possess a non-local receptive field. Besides, GFNet (Rao et al., 2021) utilizes FFT/IFFT to extract
Fourier domain features, serving as global filters for effective attention modeling. All the above
works demonstrate the effectiveness of Fourier domain features in capturing global spatial statistics.

More recently, Fourier transform has been introduced to low-level vision tasks (Fuoli et al., 2021;
Mao et al., 2023). As an early attempt, Fuoli et al (Fuoli et al., 2021) propose a Fourier transform-
based loss to optimize the global high-frequency information for efficient image super-resolution.
DeepRFT (Mao et al., 2023) is proposed for image deblurring, which captures both low-frequency
and high-frequency properties of various blurs with a global-receptive field, and a similar design is
also employed for image inpainting (Suvorov et al., 2022). FECNet (Huang et al., 2022) suggests
that the amplitude of the Fourier feature decouples the global lightness components and thus is
effective for image enhancement. Yu et al (Yu et al., 2022) also observes a similar phenomenon in
image dehazing, in which the amplitude reflects the global haze-related information.

3 METHOD

In this section, we first revisit the traditional 2D Fourier transform, followed by the introduction of
our channel-dimension Fourier transform. Subsequently, we investigate the details of the proposed
CFTL. Finally, we illustrate the implementation of the CFTL variants.

3.1 PRELIMINARY OF FOURIER TRANSFORM

As recognized, Fourier transform is widely used to analyze the frequency representation of images.
Typically, this operation is independently conducted over the spatial dimension of each individual
channel. Given an image x ∈ RH×W×C, the Fourier transform F(·) converts it to Fourier space,
obtaining the complex component F(x), which is expressed as:

F(x)(u, v) =
1√
HW

H−1∑
h=0

W−1∑
w=0

x(h,w)e−j2π( h
Hu+ w

W v), (1)
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Figure 2: The illustration of swapping amplitude component in Fourier domain. Both swapping the
amplitude swapping A(x)(0, 0) lead to lightness swapping, while the latter produces fewer artifacts.

Both the Fourier transform and its inverse procedure F−1(·) can be efficiently implemented by
FFT/IFFT algorithms (Frigo & Johnson, 1998). The amplitude component A(x)(u, v) and phase
component P(x)(u, v) are expressed as:

A(x)(u, v) =
√
R2(x)(u, v) + I2(x)(u, v),

P(x)(u, v) = arctan[
I(x)(u, v)

R(x)(u, v)
],

(2)

where R(x)(u, v) and I(x)(u, v) represent the real and imaginary part, respectively. When referring
to the amplitude component A(x)(u, v), it quantifies the magnitude of the frequency index (u, v) in
an image, serving as a statistical indicator of frequency.

Targeting image enhancement, previous works have demonstrated that global information such as
lightness is mainly preserved in the amplitude component (Li et al., 2023). However, we argue that
the primary characteristic of global information remains conserved within A(x)(0, 0), as shown in
Fig. 2. The example represents using the low-frequency part in the amplitude has already led to
effective global information swapping, while using the whole amplitude may bring artifacts in the
swapped result. With regard to Eq. 2, the globally averaged vector across the 2D dimension is equal
to A(x)(0, 0), and we utilize it as the subject of manipulation.

In addition, different channels exhibit different properties of spectral information, which also deter-
mine the global information of an image when conjunct different channels.

A comparable inference can be drawn from style transfer studies, wherein the Gram matrix signifies
global style information (Li et al., 2017). This inspires us to employ the Fourier transform on the
channel dimension to enrich the representation of global information, as detailed below.

3.2 CHANNEL-DIMENSION FOURIER TRANSFORM

We introduce the channel-dimension Fourier transform by individually applying Fourier transform
along the channel dimension for each spatial position. For each position (h ∈ RH−1, w ∈ RW−1)
within the feature tensor x ∈ RH×W×C, denoted as x(h,w, 0 : C − 1) and abbreviated as y(0 :
C− 1), Fourier transform F(·) converts it to Fourier space as the complex component F(y), which
is expressed as:

F(y(0 : C− 1))(z) =
1

C

C−1∑
c=0

y(c)e−j2π c
C z. (3)

Here, the amplitude component A(y(0 : C− 1))(z) and phase component P(y(0 : C − 1))(z) of
F(y(0 : C− 1))(z) are expressed as:

A(y(0 : C− 1))(z) =
√
R2(y(0 : C− 1))(z) + I2(y(0 : C− 1))(z),

P(y(0 : C− 1))(z) = arctan[
I(y(0 : C− 1))(z)

R(y(0 : C− 1))(z)
].

(4)
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These operations can also be applied for the global vector xg ∈ R1×1×C derived by the pooling op-
eration (see Eq. 5). In this way, A(y)(z) and P(y)(z) signify the magnitude and directional changes
in the magnitude of various channel frequencies, respectively. Both of these metrics encapsulate
global statistics related to channel information.

We provide visualization to suggest the properties of this operation in Fig. 16. It is evident that
distinct representations of lightness become more discernible following the channel-based Fourier
transform, both in terms of A(y)(z) and P(y)(z). This indicates that this operation improves the
distinguishability of global information components, and adjusts the channel statistics would signif-
icantly influence its properties. Therefore, the transformed feature can act as a representative space
for global information adaptation.

3.3 CHANNEL-BASED FOURIER TRANSFORM LEARNING

Based on the above analysis, we introduce the CFTL implementation, as shown in Fig. 3, which
conducts operations on channel-based Fourier transformed features.

Operation Description. The core construction of the CFTL involves a three-step sequential process:
applying the Fourier transform to the channel dimension to obtain channel-wise Fourier domain
features, performing a channel-wise transformation on both its amplitude and phase components,
and then reverting back to the spatial domain.

Given the feature x ∈ RH×W×C, the initial step involves transforming it into a global vector xg ∈
R1×1×C using global average pooling as:

xg =
1

HW

H−1∑
h=0

W−1∑
w=0

x(h,w). (5)

Here, xg equals A(x)(0, 0) as described above, effectively encapsulating global information. Then,
xg is transformed into channel-dimension Fourier domain using Eq. 3, denoted as F(xg)(z).

Secondly, we utilize Eq. 3 to transform the feature F(xg)(z) into its amplitude component A(xg)(z)
and phase component P(xg)(z). Instead of acting upon F(xg)(z), we advocate performing opera-
tions on A(xg)(z) and P(xg)(z) due to their explicit information meaning. Conversely, F(xg)(z)
lacks the requisite discriminative properties, as detailed in the Appendix. We introduce attention-
based operations on A(xg)(z) and P(xg)(z)

A(xg)(z)
′ = Seq1(xg)⊙A(xg)(z),

P(xg)(z)
′ = Seq2(xg)⊙ P(xg)(z),

(6)

where Seq1(·) and Seq2(·) denote sequences of 1×1 convolutions followed by LeakyReLU ac-
tivation, as illustrated in Fig. 3. The symbol ⊙ signifies element-wise multiplication for attentive
adjustment. Hence, Eq. 6 signifies the process of modifying the global information encapsulated
within the channel statistics A(xg)(z) and P(xg)(z).

Finally, we convert the processed channel-dimension Fourier domain feature A(xg)(z)
′ and

P(xg)(z)
′ to their original space by employing the inverted channel-based Fourier transform

x′
g = F−1(A(xg)(z)

′,P(xg)(z)
′), (7)

where x′
g is the final processed feature of CFTL. Furthermore, we resize it by replication to the

original resolution H×W × C to align with the size of x, as illustrated in Fig. 3.

Integrating CFTL into backbone architectures. Upon the processed feature x′
g , we integrate it

with the processed original feature x, rendering CFTL compatible with existing backbone archi-
tectures. Given the resolution disparity between x′

g and x, we initially expand x′
g by repeating it

by H × W times to match the size of x. Subsequently, we integrate x′
g with the processed x. As

depicted in Fig. 3, within the CNN-based backbones, x undergoes a local information branch (i.e.,
convolutional layers) for local information processing.

3.4 VARIANTS IMPLEMENTATION OF CFTL

Following the above rules, we offer three alternative implementation formats of the channel trans-
form in different operational spaces on global vector xg .
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Figure 3: The illustration of the CFTL operation and its variants. (a) is the original CFTL, (b) is the
High-order CFTL, (c) is the Group CFTL, and (d) is the Spatial-Fourier CFTL.

Original CFTL. We construct the original CFTL by treating xg as the global averaged vector of
x ∈ RH×W×C, as shown in Fig. 3, which is plug-and-play for enhancement networks.

