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Abstract

Due to their simplicity and support of high levels of parallelism, evolutionary algo-
rithms have regained popularity in machine learning applications such as curricu-
lum generation for Reinforcement Learning and online hyperparameter tuning.
Yet, their performance can be brittle with respect to evolutionary hyperparameters,
e.g. the mutation rate. To address this, self-adaptive mutation rates, i.e. mutation
rates that also evolve, have previously been proposed. While this approach offers
a partial solution, it still relies on an a priori set meta-mutation rates. Inspired by
recent work Lu et al. [2023], which demonstrates specific cases where evolution
is able to implicitly optimize for higher-order meta-mutation rates, we investigate
whether these higher-order mutations can make evolutionary algorithms more ro-
bust and improve their overall performance. We also analyse self-referential mu-
tations, which mutate the final order meta-mutation parameter. Our results show
that self-referential mutations improve robustness to initial hyperparameters in
Population-based Training (PBT) for online hyperparameter tuning, and curricu-
lum learning using Unsupervised Environment Design (UED). We also observe
that self-referential mutations result in more complex adaptation in competitive
multi-agent settings. Our research presents first steps towards robust fully self-
tuning systems that are hyperparameter free.

1 Introduction

Evolutionary algorithms refer to the class of methods that optimize an objective by: maintaining a
population of solutions and, selecting and stochastically mutating high-performing solutions; while
removing low performing solutions from the population. Due to their simplicity, and ease of paral-
lelization, they have been widely adopted in machine learning settings such as hyperparameter tun-
ing [Jaderberg et al., 2017] and curriculum generation for Reinforcement Learning [Parker-Holder
et al., 2022]. Central to evolutionary algorithms is the mutation operator, the mechanism by which
the population explores the space of solutions. This mutation operator is parameterized by a mu-
tation rate and in general no single, fixed mutation rate works well on all domains, restricting the
applicability of these methods without any tuning.

To overcome this, one promising direction is to augment evolutionary algorithms with self-adaptive
mutation rates. Here, each individual in the population possesses its own mutation rate, which is then
co-evolved using a fixed meta-mutation rate [Kumar et al., 2022]. These methods are particularly
attractive because they potentially enable evolutionary algorithms to be applicable ‘out-of-the-box’
across a broader array of domains. However, the introduction of a fixed meta-mutation operator
shifts performance sensitivity from the mutation rate to the meta-mutation rate. This naturally begs
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the question whether stopping at one level of meta-mutation is the right answer and if it might even
be possible to get rid of fixed hyperparameters all together.

For a specific fitness function and mutation operator pair recent work [Lu et al., 2023] proved that
higher-order self-adaptive mutation rates can be implicitly optimized through “standard” (zeroth-
order) evolution. Building on this work, we investigate to what extent higher-order self-adaptive
mutation rates can improve the robustness and generality of evolutionary algorithms when applied
to practical machine learning settings. Additionally, to eliminate the final order meta-mutation pa-
rameter entirely, we also analyze self-referential mutations, where the final meta-mutation parameter
is mutated by itself. We evaluate our methods on Population-Based Training (PBT) for online hy-
perparameter tuning and Unsupervised Environment Design (UED) for curriculum generation, both
of which employ evolutionary algorithms for achieve state-of-the-art results. Additionally, we also
evaluate them on competitive multiagent settings.

This work can be summarised as follows:

1. We generalize Lu et al. [2023] proof to a larger class of fitness functions and mutation
operators.

2. We empirically analyze under what scenarios higher-order self-adaptive and self-referential
mutations improve rates of convergence in toy settings.

3. We empirically evaluate higher-order self-adaptive and self-referential mutations in a PBT
and UED settings. In particular, we find that self-referential mutations improve hyperpa-
rameter robustness in a non-stationary PBT tasks and in UED.

4. Finally, we find higher-order meta-parameters result in more efficient adaptation in com-
petitive multi-agent learning tasks, resulting in better performance.

Ultimately, this has the potential to pave the way for self-tuning methods which have the potential to
drastically improve the robustness of ML methods and reduce the dependence on hyperparameters.

2 Related Work
Self-adaptive Evolutionary Optimization: Several prior works have applied self-adaptive muta-
tion rates to stationary optimization problems [Bäck et al., 1992, Gomez, 2004]. These methods
are promising and evolutionary plausible. However, they are prone to premature convergence due
to the risk of getting stuck in local optima: any random change is expected to decrease fitness,
which encourages the population to mutate as little as possible [Rudolph, 2001]. Some works at-
tempt to address this by using separate populations [Kumar et al., 2022], ad hoc systems [Kramer,
2010], or storing a large covariance matrix [Hansen and Ostermeier, 2001]. Instead, we believe that
self-adaptive mutation is best suited for the nonstationary and competitive settings rather than the
stationary problems previously explored.

Multi-Level Reasoning in Multi-Agent Interactions: Other works have investigated the multi-
level reasoning that emerges from multi-agent interactions. For example, the Cognitive Hierarchies
[Camerer et al., 2004] framework and its related instances, such as K-Level reasoning [Costa-Gomes
and Crawford, 2006], train a hierarchy of best response agents. This has been investigated in zero-
shot coordination settings [Cui et al., 2021]. Instead, our work investigates multi-level online adap-
tation, in which we do not calculate a stationary best response.

Higher-Order and Self-Referential Meta-Learning: Prior work has also investigated higher-order
meta-learning for optimiser hyperparameters [Chandra et al., 2022] and opponent shaping [Willi
et al., 2022]. Unlike our work, these works use gradient-based methods, which limits their applica-
bility. Other works use evolution-based algorithms to meta-learn optimizers [Metz et al., 2021], RL
algorithms [Lu et al., 2022a, Jackson et al., 2023a,b], or evolutionary algorithms [Lange et al., 2023]
with some preliminary results on self-referential learning. These works use computationally expen-
sive bi-level optimisation schemes to perform meta-optimisation, which quickly becomes intractable
for higher orders.

