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ReCoS: A Novel Benchmark for Cross-Modal Image-Text Retrieval
in Complex Real-Life Scenarios

Anonymous Author(s)

ABSTRACT
Image-text retrieval stands as a pivotal task within information
retrieval, gaining increasing importance with the rapid advance-
ments in Visual-Language Pretraining models. However, current
benchmarks for evaluating these models face limitations, exempli-
fied by instances such as BLIP2 achieving near-perfect performance
on existing benchmarks. In response, this paper advocates for a
more robust evaluation benchmark for image-text retrieval, one
that embraces several essential characteristics. Firstly, a compre-
hensive benchmark should cover a diverse range of tasks in both
perception and cognition-based retrieval. Recognizing this need, we
introduce ReCoS, a novel benchmark specifically designed for cross-
modal image-text retrieval in complex real-life scenarios. Unlike
existing benchmarks, ReCoS encompasses 12 retrieval tasks, with a
particular focus on three cognition-based tasks, providing a more
holistic assessment of model capabilities. To ensure the novelty
of the benchmark, we emphasize the use of original data sources,
steering clear of reliance on existing publicly available datasets to
minimize the risk of data leakage. Additionally, to strike a balance
between the complexity of the real world and benchmark usability,
ReCoS includes text descriptions that are neither overly detailed,
making retrieval overly simplistic, nor under-detailed to the point
where retrieval becomes impossible. Our evaluation results shed
light on the challenges faced by existing methods, especially in
cognition-based retrieval tasks within ReCoS. This underscores the
necessity for innovative approaches in addressing the complexities
of image-text retrieval in real-world scenarios.

CCS CONCEPTS
• Information systems→ Evaluation of retrieval results;Mul-
timedia and multimodal retrieval.
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(a) Flickr30K: 

(b) Flickr30K-FG:   A man in a vest works outside of a train.

  A man in a vest works outside.

Sample

Figure 1: Comparison of the five most similar images in
both Flickr30K and Flickr30K-FG to a sample in the orig-
inal Flickr30K dataset.

1 INTRODUCTION
Image-text retrieval, as a fundamental and crucial problem in infor-
mation retrieval, has attracted extensive attention in recent years.
It aims to bridge the heterogeneous modality gap and achieve se-
mantical matching by bidirectional retrieval, usually consisting of
two subtasks: image-to-text (i2t) retrieval and text-to-image (t2i)
retrieval. Text-to-image retrieval aims to search the target image
from the whole candidate image pool given the text query, while
image-to-text retrieval requires the model to search at least one
target text description from the candidate text pool given the image
query [3].

Early works such as VSE++ [9] and DPC [43], mapping im-
ages and text via convolutional neural networks, only roughly
capture modalities’ global correspondence, lacking fine-grained
vision-language interaction. Consequently, researchers begin to
focus on fine-grained retrieval [12, 26, 27, 42], such as SCAN [14],
which uses Faster R-CNN [30] to encode images more finely and
aligns image objects with sentence words. Recently, Visual Lan-
guage Pretraining models such as BLIP-2 [18] and X2-VLM [40],
acquiring alignment knowledge from image-text pairs through self-
supervised tasks, have been used for image-text retrieval tasks and
achieved near-perfect performance on widely used image-text re-
trieval benchmarks, i.e., MSCOCO-Test-5K and Flickr30K-Test-1K.

The benchmarks MSCOCO [22] and Flickr30k [37] have estab-
lished themselves as widely recognized standards for image-text
retrieval assessments. Chen et al. [3] brought attention to challenges
associated with “coarse-grained” images and texts, including issues
like small retrieval pool sizes and insufficient text descriptions, lim-
iting the evaluation of fine-grained cross-modal semantic matching.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
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Numerical Calculation

Subtracting the two numbers displayed, 42 and 17, equals 25.

Madeline Carroll appears to be in her teenage years, closing 

her lips and throwing sand forward.

Text TranslationCelebrity

Color

The tennis player is wearing white shorts and a black shirt 

with a hint of orange detailing.

There are four successive shots blended into one, showing a 

skateboarder in a green tee progressing through a move.

An elderly man dressed in a classic suit and black glasses 

sits engrossed in his book on a public bench.

A white dog wearing a safety vest is situated on a 

surfboard, with a man standing beside it to the left.

With a white wall serving as a backdrop, a boy in a striped 

shirt is intently holding and eating a donut.

Four tall glasses stand in a row, with the first two 

showcasing amber and yellow hues.

