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ABSTRACT

Large Language Models (LLMs) perform well on popular math benchmarks but
still struggle with fundamental undergraduate tasks such as basic integrals. This
suggests a diagnostic gap: existing datasets are either trivial, synthetic, or overly
advanced, limiting their usefulness for exposing reasoning failures. To address
this, we introduce CUMath, a benchmark of 2,100 real problems from undergradu-
ate courses in Calculus, Linear Algebra, Differential Equations, and related fields.
Each problem includes step-by-step solutions, enabling evaluation of both final
answers and intermediate reasoning. Moreover, current evaluations treat accu-
racy and reasoning separately, overlooking their joint role in problem-solving. To
address this, we propose a multi-layered evaluation framework that combines au-
tomatic metrics with an LLM-as-a-grader pipeline, integrating symbolic encoding
and external verification. Using this setup, we evaluate 15 LLMs across various
prompting strategies. Our results show that even advanced models often misuse
symbolic methods and rely on shortcuts, leading to polished but flawed solutions.
Our findings reveal the ongoing issue of inconsistent reasoning, highlighting the
need for improved benchmarks, evaluation frameworks, and the development of
models with enhanced consistency and reasoning capabilities. The code and data
will be available upon publication.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse domains,
including academic question answering and programming (Chen et al., 2021} Hendrycks et al.,
2021a). Despite this progress, a persistent gap remains: LLMs continue to struggle with symbolic
and multi-step reasoning (Malek et al., 2025)), making mathematics one of the most challenging do-
mains in artificial intelligence (Wang et al., 2025} [Forootani, [2025). Unlike text-based tasks, mathe-
matics requires not only factual recall but also procedural fluency and logical consistency, elements
that remain difficult even for the most advanced systems (Chollet, 2019; |Glazer et al., [2024).

Significant progress has been achieved through prompting strategies like Chain-of-Thought (CoT)
(Weit et al.l 2023) and math-specific pretraining (Peng et al., 2021} |Zhou et al.| 2023). However,
current benchmarks and evaluations are becoming limited. Widely used datasets such as GSM8K
(Cobbe et al 2021)) and MATH (Hendrycks et al., [2021b) show near-ceiling performance, while
advanced benchmarks like HARDMath (Fan et al., 2024) result in uniformly low scores that make
it hard to see where the reasoning actually breaks down. Recent undergraduate-level datasets, such
as UGMath (Xu et al., 2025)), have attempted to address this gap, but still cover many elementary
problems and typically lack step-by-step annotations essential for analyzing reasoning.

In contrast, progress in evaluation frameworks has been far more limited. Two primary approaches
have emerged, each with its own limitations. Outcome-centric metrics, such as Exact Match and
F1 (Cobbe et al., 2021; Hendrycks et al., [2021b), prioritize final-answer accuracy but overlook the
reasoning process. Reasoning-aware metrics, including ROSCOE (Golovneva et al., 2023), Rea-
sonEval (Xia et al.}|2024), and LLM-as-a-Judge methods (Gu et al.}[2025), assess intermediate steps
but often overlook overall correctness. These perspectives are rarely integrated, leaving evaluations
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unable to distinguish between correct answers derived from flawed reasoning and valid reasoning
that breaks down only at the final step.

To address these issues, we make three main contributions:

1. A new benchmark for undergraduate-level mathematical reasoning. We introduce
CUMath, a dataset of 2,100 problems evenly distributed across seven core subjects, each
with detailed step-by-step solutions for reasoning-focused evaluation. This balanced cov-
erage ensures that no single subject dominates the dataset.

2. A multi-layered evaluation framework. To comprehensively assess LLMs, we pro-
pose a framework that integrates automatic metrics (Exact Match, F1, Stepwise Reason-
ing Score, Validity—Redundancy Score) with LLM-as-a-grader feedback. Our LLM-as-a-
grader pipeline combines MathBERT for symbolic encoding, an LLM for step-level rea-
soning assessment, and Wolfram Alpha for answer verification. This design captures both
outcome correctness and reasoning quality, two complementary aspects of mathematical
problem solving.

3. An empirical analysis of LLM reasoning gaps. Using CUMath and our framework, we
show that state-of-the-art LLMSs continue to exhibit systematic errors in symbolic manipu-
lation and procedural reasoning, even when producing correct final answers. These findings
underscore the importance of evaluating reasoning validity in conjunction with correctness.

Together, CUMath and our evaluation framework establish a principled methodology for bench-
marking mathematical reasoning in LLMs, balancing correctness with reasoning quality.

2 RELATED WORK

Table 1: Comparison of math datasets by level (E: Elementary to Middle School, H: High School,
O: Olympiad, U: Undergraduate), computational undergraduate coverage, number of task types,
subjects, test size, free response (FR) answer proportion, and inclusion of step-by-step solutions

Dataset Levels %CU #Types #Subj. #Test %FR Step-
by-step
GSM8k (Cobbe et al., 2021) E 0 1 - 1k 0 No
MATH (Hendrycks et al.,[2021b) H,O 0 3 7 5k 100 Yes
MiniF2F (Zheng et al.,|2022) EHO 0 3 - 244 100 Yes
MathVerse (Zhang et al., [2024) H 0 3 - 4.7k 45 No
MathVista (Lu et al., 2024) EHO O 3 - 5k 46 No
MATH-V (Lu et al.}|2024) EHO O 3 - 3k 50 No
MMLUwman (Wang et al.} 2024) EHU O 1 3 1.3k 0 No
MathOdyssey (Fang et al.,[2024) HO,U ~10 1 - 387 100 No
MMMUMath (Yue et al.,|2024) EHU O 1 - 505 0 No
We-Math (Qiao et al.||2024) H,U ~20 3 - 1.7k 100 No
OCWCourses (Lewkowycz et al.}[2022) U ~18 1 - 272 100 No
ProofNet (Azerbayeyv et al.| [2023)) U 0 1 - 371 100 No
UGMathBench (Xu et al., [2025) U ~50 10 16 5.5k 0 No
CUMath U 100 3 7 2.1k ~75  Yes

Mathematical Benchmark. Mathematical reasoning is a key test of LLMs’ generalization and
problem-solving ability, driving the creation of numerous benchmarks. Early datasets, such as
GSMSK (Cobbe et al.,[2021) and MATH (Hendrycks et al.,2021b)), remain widely used, but primar-
ily cover grade-school word problems and competition-style questions. With models now surpass-
ing 97% on GSMS8K and 94% on MATH (Zhou et al.l 2023} |OpenAl, 2024), these benchmarks are
reaching a capability threshold and fail to capture deeper reasoning skills.

Recent datasets, such as GHOST (Frieder et al., 2023), HARDMath (Fan et al., [2024), and ARB
(Sawada et al.| [2023)), introduce more advanced problems, but often lead to uniformly low scores.
While effective at exposing limitations, this difficulty gap reduces diagnostic value, as consistent
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failure hides specific reasoning weaknesses. Therefore, there is a need for benchmarks that are
challenging yet feasible, aligned with current LLM capabilities, while also revealing reasoning gaps.

Undergraduate-level benchmarks, such as UGMath (Xu et al., [2025) and MathOdyssey (Fang et al.,
2024), aim to bridge this gap by covering a broad spectrum of topics. However, these datasets
include many elementary problems (arithmetic and basic algebra) that are already well-covered
in MATH and GSMS8K and can be easily handled by current models. Moreover, they typically
emphasize final answers over reasoning and lack detailed step-by-step annotations. Therefore, it
reduces their usefulness for evaluating advanced reasoning. Meanwhile, computational mathemat-
ics—requiring symbolic manipulation and multi-step procedures—remains underrepresented (see
Table E]), despite being a central challenge for LLMs (Cao et al.| [2025; Mirzadeh et al.| 2024)).

Evaluation Frameworks and Reasoning Metric. Early evaluations of LLMs in mathematics have
primarily relied on metrics such as Exact Match and F1 score (Hendrycks et al., [2021b} (Cobbe et al.|
2021), which assess only final-answer correctness. However, as LLMs now achieve near-human
performance on GSM8K and MATH (Zhou et al.l 2023; (OpenAl, 2024), these outcome-focused
metrics are reaching a capability threshold and fail to capture the quality of reasoning.

To overcome these limitations, researchers have begun to develop reasoning-aware evaluation frame-
works. For example, the ROSCOE suite (Golovneva et al.,|2023) measures reasoning chains along
dimensions such as faithfulness, coherence, and informativeness, producing scores that align more
closely with human judgment. Building on this, ReasonEval (Xia et al., 2024)) assesses validity and
redundancy at the step level, enabling more fine-grained analysis of reasoning quality. Other efforts
adopt the LLM-as-a-Judge paradigm (Gu et al.| [2025)), where stronger models grade reasoning traces
and achieve strong agreement with human experts. Broader frameworks, including MMLU-Pro+
(Taghanaki et al, 2024)), extend evaluation to multi-dimensional reasoning, while UGMathBench
(Xu et al.}[2025)) introduces multi-version testing to assess robustness.

Improving Mathematical Reasoning in LLMs. Beyond benchmarking and evaluation, a parallel
line of work focuses on improving the reasoning capabilities of LLMs themselves. One direction
explores prompting strategies such as Chain-of-Thought (CoT) (Wei et al.|[2023), Tree-of-Thoughts
(ToT) (Yao et al.,2023), and Self-Consistency (SC) (Wang et al.,2023), which encourage structured
reasoning traces. Another direction involves model-level adaptation, including fine-tuning on cu-
rated datasets (Zhou et al., |2023) and continued pretraining on math-specific corpora (Peng et al.,
2021)), leading to specialized math models. Despite this progress, LLMs still frequently hallucinate
intermediate steps, misuse operations, or fail on symbolic manipulation (Cao et al.l 2025} Malek
et al., |2025)). Crucially, these errors can occur even when the final answer is correct, highlighting
the persistent gap between surface accuracy and genuine reasoning ability. This mismatch under-
scores the need for evaluation methods that extend beyond outcome correctness and directly assess
the quality of reasoning processes.

To address these gaps, we introduce CUMath, a balanced benchmark for undergraduate mathemati-
cal reasoning, together with a multi-layered evaluation framework, and use them to reveal systematic
reasoning gaps in state-of-the-art LLMs.

3 CUMATH DATASET

We present the CUMath dataset, a benchmark for assessing mathematical reasoning in undergrad-
uate mathematics. Unlike existing datasets that focus on artificial or competition-style problems,
CUMath is derived from actual instructional materials, reflecting the reasoning challenges that un-
dergraduate students encounter.

The dataset consists of 2,100 problems evenly distributed across seven core areas of undergraduate
computational mathematics: Calculus, Differential Equations, Discrete Mathematics, Linear Alge-
bra, Multivariable Calculus, Precalculus, and Trigonometry, with each area containing exactly 300
problems. Unlike previous datasets that often overrepresented certain domains, such as calculus or
elementary algebra, this balanced distribution prevents topic bias. This enables a fair comparison of
model performance across different topics and supports a more comprehensive assessment of math-
ematical reasoning. We categorize the problems into three answer formats: Free Response (FR),
Short Answer (SA), and True/False (TF). For each problem, CUMath provides detailed, step-by-
step solutions, enabling a comprehensive evaluation of understanding that extends beyond simply
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checking for the final answer’s accuracy. A breakdown of problem distribution by sub-topics is pro-
vided in Appendix |B] Our CUMath creation process consists of three phases: data collection, data
cleaning and formatting, and data labeling.