To the best of our knowledge, self-referential learning for self-improvement was first articulated
in [Schmidhuber, 1987]. Follow-up work presented self-referential neural architectures [Irie et al.,
2022] and algorithms [Kirsch and Schmidhuber, 2022] that explicitly avoid handcrafted optimisation
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with an evolution-like approach. Our work is an instantiation of this overall approach via a low-
overhead, practical modification to any evolutionary algorithm.

3 Background
3.1 Genetic Algorithms
Genetic algorithms are a class of methods for maximizing an objective f by evolving a population
of candidate solutions P = {xi}Ni=1. At each evolutionary iteration (i.e. generation), the highest
performing solutions survive. The remainder of the population is replaced by mutations of the sur-
vivors. Mutations are typically stochastic, and are characterized by a mutation operator M such that
an offspring x′i is generated by sampling x′i ∼ M(xi;σ), where σ is the mutation rate hyperparam-
eter. For example, a Gaussian mutation operator M(xi;σ) = N (xi;σ) is commonly used where σ
represents the variance.

3.2 Non-stationary Objective
The objective is non-stationary when, for generation t, the objective depends on some unseen context
ct; that is, the objective at each generation is some function fct . We refer to optimization of such
objectives as non-stationary optimization. For instance, the context may represent time-varying
latent parameters. Under the assumption that the objectives induced by temporally local contexts
have similar maximizers, population-based evolution can bootstrap from high performing solutions
of the previous generation, avoiding the need to optimize from scratch. However, to effectively
bootstrap from the previous generation, the mutation operation must be able to, in some sense,
predict changes to the objective landscape. For example, if the distance between maximizers of
subsequent generations exceeds the maximum delta achievable by mutation, then the population
cannot “keep up” with the rate of change of the objective landscape, and thus may eventually fail.

3.3 Self-adaptive Mutation Rates
Mutations rates are made self-adaptive by associating each solution in the population with its own
mutation rate Kumar et al. [2022], which itself is subject to meta-mutations. For a population of
solution-mutation rate pairs P = {(xi, σi)}Ni=1, offspring are generated by

x′i ∼M(xi, σi)

σ′
i ∼MMETA(σi, σMETA),

where MMETA is the meta-mutation operator parameterized by a fixed meta-mutation rate σMETA.

3.4 Higher-order Self-Adaptation
Lu et al. [2023] introduced higher-order self-adaptive evolution for real-valued objectives. Individ-
uals in the population were represented by the concatenation of a scalar solution x and n-orders of
scalar meta-mutation rates (x, σ1, . . . , σn), where only x contributed to fitness. Upon selection for
mutation, offspring were sampled as follows:

x′ ∼ N (x+ σ1, β), (1)

σ′
i ∼ N (σi + σi+1, β), i < n, (2)

σ′
n ∼ N (σn, β) (3)

where β is a scalar noise hyperparameter. Mutations are made self-referential by allowing the last-
order meta-mutation rate to be mutated subject to itself.

The authors prove, for this specific mutation operation and some integer k > 1, evolution using
top-k selection implicitly optimizes higher-order mutation rates. Additionally, they show such mu-
tations yield improved mean fitness over time of the population when applied to synthetic time-series
forecasting.

4 Method
4.1 Higher-order Self-Adaptive Mutations
We generalize higher-order self-adaptive mutation rates presented in Lu et al. [2023]. We define
higher-order mutation parameters as parameters associated with each solution of the population that,
control: how a given solution of a population mutates, how its associated mutation rate mutates, how
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its associated meta-mutation rat mutates, etc. Crucially, higher-order mutation rates do not directly
contribute to the fitness of an individual, but only indirectly through their impact on its evolution.
Each member can thus be expressed as the concatenation of the solution, which directly determines
the fitness, followed by a sequence of higher-order mutation parameters (x, σ1, . . . , σn). Mutation
is performed as follows:

x′ ∼M0(x;σ1), (4)

σ′
i ∼Mi(σi;σi+1),∀i < n, (5)

σ′
n ∼Mn(σn;σMETA) (6)

where Mi is the i-th order parameterized meta-mutation operator, σMETA is the mutation rate for the
last-order meta-mutation rate. Note that the self-adaptive mutation paradigm introduced above is a
specific instance of this framework (by setting n = 1).

4.2 Self-referential Mutations
Higher-order self-adaptive mutations still require hyperparameter σMETA to be predetermined. Simi-
larly to Lu et al. [2023], we can eliminate σMETA by making the last-order meta-mutation rate mutate
self-referential:

σ′
n ∼Mn(σn;σn).

That is, the mutation rate of the last-order meta-mutation rate is itself.

5 Theoretical Results
Lu et al. [2023] proof of implicit optimization of higher-order mutation parameters is limited to
scalar objectives. We expand their proof to incorporate real-vector input objective functions and
mutation operators.
Theorem 1. Let a population of members be given by x = {x1, . . . ,xn} ∈ Rd with xi ∈ Rdi and∑n
i=1 di = d, and for mutation operations of the form:

xt+1
i ← xti +Gi(x

t
i+1) +Bi,

for Bi ∼ N (0;β), some predetermined β, Gi : Rdi+1 → Rdi is some deterministic function. All
else equal, an individual with a higher-order mutation parameter that results in higher performance
is more likely selected.

We refer the reader to Appendix B for a proof and formal description of the theorem.