Count

Action

A blue and yellow striped shield graphic on the white police 

car reads \"PHILADELPHIA POLICE\" at the top in bold 

letters.

OCR

Figure

Position

Scene

Object

Code Reasoning

The execution result of the Python code snippet is the 

integer 7, which is the sum of the values assigned to 

variables x and y.

The English translation corresponding to the text in the 

text-only picture is 'I am learning English.'.

The skateboarder wearing a white top is in motion, with his 

body slightly bent forward and his legs raised at differing 

heights above the concrete surface.

Figure 2: Illustrative examples representing 12 sub-tasks within our 𝑅𝑒𝐶𝑜𝑆𝑣1 benchmark.

In response, refined benchmarks, MSCOCO-FG and Flickr30k-FG,
were introduced, aimed at improving the initial coarse-grained
images and text descriptions. However, our manual evaluation
revealed that MSCOCO-FG and Flickr30k-FG have reduced task
difficulty due to the introduction of overly detailed text descriptions.
For instance, as illustrated in Figure 1, the inclusion of the phrase
“of a train” significantly simplifies the retrieval of the sample.

Recognizing the rapid advancements in Visual-Language Pre-
trainingmodels, existing image-text retrieval benchmarks encounter
challenges in effectively assessing the capabilities of these models.
Notably, instances such as BLIP2 achieving near-perfect perfor-
mance on MSCOCO and Flickr30K underscore the limitations of
current benchmarks. To address these concerns and stay abreast of
the dynamic landscape of image-text retrieval tasks, the imperative
development of a new, comprehensive image-retrieval evaluation
benchmark becomes apparent.

We posit that a comprehensive evaluation benchmark for image-
text retrieval tasks should exhibit the following four characteristics:

(1) Comprehensive Coverage: Encompassing a wide array
of subtasks, going beyond the recognition of specific ob-
jects. This includes aspects such as existence, count, position,
color, and the composition of perceptual information with
knowledge in Large Language Models (LLM) to handle more
complex retrieval tasks, such as OCR retrieval, code image
retrieval, landmark building retrieval, and celebrity retrieval.

(2) Original Data Sources: Avoiding reliance on existing pub-
licly available datasets to minimize the risk of data leakage
and ensure the novelty of the benchmark.

(3) Balanced Text Descriptions: Striking a balance in text
descriptions, avoiding being under-detailed to the point

where retrieval becomes impossible and steering clear of
over-detailed, making retrieval overly simplistic.

(4) Alignment with Real-World Complexity: Reflecting the
intricacies of real-world scenarios to accurately gauge the
capabilities of Visual-Language Pretrainingmodels in diverse
and challenging environments.

In pursuit of these objectives, we have curated a comprehensive
evaluation benchmark for cross-modal image-text retrieval in com-
plex real-life scenarios, aptly named ReCoS. The main contributions
of this paper include:

(1) We review current image-text retrieval benchmarks and de-
lineate four essential characteristics that a comprehensive
evaluation benchmark for image-text retrieval tasks should
possess.

(2) As illustrated in Figure 2, ReCoS comprises 12 sub-tasks in
the domain of image-text retrieval. These tasks encompass
coarse-grained recognition-based retrieval, covering seven
types of retrieval tasks that emphasize aspects such as color,
count, location, figure, object, action, and scene. Addition-
ally, ReCoS incorporates fine-grained recognition-based re-
trieval tasks, including Optical Character Recognition (OCR)
and the identification of celebrities. The benchmark extends
to cognition-based retrieval, involving common numerical
calculations, code reasoning-based retrieval to assess the
model’s ability to recognize and execute simple code, and
text translation-based retrieval to evaluate proficiency in
understanding multiple languages.

(3) We have created three benchmark versions:𝑅𝑒𝐶𝑜𝑆𝑣0,𝑅𝑒𝐶𝑜𝑆𝑣1,
and 𝑅𝑒𝐶𝑜𝑆𝑣2. The construction of 𝑅𝑒𝐶𝑜𝑆𝑣1 and 𝑅𝑒𝐶𝑜𝑆𝑣2 are



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

ReCoS: A Novel Benchmark for Cross-Modal Image-Text Retrieval in Complex Real-Life Scenarios ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

built upon their predecessors, introducing heightened task
difficulties.

(4) We evaluated several representative image-text retrieval
models on our new benchmarks and further analyzed their
capabilities in complex real-life scenarios.