Data Collection. CUMath problems are drawn from two primary sources: (i) [anonymized] univer-
sity quizzes, exams, and problem sets, and (ii) open-access textbooks that are widely recommended
by |American Institute of Mathematics|and protected by Creative Commons licenses. Closed mate-
rials have been included through instructors’ agreements (see Appendix [A] for details). While we
can’t guarantee these materials were excluded from LLM training data, licensing restrictions and
the private nature of quizzes and exams reduce this likelihood. Math educators reviewed all prob-
lems for clarity and correctness, preserving the original wording and notation. The datasets were
originally in LaTeX or PDF format and are released for non-commercial use only.

Data Cleaning and Formatting. Each problem was standardized into a structured JSON format to
enable consistent access and downstream use. During this phase, text was cleaned to correct typo-
graphical errors and remove formatting artifacts. Mathematical expressions were encoded in LaTeX
to ensure proper rendering and compatibility with language model input formats. We performed
deduplication to eliminate redundant problems, ensuring each issue was self-contained and isolated
from the surrounding content.

Data Labeling. We annotated each problem with metadata to support fine-grained analysis and
structured evaluation. The core fields include a unique identifier, topic and subtopic labels, question
text, source attribution, and expected response format. To support both coarse- and fine-grained
evaluation, entries include a final answer and a step-by-step solution. Each problem is categorized
into one of three response types: FR, SA, and TF, reflecting the typical assessment styles used in
mathematics courses. Examples of annotated problems are provided in Appendix[C]

4 EVALUATION METRICS FRAMEWORK

We assess model performance by integrating 4 different automatic metrics (Accuracy, Semantic F1,
Stepwise Reasoning Score, and Validity—-Redundancy Score) with LLM-as-a-grader feedback for a
comprehensive assessment of final-answer correctness and step-by-step reasoning quality.

4.1 AUTOMATIC METRICS

Evaluation Formulation. Let D = (q¢;, ;) be the CUMath dataset, where ¢; denotes the problem
statement and a; denotes ground-truth answers, and S; = {s!, ..., sI""} the corresponding reference

reasoning steps. Consider a LLM represented as M, denote its predicted final answer a; = M (¢;)
and reasoning steps S; = {sl,...,8"}. We additionally denote by e; = (e}, e?,...,el"")
(81,382,...,38) the same reasoning steps viewed as an ordered sequence. Based on these notations,

we define metrics that evaluate both reasoning steps and the correctness of the final answer.

Accuracy. To account for algebraic equivalence, both a; and a; are parsed into symbolic form using
SymPy. Denote ¢(-) is the parsing function and II[-] the indicator. If parsing fails, string matching is
used. Correctness is then

|D|

Accuracy(M | D] 2- Z ) = ¢(ai)],

Semantic F1. To measure alignment between generated and human reference steps, we compute
a semantic F1-Score. Let X be the set of all possible reasoning steps andlet f : X — R?bea

pretrained encoder For each problem ¢, the reference steps s] 88 e Xforj =T1,n;, k = 1,7,
Each step s/ and 8F is ‘mapped via f to embeddings f (s, f (Ak) € R9. We then compute pairwise
similarities between s] € S; and § sk e S; using cosine similarity:

FDTFGE
17D 5

A greedy one-to-one matching M, is constructed by sorting pairs (j, k) in descending C'j, and
selecting them if C'j, > 7 (with 7 = 0.7) and neither step has already been matched. Let M; = |M,|

Cii = cos (f(s]), f(s%)) =
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denote the number of matched pairs. We compute the dataset-level precision, recall, and F1 as:

legl M; Recall(M) = Zlm M; 2 - Precision(M ) - Recall(M)

Precision(M ) = ==—"—— = .
recision(M) le\l 15| ZID‘ 1] (M) Precision(M) + Recall(M)

Stepwise Reasoning Score (SRS). Following the ROSCOE framework (Golovneva et al., 2023)), we
evaluate reasoning quality using a subset of fine-grained metrics. For each solution, we compute the
following six metrics: Faithfulness, Informativeness (Step), Informativeness (Chain), Coherence
(Step vs. Step), Discourse Representation, and Repetition (Step). All metrics are normalized to
[0, 1], with higher values consistently indicating better quality (see Appendix for details). The
per-solution score (SRS(e;)) and the dataset-level score (SRS(M)) will be computed as follows

=]

|D|

my(e;), SRS(M SRS (es)
IDI

k=1

| =

Validity and Redundancy (VR). We adapt ReasonEval (Xia et al.,2024), which evaluates reason-
ing based on per-step validity and redundancy. Each step §z is compared with the problem ¢; using
an NLI model that outputs probabilities for entailment, neutral, and contradiction. From these,
Sjv-a“dny = penail 4 pheural ang gredundancy P, The per-solution score (VR-Score(e;)) and the
dataset-level score (VR-Score(M)) will be computed as follows

|D|

1d1 T naan 1
VR-Score(e;) = min Svaldty - maxSedu ey VR-Score(M \D| E VR-Score(e;).
j j

4.2 LLM AS A GRADER
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Figure 1: Overview of our grading pipeline. MathBERT encodes expressions, LLM gives step-level
feedback, and an external Computer Algebra System (CAS) verifies correctness.

We design an automatic grading pipeline that assesses both the correctness of final answers and
the quality of the written solution (Figure [T). This matters because two solutions with the same
final answer can come from very different reasoning. Our pipeline takes as input both Al-generated
solutions and reference solutions, so each step can be compared against a trusted path.

Step 1 (Input). The pipeline begins with both Al-generated and reference solutions, which together
provide a basis for comparison against a trusted path.

Step 2 (Math Segmentation). To process a student or Al-generated solution, we first perform a step
segmentation procedure. Since mathematical solutions are written in free-form text, the pipeline
needs a consistent way to isolate units of reasoning. If the solution is explicitly structured with steps
labeled such as ”step £, we use those as natural boundaries. In cases without explicit markers, we
default to line-based segmentation, where each line is treated as a candidate reasoning step. Each
extracted step is then encoded using MathBERT (Peng et al.| [2021)), which preserves the structure
of equations, improving the accuracy in comparing generated and reference steps.

Step 3 (LLM Feedback). The encoded steps are passed to an LLM prompted to act as a mathematics
instructor (see Appendix |[D.3), which provides step-level feedback by identifying errors, reasoning
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gaps, and partial correctness. In addition to qualitative comments, the LLM assigns a preliminary
score on a 0-5 scale, reflecting the overall validity and clarity of the step.

Step 4 (Verification Loops). To improve reliability, we integrate verification loops with external
CAS (i.e, Wolfram Alpha). Whenever the pipeline detects that a reasoning step contains a mathe-
matical expression, that expression is extracted, normalized, and sent as a query to the CAS. The
CAS then returns the mathematically validated result, such as the simplified form of an equation, the
solved solution set, or confirmation of equivalence between two expressions. The pipeline compares
the LLM’s judgment of the step with the CAS’s authoritative output. If the CAS verifies the equiv-
alence, the LLM’s proposed assessment is maintained. If a discrepancy arises, for example, when
the LLM accepts an invalid manipulation or fails to recognize an equivalence, the CAS result takes
priority, and the LLM is prompted to revise its assessment based on the verified computation. This
proposer—verifier loop reduces hallucinations, arithmetic mistakes, and symbolic misinterpretations,
while ensuring that the grader remains consistent with formal mathematics.

Step 5 (Output). The final output is step-level feedback and a numerical score, combining the
LLM’s reasoning-based assessment with CAS verification to ensure mathematical validity.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Evaluated LLMs. Our evaluation covers 3 categories of LLMs to provide a comprehensive analysis
of mathematical reasoning. Closed-source models demonstrate proprietary advancements, open-
source models emphasize transparency and community collaboration, and math-specialized models
are optimized for symbolic reasoning in targeted assessments. The evaluated LLMs are listed below:

* Closed-source models: GPT-4.1, GPT-3.5-turbo-0125, OpenAl 03, Claude Sonnet 3.7.

* Open-source models: DeepSeek-R1-Distill-Qwen-32B, Gemma 2 9B IT, LLaMA 3 8B/70B In-
struct, LLaMA 4 Scout 17B Instruct, Qwen2.5 7B Instruct, Mistral 7B Instruct v0.3.

* Math-specialized models: Qwen2.5-Math-7B Instruct, Qwen2.5-Math-1.5B Instruct, Llemma-
7B, LLaMA-3.2-1B Instruct (ft).

Detailed specifications of these models are provided in Appendix [D.1]

Prompting Styles. We evaluate four prompting techniques commonly used to enhance reasoning in
LLMs: Zero-shot, Chain-of-Thought (CoT), Self-Consistency (SC), and Tree-of-Thoughts (ToT).
The full set of prompt templates used in our experiments is provided in Appendix

Evaluation settings. All models are evaluated using the four prompting techniques described above.

To ensure consistency and reproducibility, we standardize decoding parameters across all models.
Specifically, both Zero-Shot and CoT employ greedy decoding with a temperature set to 0, meaning
the model deterministically selects the most probable next token at each step. For SC, we sample
5 reasoning chains at temperature 0.9 and select the final answer by majority vote, following Wang
et al.| (2023)). For ToT, we generate 3 distinct reasoning paths at temperature 0.7, following|Yao et al.
(2023)), to encourage exploratory reasoning.

All outputs are constrained to a maximum length of 2,048 tokens. This limit is sufficient to capture
the complete reasoning process and final answers for all problems in our dataset, while fitting within
the context window of all evaluated models. This ensures consistency across models with different
maximum token capacities. We evaluate model performance using automatic metrics (Accuracy,
Semantic F1, SRS, and VR) and an LLM-based grading pipeline. To ensure reliability, we perform
a qualitative review of the grading process.

5.2 MAIN RESULTS

Final-answer accuracy on CUMath remains significantly lower than benchmarks for grade-school
or competition-style math. Even the best LLMs achieve only about 25% accuracy. A closer look by
topic shows a clear trend: the harder the topic, the more the models struggle (detailed topic results
are in Appendix [E). Even the best performance reached only around 10% in sophomore/junior-level
courses such as differential equations, multivariable calculus, and linear algebra. By comparison,
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freshman-level calculus and discrete mathematics reached 25-30% and 15-20%, while introductory
topics such as trigonometry and pre-calculus can achieve up to 36% and 42%.

