
Aligning Large Language Models to Follow Instructions and Hallucinate
Less via Effective Data Filtering

Anonymous ACL submission

Abstract
Training LLMs on data containing unfamiliar001
knowledge during the instruction tuning stage002
can encourage hallucinations. To address this003
challenge, we introduce NOVA, a novel frame-004
work designed to identify high-quality data that005
aligns well with the LLM’s learned knowledge006
to reduce hallucinations. NOVA includes In-007
ternal Consistency Probing (ICP) and Seman-008
tic Equivalence Identification (SEI) to measure009
how familiar the LLM is with instruction data.010
Specifically, ICP evaluates the LLM’s under-011
standing of the given instruction by calculating012
the tailored consistency among multiple self-013
generated responses. SEI further assesses the014
familiarity of the LLM with the target response015
by comparing it to the generated responses, us-016
ing the proposed semantic clustering and well-017
designed voting strategy. Finally, to ensure the018
quality of selected samples, we introduce an019
expert-aligned reward model, considering char-020
acteristics beyond just familiarity. By consider-021
ing data quality and avoiding unfamiliar data,022
we can utilize the selected data to effectively023
align LLMs to follow instructions and halluci-024
nate less. Experiments show that NOVA signif-025
icantly reduces hallucinations while maintain-026
ing a competitive ability to follow instructions.027

1 Introduction028

Alignment is a critical procedure to ensure large029

language models (LLMs) follow user instructions030

(OpenAI, 2023a; Yang et al., 2024). Despite sig-031

nificant progress in LLM alignment and instruc-032

tion tuning (Ouyang et al., 2022; Anthropic, 2022),033

state-of-the-art aligned LLMs still generate state-034

ments that appear credible but are actually incor-035

rect, referred to as hallucinations (Ji et al., 2023;036

Huang et al., 2024). Such hallucinations can un-037

dermine the trustworthiness of LLMs in real-world038

applications (Si et al., 2023; Min et al., 2023; Rawte039

et al., 2023; Wei et al., 2024a).040

Previous studies (Kang et al., 2024; Gekhman041

et al., 2024; Lin et al., 2024b) indicate that tuning042
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Figure 1: Instruction following ability on MT-Bench
vs hallucination on LongFact. NOVA simultaneously
aligns LLMs to follow instructions and hallucinate less.

LLMs on instruction data that contains new or un- 043

familiar knowledge can encourage models to be 044

overconfident and promote hallucinations. In other 045

words, once the knowledge in the instruction data 046

has not been learned during the pre-training stage 047

of LLMs, the fine-tuned LLMs tend to produce 048

more errors when generating responses. Therefore, 049

there is a dilemma in instruction tuning: On the 050

one hand, the LLMs need to learn to follow user 051

instructions during this stage, which is crucial for 052

user interaction in real-world applications (Wang 053

et al., 2023b; Chen et al., 2024b); On the other 054

hand, using high-quality data (whether manually 055

labeled or generated by other advanced LLMs) for 056

instruction tuning can introduce unfamiliar knowl- 057

edge to LLMs, thereby encouraging hallucinations 058

(Kang et al., 2024; Lin et al., 2024b). Thus, a crit- 059

ical question arises: How can we align LLMs to 060

follow instructions and hallucinate less during 061

the instruction tuning stage? 062

Certain efforts (Lin et al., 2024b; Zhang et al., 063

2024b; Tian et al., 2024) apply reinforcement learn- 064

ing (RL) to teach LLMs to hallucinate less after 065
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the instruction tuning stage. For example, Zhang066

et al. (2024b) leverages the self-evaluation capabil-067

ity of an LLM and employs GPT-3.5-turbo (Ope-068

nAI, 2022) to create preference data, subsequently069

aligning the LLM with direct preference optimiza-070

tion (DPO) (Rafailov et al., 2023). However, Lin071

et al. (2024b) finds that such RL-based methods can072

weaken the model’s ability to follow instructions.073

These methods also necessitate additional prefer-074

ence data and API costs from the advanced LLMs,075

making them inefficient. Different from RL-based076

methods, an intuitive strategy to align LLMs to fol-077

low instructions and hallucinate less is to filter out078

the instruction data that contains unfamiliar knowl-079

edge for the instruction tuning. Unfortunately, pre-080

vious studies (Liu et al., 2024a; Cao et al., 2024)081

solely focus on selecting high-quality data to im-082

prove the instruction-following abilities of LLMs.083

Even worse, these selected high-quality data may084

present more unknown knowledge to the LLM and085

further encourage hallucinations, as these data may086

contain responses with expert-level knowledge and087

often delve into advanced levels of detail.088

Therefore, we introduce NOVA, which includes089

Internal Consistency Probing (ICP) and Seman-090

tic Equivalence Identification (SEI), a framework091

designed to identify high-quality instruction sam-092

ples that align well with LLM’s knowledge, thereby093

aligning the LLM to follow instructions and hal-094

lucinate less. NOVA initially uses ICP and SEI to095

measure how well the LLM understands the knowl-096

edge in the given instruction and target response.097

For ICP, we prompt the LLM to generate multiple098

responses to demonstrate what it has learned about099

a specific instruction during pre-training. Then we100

use the internal states produced by the LLM to as-101

sess how consistent the generated responses are. If102

the internal states of these responses exhibit greater103

consistency for the instruction, it indicates that the104

LLM has internalized the relevant knowledge dur-105

ing pre-training. For SEI, we first integrate a well-106

trained model to classify the generated responses107

that convey the same thing into a semantic cluster.108

Next, we employ the designed voting strategy to109

identify which semantic cluster the target response110

fits in. This helps us find out how many gener-111

ated responses are semantically equivalent to the112

target response, indicating how well the LLM un-113

derstands the target response. If the target response114

matches well with the largest cluster, it shows the115

LLM is familiar with its content. Based on ICP116

and SEI, we can measure how well the model un-117

derstands the knowledge in instruction data and 118

avoid training it on unfamiliar data to reduce hallu- 119

cinations. Lastly, to ensure the quality of selected 120

samples, we introduce an expert-aligned quality 121

reward model, considering characteristics beyond 122

just familiarity, e.g., the complexity of instructions 123

and the fluency of responses. By considering data 124

quality and avoiding unfamiliar data, we can use 125

the selected data to effectively align LLMs to fol- 126

low instructions and hallucinate less. 127

We conduct extensive experiments to evaluate 128

the effectiveness of NOVA from both instruction- 129

following and hallucination perspectives. Experi- 130

mental results demonstrate that NOVA significantly 131

reduces hallucinations while maintaining a compet- 132

itive ability to follow instructions. 133

2 Related Work 134

Hallucinations in LLMs. Hallucinations occur 135

when the generated content from LLMs seems be- 136

lievable but does not match factual or contextual 137

knowledge (Ji et al., 2023; Rawte et al., 2023; 138

Huang et al., 2024). Recent studies (Lin et al., 139

2024b; Kang et al., 2024; Gekhman et al., 2024) 140

attempt to analyze the causes of hallucinations in 141

LLMs and find that tuning LLMs on data contain- 142

ing unseen knowledge can encourage models to 143

be overconfident, leading to hallucinations. There- 144

fore, recent studies (Lin et al., 2024b; Zhang et al., 145

2024b; Tian et al., 2024) attempt to apply RL-based 146

methods to teach LLMs to hallucinate less after the 147

instruction tuning stage. However, these methods 148

are inefficient because they require additional cor- 149

pus and API costs for advanced LLMs. Even worse, 150

such RL-based methods can weaken the instruction- 151

following ability of LLMs (Lin et al., 2024b). In 152

this paper, instead of introducing the inefficient RL 153

stage, we attempt to directly filter out the unfamil- 154

iar data during the instruction tuning stage, aligning 155

LLMs to follow instructions and hallucinate less. 156

Data Filtering for Instruction Tuning. Accord- 157

ing to Zhou et al. (2023), data quality is more 158

important than data quantity in instruction tun- 159

ing. Therefore, many works attempt to select high- 160

quality instruction samples to improve the LLMs’ 161

instruction-following abilities. Chen et al. (2023); 162

Liu et al. (2024a) utilize the feedback from well- 163

aligned close-source LLMs to select samples. Cao 164

et al. (2024); Li et al. (2024a); Ge et al. (2024); Si 165

et al. (2024); Xia et al. (2024); Zhang et al. (2024a) 166

try to utilize the well-designed metrics (e.g., com- 167
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Figure 2: The process of NOVA. NOVA identifies and selects high-quality instruction data that aligns well with the
LLM’s learned knowledge to reduce hallucination. Then it uses selected instruction data for training LLMs.