High-order CFTL. Regarding the global average vector xg in Eq. 5 as the first-order global in-
formation from x, we can introduce more orders to strengthen the representation ability of xg , as
illustrated in Fig. 3 (b). Specifically, for the k-th order of the global information, we denote it as xk

g :

xk
g = k

√√√√ 1

HW

∑
h∈[1,H]

∑
w∈[1,W]

(x(h,w)− xg)k, k ∈ [2, 3, ...,+∞]. (8)

This formula is derived from the color moment (Huang et al., 2010), which is another representation
of global information. For example, with k = 2, xk

g signifies the standard deviation of x, we set
k to 2 by default in this format (as ablated in the Appendix). We further introduce xk

g to xg as its
strengthened version:

xg = xg + x2
g + ...xk

g , k ∈ [2, 3, ...,+∞]. (9)
We process xg following similar operations in CFTL, considering it as the higher orders of CFTL.

Group CFTL. Since the original operations in CFTL are conducted on all channels of xg ∈
R1×1×C, we can further process different groups of channel statistics in xg , which is similar to
the group normalization (Wu & He, 2018). Specifically, we divide xg into K groups along the
channel dimension, and each group has C

K channels, which is expressed as:

xg = [xg(1), ..., xg(k)|k ∈ 1, ...,K], (10)

where xg(k) is the k-th channel group of xg . As shown in Fig. 3 (c), in the following operations
of the Group CFTL, different xg(k) are processed by the operations in the CFTL respectively with
different weights in Eq. 10. Finally, these processed features xg(k)

′ are concatenated along the
channel dimension:

x′
g = cat[xg(1)

′, ..., xg(k)
′], (11)

where cat[·] denotes the concatenate operation. In this way, the parameters of the Group CFTL are
less than the original CFTL as shown in quantitative results, while keeping competitive performance.

Spatial-Fourier CFTL. All the above variants are based on the global vector xg , which is a spe-
cial case of A(x)(u, v). Here, we propose to extend xg as the amplitude component A(x)(u, v)
converted by the spatial Fourier transform, and we denote it as Spatial-Fourier CFTL. Therefore,
xg ∈ RH×W×C has the same shape as x, which also exhibits global representation.

As shown in Fig. 3, to process xg , we follow the rules of the CFTL to process it and obtain the result
x′
g (due to unstable training, we discard the few operations, which are detailed in the Appendix and
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Figure 4: Toy experiment. (a) depicts the self-reconstruction that extracts the feature, which is
processed by operations in Fig. 1. Evidenced by the feature similarity in (b), our proposed channel-
dimension FFT enhances the discriminability between under- and over-exposure in different spaces.

shown in Fig. 10). Finally, x′
g and P(x)(u, v) are converted back to the space of x through the

spatially-based inverse Fourier transform

x′ = F−1(x′
g,P(x)(u, v)), (12)

where x′ represents the final result integrated into the processed x.

CFTL-Net. We present CFTL-Net, an efficient network architecture shown in Fig. 11, integrating
High-order CFTL and Spatial-Fourier CFTL. This framework employs an encoder-decoder-based
architecture, with additional details and discussions provided in the Appendix.

4 EXPERIMENT

To demonstrate the efficacy of our proposed CFTL paradigm, we conduct extensive experiments on
several image enhancement tasks. More results can be found in the Appendix.

4.1 TOY EXPERIMENTS

To highlight the improved discriminability of global information using the channel-based Fourier
transform, we conducted experiments, converting the image to the feature space(see Fig. 4). Specif-
ically, we construct an encoder-decoder architecture for image reconstruction, trained on a dataset
of 1000 samples sourced from the MIT-FiveK dataset (Bychkovsky et al., 2011). During testing,
we used 100 underexposed and 100 overexposed samples from the SICE dataset as inputs, owing
to their significant global information variations. We process the encoder-decoder features using
various operations: spatial domain Fourier transform, global average pooling, and channel-based
Fourier Transform on the global vector. Illustrations in the Appendix (see Sec. E) demonstrates
that our proposed operation achieves the highest discriminability between underexposed and over-
exposed samples, as indicated by the maximum distribution distance.

4.2 EXPERIMENTAL SETTINGS

Low-light image enhancement. Following previous works (Hai et al., 2021; Zhao et al., 2021), we
employ three widely used datasets for evaluation, including LOL dataset (Wei et al., 2018), Huawei
dataset (Hai et al., 2021) and MIT-FiveK dataset (Bychkovsky et al., 2011). We employ two image
enhancement networks, DRBN (Yang et al., 2020) and Restormer (Zamir et al., 2022) as baselines.

Exposure correction. Following (Huang et al., 2022), we adopt MSEC dataset (Afifi et al., 2021)
and SICE dataset (Cai et al., 2018) for evaluations. Two architectures, i.e., DRBN (Yang et al., 2020)
and LCDPNet (Wang et al., 2022) are selected as baselines.

SDR2HDR translation. Following (Chen et al., 2021b), we choose the HDRTV dataset (Chen et al.,
2021b) for evaluation. We employ CSRNet (He et al., 2020) as the baseline in the experiments.

Underwater image enhancement. Following prior works (Li et al., 2019b), we select UIECˆ2-
Net (Wang et al., 2021) as baseline and use UIEB (Li et al., 2019b) dataset for validation.
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Settings #Param FLOPs (G) LOL Huawei FiveK
DRBN (Baseline) Yang et al. (2020) 0.532M 39.71 20.73/0.7986 19.93/0.6810 22.11/0.8684

+Pooling attention 0.533M (+0.01M) 39.72 (+0.01) 21.84/0.8176 20.13/0.6838 23.15/0.8702
+Spaial Fourier 0.533M (+0.01M) 39.88 (+0.17) 22.07/0.8355 20.28/0.6844 23.72/0.8735
+Original CFTL 0.534M (+0.02M) 39.73 (+0.02) 23.71/0.8492 20.82/0.6933 24.03/0.8751
+Group CFTL 0.532M (+0M) 39.71 (+0) 22.98/0.8445 20.80/0.6952 23.93/0.8768

+High-order CFTL 0.534M (+0.02M) 39.73 (+0.02) 23.05/0.8457 20.81/0.6930 23.95/0.8755
+Spatial-Fourier CFTL 0.536M (+0.04) 40.27 (+0.56) 22.31/0.8376 20.89/0.6954 23.96/0.8755

Restormer (Baseline) (Zamir et al., 2022) 26.10M 563.96 20.49/0.7886 20.02/0.6663 23.13/0.8891
+Pooling attention 26.12M(+0.02M) 569.41(+5.45) 20.95/0.7952 20.34/0.6685 23.45/0.8915
+Spatial Fourier 26.12M(+0.02M) 569.41(+5.45) 21.01/0.8003 20.65/0.6713 23.66/0.8931
+Original CFTL 26.10M(+0M) 563.97(+0.001) 21.34/0.8020 20.70/0.6706 23.87/0.8959
+Group CFTL 26.10M(+0.01M) 563.97(+0.01) 21.49/0.8008 20.59/0.6715 23.91/0.8942

+High-order CFTL 26.10(+0M) 563.97(+0.01) 21.27/0.8061 20.76/0.6733 23.81/0.8944
+Spatial-Fourier CFTL 26.11(+0.01M) 565.19(+1.23) 21.37/0.8018 20.71/0.6713 23.82/0.8948

CFTL-Net 0.028M 3.64 22.50/0.8139 20.91/06941 24.03/0.8904

Table 1: Quantitative results of low-light image enhancement in terms of PSNR/MS-SSIM.

Settings #Param FLOPs (G) MSEC SICE
DRBN (Baseline) 0.532M 39.71 19.52/0.8309 17.88/0.6798
+Pooling attention 0.533M 39.72 22.89/0.8604 20.75/0.7095

+Spaial Fourier 0.533M 39.88 22.94/0.8642 20.94/0.7036
+Original CFTL 0.534M 39.73 23.34/0.8683 21.32/0.7250
+Group CFTL 0.532M 39.69 23.33/0.8672 21.30/0.7177

+High-order CFTL 0.534M 39.73 23.19/0.8667 21.64/ 0.7243
+Spatial-Fourier CFTL 0.536M 40.27 23.04/0.8645 21.33/0.7201

LCDPNet (Baseline) 0.961M 9.40 22.30/0.8552 20.46/0.6843
+Pooling attention 0.962M 9.41 22.41/0.8568 20.57/0.6835

+Spaial Fourier 0.962M 9.43 22.47/0.8561 20.94/0.6946
+Original CFTL 0.962M 9.41 22.68/0.8572 21.25/0.7063
+Group CFTL 0.961M 9.40 22.70/0.8579 20.96/0.6952

+High-order CFTL 0.962M 9.41 22.74/0.8565 21.38/0.7024
+Spatial-Fourier CFTL 0.967M 9.48 22.52/0.8563 20.58/0.6865

CFTL-Net 0.028M 3.64 22.88/0.8594 21.24/0.6999

Table 2: Results of exposure correction. Figure 5: Training on exposure correction.

Comparison operators. We set two comparison operators corresponding to (i) and (ii) in Fig. 1,
based on global pooling and spatial FFT. We refer to them as “Pooling Attention” and “Spatial
Fourier”, as illustrated in Sec. J in the Appendix, following the format of CFTL.