6 Synthetic Tasks
We empirically test higher-order self-adaptive and self-referential mutations on synthetic optimiza-
tion tasks. For each task we use a population of size 128, where each individual’s solution and
mutation rates are initialized by sampling i.i.d from N (0, 10−10I). At each evolutionary itera-
tion, the top 10% performing individuals survive to the next generation while the remaining in-
dividuals are replaced by mutated variants of uniformly sampled survivors (via Section 4 with
Mi(σi;σi+1) = N (σi,diag(σ

2
i+1)) for all i).

We consider the following objectives:

• Gaussian ring: f(x) = exp

(
−5
(√∑100

i=1 x
2
i − 1

)2
)

• Moving Gaussian: ft(x) = 1
3

∑3
i=1 exp

(
−10(x1 − αiti)2

)
• Adversarial Gaussian Ring: fm(x) = exp

(
−5
(√∑100

i=1(xi −mi)2 − 1

)2
)

where α{1,2,3} = {10−3, 10−6, 10−8}, t is the evolutionary iteration (i.e. generation count), m is the
elite (i.e. highest performing solution) of the previous generation. Note that the “Moving Gaussian”
and “Adversarial Gaussian Ring” objectives are non-stationary.

Results are shown in Figure 1. For the Gaussian ring stationary objective, we observe higher-
order self-adaptation and self-referential mutations can speed up the rate of convergence. For non-
stationary settings, higher-order mutations are far superior at tracking the objective maximizer.
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Figure 1: Plot of mean elite fitness (i.e. top performing solution) in population over the course
of evolution, measured over 40 random seeds, for synthetic benchmarks. Error bars correspond to
standard deviation. For each task, fitness is bounded between [0, 1].
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Figure 2: Performance sensitivity over the MNIST task (left) and CIFAR task (right). At the start of
each generation, labels are permuted. Each member then trains on a subset of the training data. x-
axis corresponds to initial learning rate. y-axis corresponds to mean performance over the course of
training. The plots demonstrate that by increasing the number of order of meta-mutation parameters,
we improve robustness to poor initialization. Each plot is measured over 5 random seeds; error bars
correspond to standard error. Note that order 0 corresponds to performing PBT without exploration;
that is, performing exploitation only.

7 Experiments
In this section, we augment practical evolutionary algorithms with higher-order self-adaptive and
self-referential mutations.

7.1 Applied to Population Based Training
Population-based Training (PBT) [Jaderberg et al., 2017] is an evolutionary approach to online hy-
perparameter tuning. PBT maintains a population of model parameter and hyperparameters. Each
evolutionary iteration, the population of models are partially trained subject to their correspond-
ing hyperparameters; the highest performing model-hyperparameter pairs are then copied, and their
hyperparameters are mutated.
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(a) Vanilla ACCEL
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(b) Self-referential ACCEL
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(c) Evolution of Mutation Rates

Figure 3: (a) Each plot corresponds to the mean estimate of regret for levels in population over the
course of training, where the number of edits applied to levels during mutation is fixed to ninit. When
ninit is small, the evolutionary process is too slow to effectively search level space. When ninit is
large, search is effectively random (mutated levels will differ drastically from their parent). (b) Each
plot corresponds to the mean estimate of regret for levels in population over the course of training,
where the number of edits applied to levels during mutation are themselves self-referentially muta-
ble. We observe that regardless of the choice of ninit, high-estimated regret levels are consistently
discovered. (c) plots showing the mean nθ of the population of levels over the course of training; that
is, the number of discrete edits applied to the corresponding level when sampling mutations. Each
plot corresponds to a different ninit, measured over 5 random seeds with error bars corresponding to
1 standard deviation. We see that regardless of the choice of ninit, the population converges towards
an nθ matching the empirical best reported in Jiang et al. [2023]. Weighted score of level buffer over
the course of training a recurrent policy using ACCEL. Each plot corresponds to a different choice
of ninit. Training was conducted over 2.5 × 108 environment interactions. Each plot is measured
over 5 random seeds; error bars are 1 standard deviation. (a, b, c) Error bars correspond to standard
deviation measured over 5 random seeds.

We extend the standard PBT setting so that hyperparameters are associated with a set of higher-
order mutation parameters, and enable hyperparameters to mutate self-referentially. We consider
two supervised learning benchmarks: MNIST and CIFAR10. Each model is trained using a simple
2-layer convolutional neural network followed by a feedforward network. Models are trained using
Stochastic Gradient Descent (SGD). At the start of every generation, each network resets the weights
of final dense layer, and the target labels are permuted; in essence making the task an online learning
problem. Each member is then trained on only 10% (MNIST) or 30% (CIFAR) of the training data.
We associate the learning rate η with a sequence of higher order mutation parameters η1, . . . ηn
for some order n, where η1 corresponds to learning rate. During exploration, the learning rate and
higher order mutation parameters are mutated as such:

η′i ∼ N (ηi; ηi+1),∀i < n

η′n ∼ N (ηn; ηn),

To eliminate tuning of higher order mutation parameters, we initialize ηi = 10 · ηi−1, for i > 1. As
an additional baseline, we also compare against the original mutation operator proposed in the PBT
paper, where, during exploration, hyperparameters are perturbed by a random scale factor of either
0.8 or 1.2. Figure 2 demonstrates that the inclusion of higher-order mutation parameters is effective
at overcoming poor initialization, reducing the need for hyperparameter tuning.

7.2 Applied to Unsupervised Environment Design
Unsupervised Environment Design (UED) [Dennis et al., 2020] is a paradigm in Reinforcement
Learning that aims to produce “robust” policies through automatic generation of environment cur-
ricula. UED formally concerns Underspecified POMDPs [Dennis et al., 2020], defined as M =
(A,O,Θ, S, T , I,R, γ), where: A is the action space, O is the observation space, Θ is the space of
underspecified parameters referred to as levels, S is the set state space, T : S × A × Θ → ∆(S)
is the level-conditioned transition function, I : S → O is the mapping of states of observations,
R : S → ∆(R) is the reward function, γ is the discount factor. At each stage of training, the goal of
UED is to select levels in Θ that maximize some design objective, typically regret: the delta between
expected return of an optimal policy on some level and the expected return of the current learning
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agent 1. As such, regret-based UED is a natural example of a nonstationary, adversarial objective;
repeated presentation of the same level to a learning agent will diminish its regret.