plexity) based on open-source LLMs to select the168

samples. However, these high-quality data always169

contain expert-level responses and may contain170

much unfamiliar knowledge to the LLM. Unlike171

focusing on data quality, we attempt to identify the172

samples that align well with LLM’s knowledge,173

thereby allowing the LLM to hallucinate less.174

3 Methodology175

In this section, we will detail our proposed frame-176

work NOVA as shown in Figure 2. Previous stud-177

ies (Lin et al., 2024b; Kang et al., 2024; Gekhman178

et al., 2024) find that tuning LLMs on data contain-179

ing new or unfamiliar knowledge can encourage180

models to be overconfident and further lead to hal-181

lucinations. Inspired by this finding, NOVA aims182

to filter out the unfamiliar instruction data for the183

instruction tuning, thereby aligning the LLM to184

follow instructions and hallucinate less.185

3.1 Internal Consistency Probing186

To comprehensively measure the LLM’s familiar-187

ity with instruction data, the first challenge is to188

evaluate how well the LLM understands the knowl-189

edge within the instructions. Prompting LLMs to190

generate multiple responses to the same instruc-191

tion and measuring how consistent those responses192

are has been proven to be an effective way (Wang193

et al., 2023a; Chen et al., 2024a). This is because if194

LLMs understand the question and are confident in195

their answers, they will produce similar responses.196

A practical way to measure the consistency of free- 197

form responses is to utilize lexical metrics (e.g., 198

Rouge-L) (Lin et al., 2024c) or sentence-level con- 199

fidence scores (e.g., perplexity) (Ren et al., 2023). 200

However, these straightforward strategies neglect 201

highly concentrated semantic information within 202

the internal states of LLMs, and thus fail to capture 203

the fine-grained differences between responses. 204

Hence, we propose Internal Consistency Prob- 205

ing (ICP) to measure the semantic consistency in 206

the dense embedding space. For an instruction data 207

s “ pq, rq, q denotes the instruction, and r denotes 208

the target response. For instruction q, we first sam- 209

ple K responses rr1
1, ..., r

1
Ks from a base LLM and 210

apply few-shot demonstrations (Lin et al., 2024a) 211

to ensure the coherence of generated responses. For 212

K generated responses, we use the internal states 213

of the last token of each response in the last layer as 214

the final sentence embeddings E “ re1, e2, ..., eKs, 215

as it effectively captures the sentence semantics 216

(Azaria and Mitchell, 2023). We further utilize 217

differential entropy (DE) to assess the semantic 218

consistency in continuous embedding space, which 219

is the extension of discrete Shannon entropy: 220

DEpXq “ ´

ż

x
fpxq logpfpxqqdx. (1) 221

We process and treat sentence embeddings E as 222

a multivariate Gaussian Distribution E „ Npµ,Σq. 223

Then, the differential entropy can be expressed as: 224

DEpEq “
1

2
logpp2πeqddetpΣqq, (2) 225
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where detpΣq represents the determinant of the226

covariance matrix Σ, d is the dimension of the sen-227

tence embedding, and e is the natural constant. Σ228

denotes the covariance matrix that captures the rela-229

tionship between K different sentence embeddings,230

which takes the form:231

Σ “
1

K ´ 1

K
ÿ

i“1

pei ´ µqpei ´ µqT . (3)232

Finally, we measure semantic consistency using233
DEpEq, term as Finspqq for a given instruction q234
in data s. Also, DEpEq in Eq.(2) simplifies to:235

Finspqq “
1

2
logdetpΣq `

d

2
plog2π ` 1q “

1

2

d
ÿ

i“1

λi ` G,

(4)

236

where λi denotes the i-th eigenvalue of the covari-237

ance matrix Σ, which can be easily calculated by238

singular value decomposition. G is a constant.239

If the LLM is familiar with the given instruction,240

the sentence embeddings of generated responses241

will be highly correlated and the value of Finspqq242

will be close to G. On the contrary, when the LLM243

is indecisive, the model will generate multiple re-244

sponses with different meanings leading to a signif-245

icant value of Finspqq. In this way, we can exploit246

the dense semantic information to effectively mea-247

sure the LLM’s familiarity with the instruction.248

3.2 Semantic Equivalence Identification249

Another challenge is to estimate the knowledge in250

the target response and measure the LLM’s famil-251

iarity with it, since the target response can con-252

tain expert-level and unfamiliar knowledge for the253

LLM. Training LLMs on such data can encourage254

hallucinations. Therefore, we propose Semantic255

Equivalence Identification (SEI) to measure the256

LLM’s familiarity with the target response by calcu-257

lating how many generated responses are semanti-258

cally equivalent to the target response. If the target259

response and more generated responses convey the260

same meaning, it indicates that the LLM is more261

familiar with it, thereby training the LLM on this262

target response will reduce hallucinations.263

As the target response is manually labeled or264

derived from advanced LLMs (e.g., GPT-4) instead265

of generated by the LLM itself, the internal states266

of the LLM cannot effectively represent the target267

response. Thus, unlike utilizing internal states as268

the proposed ICP, we calculate LLM’s familiarity269

with target responses using the proposed seman-270

tic clustering strategy. In detail, we first cluster271

the generated responses that convey the same thing 272

into a semantic cluster. This is because these re- 273

sponses are often free-form, and multiple generated 274

responses can have the same meaning in differ- 275

ent ways. Therefore, we employ an off-the-shelf 276

natural language inference (NLI) model to cluster 277

these responses. NLI models are trained to infer 278

the logical entailment between an arbitrary pair of 279

sentences. Thus, NLI models are well-suited to 280

identify semantic equivalence, as two generated re- 281

sponses mean the same thing if you can entail (i.e. 282

logically imply) each from the other (Kuhn et al., 283

2023; Jung et al., 2024). In this way, we can use an 284

NLI model to consider two responses that can be 285

entailed from each other as semantically equivalent 286

responses. Specifically, we test each pair pr1
i, r

1
jq 287

of i-th and j-th generated responses as: 288

Fequivalentpr
1
i, r

1
jq “ I

!

LNLIpr
1
i ñ r1

jq “ Lentailment ^

LNLIpr
1
j ñ r1

iq “ Lentailment

)

,
(5) 289

where LNLI represents the predictions of the NLI 290

model, Lentailment means the label of entailment 291

relation. I is the indicator function. 292

In this way, we can identify the semantic equiva- 293

lence of each pair of generated responses and then 294

cluster these generated responses rr1
1, ..., r

1
Ks into 295

M different semantic clusters rc1, ..., cM s, where 296

m-th semantic cluster cm contains km generated 297

responses. Each semantic cluster c is a set of gen- 298

erated responses that convey the same thing. We 299

further apply the NLI model to determine which 300

semantic cluster the target response r fits in. Specif- 301

ically, we use the model to test the target response 302

r and each generated response r1
i P rr1

1, ..., r
1
Ks: 303

Fequivalentpr, r
1
iq “ I

!

LNLIpr ñ r1
iq “ Lentailment ^

LNLIpr
1
i ñ rq “ Lentailment

)

.
(6) 304

Using this method, we can determine how many 305

generated responses in a semantic cluster are se- 306

mantically equivalent to the target response r. For 307

semantic clusters rc1, ..., cM s, the counts of such 308

generated responses are rk1
1, k

1
2, ..., k

1
M s. We use 309

the votes in each semantic cluster to decide which 310

cluster the target response belongs to: 311

Indexpctargetq “ argmaxpr
k1
1

k1
,
k1
2

k2
, ...,

k1
M

kM
sq.