Table 2: Main Results on CUMath. Evaluation of LLMs across four prompting strategies and five
metrics: Accuracy (Acc), Semantic F1, SRS, VR, and LLM-based evaluation (LLM, normalized to
[0,1]). The highest value in each column is highlighted in bold and underlined

Model Zero-shot CoT ToT SC

Acc F1 SRS VR LLM Acc F1 SRS VR LLM Acc F1 SRS VR LLM Acc FI SRS VR LLM

,,,,,,,,,,,,,,,,,,,,, Closed-source Models
GPT-4.1 0.23 0.11 0.39 -0.53 0.53 0.24 0.12 0.39 -0.53 0.56 0.21 0.03 0.36 -0.75 0.27 0.24 0.03 0.37 -0.72 0.25
GPT-3.5-turbo- 0.21 0.29 0.46 -0.51 0.52 0.21 0.38 0.48 -0.39 0.55 0.18 0.09 0.40 -0.78 0.57 0.20 0.08 0.40 -0.83 0.58
0125

OpenAl 03 0.21 0.22 0.51 -0.23 0.67 0.22 0.18 0.48 -0.30 0.69 0.19 0.05 0.43 -0.44 0.60 0.22 0.07 0.42 -0.47 0.58
Claude Sonnet 0.23 0.20 042 -0.72 0.73 0.24 0.20 0.42 -0.65 0.73 0.21 0.09 0.40 -0.78 0.59 0.23 0.15 0.41 -0.74 0.67
3.7

e ___ ___________ OpensouceModels  _ _ _ _ _ ____ _ __ ________
DeepSeek-R1-  0.22 0.10 0.40 -0.68 0.63 0.25 0.10 0.39 -0.69 0.55 0.21 0.04 0.38 -0.88 0.31 0.20 0.02 0.38 -0.89 0.21
Distill-Qwen-

32B

Gemma 2 9B IT 0.19 0.16 0.44 -0.44 0.61 0.21 0.27 0.47 -043 0.63 0.13 0.07 0.39 -0.72 0.54 0.06 0.05 0.40 -0.71 0.40
LLaMA 3 8B 0.21 0.18 0.42 -0.63 0.62 0.23 0.24 0.43 -0.62 0.64 0.20 0.06 0.39 -0.85 0.52 0.20 0.04 0.39 -0.89 0.56
Instruct

LLaMA 3 70B 0.23 0.26 0.49 -0.34 0.41 0.25 0.35 0.46 -0.45 0.61 0.23 0.08 0.39 -0.82 0.57 0.24 0.08 0.39 -0.83 0.55
Instruct

LLaMA 4 Scout 0.23 0.18 0.41 -0.70 0.67 0.25 0.23 0.41 -0.66 0.65 0.23 0.08 0.39 -0.83 0.44 0.23 0.05 0.39 -0.85 0.37
17B Instruct

Qwen2.5 7B In- 0.21 0.14 0.40 -0.62 0.55 0.24 0.17 0.41 -0.60 0.56 0.22 0.04 0.36 -0.81 0.30 0.22 0.04 0.38 -0.83 0.38
struct

Mistral 7B In- 0.12 0.15 0.48 -0.32 0.29 0.17 0.27 0.46 -0.43 0.40 0.10 0.06 0.40 -0.81 0.37 0.14 0.06 0.40 -0.86 0.40
struct v0.3

Math-specialized Models

"Qwen2.5-Math- 0.14 0.12 0.39 -0.63 0.47 0.14 0.08 0.40 -0.56 0.29 0.14 0.04 0.36 -0.78 032 0.15 0.03 0.35 -0.83 0.23
7B Instruct

Llemma-7B 0.03 0.03 0.41 -0.48 0.23 0.03 0.03 0.40 -0.48 0.28 0.02 0.01 0.36 -0.82 0.09 0.02 0.01 0.34 -0.94 0.11
Qwen2.5-Math- 0.06 0.08 0.43 -0.48 0.39 0.12 0.10 0.40 -0.59 0.49 0.12 0.04 0.38 -0.75 0.17 0.12 0.03 0.38 -0.80 0.13
1.5B Instruct

LLaMA-3.2-1B 0.07 0.12 0.43 -0.54 0.48 0.07 0.14 0.43 -0.56 0.33 0.08 0.04 0.40 -0.79 0.16 0.07 0.04 0.40 -0.84 0.13
Instruct (ft)

By default, accuracy is computed via symbolic equivalence, such as z2 is the same as a2, rather
than raw string matching, so it ignores trivial notational differences. However, only short-form
responses that require a fill-in answer, a single number, or a true/false value are evaluated with
string matching. In these cases, symbolic checking is unnecessary, and string matching ensures that
simple but valid responses are not penalized. Nonetheless, this method can still understate model
performance in cases where SymPy fails to parse the output correctly, implicit domain conditions,
or alternative valid representations are not captured by simplification. As shown in Figures[2|(a) and
(b) and detailed in Table [2} these low accuracy levels are consistent across families and strategies.
Critically, higher accuracy does not reliably translate into stronger reasoning: many correct answers
were produced through brittle, incoherent, or redundant derivations, as reflected in low VR scores
and only moderate SRS.

Different prompting strategies also affected model performance, consistent with prior findings (Zhuo
et al., 2024). Across strategies, CoT achieved the best results in Accuracy, F1, and SRS compared to
Zero-shot, ToT, and SC, and it also yielded the highest LLM-based evaluation scores for most mod-
els. For VR, CoT generally maintained performance comparable to Zero-shot across closed-source,
open-source, and math-specialized models. By contrast, ToT and SC offered only marginal or in-
consistent gains. In many cases, these strategies increased redundancy without improving accuracy
or reasoning coherence, leaving CoT as the most effective prompting method overall.

These patterns are further illustrated in Figure2](d). The correlation heatmap underscores a key lim-
itation of using accuracy alone to assess mathematical capability: it shows only a weak correlation
with SRS (r = 0.29, p = 0.049) and essentially no correlation with VR (r = 0.08, p = 0.578). This
suggests that correct answers can occur without coherent derivations. In contrast, F1, SRS, and VR
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are strongly correlated, suggesting that they capture aligned but complementary aspects of reasoning
quality, including stepwise alignment with references, logical progression, and conciseness. LLM-
as-a-grader scores correlate moderately with both outcome-oriented and reasoning-oriented metrics,
indicating that they integrate aspects of both and better approximate comprehensive solution quality.
Overall, these results underscore that accuracy alone can misrepresent model competence, highlight-
ing the need for multidimensional evaluation frameworks.

(a) Average scores across models (b) Average scores across prompting methods

Models
_ ClaudeSonnet3]  — LLaMA 3 708 Instruct LLaMA3.2-18 Instruct .. —— OpenAla3 Strategies
— GT3Stubo0125  — LLaMA 3 8B Instruct — Uemma-76 — Qwen2 5 78 Instruct — zeshot — T — BT — C
— Gemmaz 98T —— LLaMA 4 Scout 178 Instr Mistral 7B Instruct 0.3 —— Qwen2 5-Math-1 58 Instr

(c) Average VR across prompting methods (d) Pearson correlation heatmap with p-values
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Figure 2: Multi-metric summary of CUMath results. (a) Average scores across models. (b)
Average scores across prompting methods. (c) Average VR across prompting methods. (d) Pearson
correlation heatmap with p—values.

6 WHERE DO FRONTIER LLMS STILL FAIL?

Despite recent advances, our analysis shows that frontier LLMs continue to make basic yet system-
atic errors on undergraduate-level mathematics. These errors are not isolated but show recurring
patterns across models and prompting strategies, revealing that core reasoning gaps remain unre-
solved. Across a wide range of problems, we consistently observe two characteristic failure modes:
(1) wrong reasoning leading to wrong results, and (2) wrong reasoning that produces correct results.
We illustrate both with the following examples.

6.1 INVALID REASONING LEADING TO INCORRECT RESULTS

Consider the indefinite and definite integrals,

1 — s /6 1 — i
/ﬂdaz:ln\x—l—co&ﬂ—l—a / T
T + cosx x/6 T+ COST

When asked for the corresponding indefinite integral, most models correctly applied the substitution
u = x + cos z, yielding the valid antiderivative In |z + cos 2| + C. However, when tasked with eval-
uating the definite integral, many models such as GPT-4.1 (see Solution[2) abandoned this approach.
Instead, they applied a symmetry argument, incorrectly reasoning that the integrand was odd and the
integral must vanish. In reality, the integrand is not odd, and the correct value is approximately 1.40.
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More broadly, LLMs often rely on shortcut strategies for prediction rather than carrying out careful
justification (Yuan et al., [2024)). Our example illustrates this shortcut issue in mathematics. Specif-
ically, when faced with integrals under symmetric bounds, LL.Ms tend to rely on shortcut strategies
of symmetry-based reasoning rather than verifying conditions and executing systematic derivations.
The same behavior extends across subjects of undergraduate mathematics, including misapplied al-
gebraic identities, unjustified cancellations, and overgeneralization of familiar patterns. These errors
indicate that current models are not failing at isolated techniques, but rather at the more complex
task of reliably distinguishing between valid and invalid reasoning.

6.2 INVALID REASONING LEADING TO CORRECT RESULTS

For the same integral, some models, such as OpenAl-o3 and Mistral 7B Instruct, produced the
correct numerical value, but through invalid reasoning (see Solution [3]and Solution ). Instead of
finding the antiderivative using traditional methods, they incorrectly claimed that no closed-form
solution existed and switched to numerical approximation. OpenAl-o3 gave a value of 1.4511,
and Mistral 7B Instruct v0.3 gave 1.400731, both close to the true result (approximately 1.40) but
achieved through flawed reasoning that created an illusion of success.

Such cases highlight a critical limitation of accuracy-based evaluation. When models arrive at cor-
rect answers through flawed reasoning, accuracy scores alone cannot reveal the underlying weak-
nesses. Similar patterns arise across undergraduate mathematics: models provide correct final re-
sults for limits, series, or differential equations while relying on deceptive arguments, unjustified
approximations, or incomplete steps. Evaluations that stop at final-answer correctness, therefore,
overestimate model competence. This underscores the need for frameworks that assess not only
outcomes but also the validity and coherence of the reasoning process itself.

6.3 IMPLICATIONS

These two failure modes show a recurring pattern in LLM reasoning. Models often display local
competence, solving individual steps correctly, but struggle to integrate them into globally consis-
tent solutions. Their answers may look polished, but closer inspection shows reasoning that is weak,
misleading, and unreliable. At the same time, these problems point to clear directions for improve-
ment. Future models need better methods to maintain consistency, apply shortcuts carefully, and
integrate symbolic reasoning with LLMs. Equally important, evaluation should extend beyond mere
final-answer accuracy. Therefore, we need frameworks that assess the reasoning process, so that
systems become not only fluent but also trustworthy mathematical problem solvers.

7 CONCLUSION

This paper introduces CUMath, a benchmark and evaluation framework designed to assess both
correctness and reasoning quality in undergraduate-level computational mathematics. Our analysis
reveals that even the strongest LLMs achieve an accuracy rate of less than 25%. While these models
may occasionally provide correct answers, they frequently rely on flawed algebraic manipulations,
misuse shortcuts, or exhibit inconsistent reasoning. These findings indicate that accuracy alone is an
insufficient measure of mathematical competence. By combining symbolic verification, reasoning-
sensitive metrics, and LLM-as-a-grader feedback, CUMath highlights weaknesses that traditional
evaluation methods tend to overlook.

FUTURE WORK

Our analysis indicates several potential directions for improvement. First, models should incorporate
mechanisms that enforce global consistency, ensuring that locally correct steps lead to coherent
solutions. Second, they require more selective use of simplifying strategies, applied only when
assumptions are valid. Third, a closer integration of neural reasoning with symbolic tools could
enhance reliability in tasks related to algebra and integration. Finally, evaluation should extend
beyond final-answer accuracy. Metrics that capture correctness, coherence, and validity together
will provide a more accurate measurement of mathematical competence and better inform future
development.
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ETHICS STATEMENT

CUMath is constructed from real instructional materials (university quizzes, exams, problem sets)
and open-access textbooks (Appendix [A)). Textbook items are released under their respective Cre-
ative Commons licenses; closed instructional materials were included under explicit agreements
with instructors. The dataset contains no personally identifiable information, human-subject data,
or sensitive attributes; problems were reviewed by mathematics educators for clarity and curricular
alignment.