4.3 IMPLEMENTATION DETAILS

Given the three CFTL formats in Sec. 3.4, we integrate them individually into the baseline for
experiments. For comparison, we conduct experiments with baseline networks and the integration
of global average pooling and spatial Fourier transform. Furthermore, we include experiments with
the CFTL-Net from Sec. 3.4. We train all baselines and their integrated formats using their original
settings until they are converged. More implementation details are provided in the Appendix.

4.4 COMPARISON AND ANALYSIS

Quantitative Evaluation. We perform quantitative comparison on the image enhancement tasks
in Table 1, Table 2, Table 3, and Table 4, where the best results are highlighted in bold. From the
results, it can be observed that all formats of our proposed paradigm improve the performance of
the baselines across the datasets in all tasks, validating the effectiveness of our proposed method.
In contrast, applying the pooling attention operation or the Spatial Fourier transform cannot surpass
our proposed CFTL in most datasets. Moreover, the proposed CFTL-Net also achieves effective
performance with relatively fewer parameters. We also demonstrate that the proposed CFTL helps
improve the training performance as shown in Fig. 5, where our method achieves higher PSNR
during the training stage. Note that all the above evaluations show the effectiveness of applying our
CFTL while introducing less computation cost.

Qualitative Evaluation. We present the visual results of exposure correction on the SICE dataset
due to the limited space. As shown in Fig. 6, the integration of the CFTL leads to a more visually
pleasing effect with less lightness and color shift problems compared with the original baseline. We
provide more visual results in the Appendix.
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Settings PSNR/SSIM #Param/FLOPs(G)
CSRNet (Baseline) 35.34/0.9625 0.035M/1.58
+Pooling attention 35.67/0.9635 0.045M/1.62

+Spaial Fourier 35.59/0.9647 0.048M/1.63
+Original CFTL 35.93/0.9712 0.045M/1.62
+Group CFTL 35.82/0.9703 0.044M/1.62

+High-order CFTL 35.97/0.9694 0.045M/1.62
+Spatial-Fourier CFTL 35.74/0.9654 0.048M/1.62

CFTL-Net 37.37/0.9683 0.028M/3.64

Table 3: Results of SDR2HDR translation.

Settings PSNR/SSIM #Param/FLOPs(G)
UIECˆ2-Net (Baseline) 21.39/0.8957 0.53M/104.25

+Pooling attention 21.46/0 .8996 0.58M/113.93
+Spaial Fourier 21.63/0.9012 0.58M/113.93
+Original CFTL 21.81/0.9005 0.54M/104.27
+Group CFTL 22.20/0.9042 0.54M/104.27

+High-order CFTL 22.33/0.9023 0.54M/104.27
+Spatial-Fourier CFTL 22.26/0.9030 0.55M/106.43

CFTL-Net 22.27/0.9034 0.028M/3.64

Table 4: Results of underwater image enhancement.

Gt                       input Baesline Pooling attention SFBaseline OriCFTL H-oiCFTL SPatial_Fourier CFTL

Underexposure Input

Overexposure Input

Ground truth

Ground truth

DRBN (Baseline) +Attention pooling +Spatial Fourier +CFTL (Ours)

DRBN （Baseline）

+Attention pooling +Spatial Fourier +CFTL (Ours)DRBN (Baseline)

Figure 6: The visualization results on the SICE dataset for exposure correction.

Configurations SICE dataset LOL dataset

Baseline (DRBN) 17.88/0.6798 20.73/0.7986

+CFTL 21.32/ 0.7250 23.71/0.8492
+CFTL w/o global pooling 18.24/0.6853 19.91/0.8317

+CFTL w/o channel-based ifft 21.05/0.7228 22.66/0.8453

+CFTL w/o processing amplitude 21.21/0.7194 22.78/0.8438

+CFTL w/o processing phase 20.94/0.7201 23.29/0.8445

Table 5: Impact of CFTL configuration on SICE
and LOL datasets in terms of PSNR/MS-SSIM.

Figure 7: Impact of CFTL numbers on the SICE
dataset.

4.5 ABLATION STUDIES

We conduct ablation studies on the exposure correction task and low-light image enhancement task
using DRBN as the baseline. More ablation studies can be found in the Appendix.

Investigate the design of CFTL. To explore the design of CFTL, we perform experiments by set-
ting the CFTL with different configurations. The quantitative results are shown in Table 5. As
depicted, introducing the global pooling in the CFTL leads to significant performance improvement.
Meanwhile, converting the feature to the original space with channel-dimension IFFT also works
well. Note that conducting the operation on either the amplitude or phase components leads to sub-
optimal results due to incomplete use of them. All results depict the reasonableness of our designs.

Impact of the CFTL number. We further investigate the impact of the CFTL numbers on the expo-
sure correction task. The corresponding quantitative number K comparison from 1 to 4 is reported
in Fig. 7. As depicted, only incorporating one CFTL produces a significant performance improve-
ment. By increasing the number of CFTL, the results are further improved apparently than other
comparison operations, which can be attributed to its superior ability to adjust global information.

5 CONCLUSION

In this paper, we introduce a novel channel-based Fourier transform learning mechanism for image
enhancement. The proposed CFTL enhances the discriminative capability of global information
while acting as a representative space for global information adjustment. CFTL offers multiple im-
plementation formats, easily integrated into existing image enhancement architectures with limited
computational costs. Extensive experiments demonstrate the effectiveness and scalability of apply-
ing the CFTL and its variants across diverse image enhancement tasks.
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Appendix

In this appendix, we provide additional details and results.

In Sec. A, we present more implementation details.

In Sec. B, we extend the CFTL to other tasks, including image dehazing and pan-sharpening.

In Sec. C, we present more illustrations of the global information for image enhancement.

In Sec. D, we provide more illustrations and discussions about our work’s motivation.

In Sec. E, we present more discussions about the toy experiment.

In Sec. F, we present more illustrations of the mechanism of our proposed method.

In Sec. G, we present the discussions about our work, including the reasons for its design formats,
the reasons for its effectiveness, its limitations, and potential extension formats. Moreover, we
supplement why the “channel-dimension discrepancy” helps improve image enhancement. We also
provide more tasks related to image enhancement.

In Sec. H, we provide more discussions and results about the generalization ability of our method.

In Sec. I, we provide more discussions about different implementation formats.

In Sec. J, we present detailed information about the experimental settings.

In Sec. K, we provide more discussions about other network architectures and operations.

In Sec. L, we present more ablation studies to investigate the CFTL.

In Sec. M, we present more results of applying the CFTL in other backbones.

In Sec. N, we present more comparison results.

In Sec. O, we show more visualization results on multiple image enhancement tasks. We also sup-
plement more visual results.

A MORE IMPLEMENTATION DETAILS

Pseudo code of the CFTL. For implementing the CFTL, we provide the pseudo-code of the original
CFTL and High-order CFTL in Fig. 8 as well as the Group CFTL and Spatial-Fourier CFTL in Fig. 9.

Illustration of Spatial-Fourier CFTL. We present the detailed illustration of CFTL in Fig. 10. As
described in the main body and Fig. 9, we do not apply the channel-based iFFT on the processed
spatial-based Fourier amplitude FAS in Fig. 9. Instead, we directly convert it back to the original
space with the spatial-based Fourier phase. The reason is that applying the channel-based iFFT on
FAS would lead to unstable training and result in the ”NAN” phenomenon. The instability issue
may stem from the unstable gradient in two sequential inverse Fourier transforms.

Since the spatial-based Fourier component is an effective global information representation, explor-
ing its channel-dimension representation with a channel-based Fourier transform would enhance
the representation. Meanwhile, the spatial-based Fourier component is a generalized representation
of global pooling as described in Sec. 3.3. Therefore, it is reasonable to apply the channel-based
Fourier transform to the spatial-based Fourier component. Finally, our Spatial-based CFFT achieves
better performance than the previous Spatial-based Fourier transform, suggesting its effectiveness.

Implementation details of CFTL-Net. We implement the CFTL-Net in an encoder-decoder archi-
tecture consisting of four scales with a feature channel number of 8. The implementation structure
is illustrated in Figure 11. CFTL-Net employs Spatial-Fourier CFTL and High-order CFTL to for-
mulate the basic unit for processing features in one scale.