(7)

312

We calculate the ratio of the number of responses 313
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ktarget in the target cluster ctarget to the total num-314

ber of generated responses as Fresprq:315

Fresprq “
ktarget

řM
m“1 km

. (8)316

According to Eq.(8), when the LLM is familiar317

with the knowledge within the target response r,318

most of the generated responses will have the same319

meaning as target response r, thus the value of320

Fresprq will be close to 1. On the contrary, if the321

target response contains unseen knowledge, i.e.,322

none of the generated responses have the same323

meaning as it, the value of Fresprq will be close324

to 0. To this end, we can effectively measure the325

LLM’s familiarity with the target response.326

3.3 Ranking, Selecting, and Training327

To comprehensively estimate the knowledge and328

consider both the LLM’s familiarity with the in-329

struction and the target response, we calculate the330

ratio between Finspqq and Fresprq for an instruc-331

tion data pq, rq as the final score:332

Ffamiliaritypq, rq “
Frespqq

Finsprq
. (9)333

This score effectively measures how well the334

LLM understands the knowledge in instruction335

data. High Ffamiliarity values indicate that the336

knowledge in the data aligns well with the LLM,337

as they show that the generated responses are very338

consistent for a given instruction (i.e., low Finspqq339

values) and the generated responses are very se-340

mantically similar to the target response (i.e., high341

Fresprq values). Based on the principle of filter-342

ing unfamiliar instruction data, the data with high343

Ffamiliarity should be selected to train the LLM.344

However, our early experiments observed that se-345

lecting instruction data solely based on the LLM’s346

familiarity Ffamiliarity significantly reduces hallu-347

cinations but hinders the model’s ability to follow348

instructions. This is because considering only fa-349

miliarity ignores other important characteristics of350

instruction data, e.g., the complexity of the instruc-351

tion and the fluency of the response. Therefore,352

we further introduce an expert-aligned quality re-353

ward model to measure the data quality. We use an354

expert-labeled preference dataset (Liu et al., 2024b)355

which contains 3,751 instruction data to train a re-356

ward model (more details are shown in Appendix357

B). To take both familiarity Ffamiliaritypq, rq and358

quality Fqualitypq, rq into consideration, we define359

the mixed rank R
piq
final for i-th data as the average 360

of the two ranks corresponding to the two metrics: 361

R
piq
final “

1

2
pR

piq
familiarity ` R

piq
qualityq, (10) 362

where R
piq
familiarity and R

piq
quality refer to the ranks 363

of the i-th data point in the degree of familiarity 364

and quality. In this way, we can effectively consider 365

data quality and avoid unfamiliar data. 366

Finally, we rank all the instruction data with their 367

corresponding mixed rank Rfinal to select the top- 368

ranked data, e.g., selecting the top 5% data to apply 369

the supervised finetuning on the LLM. Based on 370

the proposed NOVA, we can use the suitable data to 371

effectively align LLMs to follow instructions and 372

hallucinate less during the instruction tuning stage. 373

4 Experiment 374

In this section, we conduct experiments and pro- 375

vide analyses to justify the effectiveness of NOVA. 376

4.1 Setup 377

Instruction Dataset. We conduct instruction tun- 378

ing with two different instruction datasets. Alpaca 379

(Taori et al., 2023) contains 52,002 samples that 380

are created by employing Text-Davinci-003 model 381

(Ouyang et al., 2022) and Self-instruct framework 382

(Wang et al., 2023c). Alpaca-GPT4 (Peng et al., 383

2023) further employs more powerful GPT-4 (Ope- 384

nAI, 2023b) to get high-quality instruction data. 385

Evaluation. To evaluate our method comprehen- 386

sively, we select widely adopted benchmarks for 387

the targeted abilities. (1) Factuality hallucination 388

benchmark: BioGEN (Min et al., 2023) and Long- 389

Fact (Wei et al., 2024b); (2) Faithfulness hallucina- 390

tion benchmark: FollowRAG-Faithfulness (Dong 391

et al., 2024), including 4 different QA datasets; 392

(3) Instruction-following benchmark: MT-Bench 393

(Zheng et al., 2023) and FollowRAG-Instruction. 394

Comprehensive descriptions of tasks, datasets, and 395

evaluation metrics are detailed in Appendix A. 396

Baselines. We compare several strong baselines, 397

including (1) Vanilla Instruction Tuning: Vanilla 398

- 100% fine-tunes the model on the whole instruc- 399

tion dataset; (2) Instruction Data Filtering Meth- 400

ods: IFD (Li et al., 2024a) proposes instruction- 401

following difficulty to select a subset of instruction 402

data. CaR (Ge et al., 2024) simultaneously con- 403

siders the data quality and diversity by introducing 404

two scoring methods. Nuggets (Li et al., 2024b) 405

focuses on selecting high-quality data by identify- 406

ing samples that notably boost the performance of 407
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Model BioGEN: LongFact: FollowRAG - Faithfulness;

FactScore Respond Facts Objects Concepts Avg. NaturalQA TriviaQA HotpotQA WebQSP Avg.

Alpaca
Vanilla - 100% 42.4 100.0 17.1 85.8 80.3 83.1 40.5 53.5 16.0 49.5 39.9
FLAME-DPOfact 47.2 100.0 15.6 88.3 81.2 84.8 43.5 57.0 17.5 52.0 42.5
SELF-EVAL 48.3 100.0 16.9 87.8 81.0 84.4 43.0 58.0 16.5 52.5 42.5

IFD - 5% 48.1 100.0 21.0 87.2 80.5 83.9 41.5 57.0 15.5 51.5 41.4
CaR - 5% 47.9 100.0 16.2 86.6 79.1 82.9 42.5 58.0 16.5 51.0 42.0
Nuggets - 5% 48.2 100.0 18.3 88.6 81.2 84.9 42.5 56.0 16.5 51.0 41.5
NOVA - 5% 50.3 100.0 17.9 92.4 82.7 87.6 46.5 60.0 19.0 53.5 44.8
∆ compared to Vanilla - 100% +7.9 - +0.8 +6.6 +2.4 +4.5 +6.0 +6.5 +3.0 +4.0 +4.9

IFD - 10% 43.2 100.0 20.5 86.3 79.2 82.8 40.5 60.0 17.5 53.5 42.9
CaR - 10% 45.2 100.0 24.3 87.1 81.3 84.2 44.0 59.5 18.0 48.5 42.5
Nuggets - 10% 45.8 100.0 27.1 86.7 80.4 83.6 43.0 58.5 17.0 52.5 42.8
NOVA - 10% 46.8 100.0 18.4 89.1 81.6 85.4 46.0 63.0 20.0 59.0 47.0
∆ compared to Vanilla - 100% +4.4 - +1.3 +3.3 +1.3 +2.3 +5.5 +9.5 +4.0 +9.5 +7.1

IFD - 15% 42.2 100.0 19.4 84.7 80.7 82.7 43.5 63.0 23.0 50.0 44.9
CaR - 15% 43.9 100.0 20.9 86.4 78.0 82.2 45.5 61.5 22.0 48.0 44.3
Nuggets - 15% 44.3 100.0 23.4 86.5 80.1 83.3 45.0 62.5 21.0 49.0 44.4
NOVA - 15% 45.9 100.0 18.7 88.1 82.1 85.1 48.5 68.0 25.0 52.0 48.4
∆ compared to Vanilla - 100% +3.5 - +1.6 +2.3 +1.8 +2.0 +8.0 +14.5 +9.0 +2.5 +8.5

Alpaca - GPT4
Vanilla - 100% 41.9 100.0 32.0 84.7 80.4 82.6 39.5 49.5 14.5 49.0 38.1
FLAME-DPOfact 46.3 100.0 27.6 87.3 84.1 85.7 42.0 55.5 16.5 52.0 41.5
SELF-EVAL 47.2 100.0 31.6 86.7 83.7 85.2 43.5 59.0 15.5 51.5 42.4

IFD - 5% 46.7 100.0 39.2 84.4 79.6 82.0 42.5 58.0 16.5 52.0 42.3
CaR - 5% 46.9 100.0 41.1 86.2 81.1 83.7 43.5 57.5 17.0 51.5 42.4
Nuggets - 5% 47.2 100.0 42.3 87.0 82.3 84.7 41.0 56.0 17.0 52.0 41.5
NOVA - 5% 50.5 100.0 33.8 90.1 85.2 87.7 45.0 62.0 20.5 53.5 45.3
∆ compared to Vanilla - 100% +8.6 - +1.8 +5.4 +4.8 +5.1 +5.5 +12.5 +6.0 +4.5 +7.2

IFD - 10% 43.6 100.0 39.2 86.5 77.8 82.2 40.5 56.0 16.0 49.5 40.5
CaR - 10% 45.9 100.0 38.0 87.1 78.3 82.7 43.0 55.0 15.5 48.0 40.4
Nuggets - 10% 46.8 100.0 35.7 88.2 80.1 84.2 41.5 54.5 16.5 50.0 40.6
NOVA - 10% 48.1 100.0 32.3 90.6 81.8 86.2 44.5 59.0 18.0 51.0 43.1
∆ compared to Vanilla - 100% +6.2 - +0.3 +5.9 +1.4 +3.6 +5.0 +9.5 +3.5 +2.0 +5.0