Potential risks include (i) inadvertent training set overlap with future models and (ii) misuse of
the benchmark or automatic grader for assessment without human oversight. To mitigate these
risks, we (a) release provenance metadata and licensing information, (b) distribute CUMath for
non-commercial research use, and (c) emphasize that the LLM-as-grader pipeline is for research
evaluation—not a substitute for expert grading. We comply with the ICLR Code of Ethics and the
legal terms of all sources, and we utilize Grammarly to enhance the paper’s grammar and clarity.

REPRODUCIBILITY STATEMENT

We provide all resources needed to reproduce our results. The CUMath dataset and all prompt
templates (Zero-Shot, CoT, ToT, SC, evaluation prompts) are included in Appendix [D.2] and [D.3]
and released together with the code. The complete LLM-as-a-grader implementation, including
both passes and verification loops, is part of the code release. Our evaluation pipeline specifies
model names, decoding parameters (ToT: temperature 0.7, 3 paths; SC: temperature 0.9, 5 samples),
maximum output length (2,048 tokens), and random seeds. Symbolic checks are performed with
SymPy, external verification with the Wolfram Alpha Short Answers API, and path similarity with
MathBERT. We release anonymized code, scripts, and configuration files to reproduce all reported
tables and figures. Dataset source licenses are documented in the appendix.
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A DATASET SOURCES

Table 3: Mapping of dataset domains to textbook sources and associated licenses.

Domain Textbook Source Author(s) License

Calculus APEX Calculus Gregory Hartman CCBY 4.0

Differential Equations Elementary  Differential ~ William F. Trench CCBY-SA 4.0
Equations (with BVP)

Discrete Mathematics Discrete Mathematics: An  Oscar Levin CCBY-SA 4.0
Open Introduction

Linear Algebra A First Course in Linear Al-  Rob Beezer CCBY-SA 4.0
gebra

Multivariable Calculus ~ APEX Calculus Gregory Hartman CCBY 4.0

Pre-calculus

Precalculus / College Alge-
bra / Trigonometry

Carl Stitz, Jeff Zeager

CCBY-NC-SA 3.0

Trigonometry

Precalculus / College Alge-

Carl Stitz, Jeff Zeager

CCBY-NC-SA 3.0

bra / Trigonometry

CUMath also includes problems drawn from university-level quizzes and examinations authored by
the course instructor. These materials are not publicly available; however, explicit licenses were
obtained from the authors to incorporate them into our benchmark. We therefore designate these
as licensed instructor-authored problems. Such items are tagged in the dataset metadata and are
distributed only for non-commercial purposes.
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Table 4: Source distribution by topic.

Topic (file) Total Textbook Real-world (from % Real World

courses’  problem

sets, exams, and

quizzes)
Calculus 300 21 279 93.0%
Differential Equations 300 55 245 81.7%
Discrete Math 300 154 146 48.7%
Linear Algebra 300 97 203 67.7%
Multivariable Calculus 300 52 248 82.7%
Pre-calculus 300 114 186 62.0%
Trigonometry 300 120 180 60.0%
OVERALL 2100 613 1487 70.8%

B SuUB-TOPIC DISTRIBUTION

Table 5: Distribution of problems across sub-topics in Calculus.

Sub-topic Count
Definite Integral 53
Limit 52
Derivative 44
Indefinite Integral 42
Function Analysis 30
Sequence/Series 30
Real-world Problems (Optimization) 21
Continuity 17
Improper Integral 11

Table 6: Distribution of problems across sub-topics in Differential Equations.

Sub-topic Count
Linear Second Order Equations 135
Laplace Transform 56
Linear First Order Equations 37
Exact Equations 22
Separable Equations 17
Transformation of Nonlinear Equations into Separable Equations 20
Existence and Uniqueness of Solutions of Nonlinear Equations 13

Table 7: Distribution of problems across sub-topics in Discrete Mathematics.

Sub-topic Count
Sequences 106
Recurrences 81
Generating Functions 34
Number Theory 32
Sums & Products 27
Combinatorics 18
Logic 2
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Table 8: Distribution of problems across sub-topics in Linear Algebra.

Sub-topic Count
Linear Transformations 45
Linear Independence / Dependence 44
Eigenvalues, Eigenvectors & Characteristic Polynomial 36
Matrix Operations 34
Systems of Linear Equations 31
Spanning Sets, Rank & Dimension 27
Determinants 23
Matrix Properties & Operations 14
Vector Spaces / Subspaces 14
Vector Operations & Representations 10
Linear Transformations & Representations 9
Orthogonality / Inner Product 8
Null Space & Nullity 5

Table 9: Distribution of problems across sub-topics in Multivariable Calculus.

Sub-topic Count
Vector Calculus 80
Multiple Integrals 74
Geometry of Space 49
Partial Derivatives 46
Limit 20
Function Analysis 19
Vector-valued Function 6
Real-world Problem (Optimization) 6

Table 10: Distribution of problems across sub-topics in Pre-calculus.

Sub-topic Count
Functions 162
Applications 46
Equations 34
Polynomials 33
Log/Exponential 13
Inequalities 12

Table 11: Distribution of problems across sub-topics in Trigonometry.

Sub-topic Count
Evaluating Trigonometric Functions 70
Inverse Trigonometric Functions 62
Trigonometric Equations 49
Exact Values 39
Trigonometric Identities 30
Solving Triangles 19
Angle Conversion 16
Unit Circle & Reference Angles 12
Trigonometric Inequalities 3
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C PROBLEM EXAMPLES

Example CUMath entry

llidll: "149"’
"topic": "Single Variable Calculus",
"subtopic": "limit",

"question": Evaluate lim =z
rz—0t

sinx
4

"answer": 1,
"steps":
e Let y==x Then Iny =sinz-Inz.
e lim,_,o+ Iny =lim,_,g+ sinx - Inx
* Rewrite as a quotient:

sin x

: Inx
hmw‘)0+ 1/sinz

. (sinz)?
lim, o+ — 57 =0

* Apply L’Hbépital’s Rule:
e So lim, ,p+y=¢€e"=1
"source": "Quizzes",
"type n . "FR"

D DETAILED EXPERIMENTAL SETUP

D.1 EVALUATED LLMs

Table 12: Detailed specifications of evaluated LLMs.

Model Type Size Release Date  Specialization
GPT-4.1 Closed-source Not disclosed 2025 General
GPT-3.5-turbo-0125  Closed-source ~175B (est.) 2024 General
OpenAl 03 Closed-source Not disclosed 2024 General
Claude Sonnet 3.7 Closed-source Not disclosed 2025 General
DeepSeek-R1- Open-source 32B (distilled) 2025 General
Distill-Qwen-32B
Gemma 2 9B IT Open-source 9B 2024 General
LLaMA 3 8B In- Open-source 8B 2024 General
struct
LLaMA 3 70B In- Open-source 70B 2024 General
struct
LLaMA 4 Scout 17B  Open-source 17B 2025 General
Instruct
Qwen2.5 7B Instruct  Open-source 7B 2025 General
Mistral 7B Instruct Open-source 7B 2024 General
v0.3
Qwen2.5-Math-7B Math- 7B 2024 Mathematical
Instruct specialized reasoning
Qwen2.5-Math-1.5B  Math- 1.5B 2024 Mathematical
Instruct specialized reasoning
Llemma-7B Math- 7B 2024 Mathematical
specialized reasoning
LLaMA-3.2-1B Math- 1B 2024 Mathematical
Instruct (ai-nexuz ft.)  specialized reasoning
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D.2 SOLUTION GENERATION PROMPTS

Zero-Shot Prompt

System Prompt: Conclude the final answer in the form:
\boxed{your final answer here}.
User: Solve the following math problem: {problem}

Chain-of-Thoughts Prompt

System Prompt: You are a highly skilled mathematics expert. Solve the problem step by
step. Conclude with your final answer in the form:

\boxed{your final answer here}.

User: Q: {example-question-1}

A: {example-solution-steps}

Q: {example-question-2}

A: {example-solution-steps }

Q: {problem}
A:

Tree-of-Thoughts Prompt

System: You are a highly skilled mathematics expert. Brainstorm multiple distinct solu-
tion paths for the given problem. At the end, clearly state the final answer in the form:
\boxed{your final answer here}.

User: {problem}

A (Path 1): {reasoning}

A (Path 2): {reasoning}

... \boxed{\{final-answer\}}

Self-Consistency Prompt

System: You are a highly skilled mathematics expert.  Solve the problem with
clear, step-by-step reasoning. At the end, clearly state the final answer in the form:
\boxed{your final answer here}.

User: {problem}

A (Sample 1): {reasoning}

A (Sample 2): {reasoning}

{boxed{\{final—answer\}}

D.3 EVALUATION PROMPTS (LLM-AS-A-GRADER)

Pass 1 — Step Feedback + Score (No CAS)

System: You are a meticulous and fair mathematics instructor.
Given a problem, its correct reference steps, and a proposed step-by-step solution, evaluate
each proposed step independently. Score each step on a 1-5 scale (1=very poor, 5=excellent)
based on: Correctness, Logic/Flow, Justification, and Clarity.
Important:

* Do not reference or claim any CAS results in this pass.

* If a step is prose (no explicit equality), still give feedback and a score.

* Judge each step as written; do not merge or rewrite steps.

17
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Problem: {problem}
Reference Solution Steps:
Ref Step 1: {ref_step_1}
Ref Step 2: {ref_step_2}

Proposed Solution Steps:
Step 1: {model_step_1}
Step 2: {model_step_2}

Respond EXACTLY in this format (one line per student step):
Step 1: [1-2 sentences of feedback] Score: [X]/5
Step 2: [1-2 sentences of feedback] Score: [Y]/5

Evaluation Prompt — Pass 2 (Step Feedback + Score)

System: You revise scores for math steps using CAS results.

If CAS shows an incorrect transformation, lower the score; if it confirms, consider raising.
If both CAS statuses are "unknown’, keep the score unchanged and note ’CAS unknown’.
Return STRICT JSON list:

[{ "idx": int, "revised": int (1..5), "note": str }].

D.4 DETAILED COMPUTATION OF STEPWISE REASONING SCORE

We follow the ROSCOE framework (Golovneva et al., [2023) to evaluate the quality of reasoning
chains produced by M. This section provides the exact computation of the six metrics we use:
Faithfulness, Informativeness (Step), Informativeness (Chain), Repetition (Step), Discourse Repre-
sentation, and Coherence (Step vs. Step). We implement faithfulness/informativeness via token/sen-
tence—step cosine alignment and use an NLI model to penalize contradictions for Discourse/Coher-
ence.

We represent each problem statement g; as a sequence of tokens: ¢; = {gi.1, ¢ 2, . -, i, |qi| }, where
gi,+ denotes the embedding of the ¢-th token in g;.

Faithfulness (e; — ¢;). Measures whether each generated step is grounded in the problem state-
ment:

(o]
1+ max;—;_|q, cos(e}, git)
5 .