Specifically, the basic unit consists of two parts borrowed from the transformer. The former focuses
on processing features in the spatial dimension, while the latter aims to process channel-dimension
information. We apply Spatial-Fourier CFTL in the former part and the High-order CFTL in the
latter part. In each part, besides the two operations proposed in this paper, we introduce the half-
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def CFTL(F):

# F: input with shape [N, C,
H, W]

FG = GlobalPooling(F)
# Calculation in Eq.5
#FG: [N, C, 1, 1]

FA, FP = CFFT(FG)
# Applying Channel-based

FFT in Eq.3 and Eq.4
# FA and FP are the derived

amplitude and phase
FA = Seq1(FG)*FA
FP = Seq2(FG)*FP
# Process amplitude and

phase in Eq.6
FI = iCFFT(FA,FP)
# iCFFT is the

Channel-based iFFT
# FI: [N, C, 1, 1]
Y = Repeat(FI)
# Repeat FI to the original

resolution [N, C, H, W]

Return Y #[N, C, H, W]

def High-order CFTL(F):

# F: input with shape [N, C,
H, W]

FG = GlobalPooling(F)
# Calculation in Eq.5
#FG: [N, C, 1, 1]
Fˆk = Korder(F)
# Calculation in Eq.8
#Fˆk: [N, C, 1, 1]
Fsum = FG+Fˆk
# Integrate FG and Fˆk in

Eq.9

FA, FP = CFFT(Fsum)
# Applying Channel-based

FFT in Eq.3 and Eq.4
FA = Seq1(FG)*FA
FP = Seq2(FG)*FP
# Process amplitude and

phase in Eq.6
FI = iCFFT(FA,FP)
# iCFFT is the

Channel-based iFFT
# FI: [N, C, 1, 1]
Y = Repeat(FI)
# Repeat FI to the original

resolution [N, C, H, W]

Return Y #[N, C, H, W]

Figure 8: Pseudo-code of the two variants of the proposed CFTL. The left is the Original CFTL
and the right is the High-oreder CFTL.

16



Under review as a conference paper at ICLR 2024

def Group CFTL(F):

# F: input with shape [N, C,
H, W]

FG = GlobalPooling(F)
# Calculation in Eq.5
#FG: [N, C, 1, 1]
[FG_1,..FG_K] = Split(FG)
# Split FG into K groups in

Eq.10
# FG_i: [N,C/K,1,1]
for i in [1, K]:

FA_i, FP_i = CFFT(FG_i)
# Applying Channel-based

FFT in Eq.3 and Eq.4
# FAi and FPi are the

derived amplitude and
phase

FA_i = Seq1i(FG_i)*FA_i
FP_i = Seq2i(FG_i)*FP_i
# Process amplitude and

phase in Eq.6
FI_i = iCFFT(FA_i,FP_i)
# iCFFT is the

Channel-based iFFT
# FI_i: [N, C, 1, 1]

FI = cat([FI_1,..FI_K])
# Concatention in Eq.11
Y = Repeat(FI)
# Repeat FI to the original

resolution [N, C, H, W]

Return Y #[N, C, H, W]

def Spatial-Fourier CFTL(F):

# F: input with shape [N, C,
H, W]

FAS, FPS = FFT(F)
# Applying Spatial-based

FFT in Eq.1 and Eq.2
#FAS, FPS: [N, C, H, W]

FASA, FASP = CFFT(FAS)
# Applying Channel-based

FFT in Eq.3 and Eq.4
FASA = Seq1(FASA)
FASP = Seq2(FASP)
# Process amplitude and

phase
FAS =

Conv_1x1(cat[FASA,FASP])
# Fuse FASA and FASP as the

processed amplitude

FI = iFFT(FSA,FPS)
# iFFT is the Spatial-based

iFFT
# FI: [N, C, H, W]
Y = FI

Return Y #[N, C, H, W]

Figure 9: Pseudo-code of another two variants of the proposed CFTL. The left is the Group
CFTL and the right is the Spatial-Fourier CFTL.
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Figure 10: The illustration of Spatial-Fourier CFTL.

instance normalization block as the backbone block. Note that the performance of the CFTL-Net
could be further improved if other effective blocks can replace the backbone block.

We train the CFTL-Net on a single GTX3090 GPU with a batch size of 4 and total epochs of 1000.
The learning rate is set to 8e−4 and decays to half every 200 epochs. The loss function is the L1
loss, and the training process is end-to-end. For the training configuration, we train the baseline
and the baseline with the CFTL with the same iterations, and both of them are converged for fair
comparisons.

Details of the inverse Fourier transform. In the main body of Sec. 3.4, we illustrate the operation
of the Fourier transform. Here, we also depict the inverse Fourier transform. Given the ampli-
tude component A(y)(f) and phase component P(y)(f), the real and image parts of the Fourier
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Figure 11: The illustration of the CFTL-Net, which is an encoder-decoder-based architecture.

representation are obtained:

R(y) = A(y)(f)⊙ cos(P(y)(f)),

I(y) = A(y)(f)⊙ sin(P(y)(f)).
(13)

Then, F(y)(f) is formulated by R(y) and I(y), and perform inverse Fourier transform as:

y = F−1(y)(f) =
1

C

C−1∑
f=0

F(y)(f)ej2π
c
C f . (14)

B EXTEND CFTL ON OTHER TASKS

Extension on Image Dehazing. Following (Dong et al., 2020), we employ the RESIDE dataset (Li
et al., 2019a) consisting of Indoor and Outdoor parts for evaluations. We adopt the network of
MSBDN (Dong et al., 2020) and FFA-Net (Qin et al., 2020) as the baselines for validation. The
results are presented in Table 6.

Extension on Guided Image Super-resolution. We apply the original CFTL to the GPPNN (Xu
et al., 2021b) and PANNet (Yang et al., 2017) baselines in the pan-sharpening task, which is a
common task in guided image super-resolution. We integrate it when fusing pan and multi-spectral
features. The experiments are conducted on the WorldView II dataset (Zhou et al., 2022) and the
results are shown in Fig. B. The results further suggest the effectiveness of the CFTL.

Settings #Param FLOPs RESIDE(ITS) RESIDE(OTS)

MSBDN (Baseline) 31.35M 166.02G 29.77/0.9591 28.88/0.9581

+Original CFTL 31.36M 166.63G 30.20/0.9632 29.26/0.9588
+Group CFTL 31.36M 166.63G 29.96/0.9665 29.02/0.9600

+High-order CFTL 31.36M 166.63G 30.13/0.9611 29.05/0.9598
+Spatial-Fourier CFTL 31.36M 166.76G 29.89/0.9596 29.12/0.9602

FFA (Baseline) 4.46M 1.15T 36.39/0.9886 33.57/0.9840

+Original CFTL 4.50M 1.16T 36.46/0.9902 33.89/0.9912
+Group CFTL 4.49M 1.16T 37.03/0.9936 34.28/0.9901

+High-order CFTL 4.50M 1.16T 37.25/0.9917 33.70/0.9842
+Spatial-Fourier CFTL 4.51M 1.16T 36.61/0.9913 33.79/0.9904

CFTL-Net 0.028M 3.64G 33.91/0.9829 31.62/0.9772

Table 6: Results of image dehazing. Figure 12: Quantative results of Pan-sharpening.
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C MORE ILLUSTRATION ABOUT GLOBAL INFORMATION FOR IMAGE
ENHANCEMENT

In the main body, we describe that the global average pooling equals A(0, 0) in the amplitude. Here,
we further verify this from two sides. Typically, the Spatail Fourier transform is expressed as:

F (x)(u, v) =
1√
HW

H−1∑
h=0

W−1∑
w=0

x(h,w)e−j2π( h
H u+ w

W v). (15)

The center point of the amplitude spectrum means that u and v are 0. The formula is as follows:

F (x)(0, 0) =
1√
HW

H−1∑
h=0

W−1∑
w=0

x(h,w). (16)

It can be seen that the above formula is essentially to find the average value of the entire feature
map. Therefore, taking the center point of the amplitude spectrum is equivalent to global average
pooling (GAP).

Overexposure

Underexposure

OverAmp-Underpha

UnderAmp-Overpha

t-SNE of Fig2(b)
in the main body

(a) t-SNE of samples in Fig 2 of the main bofy, by swapping A(0,0) in the amplitude, the Underexposure 
and UnderAmp-Overpha tend to be clustered, while Overexposure and OverAmp-Underpha tend to be 
clustered, depict A(0,0) contains representative global information.  .  

(b) SSIM of the high-frequency between the original sample and swapped sample of two swapping 
manners, where the high frequency is extracted by substracting the blurred part. Swapping A(0,0) tend to 
achieve higher SSIM due to its less resulted artifacts.

Figure 13: Different from swapping the amplitude component in (a), we find swapping A(0, 0) in
(b) can also swap lightness, while the swapped results contain fewer artifacts.

In Fig. 2 of the main body, we illustrate that A(0, 0) comprises most global information about image
enhancement by swapping A(0, 0) of the underexposure and overexposure images, and their light-
ness becomes similar to the swapped image. The statistic result is presented in Fig. 13 (a), indicating
that global pooling is an effective global information format related to image enhancement.

Moreover, this phenomenon also depicts the advantages of our proposed method. As shown in Fig. 2
(a), previous swapping amplitude would cause artifacts in the swapped results, while in Fig. 2 (b),
swapping A(0, 0) can alleviate this issue to much extent. We further verify this by comparing SSIM
between the original sample and the swapped sample regarding their high-frequency component. As
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shown in Fig. 13 (b), swapping A(0, 0) leads to higher SSIM in terms of most samples, depicting
there exist fewer artifacts of swapping A(0, 0).