In conclusion, our datasets serve as a significant catalyst for
research, prompting the exploration of innovative approaches that
seamlessly integrate both perceptual and cognitive aspects. The
goal is to achievemore comprehensive and nuanced retrieval results,
driving advancements in the field of multimodal retrieval systems.

2 RELATEDWORK
2.1 Image-Text Retrieval Methods
In recent years, image-text retrieval has been extensively studied,
and existing works can be roughly categorized into two categories.
Non-pretraining models. Early works [7, 33, 34, 36, 44], such
as VSE++ [9] and DPC [43], mapping images and text via convo-
lutional neural networks, only roughly capture modalities’ global
correspondence, lacking fine-grained vision-language interaction.
Consequently, researchers begin to focus on fine-grained retrieval
[12, 26, 27, 42], such as SCAN [14], which uses Faster R-CNN [30]
to encode images more finely and aligns image objects with sen-
tence words. Subsequent non-pretraining models basically continue
the ideas of VSE++ and SCAN, mainly improving the image-text
alignment methods. The main directions of improvement include:
1) Optimizing image encoding methods. For example, the VSRN
model [20] encodes image information more finely and uses Graph
Convolutional Networks (GCN) [23] and Gated Recurrent Units
(GRU) [1] to perform local-global semantic reasoning. 2) Improv-
ing the attention mechanism for image-text alignment. BFAN [23]
proposes a bidirectional focal attention mechanism to eliminate
the impact of irrelevant parts in images and text on the calculation
of similarity scores. GSMN [24] uses a more complex way to align
image-text, first constructs the relationship graphs of images and
text separately, and then matches at the node level and structure
level based on the two relationship graphs. SGRAF[6] utilizes GCN
to capture the alignment between local and global information,
and proposes an attention mechanism based on similarity filter-
ing (SAF). 3) Introducing external knowledge. KASCE [31] and
SGM [35] construct external scene graphs to enhance visual rela-
tionship learning. 4) Improving retrieval efficiency. Pan et al. [28]
believe that the redundant part of cross-modal attention alignment
is meaningless, and propose a fine-grained cross-modal alignment
network (FCA-Net) to improve the efficiency of image-text retrieval.
LexLIP [25] explores a Lexicon-Based cross-modal retrieval method,
effectively reducing the computational cost of retrieval.
Pretraining models. Visual Language Pretraining is designed to
acquire visual language alignment knowledge from a vast collection
of image-text pairs through self-supervised tasks. The structure of
these models can be broadly categorized into single-stream, dual-
stream, and hybrid models.

Single-stream models, such as UNITER [4] and OSCAR [21] [10]
[41], employ a single encoder to process both images and text,
facilitating the learning of alignment between visual and language
information. UNITER utilizes a multi-layer Transformer encoder as
its core component. OSCAR, in addition to basic image-text pairs,

incorporates object tags on images to serve as a connection between
the two modalities.

Dual-stream models, like CLIP [29] [8] [13], leverage two in-
dependent encoders for processing images and text. The features
are then fused and aligned in subsequent stages. CLIP’s image en-
coder may be based on ResNet or ViT structure, while the text
encoder follows the Transformer structure. CLIP achieves large-
scale contrastive learning pretraining on 400M image-text pairs,
demonstrating zero-shot effectiveness on various tasks.

To leverage the strengths of both structures, hybrid models have
emerged [2]. Models such as ALBEF [19] and BLIP [18] excel in
modality alignment learning. ALBEF incorporates a multimodal
encoder at the back, while BLIP, an enhanced version of ALBEF,
retains ITC and ITM pretraining tasks but replaces the MLM task
with the LM task to generate image descriptions. BLIP integrates
text encoders and decoders for these tasks, sharing parameters
across corresponding structural layers. The upgraded version, BLIP-
2 [17], establishes a connection between the visual and text large
models through a lightweight Q-Former model. In the domain of
image-text retrieval, BLIP-2 has achieved nearly perfect state-of-
the-art results.

2.2 Image-Text Retrieval Datasets
MSCOCO [22] and Flickr30k [37] are prominent datasets in image-
text retrieval. Flickr30k comprises 31,783 images depicting everyday
activities, each with five crowd-sourced descriptions. This dataset
has 29,783 training images, 1,000 validation images, and 1,000 test
images. On the other hand, MSCOCO is larger, with 123,287 images
covering 91 common object categories. Each MSCOCO image has
manually added bounding boxes, segmentation, and five descrip-
tions. The dataset includes 113,287 training images, 5,000 validation
images, and 5,000 test images.