ACCEL [Parker-Holder et al., 2022] is an evolutionary approach to UED that optimizes regret by
maintaining a population of levels and mutating high performing levels subject to an fixed a priori
mutation operator. ACCEL’s sensitivity to choice of mutation operator is illustrated in 4. We extend
ACCEL by parameterizing the mutation operator and associating each level with (higher-order)
mutation parameters which can freely self-adapt.
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Figure 4: Heatmap showing solve rate of recurrent policy training using ACCEL on a set of holdout
levels. (Left) uses standard ACCEL with fixed number of edits per mutation. (Right) ACCEL with
the inclusion of mutation parameters in the evolutionary process. Each cell reports the mean and
standard error of the learned policy on some level, measured over 5 random seeds. We observe that
when allowing the mutation parameters to adapt learning is robust to selection of ninit.

We test on grid navigation task based on the MiniGrid environment [Chevalier-Boisvert et al., 2023],
which requires an agent to navigate through partially observable levels to reach the goal. The agent is
initially presented with levels devoid of obstacles (empty levels), with new levels being generated by
mutating previously high-estimated regret members from the level buffer. New levels are generated
by applying a finite number of random edits to the level; what edits to perform are selected uniformly
at random, and include: adding an obstacle in a random position, removing an obstacle in a random
position, and randomly move the goal position.

We associate each level θ in the population with an integer edit count nθ. As such, each element of
the level buffer is represented by a tuple of the form (θ, nθ). On selection for mutation, a new child
level θ′ is generated by applying nθ random edits to θ. nθ′ is generated by applying a uniformly
sampled increment to nθ, that is, nθ′ ∼ U{nθ − δ, nθ + δ} (following this sampling, nθ′ is clipped
to always be greater than zero). When sampling new, empty levels, we initialize nθ to some ninit.
To make this setup self-referential, we set δ to be nθ, making the number of edits its own mutation
parameter.

In Figure 3b, we see that the inclusion of higher order mutation parameters are able to effectively
overcome poor initial choice of n. Figure 3c shows that, when higher order mutation parameters
are included in the evolutionary process, the mean nθ in the level buffer naturally tends towards 20.
Thus, higher order mutations enable ACCEL’s ability to search level space to be robust to initial
conditions.

Next, we test the effect improvements to robustness have on downstream performance. Ultimately,
UED is concerned with improving learned agent performance on out-of-distribution tasks. We test

1In general, this quantity is unavailable. Thus, in practise, heuristics are used. See Appendix F for more
details.

7



this by checking the performance on a set of holdout levels, illustrated in Appendix Figure 8. In
comparison to fixed mutation parameters, we observe in Figure 4 that enabling mutation parameters
to adapt drastically improves robustness to initial conditions on the holdout levels.

7.3 Future Directions: Opponent shaping

Since higher-orders of mutation seem to help with higher-orders of non-stationarity, we investigate
the effect of higher-order mutation rates in multi-agent learning, and in particular, evolutionary
opponent shaping. While PBT and ACCEL represent non-stationary optimisation settings, they are
still bounded by the learning rate of the inner learning system. However, in competitive multi-agent
settings, we can observe how higher and higher orders of meta-evolution results in ever increasing
“orders” of non-stationarity.

In this setting, there are two opposing populations of agent parameters. At each generation the
following happens:

1. All pairs of opposing agent parameters are evaluated head-to-head.

2. We select the top k members of both populations and copy them.

3. We mutate both populations according to their respective mutation operators.

We include more implementation details in Appendix G. We investigate higher-order self-adaptation
in these settings in two, two-player zero-sum games: Regularized Matching Pennies and Kuhn
Poker.

Order 0 Order 1 Order 2
Order 0 - -0.18 ± 0.02 -0.19 ± 0.02
Order 1 0.18 ± 0.02 - -0.03 ± 0.02
Order 2 0.19 ± 0.02 0.03 ± 0.02 -

Table 1: Results for Regularized Matching Pennies. Standard error is calculated across 512 seeds.

Regularized Matching Pennies: Matching Pennies [Gibbons, 1992] is a simple two-player zero-
sum game similar to rock-paper-scissors in which each player can play “Heads” or “Tails” at each
time step. If the first player matches the second player’s action, they receive a score of 1, otherwise
they receive a score of −1. In this paper, we investigate the continuous setting in which each player
outputs a probability of playing Heads. To prevent the agents from instantly reaching the nash equi-
libria, we regularise the policies and introduce an L2 penalty for being near 0.5. To prevent the
logits from saturating, we pass the agent parameter through the sin function and use additive muta-
tions. Thus, the agent’s learning rate determines the rate at which they cycle between “Heads” and
“Tails”. Table 1 shows the results of different orders of meta-evolution in head-to-head competition.
In Figure 5, we show that the first-order agent learns to anticipate the evolution of a zeroth-order
agent online.
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Figure 5: An analysis of the first 64 generations of a run of Regularized Matching Pennies of a first-
order self-adaptive evolutionary agent (blue) against a zeroth-order evolutionary opponent (orange).
y-axis corresponds to agent’s probability of selecting heads. The first-order agent’s objective is to
match the output of the opponent, who is trying to do the opposite. Over the course of training, the
self-adaptive agent learns the rate at which the zeroth-order opponent updates, eventually anticipat-
ing its evolution.