1 o ;
Faithfulness(e;) = — Z r-align(e! — g;), r-align(e] — ¢;) =

Informativeness (Step) (e; <> ¢;). Captures how well information in the problem statement is
reflected in the generated reasoning:

lqi| Mg

. 1 . ;
;r-ahgn(qi,t —e;)+ ﬁi 2; r-align(e] — ¢;)
— =

Info-Step(e;) = 5 | 70
di

Informativeness (Chain) (¢; = ¢;). Measures agreement between the reasoning chain and the
problem statement as a whole:
1+ cos(ei, ;)

Info-Chain(e;) = 5

Repetition (Step) (§f &~ §f) To identify repeated or paraphrased reasoning steps, we measure
similarity between embeddings of different steps in the reasoning chain. Each step 5 is represented
as a single embedding, and repetition is computed via cosine similarity between step embeddings:

J sk
— maxX;j—g. 5, MaxXg=1. j—1 cos(§], §7)

17 2%
2

Repetition-Step(e;) =

18
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Discourse Representation (e¢; < ¢;). Assesses whether any generated step contradicts the problem
statement: ,
Discourse(e;) = 1 — max Peontr (875 Git)s
j=1..74, t=1..]q;|
where peontr 1S the contradiction probability predicted by a natural language inference (NLI) model.

Coherence (Step vs. Step). Checks for contradictions between generated steps:

Coherence(e;) =1 —  max pcontr(égv §f)
j=2..1;,k<j

19
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E DETAILED RESULTS

Table 13: Main Results on Calculus. Evaluation of LLMs across four prompting strategies and five
metrics: Accuracy (Acc), Semantic F1, SRS, VR, and LLM-based evaluation (LLM, normalized to
[0,1]). The highest value in each column is bold and underlined.

Model Zero-shot CoT ToT SC

Acc FI SRS VR LLM Acc FI SRS VR LLM Acc FI SRS VR LLM Acc F1 SRS VR LLM

_____________________ Closed-source Models _~ ___ __ _ _ _ _ _ _ _ _ _ _ _ _ _ __
GPT4.1 0.24 022 0.35 -0.93 0.53 0.1270.09 038 -0.61 0.56 0.24 0.05 0.35 -0.92 027 0.12 0.02 0.37 -0.77 0.25
GPT-3.5-turbo- 0.24 0.15 042 -0.51 0.52 0.08 0.24 043 -0.65 0.55 026 0.16 0.37 -0.95 0.57 0.07 0.08 0.39 -0.87 0.58
0125

OpenAl 03 0.25 0.24 0.39 -0.64 0.67 0.11 0.14 045 -0.33 0.69 0.21 0.07 0.36 -0.92 0.60 0.11 0.05 0.41 -0.53 0.58
Claude Sonnet 0.26 0.29 0.40 -0.53 073 0.11 0.19 0.41 -0.71 0.73 0.24 0.15 0.40 -0.83 0.59 0.11 0.16 0.41 -0.75 0.67
37

e _ _____ OpemsowceModels __ _ _ _______ __________
DeepSeek-R1-  0.29 0.17 0.38 -0.95 0.67 0.12 0.08 0.40 -0.72 0.67 0.32 0.06 0.38 -0.96 0.37 0.12 0.02 0.37 -0.92 0.37
Distill-Qwen-

32B

Gemma 2 9B IT 0.18 0.10 0.39 -0.65 0.53 0.09 0.12 0.42 -0.49 0.55 0.21 0.13 0.37 -0.94 0.22 0.03 0.04 0.39 -0.74 0.22
LLaMA 3 8B 0.21 0.08 0.41 -0.77 0.62 0.08 0.15 0.41 -0.68 0.48 0.21 0.08 0.39 -0.94 0.30 0.06 0.04 0.39 -091 0.38
Instruct

LLaMA 3 70B 0.26 0.40 0.39 -0.52 0.67 0.09 0.22 0.41 -0.66 0.67 0.29 0.12 0.37 -0.70 0.26 0.06 0.08 0.38 -0.90 0.27
Instruct

LLaMA 4 Scout 0.26 0.18 0.40 -0.77 0.67 0.13 0.18 0.39 -0.75 0.65 0.26 0.20 0.38 -0.98 0.44 0.13 0.05 0.38 -0.91 0.37
17B Instruct

Qwen2.5 7B In- 0.26 0.14 0.35 -0.89 0.55 0.12 0.12 0.39 -0.69 0.56 0.11 0.03 0.36 -0.81 0.30 0.11 0.03 0.37 -0.87 0.38
struct

Mistral 7B In- 0.09 0.29 0.38 -0.15 0.29 0.04 0.15 0.43 -0.62 0.40 0.21 0.06 0.38 -0.92 0.37 0.01 0.05 0.39 -0.89 0.40
struct v0.3

Math-specialized Models

"Qwen2.5-Math- 0.15 0.24 0.35 -0.93 0.47 0.05 0.13 038 -0.71 0.29 0.07 0.03 0.35 -0.86 0.32 0.06 0.02 0.34 -0.90 0.23"
7B Instruct

Llemma-7B  0.00 0.03 0.34 -0.53 0.23 0.01 0.02 0.39 -0.44 0.28 0.01 0.01 0.36 -0.83 0.09 0.01 0.01 0.33 -0.95 0.11
Qwen2.5-Math- 0.09 0.36 0.36 -0.92 0.39 0.06 0.10 0.38 -0.66 0.49 0.07 0.02 0.38 -0.40 0.17 0.03 0.01 0.38 -0.38 0.13
1.5B Instruct

LLaMA-3.2-1B 0.17 0.38 0.38 -0.67 0.48 0.03 0.11 042 -0.62 0.33 0.01 0.02 0.38 -0.30 0.16 0.01 0.01 0.38 -0.40 0.13
Instruct (ft)

Single Variable Calculus — (a) Models (b) Prompting strategies
F1

Models
—— LLaMA 4 Scout 178 Instruct  —— GPT-3.5-turbo-0125
Claude Sonnet 3.7 — Quen2.5 78 Instruct

Strategies
oT

— Zero-shot — ™1 — sC

—— LLaMA 3 708 Instruct LLaMA3 8B Instruct  —
— Openalo3 Gemma 2 98 T

(c) VR by strategy (d) Correlation heatmap

«
£
3
H
g
H

@
H
@
°
3
8
1 uosieag

Zero-shot CoT ToT sC

Figure 3: Multi-metric summary of Calculus results. (a) Average scores across models. (b)
Average scores across prompting methods. (c) Average VR across prompting methods. (d) Pearson
correlation heatmap with p—values.
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Table 14: Main Results on Differential Equations. Evaluation of LLMs across four prompting
strategies and five metrics: Accuracy (Acc), Semantic F1, SRS, VR, and LLM-based evaluation
(LLM, normalized to [0,1]). The highest value in each column is bold and underlined.

Model Zero-shot CoT ToT SC

Acc FI SRS VR LLM Acc FI SRS VR LLM Acc F1 SRS VR LLM Acc F1 SRS VR LLM

_____________________ Closed-source Models __ __ __ _ _ _ _ _ _ _ _ _ _ _ __ _._
GPT4.1 0.08 0.08 0.37 -0.55 0.53 0.09 0.09 037 -0.53 0.56 0.07 0.03 0.36 -0.71 027 0.10 0.02 0.36 -0.74 0.25
GPT-3.5-turbo-  0.05 0.22 0.42 -0.50 0.52 0.06 0.30 0.42 -0.45 0.55 0.04 0.10 0.39 -0.74 0.57 0.05 0.09 0.39 -0.83 0.58
0125

OpenAl 03 0.09 0.16 0.46 -0.20 0.67 0.10 0.13 0.46 -0.24 0.69 0.08 0.05 0.45 -0.27 0.60 0.09 0.06 0.41 -0.38 0.58

Claude Sonnet 0.07 0.18 0.40 -0.71 073 0.08 0.17 0.40 -0.64 0.73 0.07 0.12 0.39 -0.74 0.59 0.07 0.17 0.40 -0.68 0.67

o _ _____ OpemsourceModels _ __ _________________
DeepSeek-R1-  0.05 0.09 0.39 -0.65 0.63 0.06 0.09 0.38 -0.67 0.55 0.04 0.04 0.37 -0.86 0.31 0.05 0.02 0.37 -0.90 0.21
Distill-Qwen-

32B

Gemma 2 9B IT 0.04 0.13 0.41 -0.45 0.61 0.05 0.18 0.42 -0.44 0.63 0.03 0.07 0.38 -0.67 0.54 0.04 0.05 0.38 -0.73 0.40
LLaMA 3 8B 0.04 0.14 0.40 -0.62 0.62 0.05 0.20 0.40 -0.60 0.64 0.04 0.05 0.38 -0.85 0.52 0.05 0.04 0.38 -0.90 0.56
Instruct

LLaMA 3 70B 0.08 0.18 0.45 -0.37 0.41 0.09 0.30 0.42 -0.47 0.61 0.07 0.09 0.38 -0.81 0.57 0.08 0.09 0.38 -0.84 0.55
Instruct

LLaMA 4 Scout 0.05 0.17 0.39 -0.71 0.67 0.06 0.22 0.39 -0.63 0.65 0.04 0.09 0.37 -0.85 0.44 0.05 0.05 0.37 -0.90 0.37
17B Instruct

Qwen2.5 7B In- 0.04 0.12 0.38 -0.62 0.55 0.05 0.14 0.39 -0.57 0.56 0.03 0.04 0.36 -0.79 0.30 0.04 0.03 0.37 -0.82 0.38
struct

Mistral 7B In- 0.03 0.10 0.43 -0.47 0.29 0.04 0.20 0.42 -0.48 0.40 0.03 0.05 0.38 -0.82 0.37 0.04 0.04 0.39 -0.87 0.40
struct v0.3

Math-specialized Models

"Qwen2.5-Math- 0.02 0.10 0.38 -0.62 0.47 0.03 0.05 0.39 -0.49 029 0.02 0.03 0.34 -0.79 0.32 0.03 0.02 0.34 -0.83 023"
7B Instruct

Llemma-7B  0.01 0.03 040 -0.38 0.23 0.02 0.03 0.38 -0.41 0.28 0.01 0.01 0.35 -0.80 0.09 0.01 0.01 0.33 -0.94 0.11
Qwen2.5-Math- 0.02 0.08 0.39 -0.56 0.39 0.02 0.09 0.38 -0.58 0.49 0.01 0.04 0.37 -0.74 0.17 0.01 0.03 0.37 -0.79 0.13
1.5B Instruct

LLaMA-32-1B 0.02 0.05 0.41 -0.50 0.48 0.02 0.06 0.41 -0.51 0.33 0.01 0.03 0.39 -0.76 0.16 0.01 0.02 0.38 -0.83 0.13
Instruct (ft)

Differential Equations — (a) Models (b) Prompting strategies
F1 F1

Models
—— Openal 03 —— LLaMA 4 Scout 178 Instruct Mistral 78 Instruct v0.3
LLaMA 3708 Instruct  —— LLaMA 3 88 Instruct —— LLaMA-3.2-18 Instruct (ai-n

Strategies
—— Zero-shot CoT — ToT — SC

—— Claude Sonnet 3.7 Gemma 2 98 IT —— Qwen2.5-Math-1.58 Instruct
—— GPT:35turbo-0125  —— Qwen2.5 7B Instruct Uemma- 78

(c) VR by strategy (d) Correlation heatmap

0.0

100 | 058 060
ACC (p=<le-4) (p=<le-4) (p=<1e-4)

SRS J(pecies ) [EH= T8 5 0.00

Average VR
S
=
1 uosiead

-0.25

-0.50

o7 078 065 ! 1.00 -0.75
LLM {(p=<1e-4) (p=<1e-4)| 0 (p=<le-a)
-0.8
-1.00
Zero-shot CoT ToT sC « &g & ¢

Figure 4: Multi-metric summary of Differential Equations results. (a) Average scores across
models. (b) Average scores across prompting methods. (c) Average VR across prompting methods.
(d) Pearson correlation heatmap with p—values.
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Table 15: Main Results on Discrete Mathematics. Evaluation of LLMs across four prompting
strategies and five metrics: Accuracy (Acc), Semantic F1, SRS, VR, and LLM-based evaluation
(LLM, normalized to [0,1]). The highest value in each column is bold and underlined.