IFD - 15% 42.9 100.0 32.2 85.2 80.3 82.8 46.0 54.5 15.0 52.0 41.9
CaR - 15% 44.6 100.0 33.6 85.8 81.5 83.7 43.5 55.0 18.0 53.5 42.5
Nuggets - 15% 44.8 100.0 34.5 86.1 80.7 83.4 45.0 52.0 16.0 53.0 41.5
NOVA - 15% 46.9 100.0 32.1 88.0 82.5 85.3 49.5 56.5 18.5 55.0 44.9
∆ compared to Vanilla - 100% +5.0 - +0.1 +3.3 +2.1 +2.7 +10.0 +7.0 +4.0 +6.0 +6.8

Table 1: Results on three hallucination benchmarks. : indicates the factuality hallucination benchmark. ; indicates
the faithfulness hallucination benchmark. We conduct the experiments based on LLaMA-3-8B.

different tasks after being learned as one-shot in-408

stances; (3) RL-based Methods: FLAME-DPOfact409

(Lin et al., 2024b) introduces atomic fact decompo-410

sition and retrieval augmented claim verification to411

construct preference data and apply DPO. SELF-412

EVAL (Zhang et al., 2024b) leverages the self-413

evaluation capability of LLMs and employs GPT-414

3.5 to create preference data, aligning the LLM415

with DPO. We apply these RL-based methods after416

tuning LLMs on the whole instruction dataset.417

Implementation Details. Our main experiments418

are conducted on LLaMA-3-8B and LLaMA-3-419

70B (Grattafiori et al., 2024). More implementation420

details are shown in Appendix B, e.g., the training421

of quality reward model and hyperparameters.422

4.2 Main Results423

NOVA Significantly Reduces Hallucinations. As424

shown in Table 1, NOVA shows consistent and425

significant improvements on three hallucination426

benchmarks measuring factuality and faithfulness.427

Compared to indiscriminately using the whole in-428

struction dataset (i.e., Vanilla - 100%), using sam-429

ples selected by NOVA to train LLMs can improve 430

3.5-8.6% on BioGEN, 2.0-5.1% on LongFact, and 431

4.9-8.5% on FollowRAG-Faithfulness. This is be- 432

cause NOVA effectively filters out the unfamiliar 433

instruction data and avoids training LLMs on these 434

data thereby reducing the hallucinations. Com- 435

pared to instruction data filtering methods that fo- 436

cus on data quality, like IFD, our method consis- 437

tently improves the performance across different se- 438

lected sample ratios (5-15%) on three benchmarks. 439

Meanwhile, these data selected by quality-focused 440

methods may present unfamiliar knowledge to the 441

LLM and encourage hallucinations on LongFact. 442

On the contrary, NOVA aims to identify the sam- 443

ples that align well with LLM’s knowledge, helping 444

the LLM to hallucinate less. NOVA also achieves 445

better performance than RL-based methods with- 446

out introducing additional preference data. These 447

findings underline the effectiveness of our method 448

in aligning LLMs to hallucinate less. 449

NOVA Maintains a Good Balance between Fol- 450

lowing Instructions and Reducing Hallucina- 451

tions. As shown in Table 2, NOVA achieves a 452
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Model MT-Bench FollowRAG-Intruction

Alpaca
Vanilla - 100% 51.9 38.7
FLAME-DPOfact 46.7 39.2
SELF-EVAL 48.3 38.5

IFD - 5% 60.1 39.6
CaR - 5% 56.6 41.4
Nuggets - 5% 60.0 40.6
NOVA - 5% 60.5 39.1
∆ compared to Vanilla - 100% +8.6 +0.4

IFD - 10% 57.2 40.4
CaR - 10% 58.3 42.3
Nuggets - 10% 58.2 41.1
NOVA - 10% 56.6 38.8
∆ compared to Vanilla - 100% +4.7 +0.1

IFD - 15% 56.0 40.2
CaR - 15% 57.4 41.0
Nuggets - 15% 57.0 40.6
NOVA - 15% 57.2 40.1
∆ compared to Vanilla - 100% +5.3 +1.4

Alpaca - GPT4
Vanilla - 100% 64.3 36.9
FLAME-DPOfact 56.2 37.2
SELF-EVAL 53.1 36.5

IFD - 5% 65.0 37.0
CaR - 5% 65.4 38.0
Nuggets - 5% 66.2 38.5
NOVA- 5% 64.6 37.8
∆ compared to Vanilla - 100% +0.3 +0.9

IFD - 10% 65.0 37.8
CaR - 10% 65.8 38.0
Nuggets - 10% 67.5 38.0
NOVA - 10% 64.6 39.1
∆ compared to Vanilla - 100% +0.3 +2.1

IFD - 15% 62.3 37.9
CaR - 15% 61.1 38.1
Nuggets - 15% 66.5 38.0
NOVA - 15% 64.5 37.5
∆ compared to Vanilla - 100% +0.2 +0.5

Table 2: Results on two instruction-following bench-
marks implemented on LLaMA-3-8B.

better instruction-following ability compared to453

vanilla tuning methods, especially when the LLM454

is trained on Alpaca. It shows that NOVA can ef-455

fectively align LLMs to follow instructions. In456

some cases, our method surpasses data filtering457

methods that enhance instruction-following ability,458

demonstrating its effectiveness in identifying suit-459

able data for LLMs. Unlike RL-based methods that460

weaken the model’s instruction-following ability,461

our method shows superior instruction-following462

ability while greatly reducing hallucinations.463

NOVA Mitigates Overconfidence Phenomenon.464

We select 15 samples with the lowest scores for465

each model from LongFact-Objects and calculate466

its average perplexity on these samples. We find467

that NOVA generates a high perplexity score (i.e.,468

low sentence-level confidence score) on these bad469

cases as shown in Figure3, showing that NOVA mit-470

igates overconfidence in these false statements.471

4.3 Analysis472

Ablation Study. We conduct the ablation study473

in Table 3. We can find that the proposed ICP and474

SEI can both help LLMs to reduce hallucinations.475

Vanilla IFD CaR Nuggets SELF-EVAL FLAME-DPO NOVA
1.0

1.1

1.2

1.3

1.4

1.5

Pe
rp

le
xi

ty

1.22

1.32
1.29

1.34

1.28
1.26

1.42
Vanilla - 100%
Data Filtering Methods - 5%
RL-based Methods
Ours - 5%

Figure 3: Average perplexity score of 15 samples
with the lowest scores for each model from LongFact-
Objects. Models are trained on Alpaca-GPT4.

Model BioGEN MT-Bench

NOVA - 5% - 70B 60.9 74.3
-w/o. Data Filtering 53.7 73.2
NOVA - 5% - 8B 50.5 64.6
-w/o. Data Filtering 41.9 64.3
-w/o. ICP 47.6 64.1
-w/o. SEI 48.3 63.8
-w/o. Quality RM 55.6 48.6
-w/o. ICP & SEI 43.7 65.2

Table 3: Results of ablation and scalability study. We
report FactScore results on BioGEN. Models are trained
on Alpaca-GPT4. RM represents the reward model.

Also, considering only familiarity (i.e., -w/o. Qual- 476

ity RM) ignores other important characteristics of 477

instruction data and limits the instruction-following 478

ability of LLMs. Thus, even if considering famil- 479

iarity alone would greatly reduce hallucinations, 480

it is still necessary to introduce a quality reward 481

model to maintain a good balance between follow- 482

ing instructions and reducing hallucinations. 483

Scalability Study. We implement our method on 484

the LLaMA-3-70B in Table 3 to explore whether 485

NOVA can fit in larger LLMs. Results indicate that 486

NOVA scales effectively to larger-scale models. 487

Case Study. We conduct a case study in Table 4 to 488

visually show the advantages of NOVA. Compared 489

to using the whole training data, our method en- 490

sures the statements are correct and comprehensive, 491

and the generated text is fluent and natural. 492

Variant Methods Testing. As shown in Table 5, 493

we further explore the variant methods in measur- 494

ing the LLM’s familiarity. For ICP, we separately 495

replace it with sentence-level confidence (Perplex- 496

ity) and lexical metrics (Rouge-L). Specifically, we 497

use the average perplexity score of generated re- 498

sponses to represent sentence-level confidence and 499

use the average Rouge-L score between each pair 500

of two generated responses as lexical metrics. How- 501

ever, these straightforward strategies neglect highly 502
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Instruction: Who is the character Geralt of Rivia from The Witcher series?
Vanilla - 100%: Geralt of Rivia is a character and the main protagonist of
the fantasy novel series "The Witcher" written by Andrzej Sapkowski (✓).
He is a witcher, a rare human mutation born with powers (✗) to fight against
the monsters that threaten the world of the living (✗). Geralt is known for his
intelligence, skill in combat, and his use of magical artifacts, particularly his
silver sword (✓). Throughout the series, Geralt faces numerous challenges and
battles as he journeys across the Continent, accompanied by his friends and
lovers, in a quest to protect the world and the people he cares about (✓).