We explain the reasons as follows. This is because there exists a mismatch between the swapped
amplitude and the original phase components, which is also referred to as dis-conjugacy in sig-
nal processing. Therefore, we argue that previous methods directly processing information in the
Fourier domain ignore this issue, and thus may limit the further improvement of performance. In-
stead, our proposed information processing format avoids this issue while also processing global
information that is highly related to image enhancement.

D MORE ILLUSTRATIONS AND DISCUSSION ABOUT THE MOTIVATION

Discussion of the motivation. The motivation behind this work can be attributed to three aspects.
(1) Channel dimension. The channel-dimension relationship reflects the feature information prop-
erty. For some tasks, such as the style transfer, the Gram matrix can reflect the style information
effectively. Therefore, we propose the channel-dimension Fourier transform that provides an alter-
native format to construct the relationship of channel dimension, which reflects the property like
global style information. (2) Fourier transform. Previous methods (i.e., FFC (Chi et al., 2020),
GFNet Rao et al. (2021)) have verified the effectiveness of conducting the operation in the Fourier
space, which processes the global information conveniently referring to the spectral theory (Chi
et al., 2020). Meanwhile, applying the operation in the channel-dimension Fourier space has not
been fully explored, which can also affect the channel-dimension information effectively and conve-
niently. (3) Global information processing. Since the global information is strongly related to image
enhancement as illustrated in Fig. 2 in the main paper, the channel-dimension Fourier can enhance
it to the high-dimension space, leading to an effective process of the above global information and
thus improve image enhancement performance.

More illustrations of the motivation. We provide more illustrations of the motivation in Fig. 14.
As can be seen, the discriminability of the feature is dependent on the expressiveness of the channel
relationship. Therefore, we suspect that enhancing the channel relationship can improve the above
discriminability, which can be modeled using the channel-dimension Fourier transform.

(a) Using instance normalization or average all channels (b) Using gram matrix or channel-dimension FFT

Figure 14: The distribution distances between underexposure and overexposure using different op-
erations under the toy experiment. The left part depicts that reducing the channel representation
ability leads to lower discriminativity, while the right part depicts that exploring the channel rela-
tionship using the two operations enhances discriminativity.

E MORE DISCUSSION ABOUT TOY EXPERIMENT

We provide more discussions about the toy experiments.

More illustration of enhancing the discriminability of features using channel-dimension FFT.
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In the supplement of Fig. 4 in the main body, which measures the distribution distance of all samples,
we provide the distribution distance of each test sample on the SICE dataset for the toy experiment in
Fig. 15. As can be seen, the channel-dimension Fourier transform increases the differences between
underexposure and overexposure samples.

(a) Original space (c) Global pooling space(b) Spatial-FFT space

Figure 15: The results of the toy experiment on sample levels in different spaces measure the dis-
tribution distances between underexposure and overexposure w/ and w/o using channel-dimension
FFT.

Feature visualization of applying channel-dimension Fourier transform.

(i) Underexposure feature (ii) Overexposure feature (i)+channel-dimension FFT (ii)+channel-dimension FFT

(a) Applying channel-dimension FFT on the feature in the original space 

(i) Underexposure feature (ii) Overexposure feature (i)+channel-dimension FFT (ii)+channel-dimension FFT

(b) Applying channel-dimension FFT on the feature in the spatial-FFT space 

(c) Applying channel-dimension FFT on the feature in the global pooling space 

(i) Underexposure feature

(ii) Overexposure feature

(i)+channel-dimension FFT

(ii)+channel-dimension FFT

Figure 16: Feature visualization of applying channel-dimension Fourier transform to features in
different spaces. Since the global pooling space is difficult to show in one channel, we present all
channels of their features.

In supplement to the above statistic results of the toy experiment, we provide feature visualization
of applying channel-dimension Fourier transform in different spaces. As shown in Fig. 16, apply-
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ing the channel-dimension Fourier transform leads to a more discriminative appearance between
underexposure and overexposure features, which corresponds to the previous results.

F MORE ILLUSTRATIONS OF THE CFTL’S MECHANISM

Making the other part focus on learning local representation. Since the CFTL mainly focuses on
learning the global representation, the other part can better capture local representation. We present
the feature visualization in Fig. 17, where the features come from the backbone of DRBN trained on
the exposure correction task. It can be seen that the introduction of the CFTL brings more texture
learning than other comparison operations, depicting its effectiveness.

Ground truth

Underexposure Input Original +Global pooling

+Spatial FFT +CFTL (Ours)

Figure 17: Feature visualization of the local branch on the DRBN-based backbone. The sample is
from the SICE dataset. Our proposed CFTL enables the local part to capture more textures.

Under’s before CFTL Under’s after CFTL 

Over’s before CFTL Over’s after CFTL Over’s before CFTL Over’s after CFTL 

Under’s before CFTL Under’s after CFTL 

Figure 18: Feature visualization of underexposure and overexposure samples before and after pro-
cessing by the CFTL. The gap between underexposure and overexposure features is reduced signif-
icantly after CFTL.

Adjust lightness information effectively. We present the visualization results of underexposure
and overexposure features before and after processing by the CFTL. The features are from the back-
bone of DRBN trained on the exposure correction task. The results are presented in Fig. 18. As can
be seen, the CFTL can effectively reduce the gap between underexposure and overexposure, depict-
ing its effectiveness in adjusting the representation of lightness. Moreover, we compare the distri-
bution distance between underexposure and overexposure in different operations; the CFTL gets the
lowest Wasserstein distance of 0.1682, while pooling attention and Sptail Fourier gets 0.2622 and
0.1991, respectively. This result also shows the effectiveness of the proposed CFTL.
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G MORE DISCUSSION ABOUT THIS WORK

The reason why CFTL is designed in this format. We perform CFTL in the global informa-
tion representation, where most are based on the global pooling-based representation. The reasons
for its design formats are summarized as follows: (1) global pooling-based information can repre-
sent the most information about global representation. We have detailed its advantages in Sec. C;
(2) one question is why not apply channel-based Fourier transform on the original feature?
We have attempted to do it, but the performance is not good, as shown in Table 5 in the ablation
study. Moreover, we have also presented the feature in Fig. 19, and the resulting features appear to
have similar properties to the original feature, which would not help improve the learning process.
Instead, global pooling information is more suitable for existing convenient operations such as 1x1
convolution to conduct learning. (3) We perform operations on the amplitude and phase components
because they have explicit meanings in signal processing, and here, they correspond to the informa-
tion energy distribution and information position distribution along the channel dimension. Besides,
the discrepancies between underexposure and overexposure samples of the amplitude component
are higher than the original Fourier representation, as shown in Fig. 20, which would contribute to
enhancing the discriminability.

(a) The visualization of the original features across channels  

(b) The visualization of the features converted by the channel-dimension Fourier transform directly without 
global pooling

Figure 19: Feature visualization of applying channel-dimension Fourier transform on the spatial
feature (bottom), which also exhibits spatial diversity like original features (top).

Figure 20: The distribution distances between underexposure and overexposure using different op-
erations under the toy experiment. The amplitude components exhibit higher discrepancies between
underexposure and overexposure samples than the original channel-dimension Fourier feature.

Discussion why “channel-dimension discrepancy” is important for image enhancement. (1)
The powerful ability of the neural network is to convert the image information to high-dimension
with discriminability. The channel-dimension Fourier transform can also enhance the ability to
process information in high-dimension. (2) The channel-dimension relationship reflects the dis-
criminative global information property that can contribute to image enhancement, which is similar
to the conclusion in (Mustafa et al., 2022), where the polynomial integration of different channels
enhances the image enhancement process. (3) The discriminability at the feature level also repre-
sents that the sub-sequential filter can respond to different features diversely, which has been proven
in (Park et al., 2023), leading to the improvement of image processing.

Discussion why CFTL is effective. Besides the experiments and other sections about the mech-
anism of why CFTL works, we present other explanations: (1) As depicted in the main body, the
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channel-based relationship reflects the global style information, such as the Gram matrix. Based on
this, the CFTL also learns the relationship of channel information, thus affecting the global style
information effectively. (2) Applying channel-based Fourier transform derives the global represen-
tation of channel information. Therefore, only changing a point in the transformed feature would
lead to significant information change in the original channel information, thus leading to the ef-
fectiveness of CFTL. (3) The proposed mechanism also decouples the learning of global and local
information, facilitating the learning of the whole framework. (4) Many image enhancement tasks
are based on channel prior, such as dark channel prior or rank-one prior, and we believe our designed
format also attempts to exact the channel prior in the feature level for image enhancement.