However, Chen et al. [3] highlighted challenges associated with
“coarse-grained” images and texts. They identified two primary is-
sues: 1) small image retrieval pool sizes, resulting in significant
variation or semantic sparsity, making retrieval targets easily dis-
tinguishable without the need for fine-grained semantic under-
standing; 2) a considerable number of text descriptions lacking
detail. These challenges impose limitations on evaluating a model’s
fine-grained cross-modal semantic matching capabilities. In re-
sponse, Chen et al. introduced two benchmarks, MSCOCO-FG and
Flickr30k-FG, by refining the initially coarse-grained images and
text descriptions in the original MSCOCO and Flickr30k datasets.

Nevertheless, the existing datasets mentioned above fall short in
capturing intricate real-life scenarios, including code recognition
and numerical computation. This inadequacy poses a challenge for
conducting a thorough evaluation of model performance. In this
paper, we introduce a pioneering benchmark tailored for image-
text retrieval within complex real-life contexts. Our benchmark
addresses this limitation by encompassing a wider array of sub-
tasks within intricate scenarios, such as OCR retrieval, code image
retrieval, landmark building retrieval, and celebrity retrieval. This
diverse set of challenges enables a more exhaustive evaluation of
model capabilities. The proposed benchmark stands as a rigorous
assessment tool for image-text retrieval, particularly well-suited for
evaluating the effectiveness of Visual Language Pretraining models.
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3 BENCHMARK
In this section, we present the process of building our 𝑅𝑒𝐶𝑜𝑆 bench-
mark, comprising three versions: 𝑅𝑒𝐶𝑜𝑆𝑣0, 𝑅𝑒𝐶𝑜𝑆𝑣1, and 𝑅𝑒𝐶𝑜𝑆𝑣2.
We initiated by selecting datasets from diverse domains outside of
image-text retrieval, including synthetically generated datasets, to
mitigate data leakage risks. Subsequently, we executed four key
steps in a scholarly manner, as illustrated in Figure 4. The fol-
lowing Section 3.1 first involves curating candidate images from
these datasets to meet the specific requirements of the 12 subtasks.
Section 3.2 delineates the detailed annotation process applied to
the selected images. Section 3.3 discusses the introduction of ad-
ditional similar images and the generation of perplexing textual
descriptions to enhance the difficulty of the image-text retrieval
task. These descriptions closely mirror those of the original images
(see the appendix for details). Section 3.4 elaborates on the further
augmentation of task complexity by introducing additional similar
images devoid of annotations. Section 3.5 delineates the disparities
in image quantity and subtask difficulty among the three versions.

3.1 Image Collection
We initially collected 500 images to create the candidate image set
D, as depicted in Figure 3, to address the following 12 types of
retrieval tasks:

6%

6%

6%

6%

6%

10%

10%

70%
10%

10%

10%

10%

10%

 OCR  celebrity  numerical calculation  code reasoning

 text translation  color  count  figure

 location  object  action  scene

Figure 3: Distribution of samples across 12 retrieval tasks
within the candidate image set D.

(1) Coarse-Grained Recognition-Based Retrieval. This cat-
egory involves seven types of retrieval tasks focusing on the
recognition of color, count, location, figure, object, action,
and scene. Each task type includes 50 images, totaling 350
images. Specifically, we select images related to these seven
categories and generate corresponding descriptions based
on the specific categories, ensuring that the descriptions
covered different categories of words. The images for these
tasks were gathered from COCO 1 with only images.

(2) Fine-Grained Recognition-Based Retrieval. This cate-
gory includes two types of retrieval tasks focusing on Optical

1https://cocodataset.org/

Character Recognition (OCR) with images sourced from To-
toltext [5] and the recognition of celebrities with images
manually captured from videos on public websites. OCR is
also a task for testing the basic capabilities of the model. The
focus is on text recognition in pictures. Due to the diversity
of scenes, OCR is still very difficult [38]. Tasks that include
celebrities examine whether the model can specifically iden-
tify celebrities in the picture. Each task contains 30 images,
totaling 60 images.

(3) Numerical Calculation-Based Retrieval. This category
comprises 30 manually created images, predominantly fea-
turing common numerical calculation scenarios, including
simple addition, subtraction, multiplication, division calcu-
lations, and area calculations of two-dimensional images.
Huang et al. [11] proposed that if large models are to move
towards general artificial intelligence, they must have strong
multi-modal cognitive capabilities. The primary objective
of this category is to assess the model’s ability to recognize
handwritten digits and its reasoning proficiency for simple
numerical calculation problems.