NOVA- 5%: Geralt of Rivia is a character from The Witcher series, a fantasy
franchise that includes a series of novels, short stories, and video games (✓).
He is a witcher, a member of a guild of professional monster hunters, and his
role is to protect the innocent from supernatural threats (✓). Geralt is a complex
and brooding character, with a strong sense of honor and duty, and a deep
understanding of the world around him (✓). He is often portrayed as a loner,
but he is also capable of forming close relationships with others, particularly
with those who share his beliefs and values (✓).

Table 4: Case study from LongFact-Objects. We high-
light the statements that share the same semantics using
the same color. Models are trained on Alpaca-GPT4.

Model BioGEN MT-Bench

NOVA - 5% - Alpaca-GPT4 50.5 64.6
-w/o ICP

-w. Confidence Score (Perplexity) 48.4 62.2
-w. Lexical Similarity (Rouge-L) 47.9 61.5
-w. Using Embedding Model 49.8 63.9

-w/o SEI
-w. K-means Clustering via Internal States 47.8 60.2
-w. K-means Clustering via Embedding Model 48.5 63.2
-w Voting without Semantic Clustering 47.3 60.8

Table 5: Evaluation results of NOVA that employ vari-
ous methods for measuring the LLM’s familiarity. We
report FactScore results on BioGEN.

concentrated semantic information within the inter-503

nal states, and thus fail to capture the fine-grained504

differences between responses and limit the final505

performance. We also explore the effectiveness506

of an advanced embedding model, we use TEXT-507

EMBEDDING-3-LARGE1 from OpenAI and set the508

dimension as 4096. We find that using the internal509

states achieves better performance, showing the ef-510

fectiveness of our method. This is because internal511

states may reflect more dense and fine-grained in-512

formation from LLM itself that may have been lost513

in the decoding phase of the responses. For SEI,514

we explore whether using k-means clustering based515

on internal states computed as ICP and sentence516

embedding from TEXT-EMBEDDING-3-LARGE can517

identify suitable semantic clusters. We can find that518

our method achieves better performance because519

the k-means algorithm is not based on semantic520

equivalence to get the clusters. Also, the internal521

states of LLMs cannot efficiently represent the tar-522

get response, as this response is manually labeled523

or generated by other advanced LLMs instead of524

generated by the LLM itself. We also find that sim-525

ply voting based on the textual contents instead of526

semantic clustering limits the final performance, as527

1https://platform.openai.com/docs/guides/embeddings

Ours Wins Tie Vanilla Wins

Figure 4: Human evaluation across four key dimensions.
The models are trained on Alpaca-GPT4.

these responses are often free-form and can have 528

the same meaning in different ways. 529

Discussion. We conduct the parameter study to test 530

the robustness of our method in Appendix C. We 531

also conduct a transferability study in Appendix D 532

and find NOVA can fit in other LLMs. We further 533

explore the design of our method in Appendix E 534

and find our design is effective. We conduct a 535

case study in Appendix G to qualitatively show the 536

difference between samples with different scores. 537

Human Evaluation. We conduct a human evalua- 538

tion on the 50 generated biographies from BioGEN 539

across four key dimensions: factuality, helpfulness, 540

relevance, and naturalness. For each comparison, 541

three options are given (Ours Wins, Tie, and Vanilla 542

Fine-tuning Wins) and the majority voting deter- 543

mines the final result. Figure 4 shows that our 544

method significantly reduces hallucinations and 545

effectively follows instructions with high-quality 546

responses. Details can be found in Appendix F. 547

5 Conclusion 548

In this paper, we introduce NOVA, a novel frame- 549

work designed to identify high-quality data that 550

aligns well with the LLM’s learned knowledge to 551

reduce hallucination. NOVA includes Internal Con- 552

sistency Probing and Semantic Equivalence Identi- 553

fication, which are designed to separately measure 554

the LLM’s familiarity with the given instruction 555

and target response, then prevent the model from 556

being trained on unfamiliar data, thereby reduc- 557

ing hallucinations. Lastly, we introduce an expert- 558

aligned reward model, considering characteristics 559

beyond just familiarity to enhance data quality. By 560

considering data quality and avoiding unfamiliar 561

data, we can use the selected data to effectively 562

align LLMs to follow instructions and hallucinate 563

less in the instruction tuning stage. Experiments 564

and analysis show the effectiveness of NOVA. 565
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Limitations566

Although empirical experiments have confirmed567

the effectiveness of the proposed NOVA, two major568

limitations remain. Firstly, our proposed method569

requires LLMs to generate multiple responses for570

the given instruction, which introduces additional571

execution time. However, it is worth noting that572

this additional execution time is used to perform573

offline data filtering, our proposed method does not574

introduce additional time overhead in the inference575

phase. Additionally, NOVA is primarily used for576

single-turn instruction data filtering, thus exploring577

its application in multi-turn scenarios presents an578

attractive direction for future research.579
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Appendix1072