Some limitations of CFTL. However, there are also some limitations of CFTL: (1) it still occu-
pies some computation costs, which need to be further improved; (2) its effects on some popular
techniques such as diffusion model, have not explored; (3) the more comprehensive experiments
on broader Low-level vision tasks (e.g., image de-noising and image de-blurring) have not been ex-
plored; (3) we mainly apply the CFTL on the lightweight and classic backbones, while some recent
backbones with huge parameters have not been explored with the CFTL. Note that the focus of this
work is not to bring a new operation to improve the state-of-the-art, and we aim to introduce
a new global information representation format to depict its effectiveness and facilitate the
application of classic backbones.

Other potential application formats. According to the above discussions, there are some potential
formats for the CFTL: (1) conducting attention operations on the channel-based Fourier transformed
features without pooling, which could extend the proposed mechanism to the spatial dimension fea-
tures. (2) applying CFTL on the wavelet-based features, which could learn the wavelet coefficients
conveniently. (3) applying CFTL to fuse features from different architectures or positions, facil-
itating connecting their channel relationship. (4) applying CFTL as a loss function, which could
facilitate the optimization of learning global information.

More potential application for other related tasks. (1) For tasks such as shadow removal or image
harmony, different channels reflect the different properties of the image. For instance, some chan-
nels are more related to the shadow regions. Therefore, applying the channel-dimension Fourier
transform helps identify and enhance the representation for shadow information processing. (2) For
a task such as style transfer, since the channel-dimension Fourier transforms enhances the discrim-
inability of the feature representation, the discriminability about the style can also be strengthened,
and thus, it could provide an alternative space to conduct effective style transfer.

H MORE DISCUSSIONS AND RESULTS ABOUT THE GENERALIZATION
ABILITY

Whether the proposed method would affect the generalization ability. (1) The generalization
ability of image enhancement is not easily affected by global information. In fact, the mappings
between different pairs are quite different in image enhancement tasks due to the inconsistency of
the global information mapping (i.e., lightness), but they share a commonality in non-global infor-
mation components (i.e., texture). Since the generalization ability depends more on learning the
commonality component across different images, it would not be easily affected by global informa-
tion. (2) We also provide the numerical results in Table 7, where we apply the model trained on the
LOL dataset to test on the Huawei dataset and vice versa. The results suggest that the generalization
performance remains constant with our proposed.

I MORE DISCUSSIONS ABOUT DIFFERENT IMPLEMENTATION FORMATS

The reason why we design different formats. (1) In terms of performance improvement, the vari-
ants of the CFTL can achieve performance improvement in most baselines. However, it is noticed
that different formats of the CFTL achieve different performance gains in different baselines. There-
fore, we cannot give a certain conclusion about which format can achieve the best performance when
the baseline is unknown. The various formats provide alternatives. (2) In terms of extensibility, dif-

24



Under review as a conference paper at ICLR 2024

Settings Trained on LOL/Test on Huawei Trained on Huawei/Test on LOL
Restormer (Baseline) 19.50/0.6407 18.39/0.7697

+Pooling attention 19.25/0.6454 18.60/0.7415
+Spaial Fourier 19.33/0.6436 18.48/0.7141
+Original CFTL 19.20/0.6430 18.62/0.7775
+Group CFTL 19.45/0.6444 18.98/0.7806

+High-order CFTL 19.39/0.6460 18.19/0.7689
+Spatial-Fourier CFTL 19.34/0.6453 18.36/0.7716

Table 7: Quantative results of evaluating the generalization ability in terms of PSNR/MS-SSIM.

ferent formats provide different views of the channel-dimension Fourier transform. For example, the
group CFTL illustrates a balance between the original CFTL and the global pooling with divided
groups. Therefore, similar designs, such as wavelet transform and fractional Fourier transform,
can also be included for implementation. Meanwhile, the high-order CFTL implies a potential to
introduce more abstract information, such as semantic information, into the global vector.

The relationship between different implementation formats. For different implementation for-
mats, they share the same principle as “applying the channel-dimension Fourier transform in dif-
ferent spaces”. Therefore, the original CFTL is implemented in the global pooling space, while the
other formats are implemented in other similar spaces with global information property derived from
the global pooling space. We explain their relationships as follows: (1) From the view of global in-
formation representation ability, the group CFTL is a degenerate version of the original CFTL with
fewer channel information modeling in each group; the high-order CFTL is an evolution version of
the original CFTL with more statistics involved; the spatial-Fourier CFTL is another version that
expands the representation of global information with more frequencies, but may conquer the issue
of unnecessary information as illustrated in Fig. 2 in the main paper. (2) From the view of operation
spaces, the high-order CFTL and the group CFTL are all implemented in a single channel dimension
of a vector, while the spatial-Fourier CFTL is implemented in spatial spaces with three dimensions,
which brings more computation costs. (3) From the view of operation formats, the group CFTL does
not involve calculating more statistics, while the other two formats involve calculating more statis-
tics about high-order statistics (high-order CFTL) and frequency statistics (spatial-Fourier CFTL).
After all, all of them utilize the 1x1 convolution for their operation.

The motivation of different design formats. (1) For the group CFTL, we aim to apply the channel-
dimension Fourier transform for the partial channels, which acts as group convolution in the CNNs,
which aims to reduce parameters. Moreover, we also implement this format to keep a balance be-
tween the original CFTL and the global pooling operation without any channel-dimension Fourier
transform, where the group acts as the window in the window Fourier transform and wavelet trans-
form. (2) For the high-order CFTL, we aim to strengthen the capability of the global pooling vector,
which introduces more information about the contrast and abstract information in the feature. To
this end, the high-order CFTL enhances the feature representation with global intensity information
and global contrast information. (3) For the spatial-Fourier CFTL, we expand the global information
by introducing more frequencies that extend the global pooling space to the Fourier space. In this
way, applying the channel-dimension Fourier transform enhances the global representation across
various frequencies.

J MORE DETAILS ABOUT EXPERIMENTAL SETTINGS

Illustration of the comparison operator. In Fig. 21, we present the illustration of the two compar-
ison operators in the experiments.

Illustration of how to integrate the CFTL in the backbone. In Fig. 22, we present how to integrate
the CFTL in the backbone. For the backbone with sequential blocks, we usually place the CFTL on
the first part of the block. While for the backbone with an encoder-decoder backbone, we place the
CFTL on its shallow layers.
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Figure 21: The illustration of the two comparison operators in the experiments.
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Figure 22: The illustration of how to integrate the CFTL in existing backbones.

K MORE DISCUSSIONS WITH OTHER ARCHITECTURES AND OPERATIONS

The relationship with the FcaNet (Qin et al., 2021). (1) Differences: FcaNet regards the global
pooling in the channel attention as a special case of DCT transform. Then, it improves the global
pooling by introducing higher-order DCT coefficients. Our method applies the operation for the
global pooling vector with Fourier transform instead of expanding the global pooling and could
be integrated with FcaNet on its derived vector. (2) Similarity: Both our work and FcaNet aim to
construct the channel relationship from the frequency perspective. FcaNet derives the relationship
by arranging different group channels with different frequencies, while our method unifies different
channels in the frequency space to conjunct all channel information.

Discussion with other operations such as channel attention and spatial attention. (1) We ar-
gue that some baselines are constructed based on spatial attention or channel attention, such as
Restormer, which verifies that our method can improve the performance of more contemporary ar-
chitectures with this attention. (2) While we validate our method surpasses the global pooling like
channel attention, the spatial attention would introduce more computation costs and is different from
our proposed channel-dimension modeling. We present the results of adding spatial attention (Woo
et al., 2018) to the DRBN network in the LOL dataset in Table 8, which has a lower performance
than our proposed method.

Settings DRBN (Baseline) +Spatial Attention +Original CFTL (Ours)

PSNR/SSIM 20.73/0.7986 21.05/0.8323 23.71/0.8492

Table 8: Comparison with the spatial attention on the LOL dataset.

Discussion with the architecture with the large receptive field. (1) We implement our method
mainly on simple and lightweight architectures, which can facilitate the application of simple archi-
tectures. Additionally, Restormer with a large receptive field can be improved with our proposed
method. (2) The mentioned architecture with a large receptive field enhances the global information
with a huge computation burden, while our method is orthogonal to these methods that supplement
a lightweight method. (3) Besides the Restormer, we also supplement another architecture SNR-
former with a large receptive field as the baseline as illustrated in Table 12, the performance is also
improved.
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L MORE ABLATION STUDIES FOR INVESTIGATING THE CFTL

Referring to the main body, we also perform ablation studies in the DRBN backbone on the exposure
correction task (SICE dataset).

Firstly, we discuss why we perform the ablation studies on the exposure correction task in two folds:
(1) The lightness among the different input images is quite different, which can be well-represented
by our proposed CFTL mechanism. (2) The lightness adjustment directions of different exposures
are quite different in this task. Therefore, this is a challenging task that can prominently evaluate
how the proposed components contribute to performance improvement.