(4) Code Reasoning-Based Retrieval. In this category, there
are 30 images of code generated byGPT-4, manuallymodified
and verified. At present, there are some researches on code
generation [32], but there is still a lack of research on the
understanding of image code recognition. The primary task
is to assess the model’s capability to recognize code images
and its understanding of simple code.

(5) Text Translation-BasedRetrieval.There are alreadymany
large models that support multiple languages, and we hope
to verify their translation capabilities. This category is estab-
lished to assess the model’s understanding of both Chinese
and English languages. All 30 images in this category are
manually designed. Given the current capabilities of existing
models for Chinese and English, our current version focuses
on designing simple Chinese-English translation tasks.

3.2 Image Annotation
Generation of Image Descriptions. Refinement of the process
outlined in the dashed box in Figure 4 encompasses the following
four steps applied to the candidate image set D to form a simple
version image-text pair dataset 𝑅𝑒𝐶𝑜𝑆𝑣0:

• Generate image description.
(1) For a given sample image 𝑥 ∈ D, generate five text de-

scriptions {𝑡1 (𝑥), · · · , 𝑡5 (𝑥)} using either GPT-4 ormanual
annotation.

• Retrieve Top-k images.
(1) For each 𝑡 ∈ {𝑡1 (𝑥), · · · , 𝑡5 (𝑥)}, employ the BLIP2 model

to compute embeddings for both 𝑡 and the images inD−𝑥 .
(2) Identify the top 𝑘 most similar images S(𝑡) from D − 𝑥

based on the highest cosine similarities with 𝑡 .
• Validate the discriminability of text description.
(1) Compute 𝑑𝑖𝑠 (𝑡) to evaluate the discriminability of the text

description 𝑡 .
(2) Select text descriptions that necessitate regeneration based

on discriminability evaluation.
• Output the refined description.

https://cocodataset.org/
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CoCo

TotalText

Generated

Handmade

···

OCR

1. Four elephants are spotted in a grassy 

area.

2 . Four elephants are gathered together 

in a natural setting.

3. A quartet of elephants stands side by 

side on the grassy land.

4 . There are four elephants, with one 

appearing smaller than the others.

5. A group of four elephants is present, 

with some standing and one seemingly 

resting.

Color

Count

Celebrity

···

Generate image description

Four elephants are spotted in a grassy area.

Grammar check and manual verification

Retrieve top-

k images

.
..

Proper 

discriminativity?

No

Yes

1. Five elephants...

2. Five elephants...

3. A quintet of...

4. There are five...

5. A group of ...

Four elephants are spotted in a grassy area.

···

···

4. Image Expansion

Datasets

3. Image Confusion

12 Subtasks

Detailed Process of Image Annotation

1. Image Collection
 2. Image Annotation

···

Figure 4: Building Process of ReCoS Benchmark.

(1) Conduct a grammar check and manual verification to en-
sure the quality of the text description.

(2) Output the 5 refined descriptions for each image.

Validation of of text description. In the aforementioned process,
evaluating the discriminativity of the text description is a crucial
step. This assessment is achieved by computing the discriminativity
of the text description 𝑡 as𝑑𝑖𝑠 (𝑡) = entropy(softmax(sim(𝑡,S(𝑡)))),
where:

(1) sim(𝑡,S(𝑡)) calculates the cosine similarities among 𝑡 and
the images in S(𝑡).

(2) softmax(.) generates classification probabilities using the
softmax function with temperature parameters set to 1.

(3) entropy(.) outputs the entropy of the probability distribu-
tion.

The value of 𝑑𝑖𝑠 (𝑡), ranging between 0 and log𝑘 , serves as an
indicator of BLIP2’s confidence in the retrieval result. The minimum
value of 0 signifies high certainty in the retrieval, suggesting an
overly simplistic retrieval task associated with an over-detailed
text description. On the other hand, the maximum value of log𝑘
indicates uncertainty in the retrieval, suggesting an overly difficult
retrieval task linked to an under-detailed text description.

0

Over-detailed text 

description.

Under-detailed text 

description.

Proper text 

description.

0

0.25

0.5

0.75

1

Top-1 Top-2 Top-3 Top-4

P
ro

b
a
b

il
it

y

0

0.25

0.5

0.75

1

Top-1 Top-2 Top-3 Top-4

P
ro

b
a
b

il
it

y

1
log

2
k

+1
log

2
k

−

Figure 5: Text description validation using discriminativity
𝑑𝑖𝑠 (𝑡) and selection of text descriptions necessitating regen-
eration via parameter 𝜂.