Kuhn Poker: Kuhn Poker [Kuhn, 1950] is a simplified version of poker in which there are only
three playing cards. We use the implementation from Pgx [Koyamada et al., 2023]. Kuhn Poker has
16 possible states and 4 total actions, and we can thus represent each player’s policy with a tabular
representation. We show the results of higher-order meta-parameters in Table 2. In general, higher
orders of learning allow the agents to anticipate their opponent’s updates to exploit them.

Order 0 Order 1 Order 2
Order 0 - -0.21 ± 0.17 -0.56 ± 0.17
Order 1 0.21 ± 0.17 - -0.31 ± 0.18
Order 2 0.56 ± 0.17 0.31 ± 0.18 -

Table 2: Results for Kuhn Poker. Standard error is calculated across 16 seeds.

8 Conclusion
We demonstrated that for nonstationary optimization problems, fitness of the population is sensitive
to the choice of mutation operation: motivating the need for mutations themselves to adapt in antic-
ipation of changes to the objective landscape. We showed that including higher order mutation pa-
rameters in the mutation process is sufficient to implicitly optimize for such cases, circumventing the
need for expensive, multilevel optimization strategies. We have experimentally demonstrated that
higher-order self-adaptive and self-referential mutations effectively overcome poor hyperparameter
initialization in Population Based Training. Additionally, these mutations are effective at automati-
cally tuning parameterized environment mutation operations for Unsupervised Environment Design
in Reinforcement Learning.

Self-adaptive mutations are an important area of study for evolutionary dynamics. It is very clear
that this happens in the natural world [Bäck et al., 1992], yet they are largely ineffective on our
standard tasks and benchmarks [Kumar et al., 2022]. This paper answers this question by showing
that these mutations are more effective in non-stationary, adversarial, and multi-agent tasks.

9 Future Work and Limitations
Future work could more directly investigate the impact of higher-order and self-referential adapta-
tion in larger evolutionary [Chan, 2018] and multi-agent [Rutherford et al., 2023] systems. Specif-
ically, studying the scalability of these adaptation mechanisms in more complex environments and
over longer evolutionary timescales would provide deeper insights.

Our study has limitations that warrant consideration. For example, we do not investigate different
mutation strategies and merely explore basic gaussian perturbations. Future work could investigate
alternative strategies, such as crossover, and even discover ways we can evolve these more general
mutation strategies as well.
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Kazuki Irie, Imanol Schlag, Róbert Csordás, and Jürgen Schmidhuber. A modern self-referential
weight matrix that learns to modify itself. In International Conference on Machine Learning,
pages 9660–9677. PMLR, 2022.

Matthew Thomas Jackson, Minqi Jiang, Jack Parker-Holder, Risto Vuorio, Chris Lu, Gregory
Farquhar, Shimon Whiteson, and Jakob Nicolaus Foerster. Discovering general reinforcement
learning algorithms with adversarial environment design. In Thirty-seventh Conference on Neu-
ral Information Processing Systems, 2023a. URL https://openreview.net/forum?id=
kAU6Cdq1gV.

Matthew Thomas Jackson, Chris Lu, Louis Kirsch, Robert Tjarko Lange, Shimon Whiteson, and
Jakob Nicolaus Foerster. Discovering temporally-aware reinforcement learning algorithms. In
Second Agent Learning in Open-Endedness Workshop, 2023b.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population based train-
ing of neural networks. arXiv preprint arXiv:1711.09846, 2017.

Minqi Jiang, Michael Dennis, Jack Parker-Holder, Jakob Foerster, Edward Grefenstette, and Tim
Rocktäschel. Replay-guided adversarial environment design. Advances in Neural Information
Processing Systems, 34:1884–1897, 2021a.

10

https://openreview.net/forum?id=kAU6Cdq1gV
https://openreview.net/forum?id=kAU6Cdq1gV
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A Additional details on Experiment Settings
Experiments were performed on 8xNVIDIA A40’s.

A.1 Population-based Training
Population-based Training (PBT) [Jaderberg et al., 2017] is an evolutionary approach to online hy-
perparameter tuning that involves training a population of models in parallel, each using its own
set of hyperparameters. After a predefined number of learning steps the models are evaluated;
the lowest-performing models then inherit the parameters and hyperparameters of the highest-
performing members (exploitation) before mutating the hyperparameters they inherited (explo-
ration). Model parameters θ are typically updated iteratively using stochastic gradient descent sub-
ject to these hyperparameters h, expressed as θ′ ← step(θ | h). Each step may additionally include
operations such as data collection, or rollouts in the case of reinforcement learning, and multiple
gradient updates. Evaluation typically looks at model performance on a validation set, expressed as
eval(θ).

At its core, PBT is performing the following optimization problem in parallel to optimizing model
parameters:

h∗(θ) = argmax
h∈H

{eval(step(θ | h))} , (7)

where θ acts as the context. As such, PBT is performing non-stationary optimization.

A.2 Unsupervised Environment Design
One goal of UED is to learn a minimax regret policy, defined as

πminimax ∈ argmin
π

{
max
θ∈Θ

Regretθ(π)

}
, (8)

where Regretθ(π) = V θ(π∗)− V θ(π), V θ(π) = Eπ[
∑T
t=0 rtγ

t] is the expected discounted return
when using policy π in level θ, π∗ is the optimal policy.

Past work shows that such a policy is achieved at the Nash equilibrium of a game between a student
agent and a teacher supplying the student with the current regret maximizing levels, which the
student trains on [Dennis et al., 2020]. As such, the problem of learning a minimax regret policy
reduces to solving the following optimization problem:

θ∗(π) = argmax
θ∈Θ

{Regretθ(π)} , (9)

which is non-stationary due to its dependence on the current policy π. Note that, in general, (9) is
unavailable as the optimal policy is unknown during the course of training. Hence, in practise, the
above objective is approximated heuristically [Dennis et al., 2020, Jiang et al., 2021b,a].