Ablation study of different orders in High-order CFTL. Defautly, we set k in High-order CFTL
to 2. Here, we also present other combinations of different orders’ results in Table 9. As can be seen,
most of them achieve comparable performance with the default setting but outperform the original
CFTL. These results demonstrate the reasonableness of the default setting and also the effectiveness
of the High-order CFTL.

Settings (order) Baseline (DRBN) +CFTL +CFTL (1+2) +CFTL (1+4) +CFTL (1+2+4)

PSNR/MS-SSIM 17.65/0.6798 21.32/0.7250 21.64/ 0.7243 21.53/ 0.7247 21.56/ 0.7262

Table 9: Investigating different orders (denoted as 1+k) in High-order CFTL on the SICE dataset for
exposure correction, where ”+CFTL (1+2)” is the default High-order CFTL in the manuscript.

Ablation study of different groups in Group CFTL. Defautly, we set K in Group CFTL to 4.
Here, we also present setting other group numbers’ results in Table 10. It can be seen that setting
the group numbers to 1, 2, and 4 has similar results, while increasing the number to 8 would lead
to a performance drop. This result suggests the reasonableness of the default setting, where setting
group 4 achieves comparable performance with introducing fewer parameters.

Settings (order) Baseline (DRBN) +CFTL (K=1) +CFTL (K=2) +CFTL (K=4) +CFTL (K=8)

PSNR/MS-SSIM 17.65/0.6798 21.32/0.7250 21.26/0.7209 21.30/0.7177 20.86/0.7093

Parameters 0.532M 0.534M 0.533M 0.532M 0.532M

Table 10: Investigating the number of groups K in Group CFTL on the SICE dataset for exposure
correction, where “+CFTL(K=1)” is the default Group CFTL in the manuscript.

Ablation study of different settings in Spatial-Fourier CFTL. In Sec. A, we present the details of
the Spatial-Fourier CFTL. In Table 11, we present other configurations of the Spatial-Fourier CFTL.
As can be seen, applying CiFFT (channel-based inverse Fourier transform ) would lead to unstable
training and results in a ”NAN” problem, while processing both amplitude and phase components
derived from the spatial-based Fourier transform brings performance drop. Overall, the final setting
of the Spatial-Fourier CFTL achieves the best performance.

Settings Baseline (DRBN) +Spatial-Fourier CFTL +Spatial-Fourier CFTL (+CiFFT) (a)

PSNR/MS-SSIM 17.65/0.6798 21.33/0.7201 NAN/NAN 21.20/0.7159

Parameters 0.532M 0.536M 0.536M 0.537M

Table 11: Investigating the configuration of Spatial-Fourier CFTL on the SICE dataset for exposure
correction, where “(a)” denotes processing both amplitude and phase components derived from the
spatial-based Fourier transform.

Ablation study of investigating the channel number in the CFTL-Net. We set the channel num-
ber of CFTL-Net as 8 in the manuscript. We also investigate setting other channel numbers, and
results conducted on the exposure correction and low-light image enhancement are presented in
Fig. 23. It can be seen that increasing the channel number would lead to more performance im-
provement in exposure correction than low-light image enhancement while reducing the channel
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number results in a significant performance drop. This could be attributed to the fact that exposure
correction requires a stronger ability to adjust different lightness. The results suggest the potential
extensive ability of the CFTL-Net with more channel numbers.

Channel number

(a) Ablations on the SICE dataset 

Channel number

(b) Ablations on the LOL dataset 

Figure 23: Abaltion studies for investigating different channel numbers of the CFTL-Net in exposure
correction (left) and low-light image enhancement (right).

M MORE RESULTS OF APPLYING THE CFTL IN OTHER BACKBONES

In the main body, we adopt a few networks as the backbone to integrate the CFTL. Here, we employ
more networks as the backbone to demonstrate the scalability and effectiveness of the CFTL, which
are presented in Table 12, Table 13, Table 14 and Table 15.

For Low-light image enhancement. We further employ the Bread (Guo & Hu, 2023) and SNR-
former (Xu et al., 2022) as the backbone and perform the experiments on the LOL dataset (Wei
et al., 2018). We retrain these networks under the same setting until they are converged for a fair
comparison. The extensive results presented in Table 12 validate the effectiveness of the proposed
CFTL.

Settings Baseline (Bread) +Spatial Fourier +Attention Pooling +Original CFTL +Group CFTL +Spatial-Fourier CFTL

PSNR/SSIM 22.96/0.8383 23.22/0.8399 23.16/0.8407 23.31/0.8403 23.37/0.8414 23.42/0.8409

Settings Baseline (SNRformer) +Spatial Fourier +Attention Pooling +Original CFTL +Group CFTL +Spatial-Fourier CFTL

PSNR/SSIM 23.61/0.8440 23.37/0.8375 22.47/0.8281 23.72/0.8371 22.99/0.8324 23.49/0.8386

Table 12: More Comparison over low-light image enhancement on the LOL dataset.

For exposure correction. Moreover, we adopt FECNet (Huang et al., 2022) as the backbone for
exposure correction. We perform the experiments in the SICE dataset, and the experimental results
in Table 13 demonstrate the effectiveness of our method. Note that FECNet is based on the design
of spatial Fourier transform as the basic unit. This result shows that our method is compatible with
the existing spatial Fourier transform design.

Settings Baseline (FECNet) +Spatial Fourier +Attention Pooling +Original CFTL

PSNR/SSIM 20.96/0.6849 21.06/0.6913 21.14/0.6955 21.60/0.7302

Table 13: More Comparison overexposure correction on the SICE dataset.

For SDR2HDR translation. Moreover, we adopt the first stage of the AGCM (Chen et al., 2021b) as
the backbone for SDR2HDR translation. We perform the experiments in the HDRTV dataset (Chen
et al., 2021b), and the experimental results in Table 14 demonstrate the effectiveness of our method.

For underwater image enhancement. Moreover, we adopt Five A plus Jiang et al. (2023) as the
backbone for underwater image enhancement. We perform the experiments in the UIEB dataset (Li
et al., 2019b), and the experimental results in Table 15 demonstrate the effectiveness of our method.
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Settings Baseline (AGCM) +Spatial Fourier +Attention Pooling +Original CFTL

PSNR/SSIM 36.53/0.9624 36.58/0.9635 36.79/0.9655 36.83/0.9657

Table 14: More comparisons over SDR2HDR translation on the HDRTV dataset.

Settings Baseline (Five A plus) +Spatial Fourier +Attention Pooling +Original CFTL +Group CFTL +Spatial-Fourier CFTL

PSNR/SSIM 23.63/0.9138 23.96/0.9157 23.79/0.9134 24.24/0.9172 24.07/0.9157 23.98/0.9145

Table 15: More Comparison over underwater image enhancement on the UIEB dataset.

N MORE RESULTS BY COMPARING WITH MORE METHODS

We provide more quantitative results of the CFTL-Net and other comparison methods on differ-
ent image enhancement tasks, including low-light image enhancement, exposure correction, and
SDR2HDR translation. The results are presented in Table 16 (low-light image enhancement), Ta-
ble 17 (low-light image enhancement), Table 18 (exposure correction), and Table 19 (SDR2HDR
translation). This demonstrates the CFTL-Net achieves an elegant balance between performance
and efficiency. Note that the improved version of the method in the main body also performs better
than most comparison methods in these tables.

Method
LOL Huawei

# Param GFLOPs
PSNR SSIM PSNR SSIM

SRIE (Fu et al., 2016) 12.28 0.5962 13.04 0.4770 - -
RobustRetinex (Li et al., 2018) 13.88 0.6643 14.60 0.5593 - -
RetinexNet (Wei et al., 2018) 16.77 0.4257 16.65 0.4857 0.84M 148.54
MBLLEN (Lv et al., 2018) 17.56 0.7293 16.63 0.5264 0.45M 21.37
EnGAN (Jiang et al., 2021) 17.48 0.6746 17.03 0.5140 8.37M 72.61

GLADNet (Wang et al., 2018) 19.72 0.6802 17.76 0.5214 1.13M 275.32
Xu et al. (Xu et al., 2020) 16.78 0.7665 16.12 0.5862 8.62M 68.45

TBEFN (Lu & Zhang, 2020) 17.35 0.7817 16.88 0.5759 0.49M 24.11
KIND (Zhang et al., 2019) 20.86 0.8023 16.48 0.5406 8.54M 36.57

ZeroDCE (Guo et al., 2020) 15.29 0.5182 12.46 0.4074 0.08M 20.24
DRBN (Yang et al., 2020) 20.13 0.8011 19.93 0.6810 0.53M 42.41
RUAS (Liu et al., 2021) 16.41 0.5004 13.76 0.5167 0.003M 0.86

KIND++ (Zhang et al., 2021) 21.30 0.8221 15.78 0.4523 8.28M 2970.50
URetinex (Wu et al., 2022) 21.32 0.8358 18.79 0.6078 1.23M 68.37
LA-Net (Yang et al., 2023) 21.71 0.8149 18.15 0.5941 0.55M 185.79

CFTL-Net (Ours) 22.50 0.8139 20.91 0.6941 0.028M 3.64

Table 16: Quantitative results of different methods on the LOL and Huawei datasets for low-light
image enhancement. #Param denotes the parameter number. The best and second results are high-
lighted in bold and underline, respectively.