The introduction of a parameter, denoted as 𝜂 ∈ (0, 1), plays
a crucial role in the selection of text descriptions for regeneation.
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Specifically, we identify descriptions where 𝑑𝑖𝑠 (𝑡) ∉ [ 1−𝜂2 log𝑘,
1+𝜂
2 log𝑘]. text descriptions falling outside this range are consid-

ered unqualified, indicating the need for regeneration. By adjusting
the value of 𝜂, we provide a mechanism to either expand or nar-
row the scope for identifying unqualified text descriptions. This
flexibility empowers the annotator to fine-tune the discriminativity
threshold according to the desired level of certainty in the retrieval
task. A larger 𝜂 not only widens the range for identifying unquali-
fied descriptions but also provides nuanced control over the delicate
balance between task simplicity and difficulty in the annotation
process. This parameter serves as a versatile tool, enabling cus-
tomization based on the specific requirements and intricacies of
the annotation task.

3.3 Image Confusion
In pursuit of heightened task difficulty, we augmented the challenge
by introducing similar images paired with corresponding text de-
scriptions. Specifically, we appended an additional 500 image-text
pairs to 𝑅𝑒𝐶𝑜𝑆𝑣0, thereby creating a more intricate dataset denoted
as 𝑅𝑒𝐶𝑜𝑆𝑣1. Our approach involves a semi-automated method, char-
acterized by the following three main steps:

• Similar image selection. For each image 𝑥 ∈ D, we identi-
fied a similar image 𝑥 ′ from the source 𝑥 was sampled from.
BLIP2 was employed to compute the image embedding, fa-
cilitating the selection of the most similar image.

• Text description generation for similar images. Utiliz-
ing GPT-4, we generated proper text descriptions 𝑡 ′ for the
selected similar images 𝑥 ′. This process included the follow-
ing steps:

(1) Generate descriptions by referring to 𝑡 (original descrip-
tion).

(2) Generate descriptions focusing on color, quantity, and
other attributes.

(3) Attempt to replace core attributes/keywords in provided
descriptions based on image details.

(4) Minimize word changes from the referenced description.
Ensure each generated description is grammatical, logical,
and uniquely detailed.

• Conduct manual checks and verifications that the generated
similar description matches the similar image.

3.4 Image Expansion
To enhance the complexity of our benchmark, we implemented
an image expansion strategy that involved introducing more intri-
cate images into the dataset. This was achieved by incorporating
additional images that exhibit similarities to the original ones but
lack corresponding text descriptions. For each image 𝑥 ∈ D, we
identified twenty similar images from the same source as 𝑥 , result-
ing in a set of 20000 images. These images were then merged with
𝑅𝑒𝐶𝑜𝑆𝑣1, and the resulting set underwent refinement to eliminate
duplicates, yielding 𝑅𝑒𝐶𝑜𝑆𝑣2 with a total of 15982 images. It is im-
portant to note that out of these, only 1000 images are paired with
corresponding text descriptions.

3.5 Data Statistics

Table 1: Three different versions of our ReCoS benchmark

Dataset #Images #Captions #Categories Difficulty level

𝑅𝑒𝐶𝑜𝑆𝑣0 500 2500 12 easy
𝑅𝑒𝐶𝑜𝑆𝑣1 1000 5000 12 medium
𝑅𝑒𝐶𝑜𝑆𝑣2 15982 5000 12 hard

In summary, as illustrated in Table 3, we have generated three
versions of benchmarks: 𝑅𝑒𝐶𝑜𝑆𝑣0 comprising 500 original image-
text pairs, 𝑅𝑒𝐶𝑜𝑆𝑣1 extending from 𝑅𝑒𝐶𝑜𝑆𝑣0 with an additional 500
similar image-text pairs to augment task difficulty, and 𝑅𝑒𝐶𝑜𝑆𝑣2
extending from 𝑅𝑒𝐶𝑜𝑆𝑣1 with an additional 14982 pure images
resembling those in 𝑅𝑒𝐶𝑜𝑆𝑣0 to further heighten task difficulty.

4 EXPERIMENTS
In this section, we conduct an evaluation of several classic image-
text retrieval models on our novel benchmarks. Furthermore, we
present a comprehensive analysis of the performance of these mod-
els, delving into the intricacies of the various sub-tasks and versions
incorporated within our benchmarks.