Prioritized Level Replay (PLR) [Jiang et al., 2021b] attempts to optimize (9) using random search.
In PLR, training alternates between exploring the level space and exploiting previously discovered
high-estimated regret levels. During exploration, new levels are sampled from an a priori level
distribution. These new levels are then played by the currently learning agent, after which: their
regret is estimated and, if the regret estimates exceed a threshold, are inserted into a rolling level
buffer. During exploitation, levels are sampled from the level buffer using a distribution induced
by each level’s most recent regret estimate and time since the level was last played. These sampled
levels are then used to update the model. The regret of a level θ is estimated using a trajectory τ
sampled from the current learning agent π. Two common heuristics are:

pvl(τ, π; θ) =
1

T

T∑
t=1

relu

(
T∑
k=t

(λγ)k−tδk

)
, (10)

MCmax(τ, π; θ) =
1

T

T∑
t=1

(Rmax − V (st)) , (11)

where Rmax is the largest cumulative return the learning agent has achieved on θ, δt is TD-error
at timestep t, λ is the General Advantage Estimation constant, and V (st) is the learning agent’s
estimated value of state st. We refer to these heuristics as score functions.
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ACCEL [Parker-Holder et al., 2022] extends PLR by additionally exploring the level space using
evolution, wherein the level buffer serves as the population. High-scoring levels are periodically
mutated, and the resulting child-levels are attempted for insertion into the level buffer. Mutations
are performed using a predefined operation.

A.3 Multi-Agent Learning and Opponent Shaping
Multi-Agent learning, especially non-cooperative multi-agent learning, introduces non-stationarity
because player parameters can change throughout training. In many cases, this leads to convergence
to sub-optimal solutions in general-sum learning. Learning with Opponent-Learning Awareness
(LOLA) [Foerster et al., 2017] introduces the notion of Opponent Shaping (OS), which tries to
account for the fact that other players are learning at the same time. While LOLA uses higher-
order gradient-based methods to perform shaping, more recent works, such as Model-Free Opponent
Shaping [Lu et al., 2022b, Khan et al., 2023], cast OS as a generic meta-learning problem because
gradient-based methods require unrealistic access to opponent parameters. However, they use bi-
level optimisation schemes to repeatedly train against a learning opponent. Performing higher-
order opponent shaping in this setting quickly becomes computationally infeasible [Fung et al.,
2023]. Ideally, we would be able to perform effective opponent shaping, without computationally
intractable multi-level optimisation or unrealistic access to the opponents’ gradients. In this paper,
we investigate this by opponent shaping a population of evolutionary agents with varying levels of
self-adaptation and self-reference.

PBT and ACCEL can be seen as multi-agent systems where one agent follows a standard learning
algorithm, while the other employs evolutionary strategies to suggest new hyperparameters or levels.
However, in these systems, higher-order learners are not directly competing against each other. In
our multi-agent learning experiments, as the level of self-adaptation increases, the complexity and
non-stationarity also continually increase. This contrasts with the PBT and ACCEL experiments,
where the complexity reaches a limit due to the presence of a non-self-adaptive component.

B Proof of Theorem 1
Let each member of the population be given by x = {x1, . . . ,xn} ∈ Rd with xi ∈ Rdi and∑n
i=1 di = d, and for mutation operations of the form:

xt+1
i ← xti +Gi(x

t
i+1) +Bi

For Bi ∼ N (0;β), for some predetermined β, Gi : Rdi+1 → Rdi is some deterministic function.
We denote the resulting member after applying all order mutations by MB : Rd → Rd, where B
represents a noise vector.

For example, in [Lu et al., 2023] we have di = 1, Gi is the identity function, and Bi ∼ N (0, β) for
each i. For a sequence of t mutation vectors B = (B1, . . . , Bt), we write M t

B(x) or M t(x,B) for
the resulting individual.

Let P denote our population of solutions, where |P | = N . Suppose our objective is a vector-
valued function of the form f : Rd0 → R which depends only on x0. Further, suppose we have a
top-k algorithm A : Rd×N → Rd×N which takes in a population and outputs the next generation
depending on f , as specified below. We write At = At(P, C) for the population at time t, obtained
by applying t times the algorithm A, to the initial population P , with a collection C = {Bi}N−1

i=0 of
mutation vectors for each individual. Similarly we write At(x, P, C) for the population descending
from a specific individual x ∈ P , so that At(P, C) = ∪x∈PAt(x, P, C).
We abuse notation and write M t

C(x) to mean M t
Bi
(x), where i is the index corresponding to x,

whenever convenient. The top-k algorithm A is now formally specified as

A(x, P, C) =

{{
MC(x) | j ∈

[
N
k

] }
if x ∈ kmax

ϕ∈P
{f(MC(ϕ))}

∅ otherwise.

The set kmaxϕ∈P {f(MC(ϕ))} is defined to contain the k individuals ϕ with largest fitness
f(MC(ϕ)). Note also that we ‘stop the clock’ after selection of the k best individuals and their
duplication into N individuals, but before mutation.