O MORE QUALITATIVE RESULTS

Due to the page limit of the main body, we provide more visualization results here. In the main body,
we have presented the visual results of exposure correction in Fig. 6. Here, we further respectively
present the results of low-light image enhancement (Fig. 24, Fig. 25 and Fig. 26), exposure cor-
rection (Fig. 27 and Fig. 28), SDR2HDR translation (Fig. 29), and underwater image enhancement
(Fig. 30) as follows. As can be seen, our CFTL can help enhance more correct lightness and color
or reduce the structure artifacts.
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Method PSNR SSIM #Param
Whitebox (Hu et al., 2018) 18.59 0.7973 8.17M
Distort (Park et al., 2018) 19.54 0.7998 247.25M

HDRNet (Gharbi et al., 2017) 22.65 0.8802 0.46M
SID (Chen et al., 2018) 21.49 0.8425 7.40M

DUPE (Wang et al., 2019) 20.22 0.8287 0.95M
DeepLPF (Moran et al., 2020) 23.21 0.8863 0.80M

DRBN (Yang et al., 2020) 22.11 0.8684 0.53M
CSRNet (He et al., 2020) 23.69 0.8981 0.034M

LA-Net (Yang et al., 2023) 19.94 0.8057 0.55M
DSN (Zhao et al., 2021) 23.84 0.9002 4.42M

CFTL-Net (Ours) 24.03 0.8904 0.028M

Table 17: Quantitative results of different methods on the MIT-FiveK dataset for low-light image
enhancement. #Param denotes the parameter number. The best and second results are highlighted
in bold and underline, respectively.

Method
MSEC SICE

#Param GFLOPsUnderexposure Overexposure Average Underexposure Overexposure Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

HE (Pizer et al., 1987) 16.52 0.6918 16.53 0.6991 16.53 0.6959 14.69 0.5651 12.87 0.4991 13.78 0.5376 - -

CLAHE (Reza, 2004) 16.77 0.6211 14.45 0.5842 15.38 0.5990 12.69 0.5037 10.21 0.4847 11.45 0.4942 - -

RetinexNet (Wei et al., 2018) 12.13 0.6209 10.47 0.5953 11.14 0.6048 12.94 0.5171 12.87 0.5252 12.90 0.5212 0.84M 148.54

DPED (Ignatov et al., 2017) 20.06 0.6826 13.14 0.5812 15.91 0.6219 16.83 0.6133 7.99 0.4300 12.41 0.5217 0.39M 94.64

SID (Chen et al., 2018) 19.37 0.8103 18.83 0.8055 19.04 0.8074 19.51 0.6635 16.79 0.6444 18.15 0.6540 7.40M 53.12

URetinexNet (Wu et al., 2022) 13.85 0.7371 9.81 0.6733 11.42 0.6988 17.39 0.6448 7.40 0.4543 12.40 0.5496 1.32M 68.37

Zero-DCE (Guo et al., 2020) 14.55 0.5887 10.40 0.5142 12.06 0.5441 16.92 0.6330 7.11 0.4292 12.02 0.5311 0.079M 20.24

li2021learning (Li et al., 2021) 13.82 0.5887 9.74 0.5142 11.37 0.5583 11.93 0.4755 6.88 0.4088 9.41 0.4422 0.010M 0.17

RUAS (Liu et al., 2021) 13.43 0.6807 6.39 0.4655 9.20 0.5515 16.63 0.5589 4.54 0.3196 10.59 0.4393 0.0014M 0.86

DRBN (Yang et al., 2020) 19.74 0.8290 19.37 0.8321 19.52 0.8309 17.96 0.6767 17.33 0.6828 17.65 0.6798 0.53M 42.41

MSEC (Afifi et al., 2021) 20.52 0.8129 19.79 0.8156 20.08 0.8210 19.62 0.6512 17.59 0.6560 18.58 0.6536 7.04M 35.87

CMEC (Nsamp et al., 2021) 22.23 0.8140 22.75 0.8336 22.54 0.8257 17.68 0.6592 18.17 0.6811 17.93 0.6702 5.40M 35.71

LA-Net (Yang et al., 2023) 21.84 0.8264 21.02 0.8164 21.35 0.8207 19.22 0.6514 17.65 0.6025 18.44 0.6270 0.55M 185.79

LCDPNet (Wang et al., 2022) 22.35 0.8650 22.17 0.8476 22.30 0.8552 20.71 0.6822 20.21 0.6863 20.46 0.6843 0.96M 9.40

CFTL-Net (Ours) 23.04 0.8612 22.63 0.8567 22.88 0.8594 22.26 0.6927 20.71 0.7071 21.24 0.6999 0.028M 3.61

Table 18: Quantitative results of different methods on the MSEC and SICE datasets for exposure
correction. #Param denotes the parameter number. The best and second results are highlighted in
bold.

Method PSNR SSIM #Param
HuoPhyEO (Huo et al., 2014) 25.90 0.9296 -
Pixel2Pixel (Isola et al., 2017) 25.80 0.8777 11.38M
CycleGAN (Zhu et al., 2017) 21.33 0.8496 11.38M
HDRNet (Gharbi et al., 2017) 35.73 0.9664 0.46M
JSI-GAN (Kim et al., 2020) 37.01 0.9694 1.06M

Ada-3DLUT (Zeng et al., 2020) 36.22 0.9658 0.59M
DRBN (Yang et al., 2020) 36.44 0.9671 0.53M
CSRNet (He et al., 2020) 35.34 0.9625 0.034M

LA-Net (Yang et al., 2023) 31.52 0.9427 0.55M
AGCM (Plus) (Chen et al., 2021b) 36.88 0.9655 0.034M

CFTL-Net (Ours) 37.37 0.9683 0.028M

Table 19: Quantitative results of different methods on the HDRTV dataset for SDR2HDR transla-
tion. #Param denotes the parameter number. The best and second results are highlighted in bold and
underline, respectively.
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Low-light Input Ground truthRestormer (Baseline) +Attention pooling +Spatial Fourier +CFTL (Ours)

Low-light Input Ground truthDRBN (Baseline) +Attention pooling +Spatial Fourier +CFTL (Ours)

Figure 24: The visualization results on the LOL dataset for low-light image enhancement.

Low-quality Input Restormer (Baseline) +Attention pooling +Spatial Fourier + CFTL (Ours) Ground truth

Low-quality Input DRBN (Baseline) +Attention pooling +Spatial Fourier +CFTL (Ours) Ground truth

Figure 25: The visualization results on the Huawei dataset for low-light image enhancement.
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Low-quality Input DRBN (Baseline) +Attention pooling +Spatial Fourier +CFTL (Ours) Ground truth

Low-quality Input Restormer (Baseline) +Attention pooling +Spatial Fourier +CFTL (Ours) Ground truth

Figure 26: The visualization results on the FiveK dataset for low-light image enhancement.
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Underexposure Input DRBN (Baseline) +Attention pooling +Spatial Fourier +CFTL (Ours) Ground truth

Underexposure Input LCDPNet (Baseline) +Attention pooling +Spatial Fourier +CFTL (Ours) Ground truth

Overexposure Input DRBN (Baseline) +Attention pooling +Spatial Fourier +CFTL (Ours) Ground truth

Overexposure Input LCDPNet (Baseline) +Attention pooling +Spatial Fourier +CFTL (Ours) Ground truth

Figure 27: The visualization results on the SICE dataset for exposure correction (top: underexposure
correction, bottom: overexposure correction).
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Low-quality Input LCDPNet (Baseline) +Attention pooling +Spatial Fourier +CFTL (Ours) Ground truth

Level1

Level2

Level3

Level4

Level5

Low-quality Input DRBN (Baseline) +Attention pooling +Spatial Fourier +CFTL (Ours) Ground truth

Level1

Level2

Level3

Level4

Level5

Figure 28: The visualization results on the MSEC dataset for exposure correction with different
exposure levels (from level 1 to level 5).
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SDR Input CSRNet (Baseline) +Attention pooling

+Spatial Fourier +CFTL (Ours) Ground truth

SDR Input CSRNet (Baseline) +Attention pooling

+Spatial Fourier +CFTL (Ours) Ground truth

Figure 29: The visualization results on the HDRTV dataset for SDR2HDR translation.
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Low-quality Input Ground truthUIECˆ2-N（Baseline） +Attention pooling +Spatial Fourier +CFTL (Ours)

Low-quality Input Five A plus (Baseline) +Attention pooling +Spatial Fourier +CFTL (Ours) Ground truth

Figure 30: The visualization results on the UIEB dataset for underwater image enhancement.
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