A Evaluation1073

In this section, we will detail the benchmarks and1074

evaluation metrics.1075

BioGEN. (Factuality) This benchmark requires1076

generating short biographies for particular people1077

entities, with a total of 500 samples. The task of1078

generating people biographies is effective, because1079

generations consist of verifiable statements rather1080

than debatable or subjective ones, and the scope is1081

broad (i.e., covering diverse nationalities, profes-1082

sions, and levels of rarity). To evaluate each gener-1083

ated response, we follow the FactScore procedure1084

to extract the number of correct and incorrect facts.1085

Following Min et al. (2023), we first employ GPT-1086

3.5-Turbo-0125 to break a generation into a series1087

of atomic facts and utilize GPT-3.5-Turbo-0125 to1088

compute the percentage of atomic facts supported1089

by a reliable knowledge source. The percentage of1090

the correct statements (% FactScore), the number1091

of generated statements (# Facts), and the ratio of1092

generations that do not abstain from responding (%1093

Respond) are adopted as the evaluation metrics.1094

LongFact. (Factuality) LongFact requests de-1095

tailed descriptions for a queried entity and expects a1096

document-level response that is typically very long,1097

often exceeding a thousand tokens. Specifically,1098

LongFact consists of two subtasks: LongFact-1099

Concepts and LongFact-Objects, separated based1100

on whether the questions ask about concepts or1101

objects. Following Cheng et al. (2024), we use1102

120 samples of each task for evaluation. The eval-1103

uation process is similar to BioGEN. We employ1104

GPT-3.5-Turbo-0125 and report the FactScore of1105

LongFact-Concepts and LongFact-Objects, termed1106

as % Concepts and % Objects.1107

FollowRAG. (Faithfulness and Instruction Fol-1108

lowing) FollowRAG aims to assess the model’s1109

ability to follow user instructions in complex1110

multi-document contexts, covering 22 fine-grained1111

atomic instructions across 6 categories. The queries1112

in FollowRAG are sourced from 4 QA datasets1113

across NaturalQA (Kwiatkowski et al., 2019), Triv-1114

iaQA (Joshi et al., 2017), HotpotQA (Yang et al.,1115

2018), and WebQSP (tau Yih et al., 2016). It1116

collects and verifies definitions and examples of1117

atomic instructions using rules (e.g., code), exclud-1118

ing those irrelevant to retrieval-augmented gener-1119

ation (RAG) scenarios. FollowRAG identifies 221120

types of instruction constraints, encompassing lan- 1121

guage, length, structure, and keywords. Thus, it is 1122

suitable to use FollowRAG to evaluate the model’s 1123

ability to follow user instructions. Utilizing the ver- 1124

ifiable nature of designed atomic instructions, Fol- 1125

lowRAG automates the verification of the model’s 1126

adherence to each instruction through code val- 1127

idation. We calculate the average pass rate for 1128

each atomic instruction across all samples to deter- 1129

mine the instruction-following score and name this 1130

task as FollowRAG-Intruction. Also, FollowRAG 1131

provides retrieved passages as contextual informa- 1132

tion to evaluate the model’s faithfulness. We name 1133

this task as FollowRAG-Faithfulness. Under new 1134

instruction constraints, the model’s target output 1135

differs from the gold answers in the original QA 1136

dataset, rendering traditional metrics like EM in- 1137

effective. Following Dong et al. (2024), we use 1138

the original gold answers as a reference and uti- 1139

lize GPT-4o-2024-05-13 to evaluate whether the 1140

model’s outputs address the questions. The scoring 1141

criteria are as follows: Completely correct (1 point), 1142

Partially correct (0.5 points), Completely incorrect 1143

(0 points). The average score of all samples is taken 1144

as the final score for FollowRAG-Faithfulness. 1145

MT-Bench. (Instruction Following) MT-Bench 1146

is a benchmark consisting of 80 questions, designed 1147

to test instruction-following ability, covering com- 1148

mon use cases and challenging questions. It is also 1149

carefully constructed to differentiate chatbots based 1150

on their core capabilities, including writing, role- 1151

play, extraction, reasoning, math, coding, STEM 1152

knowledge, and social science. For evaluation, MT- 1153

Bench prompts GPT-4 to act as judges and assess 1154

the quality of the models’ responses. For each turn, 1155

GPT-4 will give a score on a scale of 10. Notably, 1156

since we only fine-tune on single-turn instruction 1157

data (e.g., Alpaca and Alpaca-GPT4), the evalua- 1158

tion is restricted to Turn 1 of MTBench, similar to 1159

previous studies (Li et al., 2024b). 1160

B Implementation Details 1161

Hyperparameters and Devices. We use Adam 1162

optimizer (Kingma and Ba, 2017) to train our 1163

model, with a 2 ˆ 10´5 learning rate and a batch 1164

size of 16, steers the training across three epochs. 1165

We set the maximum input length for the models 1166

to 1024. To get the generated initial responses for 1167

knowledge estimation, we set the temperature as 1168

0.7 and set hyperparameter K as 10 to generate 10 1169

responses for the given instruction q. We conduct 1170
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our experiments on NVIDIA A800 80G GPUs with1171

DeepSpeed+ZeRO3 and BF16.1172

Training of NLI Model. Natural language in-1173

ference (NLI) is a well-studied task in the NLP1174

community. We employ a well-trained NLI model1175

DeBERTa-large-mnli2 (He et al., 2021) (0.3B) as1176

our model to conduct the experiments and report1177

the results. DeBERTa-large-mnli is the DeBERTa1178

large model fine-tuned with multi-genre natural lan-1179

guage inference (MNLI) corpus (Williams et al.,1180

2018), which is a crowd-sourced collection of1181

433k sentence pairs annotated with textual entail-1182

ment information. DeBERTa-large-mnli shows ad-1183

vanced performance in various NLI benchmarks1184

e.g., 91.5% accuracy on MNLI test set.1185

Traning of Quality Reward Model. Our train-1186

ing data is derived from an expert-revised dataset1187

(Liu et al., 2024b), which consists of 3,751 instruc-1188

tion pairs from Alpaca refined by linguistic experts1189

to enhance fluency, accuracy, and semantic coher-1190

ence between instructions and responses. Mean-1191

while, Liu et al. (2024b) employs the edit distance1192

metric (i.e., Levenshtein distance) to assess the1193

quality of the original instruction pair and revised1194

instruction pair. Thus, we can treat this edit dis-1195

tance metric as the target reward value and use the1196

point-wise loss function to train the reward model.1197

Specifically, following Ge et al. (2024), we con-1198

catenate instruction pairs as text inputs and use1199

the given reward value in the dataset as the tar-1200

get outputs. We use the average pooling strategy1201

and introduce the additional feed-forward layer to1202

transform the hidden states of the model into a1203

scalar. Then we use Mean Squared Error as the1204

loss function to train the reward model. We se-1205

lect DeBERTa-large (He et al., 2021) (0.3B) as our1206

model. We use Adam optimizer to train our model,1207

with a 1.5 ˆ 10´5 learning rate and a batch size of1208

8. We train our model on a single NVIDIA A800.1209

Prompt Template. We use the prompt template1210

from Alpaca (Taori et al., 2023). We keep the same1211

template in training and inference.1212

C Parameter Study1213

We explore the effects of two important hyperpa-1214

rameters in our method: the number of generated1215

responses K and the temperature T during the re-1216

sponse generation. As shown in Figure 5, increas-1217

ing the number of generated responses improves1218

2https://huggingface.co/microsoft/deberta-large-mnli
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Figure 5: FactScore results on BioGEN with the differ-
ent number of generated responses K. We conduct the
experiments based on LLaMA-3-8B.

Model Dataset BioGEN

NOVA Alpaca 50.3
- T “ 0 Alpaca 43.2
- T “ 0.2 Alpaca 49.3
- T “ 0.7 (Ours) Alpaca 50.3
- T “ 1.0 Alpaca 50.1
- T “ 1.3 Alpaca 49.7
NOVA Alpaca-GPT4 50.5
- T “ 0 Alpaca-GPT4 43.6
- T “ 0.2 Alpaca-GPT4 48.9
- T “ 0.7 (Ours) Alpaca-GPT4 50.5
- T “ 1.0 Alpaca-GPT4 49.8
- T “ 1.3 Alpaca-GPT4 49.5

Table 6: FactScore results on BioGEN with different
temperature T during the response generation. We con-
duct the experiments on LLaMA-3-8B and use 5% se-
lected instruction data from different datasets.

the performance of our method, but when the num- 1219

ber of generated responses is greater than 10, the 1220

performance will be stable. Therefore, we empiri- 1221

cally recommend setting the number of generated 1222

responses K to 10, which makes our method ef- 1223

fective and efficient. For the temperature T , we 1224

find that the performance of the model improves 1225

as long as the temperature T is chosen wisely and 1226

not at an extreme value (e.g., 0, as this would result 1227

in multiple generated responses that are exactly 1228

the same). We recommend that the temperature 1229

take a moderate value, as this ensures both that 1230

there is diversity in the responses generated and 1231

that the generated responses do indeed match the 1232

model’s perceptions (rather than being too random). 1233

Overall, our method NOVA is robust to these hy- 1234

perparameters, making our method easy to follow. 1235
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Model BioGEN: LongFact: FollowRAG - Faithfulness;

FactScore Respond Facts Objects Concepts Avg. NaturalQA TriviaQA HotpotQA WebQSP Avg.

LLaMA-1
Vanilla - 100% 38.6 100.0 16.6 84.3 78.2 81.3 37.5 50.5 16.0 47.5 37.9
FLAME-DPOfact 41.2 100.0 14.8 86.7 81.2 84.0 41.5 55.0 21.5 52.5 42.6
SELF-EVAL 41.8 100.0 15.7 87.0 80.8 83.9 42.5 56.5 22.5 53.5 43.8

IFD - 5% 40.2 100.0 20.1 83.2 80.4 81.8 38.0 53.5 18.5 49.0 39.8
CaR - 5% 39.6 100.0 18.2 85.9 80.1 83.0 38.0 53.0 19.0 50.5 40.1
Nuggets - 5% 39.3 100.0 19.4 85.1 77.3 81.2 39.5 54.5 20.0 50.0 41.0
NOVA - 5% 43.6 100.0 21.5 88.1 82.5 85.3 44.5 58.5 24.0 55.5 45.6
∆ compared to Vanilla - 100% +5.0 - +4.9 +3.8 +4.3 +4.1 +7.0 +8.0 +8.0 +8.0 +7.7

IFD - 10% 40.7 100.0 19.2 85.2 80.3 82.8 40.0 54.5 20.0 51.0 41.4
CaR - 10% 40.3 100.0 21.1 83.4 79.2 81.3 41.0 52.0 18.0 49.5 40.1
Nuggets - 10% 41.0 100.0 18.8 84.2 78.6 81.4 39.5 53.0 17.5 51.0 40.3
NOVA - 10% 43.2 100.0 20.7 87.6 83.2 85.4 43.5 59.5 22.5 53.0 44.6
∆ compared to Vanilla - 100% +4.6 - +4.1 +3.3 +5.0 +4.2 +6.0 +9.0 +6.5 +5.5 +6.7

IFD - 15% 39.2 100.0 18.7 86.1 81.1 83.6 39.5 52.0 17.5 49.5 39.6
CaR - 15% 40.2 100.0 19.3 84.2 80.4 82.3 38.0 51.5 17.0 48.0 38.6
Nuggets - 15% 40.9 100.0 18.1 83.3 80.0 81.7 40.0 52.5 15.5 50.5 39.6
NOVA - 15% 44.1 100.0 19.4 89.6 83.7 86.7 42.5 56.5 23.5 54.5 44.3
∆ compared to Vanilla - 100% +5.5 - +2.8 +5.3 +5.5 +5.4 +5.0 +6.0 +7.5 +7.0 +6.4