Model Zero-shot CoT ToT SC

Acc FI SRS VR LLM Acc FI SRS VR LLM Acc F1 SRS VR LLM Acc F1 SRS VR LLM

_____________________ Closed-source Models _—__—_ __ _ _ _ _ _ __ __ __ _ __._
GPT-4.1 0.17 0.08 0.40 -0.66 0.60 0.15 0.09 0.41 -0.63 0.59 0.16 0.02 0.37 -0.87 0.26 0.16 0.02 0.37 -0.85 0.26
GPT-3.5-turbo- 0.17 0.15 0.50 -0.49 0.51 0.16 0.18 0.50 -0.46 0.53 0.16 0.05 0.40 -0.83 0.53 0.13 0.05 0.41 -0.86 0.51
0125

OpenAl 03 0.11 0.13 0.52 -0.38 0.65 0.11 0.10 0.48 -0.47 0.73 0.11 0.03 0.41 -0.71 0.51 0.12 0.04 0.41 -0.71 0.57

Claude Sonnet 0.16 0.10 0.43 -0.73 072 0.24 0.10 0.43 -0.70 0.71 0.16 0.05 0.41 -0.78 0.57 0.15 0.07 0.43 -0.75 0.63

e OpemsowrceModels
DeepSeek-R1-  0.15 0.06 0.40 -0.87 0.55 0.16 0.06 0.39 -0.88 0.51 0.15 0.02 0.38 -0.96 0.27 0.16 0.01 0.38 -0.96 0.92
Distill-Qwen-

32B

Gemma 2 9B IT 0.15 0.10 0.46 -0.58 0.56 0.16 0.13 0.50 -0.48 0.55 0.11 0.04 0.41 -0.76 0.47 0.10 0.03 0.41 -0.77 0.39
LLaMA 3 8B 0.14 0.09 0.44 -0.71 0.61 0.16 0.11 0.43 -0.73 0.64 0.23 0.03 0.40 -0.87 0.43 0.11 0.03 0.40 -091 0.44
Instruct

LLaMA 3 70B 0.18 0.14 0.53 -0.41 0.50 0.18 0.14 0.46 -0.58 0.64 0.19 0.04 0.40 -0.84 0.46 0.16 0.04 0.40 -0.86 0.49
Instruct

LLaMA 4 Scout 0.21 0.10 0.42 -0.82 0.69 0.21 0.11 0.43 -0.79 0.65 0.19 0.04 0.40 -0.88 0.40 0.20 0.03 0.40 -0.91 0.33
17B Instruct

Qwen2.5 7B In- 0.17 0.09 0.40 -0.76 0.63 0.18 0.11 0.40 -0.74 0.63 0.17 0.03 0.37 -0.89 0.38 0.17 0.02 0.38 -0.91 0.39
struct

Mistral 7B In- 0.08 0.09 0.51 -0.42 0.37 0.05 0.14 0.43 -0.44 0.39 0.10 0.04 0.41 -0.86 0.39 0.05 0.03 0.40 -0.87 0.38
struct v0.3

Math-specialized Models

"Qwen2.5-Math- 0.07 0.08 0.39 -0.79 0.55 0.05 0.02 040 -0.61 026 0.06 0.02 0.35 -0.90 0.26 0.06 0.01 0.35 -0.93 0.48"
7B Instruct

Llemma-7B  0.00 0.01 043 -049 026 0.02 0.02 042 -045 0.25 0.01 0.00 0.38 -0.86 0.41 0.00 0.00 0.34 -0.96 0.41
Qwen2.5-Math- 0.01 0.04 045 -0.40 041 0.05 0.06 0.39 -0.77 0.50 0.07 0.02 0.38 -0.86 0.32 0.06 0.01 0.37 -0.91 0.49
1.5B Instruct

LLaMA-32-1B 0.02 0.06 0.44 -0.68 0.45 0.01 0.07 0.44 -0.67 0.48 0.05 0.03 0.40 -0.84 0.32 0.04 0.02 0.40 -0.88 0.30
Instruct (ft)

Discrete Mathematics — (a) Models (b) Prompting strategies
1 F1

Models
—— LLaMA 4 Scout 178 Instruct  —— LLaMA 3 8B Instruct Mistral 78 Instruct v0.3
Claude Sonnet 3.7 —— GPT:35turbo-0125  —— Qwen2.5-Math-1.58 Instruct

Strategies
—— Zero-shot CoT — ToT — SC

—— LLaMA 3 70B Instruct Gemma 2 98 IT —— LLaMA-3.2-18 Instruct (ai-n.
—— Qwen2.5 78 Instruct —— OpenAl 03 Uemma-78

(c) VR by strategy (d) Correlation heatmap
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Figure 5: Multi-metric summary of Discrete Mathematics results. (a) Average scores across
models. (b) Average scores across prompting methods. (c) Average VR across prompting methods.
(d) Pearson correlation heatmap with p—values.
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Table 16: Main Results on Multivariable Calculus. Evaluation of LLMs across four prompting
strategies and five metrics: Accuracy (Acc), Semantic F1, SRS, VR, and LLM-based evaluation
(LLM, normalized to [0,1]). The highest value in each column is bold and underlined.

Model Zero-shot CoT ToT SC

Acc F1 SRS VR LLM Acc FI SRS VR LLM Acc F1 SRS VR LLM Acc FI SRS VR LLM

_____________________ Closed-source Models _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___
GPT-4.1 0.07 0.06 0.53 0.10 0.53 0.07 0.06 0.57 0.10 0.56 0.07 0.01 0.76 0.02 0.27 0.08 0.01 0.73 0.02 0.25
GPT-3.5-turbo- 0.06 0.15 0.39 0.20 0.52 0.03 0.12 0.38 0.17 0.55 0.02 0.03 0.51 0.05 0.57 0.03 0.02 0.60 0.05 0.58
0125

OpenAl 03 0.08 0.24 0.23 0.10 0.67 0.07 0.23 0.30 0.10 0.69 0.08 0.01 0.46 0.03 0.60 0.08 0.02 0.50 0.03 0.58

Claude Sonnet 0.08 0.07 0.54 0.12 0.73 0.05 0.06 0.55 0.10 0.73 0.09 0.03 0.61 0.06 0.59 0.08 0.05 0.59 0.09 0.67

Open-source Models
DeepSeek-R1-  0.08 0.03 0.58 0.06 0.67 0.07 0.03 0.54 0.06 0.67 0.07 0.01 0.70 0.02 0.37 0.07 0.01 0.75 0.01 0.37
Distill-Qwen-
32B
Gemma 2 9B IT 0.04 0.07 0.34 0.10 0.53 0.03 0.06 0.28 0.09 0.55 0.04 0.02 0.51 0.04 0.22 0.01 0.01 0.57 0.03 0.22
LLaMA 3 8B 0.05 0.07 0.41 0.11 0.62 0.03 0.05 0.39 0.09 0.48 0.02 0.01 0.57 0.03 0.30 0.04 0.01 0.65 0.02 0.38
Instruct
LLaMA 3 70B 0.09 0.09 0.23 0.12 0.67 0.04 0.07 0.38 0.12 0.67 0.04 0.02 0.56 0.04 0.26 0.03 0.02 0.64 0.04 0.27
Instruct
LLaMA 4 Scout 0.13 0.06 0.49 0.11 0.67 0.11 0.06 0.49 0.11 0.65 0.10 0.02 0.57 0.04 0.44 0.13 0.01 0.64 0.03 0.37
17B Instruct
Qwen2.5 7B In- 0.10 0.07 0.51 0.11 0.55 0.08 0.04 0.55 0.07 0.56 0.09 0.01 0.61 0.02 0.30 0.07 0.01 0.68 0.02 0.38
struct
Mistral 7B In- 0.03 0.12 0.28 0.15 0.29 0.01 0.08 0.32 0.12 0.40 0.00 0.02 0.46 0.03 0.37 0.01 0.01 0.50 0.03 0.40
struct v0.3

Math-specialized Models

“‘Qwen2.5-Math- 0.01 0.03 0.47 0.06 0.47 0.01 0.03 0.41 0.05 029 0.02 0.01 0.57 0.02 0.32 0.01 0.01 0.60 0.01 023"
7B Instruct

Llemma-7B 0.01 0.00 0.15 0.01 0.23 0.01 0.00 0.15 0.01 0.28 0.00 0.00 0.35 0.00 0.09 0.00 0.00 0.45 0.00 0.11
Qwen2.5-Math- 0.04 0.02 0.42 0.04 0.39 0.03 0.02 0.39 0.04 0.49 0.05 0.01 0.55 0.02 0.17 0.04 0.01 0.59 0.01 0.13
1.5B Instruct

LLaMA-3.2-1B 0.01 0.04 0.29 0.06 0.48 0.0
Instruct (ft)

et

0.04 0.27 0.06 0.33 0.01 0.01 0.47 0.02 0.16 0.01 0.01 0.47 0.01 0.13

Multivariable Calculus — (a) Models (b) Prompting strategies
F1

Models
—— LLaMA 4 Scout 178 Instruct  —— LLaMA 3 708 Instruct Gemma 2 98 IT

Strategies
—— Quen2.5 78 Instruct — Quen2.5-Math-15B Instruct  —— Mistral 78 Instruct v0.3

—— OpenAl 03 LLaMA 3 88 Instruct — LLaMA 3218 Instruct (ai-n. Zero-shot CoT —— BT —— ¢
— Claude Sonnet 3.7 — GPT3.5-turbo-0125 Uemma-78

(c) VR by strategy (d) Correlation heatmap
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Figure 6: Multi-metric summary of Multivariable Calculus results. (a) Average scores across
models. (b) Average scores across prompting methods. (c) Average VR across prompting methods.
(d) Pearson correlation heatmap with p—values.
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Table 17: Main Results on Linear Algebra. Evaluation of LLLMs across four prompting strategies
and five metrics: Accuracy (Acc), Semantic F1, SRS, VR, and LLM-based evaluation (LLM, nor-
malized to [0,1]). The highest value in each column is bold and underlined.