Finally, recall the definition of statewise dominance: X ≻ Y iff P(X ≥ Y ) = 1 and P(X > Y ) >
0.
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Theorem 1. Fix any t < n. Let P = Q ∪ {x} and P̄ = Q ∪ {x̄} be initial populations such that
xi = x̄i for all i < t, and let B = (B1, . . . , Bt) be a vector of random mutations up to time t. If the
fitness of x̄ is statewise dominant over that of x after t mutations, that is,

f(M t
B(x̄)) ≻ f(M t

B(x)) ,

then the number of descendants of x̄ is statewise dominant over that of x at time t,∣∣At(x̄, P̄, C)∣∣ ≻ ∣∣At(x, P, C)∣∣ ,
where C = {Bi | i ∈ [N ]}. In particular, x̄ has a larger expected number of descendents than x:

E
[∣∣At(x̄, P̄, C)∣∣] > E

[∣∣At(x, P, C)∣∣] .
Proof. By assumption, there is a set Ω ⊂ Rt×n of measure 1 such that f(M t

b(x̄)) ≥ f(M t
b(x)) for

all B = b ∈ Ω. In particular, the set ΩN also has measure 1 in RN×t×n, and for any C = c ∈ ΩN ,

f(M t
c(x̄)) ≥ f(M t

c(x)) . (12)

For convenience, let D, D̄ = At−1(x, P, c), At−1(x̄, P̄, c) for the descendents of x, x̄ at time t− 1,
and Dc, D̄c for the complement (individuals which are not descendents of x, x̄ respectively). Since
the fitness function depends only on θ0, and by assumption that θi = x̄i for all i < t, note that
|D| =

∣∣D̄∣∣, and since other individuals are identical, Dc = D̄c. In particular, there is a bijection
h : D ∪Dc → D̄ ∪ D̄c satisfying, by Equation (12),

f(Mc(h(ϕ))) = f(M t
c(x̄)) ≥ f(M t

c(x)) = f(Mc(ϕ)) (13)

for all ϕ ∈ D, with equality for ϕ ∈ Dc. Now the number of descendents of x at time t, by definition
of the top-k algorithm A, is given by N/k times the number of values {f(Mc(ϕ))}ϕ∈D which are
among the largest k fitness values, namely,∣∣At(x, P, c)∣∣ = N

k
×
∣∣∣∣D ∩ kmax

ϕ∈D∪Dc
{f(Mc(ϕ))}

∣∣∣∣ .
Similarly, ∣∣At(x̄, P̄, c)∣∣ = N

k
×
∣∣∣∣D ∩ kmax

ϕ∈D∪Dc
{f(Mc(h(ϕ)))}

∣∣∣∣ .
Let us now compare the two sets,

{f(Mc(ϕ))} = {f(Mc(ϕ)) | ϕ ∈ D} ∪ {f(Mc(ϕ)) | ϕ ∈ Dc}
{f(Mc(h(ϕ)))} = {f(Mc(h(ϕ))) | ϕ ∈ D} ∪ {f(Mc(h(ϕ))) | ϕ ∈ Dc} .

By Equation (13), the RHS sets are identical, while the second LHS set contains values which are
no smaller than their corresponding entry in the first LHS set. In particular, it can contain no fewer
values which are among the k largest, and we thus obtain∣∣At(x̄, P̄, c)∣∣ ≥ ∣∣At(x, P, c)∣∣ .
Since ΩN is a set of measure 1, we conclude P(

∣∣At(x̄, P̄, C)∣∣ ≥ |At(x, P, C)|) = 1. It remains only
to show that P(

∣∣At(x̄, P̄, C)∣∣ > |At(x, P, C)|) > 0. By assumption of statewise dominance, there is
a set Φ ⊂ Rt×n of non-zero measure such that f(M t

b(x̄)) > f(M t
b(x)) for all b ∈ Φ. In particular,

there is a compact subset Φ′ ⊂ Φ of non-zero measure and a real number δ > 0 such that

f(M t
b(x̄)) > f(M t

b(x)) + δ (14)

for all b ∈ Φ′. Moreover, since B has full support in Rt×n, and f is continuous, the mutations Bϕ
of individuals ϕ ∈ Q can be chosen such that x, x̄ have a positive (and equal, as proven in the first
half of the proof) number of descendents |D| =

∣∣D̄∣∣ > 0 at time t− 1. Similarly, mutations at time
t can be chosen such that exactly k descendents in Dc = D̄c have fitnesses satisfying

max
ψ∈D

Mc(ψ) < f(Mc(ϕ)) < max
ψ∈D

Mc(ψ) + δ (15)

and all other descendents satisfying

f(Mc(ϕ)) < max
ψ∈D

Mc(ψ) . (16)
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Formally, Φ′ can be extended to a set Ψ ⊂ RN×t×n of non-zero measure such that these equations
hold for all c ∈ Ψ. In particular, by Equation (14),

f(Mc(ϕ)) < max
ϕ∈D

f(Mc(h(ϕ)))

for all ϕ ∈ D, and thus, combined with Equation (15), |At(x, P, c)| = 0. On the other hand,
combined with Equation (16), we have∣∣At(x̄, P̄, c)∣∣ ≥ N

k
> 0 =

∣∣At(x,P, c)∣∣ .
Since Ψ is a set of non-zero measure, and this holds for all c ∈ Ψ, we obtain

P(
∣∣At(x̄, P̄, C)∣∣ > ∣∣At(x, P, C)∣∣) > 0 .

Finally, we conclude
∣∣At(x̄, P̄, C)∣∣ ≻ |At(x, P, C)|. It is now difficult not to prove that x̄ has a larger

expected number of descendents:

E
[∣∣Āt∣∣− ∣∣At∣∣] = E

[∣∣Āt∣∣− ∣∣At∣∣ | ∣∣Āt∣∣ ≥ ∣∣At∣∣]
= E

[∣∣Āt∣∣− ∣∣At∣∣ | ∣∣Āt∣∣ > ∣∣At∣∣]P(∣∣Āt∣∣ > ∣∣At∣∣) > 0 .
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C Additional Results
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Figure 6: Mean performance over holdout levels displayed in Figure 8. Each plot corresponds to
performance over different ninit, measured over 5 random seeds. Error bars correspond to 1 standard
deviation. We see that allowing the number of edits to adapt enables ACCEL to achieve similar
performance, regardless of initialization.