Qwen-2
Vanilla - 100% 40.3 100.0 17.3 83.4 80.2 81.8 39.5 57.5 18.5 49.0 41.1
FLAME-DPOfact 47.1 100.0 16.9 87.8 82.7 85.3 44.5 58.0 20.5 53.0 44.0
SELF-EVAL 46.8 100.0 14.2 88.2 81.6 84.9 43.5 59.0 21.0 53.0 44.1

IFD - 5% 44.2 100.0 16.5 85.2 81.2 83.2 42.5 56.5 20.5 53.5 43.3
CaR - 5% 45.7 100.0 18.6 84.1 81.5 82.8 44.5 55.5 21.0 52.0 43.3
Nuggets - 5% 46.6 100.0 17.8 84.7 81.0 82.9 43.0 57.5 21.5 52.5 43.6
NOVA - 5% 49.1 100.0 18.3 90.2 83.2 86.7 46.0 59.6 23.5 55.5 46.1
∆ compared to Vanilla - 100% +8.8 - +1.0 +6.8 +3.0 +4.9 +6.5 +2.1 +5.0 +6.5 +5.0

IFD - 10% 44.5 100.0 17.8 84.2 80.5 82.4 41.5 59.5 19.5 51.0 42.9
CaR - 10% 45.2 100.0 20.3 84.5 79.8 82.2 42.5 60.0 18.5 53.0 43.5
Nuggets - 10% 46.1 100.0 23.5 85.2 79.7 82.5 42.0 60.0 20.0 51.5 43.4
NOVA - 10% 47.5 100.0 18.6 89.6 83.5 86.6 45.0 62.0 21.5 53.5 45.5
∆ compared to Vanilla - 100% +7.2 - +1.3 +6.2 +3.3 +4.7 +5.5 +4.5 +3.0 +4.5 +4.4

IFD - 15% 43.7 100.0 19.2 82.5 79.5 81.0 42.0 61.5 18.5 52.0 43.5
CaR - 15% 44.8 100.0 20.8 81.2 81.3 81.3 43.0 62.5 19.5 53.0 44.5
Nuggets - 15% 45.7 100.0 21.7 80.8 80.1 80.5 40.5 62.5 20.0 52.5 43.9
NOVA - 15% 47.2 100.0 19.3 88.8 82.9 85.9 44.5 64.5 22.0 54.0 46.3
∆ compared to Vanilla - 100% +6.9 - +2.0 +5.4 +2.7 +4.0 +5.0 +5.0 +3.5 +5.0 +5.2

Table 7: Results on three hallucination benchmarks. : indicates the factuality hallucination benchmark. ; indicates
the faithfulness hallucination benchmark. We conduct the experiments based on Alpaca dataset.

D Transferability Study1236

To verify the transferability of the NOVA method,1237

we conducted experiments on different foundation1238

models using the Alpaca instruction dataset shown1239

in Table 7 and Table 8. We select LLaMA (Touvron1240

et al., 2023) and Qwen-2 (Yang et al., 2024) at1241

the 7B size as the new base models. We aim to1242

gain deeper insights into the applicability of the1243

NOVA method across different models, providing1244

a reference for further research and applications.1245

We find that the NOVA method is also applicable1246

to other models, showing strong transferability and1247

robustness to other models and further research.1248

Compared to other baselines, NOVA significantly1249

reduces hallucinations and keeps a strong ability to1250

follow instructions.1251

E Design Exploration1252

The Design of NLI Model We further explore1253

the effects of the NLI model on the final perfor-1254

mance of NOVA. We first attempt to analyze the1255

effect of the size of the model on the final results. 1256

Specifically, we introduce DeBERTa-base-mnli3, 1257

DeBERTa-xlarge-mnli4 and DeBERTA-xxlarge- 1258

mnli5. As shown in Table 9, we can find that 1259

increasing the size of the NLI model can pro- 1260

vide some improvement in the final result, espe- 1261

cially when changing the DeBERTa-base-mnli to 1262

DeBERTa-large-mnli. However, continuing to in- 1263

crease the model parameters did not have a signif- 1264

icant impact on the final performance. Therefore, 1265

in order to balance the performance and the infer- 1266

ence time of NLI models, we select the DeBERTa- 1267

large-mnli to report the final results in our paper. 1268

Meanwhile, we further explore whether we use the 1269

advanced LLMs (e.g., GPT-4o and GPT-3.5-Turbo) 1270

to directly identify the semantic equivalence and 1271

get the correct semantic clusters. Specifically, we 1272

use the prompt shown in Figure 6 to test the gener- 1273

3https://huggingface.co/microsoft/deberta-base-mnli
4https://huggingface.co/microsoft/deberta-xlarge-mnli
5https://huggingface.co/microsoft/deberta-v2-xxlarge-

mnli
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Model MT-Bench FollowRAG-Intruction

LLaMA-1
Vanilla - 100% 47.8 37.7
FLAME-DPOfact 40.6 37.5
SELF-EVAL 42.2 38.1

IFD - 5% 48.3 37.8
CaR - 5% 50.1 38.2
Nuggets - 5% 48.6 38.0
NOVA - 5% 49.8 38.1
∆ compared to Vanilla - 100% +2.0 +0.4

IFD - 10% 47.9 38.6
CaR - 10% 49.5 38.1
Nuggets - 10% 48.4 38.7
NOVA - 10% 49.3 39.0
∆ compared to Vanilla - 100% +1.5 +1.3

IFD - 15% 48.5 38.2
CaR - 15% 50.3 37.6
Nuggets - 15% 49.5 38.6
NOVA - 15% 48.3 38.0
∆ compared to Vanilla - 100% +0.5 +0.4

Qwen-2
Vanilla - 100% 50.2 38.2
FLAME-DPOfact 47.8 38.7
SELF-EVAL 49.5 37.3

IFD - 5% 59.5 39.2
CaR - 5% 61.2 39.5
Nuggets - 5% 60.3 40.2
NOVA - 5% 60.8 39.7
∆ compared to Vanilla - 100% +10.6 +1.5

IFD - 10% 59.8 40.1
CaR - 10% 60.1 40.5
Nuggets - 10% 58.8 41.1
NOVA - 10% 58.4 40.1
∆ compared to Vanilla - 100% +8.2 +1.9

IFD - 15% 59.3 40.5
CaR - 15% 57.5 39.8
Nuggets - 15% 58.5 40.3
NOVA - 15% 59.2 40.0
∆ compared to Vanilla - 100% +9.0 +1.8

Table 8: Results on two instruction-following bench-
marks based on Alpaca dataset.

ated responses and the target response by querying1274

the advanced LLMs to identify semantic equiva-1275

lence. We use the same method as SEI, utilizing the1276

outputs of advanced LLMs to derive semantic clus-1277

ters and calculate the score of Fresprq. As shown1278

in Table 9, the direct application of results from ad-1279

vanced LLMs proves effective in identifying seman-1280

tic equivalence. Nevertheless, using NLI models1281

delivers competitive or superior final performance1282

while avoiding API-related costs. Consequently,1283

employing NLI models to identify semantic equiv-1284

alence is both efficient and effective, substantiating1285

the efficacy of our designed SEI approach.1286

The Design of Quality Reward Model We also1287

explore the effectiveness of the quality reward1288

model. We introduce UltraFeedback (Cui et al.,1289

2024) and sample 100 instructions and their cor-1290

responding responses as the test set (we find that1291

most of the selected data are in English, but some of1292

the selected instruction types are translation tasks,1293

so a few data contain Chinese responses). Specifi-1294

Model Size BioGEN

Alpaca
DeBERTa-base-mnli 0.1B 49.7
DeBERTa-large-mnli 0.3B 50.3
DeBERTa-xlarge-mnli 0.7B 50.1
DeBERTa-xxlarge-mnli 1.3B 50.5
GPT-3.5-Turbo-0125 unknown 49.8
GPT-4o-2024-05-13 unknown 50.2

Alpaca- GPT4
DeBERTa-base-mnli 0.1B 49.4
DeBERTa-large-mnli 0.3B 50.5
DeBERTa-xlarge-mnli 0.7B 51.2
DeBERTa-xxlarge-mnli 1.3B 50.3
GPT-3.5-Turbo-0125 unknown 49.2
GPT-4o-2024-05-13 unknown 50.0

Table 9: FactScore results on BioGEN with different
models. We conduct experiments on LLaMA-3-8B and
use selected 5% data from different datasets.