Model Zero-shot CoT ToT SC

Acc FI SRS VR LLM Acc FI SRS VR LLM Acc F1 SRS VR LLM Acc F1 SRS VR LLM

_____________________ Closed-source Models _—___ __ _ _ _ _ _ __ __ __ ____
GPT-4.1 0.09 0.06 0.38 -0.43 0.53 0.12 0.06 0.38 -0.44 0.56 0.08 0.02 0.37 -0.64 0.27 0.10 0.01 0.37 -0.63 0.25
GPT-3.5-turbo- 0.10 0.20 0.43 -0.39 0.52 0.11 0.28 0.44 -0.38 0.55 0.11 0.07 0.39 -0.72 0.57 0.11 0.06 0.39 -0.76 0.58
0125

OpenAl 03 0.08 0.07 0.47 -0.06 0.67 0.08 0.05 0.45 -0.08 0.69 0.07 0.02 0.43 -0.24 0.60 0.08 0.03 0.41 -0.23 0.58

Claude Sonnet 0.09 0.11 041 -0.52 0.73 0.09 0.11 0.41 -0.52 0.73 0.08 0.06 0.40 -0.54 0.59 0.09 0.09 0.41 -0.50 0.67

e _ ___ __ OpemsowceModels _ _ _ ___ __ __ __________
DeepSeek-R1-  0.05 0.04 0.39 -0.57 0.67 0.11 0.04 0.39 -0.57 0.67 0.06 0.02 0.38 -0.77 0.37 0.10 0.01 0.37 -0.82 0.37
Distill-Qwen-

32B

Gemma 2 9B IT 0.10 0.10 0.42 -0.34 0.53 0.14 0.18 0.44 -0.30 0.55 0.08 0.04 0.40 -0.55 0.22 0.05 0.04 0.39 -0.62 0.22
LLaMA 3 8B 0.19 0.13 0.42 -0.46 0.62 0.20 0.19 0.41 -0.50 0.48 0.19 0.04 0.39 -0.68 0.30 0.21 0.03 0.38 -0.76 0.38
Instruct

LLaMA 3 70B 0.12 0.17 0.44 -0.37 0.67 0.15 0.26 0.44 -0.43 0.67 0.11 0.05 0.39 -0.75 0.26 0.10 0.05 0.39 -0.72 0.27
Instruct

LLaMA 4 Scout 0.21 0.10 0.40 -0.57 0.67 0.22 0.14 0.40 -0.53 0.65 0.21 0.04 0.38 -0.71 0.44 0.21 0.03 0.38 -0.74 0.37
17B Instruct

Qwen2.5 7B In- 0.09 0.10 0.39 -0.56 0.55 0.12 0.10 0.39 -0.56 0.56 0.09 0.03 0.37 -0.71 0.30 0.10 0.03 0.37 -0.75 0.38
struct

Mistral 7B In- 0.10 0.12 0.43 -0.38 0.29 0.15 0.22 0.45 -0.34 0.40 0.06 0.05 0.39 -0.73 0.37 0.08 0.04 0.39 -0.78 0.40
struct v0.3

Math-specialized Models

"Qwen2.5-Math- 0.02 0.07 0.38 -0.62 0.47 0.04 0.04 041 -046 029 0.03 0.02 0.34 -0.80 0.32 0.02 0.01 0.34 -0.84 0.23"
7B Instruct

Llemma-7B 0.01 0.03 0.39 -0.34 0.23 0.03 0.03 0.39 -0.35 0.28 0.01 0.01 0.36 -0.69 0.09 0.01 0.01 0.34 -0.85 0.11
Qwen2.5-Math- 0.01 0.02 0.46 -0.04 0.39 0.01 0.04 0.41 -0.36 0.49 0.02 0.02 0.37 -0.71 0.17 0.02 0.01 0.36 -0.76 0.13
1.5B Instruct

LLaMA-3.2-1B 0.01 0.10 0.42 -0.41 0.48 0.05 0.08 0.40 -0.49 0.33 0.05 0.04 0.39 -0.66 0.16 0.04 0.03 0.38 -0.75 0.13
Instruct (ft)

Linear Algebra — (a) Models (b) Prompting strategies
F1 F1
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—— LLaMA 4 Scout 178 Instruct  —— Qwen2.5 7B Instruct Openal 03
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—— GPT-3.5turbo-0125 —— Claude Sonnet 3.7 Qwen2.5-Math-1.58 Instruct

Strategies
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Figure 7: Multi-metric summary of Linear Algebra results. (a) Average scores across models. (b)
Average scores across prompting methods. (c) Average VR across prompting methods. (d) Pearson
correlation heatmap with p—values.
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Table 18: Main Results on Pre-calculus. Evaluation of LLMs across four prompting strategies and
five metrics: Accuracy (Acc), Semantic F1, SRS, VR, and LLM-based evaluation (LLM, normalized
to [0,1]). The highest value in each column is bold and underlined.

Model Zero-shot CoT ToT SC

Acc FI SRS VR LLM Acc FI SRS VR LLM Acc F1 SRS VR LLM Acc F1 SRS VR LLM

_____________________ Closed-source Models _—___ __ _ _ _ _ _ __ __ __ _ ___
GPT-4.1 0.38 0.13 0.41 -0.51 0.53 0.40 0.15 0.41 -0.53 0.56 0.36 0.03 0.37 -0.79 0.27 0.38 0.03 0.38 -0.70 0.25
GPT-3.5-turbo- 0.37 0.36 0.50 -0.52 0.52 0.37 0.46 0.55 -0.32 0.55 0.33 0.08 0.40 -0.82 0.57 0.34 0.08 0.41 -0.83 0.58
0125

OpenAl 03 0.32 0.29 0.55 -0.25 0.67 0.33 0.24 0.51 -0.36 0.69 0.30 0.05 0.42 -0.61 0.60 0.34 0.07 0.43 -0.55 0.58

Claude Sonnet 0.38 0.21 043 -0.73 0.73 0.41 0.23 0.44 -0.66 0.73 0.36 0.06 0.41 -0.83 0.59 0.38 0.12 0.42 -0.79 0.67

e _____ OpemsowceModels _ _ _ ___ _ _____________
DeepSeek-R1-  0.39 0.10 0.41 -0.71 0.63 0.44 0.10 0.40 -0.70 0.55 0.39 0.03 0.38 -0.90 0.31 0.36 0.02 0.38 -0.87 0.21
Distill-Qwen-

32B

Gemma 2 9B IT 0.34 0.19 0.48 -0.43 0.61 0.37 0.36 0.52 -0.42 0.63 0.23 0.07 0.40 -0.77 0.54 0.08 0.05 0.42 -0.69 0.40
LLaMA 3 8B 0.39 0.22 0.44 -0.64 0.62 0.40 0.27 0.45 -0.64 0.64 0.36 0.06 0.40 -0.86 0.52 0.36 0.05 0.40 -0.87 0.56
Instruct

LLaMA 3 70B 0.38 0.33 0.54 -0.32 0.41 0.41 0.40 0.51 -0.44 0.61 0.38 0.08 0.39 -0.83 0.57 0.39 0.08 0.40 -0.82 0.55
Instruct

LLaMA 4 Scout 0.42 0.20 0.43 -0.70 0.67 0.44 0.23 0.43 -0.69 0.65 0.43 0.08 0.40 -0.82 0.44 0.40 0.05 0.40 -0.80 0.37
17B Instruct

Qwen2.5 7B In- 0.39 0.15 0.42 -0.63 0.55 0.44 0.21 0.42 -0.63 0.56 0.40 0.04 0.37 -0.83 0.30 0.40 0.04 0.38 -0.84 0.38
struct

Mistral 7B In- 0.20 0.19 0.54 -0.16 0.29 0.30 0.33 0.50 -0.39 0.40 0.18 0.06 0.41 -0.81 0.37 0.24 0.07 0.40 -0.86 0.40
struct v0.3

Math-specialized Models
"Qwen2.5-Math- 0.25 0.13 0.40 -0.64 0.47 024 0.10 040 -0.64 029 0.25 0.04 0.38 -0.77 0.32 0.27 0.03 0.37 -0.83 023"
7B Instruct
Llemma-7B 0.05 0.02 041 -0.58 0.23 0.04 0.02 0.41 -0.56 0.28 0.03 0.01 0.38 -0.84 0.09 0.03 0.01 0.34 -0.95 0.11
Qwen2.5-Math- 0.10 0.07 0.46 -0.39 0.39 0.22 0.10 0.41 -0.60 0.49 0.22 0.04 0.39 -0.76 0.17 0.22 0.03 0.38 -0.81 0.13
1.5B Instruct
LLaMA-3.2-1B 0.12 0.20 0.45 -0.59 0.48 0.1
Instruct (ft)

—_

021 045 -0.62 0.33 0.14 0.06 0.41 -0.83 0.16 0.12 0.05 0.41 -0.85 0.13
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Figure 8: Multi-metric summary of Pre-calculus results. (a) Average scores across models. (b)
Average scores across prompting methods. (c) Average VR across prompting methods. (d) Pearson
correlation heatmap with p—values.
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Table 19: Main Results on Trigonometry. Evaluation of LLMs across four prompting strategies
and five metrics: Accuracy (Acc), Semantic F1, SRS, VR, and LLM-based evaluation (LLM, nor-
malized to [0,1]). The highest value in each column is bold and underlined.

Model Zero-shot CoT ToT SC

Acc FI SRS VR LLM Acc FI SRS VR LLM Acc F1 SRS VR LLM Acc F1 SRS VR LLM

_____________________ Closed-source Models _—___ __ _ _ _ _ _ __ __ __ _ ___
GPT-4.1 0.35 0.12 0.39 -0.53 0.72 0.35 0.13 0.40 -0.53 0.72 0.34 0.02 0.37 -0.76 0.46 0.34 0.02 0.37 -0.73 0.49
GPT-3.5-turbo- 0.31 0.44 0.49 -0.28 0.47 0.31 0.43 0.49 -0.31 045 0.30 0.09 0.40 -0.77 0.19 0.30 0.10 0.41 -0.77 0.21
0125

OpenAl 03 0.36 0.24 0.52 -0.02 0.76 0.35 0.20 0.48 -0.17 0.67 0.34 0.04 0.43 -0.48 0.62 0.34 0.06 0.43 -0.41 0.66

Claude Sonnet 0.33 0.18 0.44 -0.50 0.63 0.33 0.18 0.44 -0.49 0.63 0.31 0.05 0.40 -0.80 0.36 0.31 0.06 0.40 -0.79 0.38

e ______ OpemsowrceModels _ _ __ _ _ _ _____________
DeepSeek-R1-  0.26 0.14 0.44 -0.45 0.55 0.25 0.10 0.42 -0.61 0.45 0.24 0.03 0.40 -0.839 0.20 0.24 0.01 0.39 -0.92 0.17
Distill-Qwen-

32B

Gemma 2 9B IT 0.27 0.19 0.48 -0.24 0.66 0.28 0.26 0.47 -0.30 0.63 0.25 0.06 0.41 -0.65 0.39 0.24 0.04 041 -0.62 0.38
LLaMA 3 8B 0.26 0.21 0.43 -0.45 0.55 0.25 0.26 0.43 -0.49 0.53 0.24 0.05 0.40 -0.83 0.30 0.25 0.05 0.40 -0.83 0.30
Instruct

LLaMA 3 70B 0.29 0.50 0.54 -0.11 0.76 0.28 0.38 0.47 -0.33 0.61 0.27 0.09 0.38 -0.81 0.33 0.28 0.10 0.38 -0.80 0.34
Instruct

LLaMA 4 Scout 0.27 0.21 0.42 -0.59 0.67 0.27 0.24 0.42 -0.58 0.65 0.26 0.08 0.39 -0.79 0.44 0.26 0.05 0.39 -0.84 0.37
17B Instruct

Qwen2.5 7B In- 0.24 0.19 0.41 -0.57 0.48 0.24 0.18 0.42 -0.54 0.50 0.23 0.03 0.38 -0.80 0.24 0.23 0.04 0.38 -0.82 0.23
struct

Mistral 7B In- 0.28 0.19 0.57 0.21 0.75 0.27 0.30 0.47 -0.32 0.57 0.25 0.06 0.40 -0.86 0.26 0.25 0.06 0.40 -0.86 0.26
struct v0.3

Math-specialized Models

"Qwen2.5-Math- 0.18 0.18 0.41 -0.55 0.49 0.17 0.09 0.41 -0.52 0.43 0.16 0.05 0.36 -0.80 0.23 0.15 0.02 0.35 -0.86 0.18
7B Instruct