4.1 Experiment Setup
Benchmarks: In this experiment, we employ the following five
benchmarks:

• Flickr30K and MS-COCO benchmarks are derived from
everyday life scenarios. The primary distinction lies in the
number of test images: the former includes 1,000 images,
while the latter encompasses 5,000.

• Flickr30K-FG and MS-COCO-FG benchmarks [3] offer
more detailed textual descriptions while maintaining the
image quantity of their original datasets, 𝐹𝑙𝑖𝑐𝑘𝑟30𝑘 and𝑀𝑆−
𝐶𝑂𝐶𝑂 .

• ReCoS benchmark, introduced in this paper, comprises 1, 000
test images depicting complex real-life scenarios. To assess
its performance against previous benchmarks, we conducted
comparative experiments using the standardized image-text
pairs of 𝑅𝑒𝐶𝑜𝑆𝑣1. However, in practice, 𝑅𝑒𝐶𝑜𝑆𝑣2 (with some
images lacking annotations) poses significantly greater dif-
ficulty than 𝑅𝑒𝐶𝑜𝑆𝑣1, enabling a more comprehensive eval-
uation of models’ capabilities in image-text retrieval, par-
ticularly in fine-grained comprehension of text for image
retrieval.

Baselines and Implementation details: All experiments are con-
ducted on NVIDIA V100 GPUs, and we use as large models as
possible. We used the default configuration in LAVIS [16] for CLIP,
ALBEF, BLIP, and BLIP2, and the experimental setup in [39] for
X-VLM and X2-VLM. Additionally, VSE++ adhered to the configu-
ration from [9], and SCAN followed that from [14], VSRN followed
that from [20].
Evaluation Metrics: Following established research practices [9,
15, 20], we evaluate image-text retrieval performance using Re-
call@k (R@k). This metric quantifies the percentage of queries
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accurately retrieving the ground truth within the top-k results,
where k is selected from values of 1, 5, and 10.

4.2 Results and Analysis
Table 2 displays the experimental results of nine models across
the five benchmarks. Initially, we note that the recall rates (R@K)
of non-pre-trained models, namely VSE++, SCAN, and VSRN, are
notably lower than those of pre-trained models, including CLIP, AL-
BEF, X-VLM, X2-VLM, BLIP, and BLIP2. However, we also observed
performance declines in both pre-trained and non-pre-trained mod-
els specifically on our benchmark 𝑅𝑒𝐶𝑜𝑆𝑣1 when compared to the
other four existing benchmarks. This decrease highlights the chal-
lenges in our benchmarks regarding accurately retrieving correct
images for a given text description in the presence of numerous
similar images, and vice versa. X2-VLM and BLIP2 demonstrated su-
perior performance across most tasks, indicating their effectiveness.
Nevertheless, our benchmark poses a substantial challenge even
for both X2-VLM and BLIP2, motivating the research community
to enhance them in future work.

4.3 Sub-tasks Analysis
To investigate the difficulty of different substaks in our bench-
mark 𝑅𝑒𝐶𝑜𝐶𝑣1, we choose the representative coarse-grained model
method VSE++, fine-grained method SCAN and VSRN, and two
pre-trained models CLIP and BLIP2 to perform experiments across
the 12 sub-tasks. The results are illustrated in Figure 6 and 7.

0

20

40

60

80

100

object

figure

count

color
action

 BLIP2
 CLIP
 VSRN
 SCAN
 VSE++

scene
position

OCR

numerical_calculation

text_translation

code_reasoning

celebrity

Figure 6: The top-1 retrieval results (R@1) across 12 subtasks
in image-to-text (I2T) retrieval task using five models on the
ReCoS𝑣1 dataset.

In image-to-text and text-to-image retrieval tasks, current mod-
els, particularly emphasizing pre-trained models like BLIP2 and
CLIP, have showcased exceptional performance. They achieved
perfection in figure and scene recognition-based retrieval tasks
and consistently maintained over 90% accuracy across five coarse-
grained and two fine-grained recognition-based retrieval tasks. The
notable superiority of BLIP2 and CLIP, compared to non-pre-trained
models, is credited to their robust feature extraction capabilities
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Figure 7: The performance R@1 of 5 models in text-to-image
(T2I) retrieval across 12 subcategories on ReCoS𝑣1.

from both images and text. Specifically, the BLIP2 model demon-
strated nearly flawless performance across various subcategories
within the perceptual domain, highlighting its exceptional frame-
work design and extensive training data.