Model Accuracy

Our Used Reward Model 92.0
GPT-3.5-Turbo-0125 85.0
GPT-4o-2024-05-13 90.0

Table 10: Accuracy of our used reward model and other
advanced LLMs on the constructed test set.

cally, for each instruction, we randomly select 2 re- 1295

sponses and determine the ranking between the re- 1296

sponses based on their labeled scores of instruction- 1297

following, honesty, truthfulness, and helpfulness. 1298

Only if all four scores are higher will the response 1299

be considered a high-quality response. Meanwhile, 1300

we involve two Ph.D. students to conduct the hu- 1301

man evaluation to ensure the correctness of the 1302

response ranking of each sample. Afterwards, we 1303

take the instructions and the responses as inputs 1304

to each model, and let the model determine the 1305

ranking between the responses and calculate the 1306

accuracy of the model’s prediction of the ranking. 1307

We compare our used Quality Reward Model with 1308

GPT-3.5-Turbo-0125 and GPT-4o-2024-05-13. We 1309

use the same prompt for each model as Ge et al. 1310

(2024). As shown in Table 10, our reward model 1311

achieves better performance, showing the effec- 1312

tiveness of our method. Despite GPT-4o’s strong 1313

alignment with human preferences in most gen- 1314

eral tasks, our reward model trained on the expert- 1315

revised preference dataset can perform better, high- 1316

lighting the subtle gap between expert preferences 1317

and advanced GPT-4o preferences. 1318

The Design of Obtaining Sentence Embedding. 1319

Alpaca-GPT4 For K generated responses, we use 1320

the internal states of the last token of each response 1321

in the last layer as the final sentence embeddings 1322

E “ re1, e2, ..., eKs, as it effectively captures the 1323
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The Prompt for Identifying the Semantic Equivalence

Please compare the following two sentences and determine whether they are semantically the same.
If they are semantically identical, respond with "Identical"; if not, respond with "Different." Consider
the meaning, context, and any implicit nuances of the sentences.

Sentence 1: {Sentence 1}
Sentence 2: {Sentence 1}

Provide your judgment below:

Figure 6: The prompt for identifying the semantic equivalence.

Model BioGEN MT-Bench

NOVA - 5% 50.5 64.6
-w. Average Pooling 49.5 64.2
-w. The First Layer 48.9 63.7
-w. The Middle Layer 49.8 64.4
-w. The Last Layer (Ours) 50.5 64.6

Table 11: Evaluation results of NOVA that employ var-
ious methods for obtaining sentence embedding. We
conduct the experiments based on LLaMA-3-8B and the
Alpaca-GPT4 dataset. We report the FactScore results
on BioGEN.

sentence semantics (Azaria and Mitchell, 2023).1324

We further explore the different ways to obtain sen-1325

tence embedding. Specifically, we first average all1326

the internal states of tokens in the sentence to obtain1327

the sentence embedding (named Average Pooling),1328

which is an intuitive method to get the sentence1329

embedding for decoder-only models. As shown in1330

Table 11, we can find the design of NOVA achieves1331

better performance in both reducing hallucinations1332

and following instructions, showing the effective-1333

ness of our designed SEI. We further explore the1334

internal states from which layer in the LLMs can be1335

used to effectively measure the consistency. Except1336

for the internal states from the last layer, we select1337

both internal states from the first layer and internal1338

states from the middle layer (layer 16 for LLaMA-1339

3-8B), and use the internal states of the last token1340

to represent the sentence embeddings. We can find1341

that using sentence embedding in the shallow layer1342

yields inferior performance compared to using sen-1343

tence embedding in the deep layers, as the shallow1344

layer may not effectively model the rich semantic1345

information. Overall, extensive experiments show1346

that our design of NOVA is sound and effective.1347

The Design of Using Few-shot Demonstration.1348

As detailed in Sec. 3.1, we sample K responses1349

rr1
1, ..., r

1
Ks from a base LLM with few-shot demon-1350

Model BioGEN MT-Bench

NOVA - LLaMA-3-8B - 5% 50.3 60.5
-w/o. Few-shot Demonstrations 50.1 59.8
NOVA - LLaMA-1-7B - 5% 43.6 49.8
-w/o. Few-shot Demonstrations 41.9 49.2

Table 12: The effects of used few-shot demonstrations.
We conduct the experiments based on two base models
and the Alpaca dataset. We report the FactScore results
on BioGEN.

strations (Lin et al., 2024a) to ensure the coherence 1351

of generated responses. We use the same demon- 1352

strations as Lin et al. (2024a). We further con- 1353

duct experiments to explore the effects of these 1354

used demonstrations. We find that using few-shot 1355

demonstrations in the process of generating re- 1356

sponses for a given instruction allows the base 1357

LLMs to better express what they have learned in 1358

the pre-training stage. In turn, this will enable ICP 1359

and SEI to better estimate the knowledge contained 1360

in the instruction data and thus better identify the 1361

high-quality instruction data that aligns well with 1362

the LLM’s learned knowledge to reduce halluci- 1363

nation and improve instruction-following ability. 1364

At the same time, we find that this strategy im- 1365

proves more for base models with poor capabilities 1366

(e.g., LLaMA-1-7B), which is due to the fact that 1367

a poor base LLM may hold relevant knowledge in 1368

response to a query, yet occasionally falters in con- 1369

veying accurate information (Zhang et al., 2024b). 1370

F Human Evaluation 1371

During the human evaluation, the participants fol- 1372

low the principles in Figure 7 to make the decision. 1373

For each comparison, three options are given (Ours 1374

Wins, Tie, and Vanilla Fine-tuning Wins) and the 1375

majority voting determines the final result. We in- 1376

vite three Ph.D. students to compare the responses 1377
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The Principles of Human Evaluation

You are asked to evaluate the biographies generated by different models. You should choose the
preferred biography according to the following perspectives independently:

1. Factuality: Whether the biography provides relatively more factual statements over the non-factual
statements?
2. Helpfulness: Whether the biography provides useful information?
3. Relevance: Whether the statements contained in the biography relevant to the provided people
entity?
4. Naturalness: Whether the biography sound natural and fluent?

Finally, please make a decision among 3 opinions, including Win, Tie, and Loss.

Figure 7: The principles of human evaluation.

generated by the models. Before participants begin1378

to make judgments, we describe the principles of1379

our design in detail and ensure that each participant1380

correctly understands the principles. If the final1381

result can not be determined by the majority voting,1382

we will make the discussion among the participants1383

and vote on the result again.1384

G Case Study for Selected Samples1385

To evaluate our proposed NOVA qualitatively, we1386

also select some instruction samples from the Al-1387

paca dataset for case studies as shown in Figure 8.1388

Firstly, we can find that simply using Rfamiliarity1389

in Eq. (10) can effectively identify the simple and1390

straightforward instruction samples that align well1391

with LLM’s knowledge. On the contrary, the sam-1392

ple ranked last according to Rfamiliarity contains1393

the open-ended instruction and the very subjective1394

target response. Meanwhile, further using Rfinal in1395

Eq. (10) that considers characteristics beyond just1396

familiarity Rfamiliarity by introducing the quality1397

reward model further enhances data quality, e.g.,1398

the complexity of instructions. We can also observe1399

that the sample ranked last according to Rfinal1400

also contains the open-ended instruction and the1401

detailed target response, which may introduce fa-1402

miliar knowledge to LLMs and further promote1403

hallucinations.1404
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Case Study for Selected Samples

� Sample ranked first according to Rfamiliarity in Eq. (10):
Instruction: Find a word that is opposite in meaning to the given word: assured.
Target Response: Doubtful.

⌢ Sample ranked last according to Rfamiliarity in Eq. (10):
Instruction: Could you pick a set of five songs which will fit our theme: a summer night’s party?
Target Response:
1. Billie Eilish – “Bad Guy”
2. Ed Sheeran – “Shape of You”
3. Maroon 5 – “Summer Nights”
4. DNCE – “Cake by the Ocean”
5. Drake – “In My Feelings”.

� Sample ranked first according to Rfinal in Eq. (10):
Instruction: Given a dictionary, create a JSON representation. dict = {"name": "John", "age": 18,
"is_adult": True}
Target Response:
{
"name": "John",
"age": 18,
"is_adult": true
}

⌢ Sample ranked last according to Rfinal in Eq. (10):
Instruction: Describe how to impress a customer.
Target Response: Listen to the customer carefully, acknowledge their needs and desires, make sure
to follow up on commitments, and strive to exceed expectations.

Figure 8: Case study for selected samples.
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