Llemma-7B 0.12 0.03 0.40 -0.41 0.39 0.11 0.02 0.40 -0.29 0.45 0.10 0.01 0.38 -0.81 0.16 0.10 0.01 0.35 -0.93 0.05
Qwen2.5-Math- 0.12 0.11 0.43 -0.38 0.48 0.10 0.00 0.40 0.23 0.74 0.10 0.00 0.40 0.23 0.75 0.10 0.00 0.40 0.15 0.70
1.5B Instruct

LLaMA-3.2-1B 0.14 0.20 045 -0.51 0.50 0.13 0.00 0.40 0.23 0.75 0.12 0.00 0.40 0.23 0.75 0.11 0.00 0.40 0.15 0.70
Instruct (ft)

Trigonometry — (a) Models (b) Prompting strategies
F1 F1
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—— Openal 03 —— LLaMA 4 Scout 178 Instruct Quen2.5 78 Instruct
Claude Sonnet 3.7 —— Mistral 78 Instruct v0.3 —— LLaMA-3.2-18 Instruct (ai-n
—— GPT-3.5-turbo-0125 Gemma 2 98 I — Uemma-78
—— LLaMA 3708 Instruct  —— LLaMA 3 88 Instruct Qwen2.5-Math-1.58 Instruct
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Figure 9: Multi-metric summary of Trigonometry. (a) Average scores across models. (b) Average
scores across prompting methods. (c) Average VR across prompting methods. (d) Pearson correla-
tion heatmap with p—values.
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F LLM SOLUTIONS

In the following solution transcripts, any text highlighted in red indicates a step or claim where the
model’s reasoning is incorrect.

Solution 1: GPT-4.1 Solution (Indefinite Integral)

We are given the integral:
/ 1—sinz
——dx
T+ cosx

U =2+ Ccosx

#i## Step 1: Use substitution Let:

Then: J
ﬁ =1-sinz = du=(1l-sinz)dz

This matches the numerator exactly, so we can rewrite the integral as:
1 —sin Jc
/ / du
T + cos x

1
/Eduzln|u\+0=ln\x+cosx\+0

#i## Step 2: Integrate

### Final Answer

1 —sinx
/ﬂdw:ln|x+cosx\+c
T+ cosx

Solution 2: GPT-4.1 Solution (Definite Integral)

We are given the definite integral:

[:/“/6 1-sinz
—x/6 T+ COST

### Step 1: Consider symmetry

The interval is symmetric about 0: from — ¢ to &. Let’s define the integrand:
1 —sinx
r) = ——.
/(@) T+ cosx

To evaluate this, let’s analyze its symmetry by examining f(—z):

flea) = 1 —sin(—x) _ 1+sinx

—x +cos(—x) —x+cosx

So,

1+ sinx
=) = —x +cosx
This doesn’t look like an even or odd function directly. But we add f(z) and f(—=x) to
explore further:

##H# Step 2: Add f(z) + f(—x)

1—sinx 1+sinx

flx)+ f(=x) =

Let’s write it as a single expression:

r+cosxr —x4cosx
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Let’s denote:

_ 1 —sinx 1+sinx

z+cosz’ —x+cosx’

Common denominator is:

(z + cosx)(—x + cosx) = cos® x — x2.

So we get:

A+ B— (1 —sinz)(—z + cosa;) + (12+ sinx)(z + cosac).
cos?x —x
Now expand numerator:
* (1 —sinz)(—x + cosz) = —x(1 —sinz) + cosz(l —sinz) = —z + xsinz +
cosx —cosxsinw
e (1+sinz)(z+cosz) =z(1+sinz)+cosz(l+sinz) =x + zsinz + cosz +
coszsinw

Add both:

Numerator = (—z + x sinz + cosx — coszsinz) + (z + zsinz + cosx + cos z sin x)
Simplify:
e —x4+ax=0
e rsinx + xsinx = 2xsinx
® COST + cosST = 2COS T
e —coszxsinx +cosxsinx =0
So total numerator is:

2zsinz + 2cosx = 2(xsinx + cosx).

Therefore,

2(xzsinz + cosx)

fl2)+ f(-2) = cos?2x — x2

##H# Step 3: Now integrate f(z) + f(—z) over —7/6 to 7 /6
From integral properties over symmetric intervals:

[ fwyar= [ i)+ s

So:

7/ x/ » .
I:/ Gf(x)dle/ 6f(ﬂﬁ)ﬂ‘(—gc)dg;:l/ 62(wsmsc+cosx)dx

—7/6 2 /6 2 )z cosPx—a?

Simplify:

I:/’T/6 xsinm—&—cosa:dx.

_nje cos?x —a?

### Step 4: Check whether the integrand is odd
Let:

_ xsinx +cosx
9(z) = cos? x — x?
Compute g(—x):

* Numerator: —x sinx + cosx
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2

» Denominator: cos? x — 2 (even function)

So,

(—a) —xsinx + cosx xrsinx + cosx (@)
gl—x) = - = — = —g\x
cos? x — x2 cos? x — x2

Thus, g(z) is an odd function.

### Step 5: Integral of an odd function over symmetric interval
Since g(x) is odd and the limits are symmetric:

J —a

So,

- // f@)da = // g(x) dz = 0

J—7/6 77r/(5(

### Final Answer:

Solution 3: OpenAl-o03 Solution (Definite Integral)

We are asked to evaluate the definite integral

™/6 1 — sin(z)
—=dzx
—r/6 T+ cos()
First, observe that this integrand does not have a standard elementary antiderivative due to
the complexity of the expression and the interaction between the trigonometric and algebraic

terms. Therefore, symbolic integration is not practical.
Next, we examine the symmetry of the integrand. Define

1 —sin(x)
f@) = x + cos(z)’
Evaluating f(—x) gives:
1 +sin(z)
(=) = —x + cos(z)’

which is not equal to f(x) or —f(z), so the function is neither even nor odd. Thus, no
symmetry can be used to simplify the computation.

Since an analytical solution is unavailable, we use a numerical method. Specifically, we
apply the Trapezoidal Rule with n = 6 subintervals over the interval [—m/6,7/6]. The

width of each subinterval is
T3 _ T
6 18

Using the Trapezoidal Rule:

b
h
| H@yde ~ 3 (Fao) + 2f(@) + 2f(2) + -+ 2f(n) + Flaa)].
After performing the calculation, we find the approximate value of the integral to be:
.71—/6 o
/ 1osin@) 5o o 1511,
—r/6 T+ cos()
Therefore, the final answer is approximately

[14511]
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Solution 4: Mistral 7B Instruct v0.3 Solution (Definite Integral)

To solve this integral, we can’t use a simple substitution or integration by parts, so we’ll
use numerical methods to approximate the value. We’ll use the trapezoidal rule, which is a
numerical integration method that provides a good approximation for definite integrals.
The trapezoidal rule formula is:

T=hx[f(a)+2*X(f(x;) fori=1ton) + f(b)]/n

where h = (b — a)/n, n is the number of subintervals, and f(x) is the function we’re
integrating.

Let’s choose n = 1000 for a good approximation.

First, let’s find h:

h=(n/6 —(—m/6))/1000 = 7/(3000 * 2) = 7/6000
Now, let’s find the subintervals’ endpoints:
x; =—7m/6+ixh fori=0to 1000
Next, we’ll calculate the function values for each subinterval:
flx;) = (1 —sin(z;))/(z; + cos(x;)) fori=0to 1000
Finally, we’ll sum up the function values and add the endpoints’ values:

T =hx[f(—7/6) + 2% X(f(x;) fori=1to 1000) + f(7w/6)]
After calculating the sum and multiplying by h, we get the approximate value of the integral:

T ~ 1.400731

This is the approximate value of the definite integral | :/T ?6 ;;Zg;ft
rule with n = 1000.

dx using the trapezoidal

G EXAMPLE OF EVALUATIONS

G.1 EVALUATION OF A CORRECT SOLUTION

This evaluation corresponds to the GPT-4.1 solution of the indefinite integral presented in Ap-
pendix [I]

Table 20: Automatic metric evaluation for GPT-4.1 solution (zero-shot) on an indefinite integral.
Model Prompt Accuracy F1 SRS VR
GPT-4.1 Zero-shot 1 0.8 0.661 0.396

Table 21: Breakdown of Stepwise Reasoning Score (SRS) for GPT-4.1 solution (zero-shot) on the
indefinite integral. Higher values indicate better logical structure, informativeness, and consistency.

Breakdown SRS Score
Faithfulness 0.742
Informativeness (Step) 0.698

Informativeness (Chain) 0.939
Coherence (Step vs. Step)  0.096
Discourse Representation ~ 0.726
Repetition (Step) 0.762
Average (SRS) 0.661
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Table 22: Automatic grader evaluation for GPT-4.1 solution (zero-shot) on the indefinite integral
solution.

Step Description Auto-Grader Evaluation Score (/5)
1 Restates the integral [ ;;Zg;’; dx Correct setup; clear starting point, but 4/5
does not yet advance the solution.
2 Substitution v = x + cosx, with  Substitution and differential are cor- 5/5
du = (1 — sinz) dx and rewrite to  rect; rewriting to u-form is accurate
J % and clearly explained.
3 Integrate and  back-substitute: ~ Antiderivative and back-substitution 5/5
du = Injul + C = are correct; final boxed answer is
In|z +cosz|+ C clearly presented.

Final Score 4.67/5

G.2 EVALUATION OF AN INCORRECT SOLUTION

This evaluation corresponds to the GPT-4.1 solution of the definite integral presented in Appendix[2}

Table 23: Automatic metric evaluation for GPT-4.1 Solution (Zero-shot) on an definite integral.
Model  Prompt  Accuracy F1 SRS VR
GPT-4.1 Zero-shot 0 0.44 0.509 0.264

Table 24: Breakdown of Stepwise Reasoning Score (SRS) for GPT-4.1 Solution (Zero-shot) on the
definite integral. Higher values indicate better logical structure, informativeness, and consistency.

Breakdown SRS Score
Faithfulness 0.715
Informativeness (Step) 0.694
Informativeness (Chain) 0.913
Repetition (Step) 0.065

Discourse Representation  0.622
Coherence (Step vs. Step)  0.045
Average 0.638
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Table 25: Automatic grader evaluation of the GPT-4.1 Solution (Zero-shot) on the definite integral.

Step Description Auto-Grader Evaluation Score (/5)
1 Restates [ = fl/r (/56 ;;zg;i dx Clear restatement; good foundation 5/5
for the solution.
2 Notes symmetry of limits; com- Symmetry identified; f(—z) com- 5/5
putes f(—z) for f(x) = ;_T_Z‘OI;; puted correctly.
3 Forms f(z)+ f(—x) and simplifies ~ Algebra and simplification are valid 5/5
to W and carefully done.
4 Uses ffa f(z)de =3 ffa( flz)+ Proper use of symmetry to rewrite the 5/5
f(=2)) da to get [ LSDLEOST gy integral.
5 Claims g(z) = £8BIHCOST jgo0dd  Incorrect:  numerator at —z is /5
—zxsinx + cosz, not the negative
of the original; denominator is even
= g is not odd.
6 Concludes I = 0 from “odd inte- Conclusion depends on the incorrect 1/5
grand over symmetric limits” oddness claim, so the result is wrong.
Final Score  3.67/5
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