ninit = 1 ninit = 5 ninit = 10 ninit = 20 ninit = 30 ninit = 50

δθ = 1 0.511± 0.021 0.600± 0.031 0.537± 0.032 0.654± 0.025 0.774± 0.025 0.708± 0.021
δθ = 5 0.506± 0.026 0.666± 0.019 0.543± 0.031 0.703± 0.024 0.682± 0.025 0.731± 0.021
δθ = 10 0.601± 0.033 0.565± 0.028 0.653± 0.022 0.646± 0.021 0.651± 0.024 0.778± 0.017
δθ = 20 0.706± 0.029 0.657± 0.027 0.702± 0.021 0.724± 0.024 0.682± 0.027 0.706± 0.013

Figure 7: Mean solve rate on maze navigation tasks for higher order self-referential mutations. In
this setup, we extend each member of the population to include an additional δθ parameter corre-
sponding to the maximum step size applied to nθ. δθ is itself mutated by sampling from U(1, 2δθ).
We observe improved performance robustness to poor initial mutation rates, however for small ini-
tial δs, performance improvements are less pronounced. Experiments were measured over 5 random
seeds; standard error is reported.
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D Visualizing Held-Out Minigrid Levels

Figure 8: Set of 13 × 13 partially observable navigation environments. Red triangle represents the
agent’s current position and direction. At each timestep, the agent can only seen 5× 5 tiles in front
of them, and must choose whether to move forward 1 tile or rotate 90◦ (anti-)clockwise. The aim is
to reach the goal represented by the green tile within a fixed budget of 250 timesteps.
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E Details and Hyperparameters for PBT
We used the same convolutional architecture for MNIST and CIFAR. It consists of two convolutional
layers and a dense layer.

Hyperparameter Value
Conv 1 Kernel Size (3, 3)
Conv 1 Strides (2, 2)
Conv 1 Features 32
Conv 2 Kernel Size (3, 3)
Conv 2 Strides (2, 2)
Conv 2 Features 64
Dropout 0.5
Activation ReLU
Max Pool Window (2, 2)
Dense 10
Population Size 30
Top-K 6
Generations 500
Batch Size 32

Table 3: Hyperparameters for MNIST and CIFAR10
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F Details and Hyperparameters for ACCEL

Hyperparameter Value
Conv 1 Kernel Size (3, 3)
Conv 1 Strides (1, 1)
Dense Direction Embedding Size 5
LSTM Size 256
Actor Dense Layer Width 32
Critic Dense Layer Width 32
Learning Rate (lr) 1e-4
Max Grad Norm (max grad norm) 0.5
Number of Updates (num updates) 30000
Number of Steps (num steps) 256
Number of Train Environments (num train envs) 32
Number of Minibatches (num minibatches) 1
Gamma (gamma) 0.995
Epoch PPO (epoch ppo) 5
Clip Epsilon (clip eps) 0.2
GAE Lambda (gae lambda) 0.98
Entropy Coefficient (entropy coeff) 1e-3
Critic Coefficient (critic coeff) 0.5
Agent View Size (agent view size) 5
Initial Number of Walls (n walls) 0
Evaluation Frequency (eval freq) 250
Number of Evaluation Attempts (eval num attempts) 10
Evaluation Levels (eval levels) SixteenRooms, Labyrinth, StandardMaze
Score Function (score function) MaxMC
Exploratory Grad Updates (exploratory grad updates) False
Level Buffer Capacity (level buffer capacity) 4000
Replay Probability (replay prob) 0.8
Staleness Coefficient (staleness coeff) 0.3
Temperature (temperature) 0.3
Minimum Fill Ratio (minimum fill ratio) 0.5

Table 4: Hyperparameters for ACCEL
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ninit = 1 ninit = 5 ninit = 10 ninit = 20 ninit = 30 ninit = 50

ACCEL 0.321± 0.106 0.597± 0.104 0.580± 0.107 0.685± 0.125 0.754± 0.092 0.660± 0.105
δ = 1 0.625± 0.069 0.631± 0.069 0.615± 0.085 0.690± 0.060 0.742± 0.059 0.766± 0.056
δ = 5 0.670± 0.068 0.671± 0.068 0.650± 0.073 0.620± 0.066 0.672± 0.052 0.652± 0.066
δ = 10 0.725± 0.056 0.727± 0.056 0.602± 0.075 0.666± 0.053 0.728± 0.080 0.666± 0.052
δ = 20 0.743± 0.057 0.755± 0.057 0.747± 0.051 0.720± 0.057 0.746± 0.054 0.726± 0.050

self-referential 0.613± 0.133 0.659± 0.107 0.636± 0.100 0.711± 0.073 0.672± 0.095 0.671± 0.088

Figure 9: Mean solve rate on maze navigation tasks. Each column corresponds to the number of edits
that empty levels are initialized with. For ACCEL (first row), the number of edits is fixed throughout
training. When the number of edits is small, performance on holdout levels suffers as ACCEL strug-
gles to effectively search level space. Subsequent rows correspond to experiments where the number
of edits are mutable (i.e. with self-adaptation). Rows 2-5 correspond to ACCEL experiments where
the number of edits can adapt by at most a step size specified by δ. Self-referential corresponds
to ACCEL experiments where the number of edits is its own mutation parameter. Performance is
measured over 5 random seeds, where errors reported correspond to standard error.

G Details and Hyperparameters for Opponent Shaping

Hyperparameter Value
Number of Generations 2048
Initial Std 0.1
Smoothing 0.9
Regularization 1.0
Population Size 1024
Top-K 512

Table 5: Hyperparameters for Regularized Matching Pennies.

Hyperparameter Value
Number of Generations 1024
Initial Std 0.001
Smoothing 0.25
Number of Evaluations 3
Population Size 1024
Top-K 512

Table 6: Hyperparameters for Kuhn Poker.
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