Despite the exceptional performance ofmodels such as BLIP2 and
CLIP in perceptual tasks, where they achieve near-perfect results in
recognition-based retrieval tasks, particularly for figures and scenes,
they face substantial challenges in cognition-based retrieval tasks.
A selection of samples from cognition-based retrieval tasks, where
both BLIP2 and CLIP struggle, is illustrated in Figure 7. Even in
tasks that demand linguistic understanding, such as text-translation-
based retrieval, all models fall short, with some achieving zero
accuracy. This highlights a limitation in their capacity to effectively
integrate perceptual information with deeper cognitive knowledge.

The collective struggle of all models in cognition-based tasks indi-
cates a critical gap in existing methodologies. Our dataset emerges
as a valuable resource, prompting a shift in research focus and
challenging the community to explore innovative approaches that
seamlessly integrate both perceptual and cognitive aspects.

4.4 Benchmark Versions Comparative Analysis
In our evaluation, we employed CLIP to assess its retrieval perfor-
mance across the three versions of our benchmarks, as detailed in
Table 3. It is important to note that we refrained from conducting
the image-to-text task on 𝑅𝑒𝐶𝑜𝑆𝑣2 due to the absence of text de-
scriptions for the additional images introduced based on 𝑅𝑒𝐶𝑜𝑆𝑣1.

The results displayed in Table 3 unveil a consistent decline in per-
formance from 𝑅𝑒𝐶𝑜𝑆𝑣0 to 𝑅𝑒𝐶𝑜𝑆𝑣2, signifying a notable escalation
in task difficulty. Particularly noteworthy is the more pronounced
decrease in R@1 compared to R@10, indicating a heightened chal-
lenge in achieving accurate retrieval results. This decline in recall
rates sheds light on CLIP’s limitations in effectively differentiat-
ing between similar images or semantic sentences. It prompts a
deeper investigation into enhancing CLIP’s discriminative capabili-
ties, specifically tailored to the challenges posed by our benchmark.
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Table 2: Evaluation results of 9 models on 5 benchmarks. Top results for “Image→ Text” and “Text→ Image” tasks are bolded
for easy reference. MSCOCO comprises 5k images, whereas both ReCoS and Flickr30k contain only 1k images each.

Retrieval task Model

VSE++ SCAN VSRN CLIP ALBEF X-VLM X2-VLM BLIP BLIP2

Image→Text

MSCOCO
R@1 41.1 42.5 49.0 57.2 77.6 80.4 83.5 82.0 85.4
R@5 71.3 74.4 77.5 80.5 94.1 95.5 96.3 95.8 97
R@10 81.3 85.6 87.3 87.8 94.1 98.2 98.5 98.1 98.5

Filckr30K
R@1 52.9 65.6 66.9 86.5 77.6 96.8 98.5 96.9 97.6
R@5 80.4 88.3 89.8 98.0 94.1 99.8 100.0 99.9 100.0
R@10 87.8 93.4 94.9 99.1 97.2 100.0 100.0 100.0 100.0

MSCOCO𝐹𝐺

R@1 45.3 48.0 54.5 60.6 80.3 85.0 87.1 86.8 87.6
R@5 74.9 79.1 81.0 82.9 95.5 97.0 97.4 97.1 97.7
R@10 85.0 88.3 90.3 90.0 95.8 98.7 99.0 98.8 99.1

Filckr30K𝐹𝐺

R@1 56.2 68.9 72.6 88.7 97.2 97.4 99.1 97.1 98.5
R@5 84.5 91.0 92.4 98.3 99.8 99.8 100.0 100.0 100.0
R@10 90.3 96.0 95.9 99.0 100.0 100.0 100.0 100.0 100.0

ReCoS𝑣1
R@1 26.6 31.6 35.0 67.5 74.2 74.3 79.3 80.0 80.8
R@5 50.5 55.1 57.2 88.6 84.0 82.8 89.8 90.3 89.9
R@10 60.8 62.8 64.2 92.5 85.9 84.0 89.0 92.5 92.0

Text→Image

MSCOCO
R@1 30.3 33.0 35.2 36.5 61.0 63.1 66.2 64.5 68.3
R@5 59.4 63.1 65.2 60.8 84.5 85.7 87.1 86.0 87.7
R@10 72.5 75.1 76.3 71.0 90.7 91.6 92.2 91.7 92.6

Filckr30K
R@1 39.6 41.2 49.4 67.0 61.0 86.1 90.4 87.5 89.7
R@5 69.9 71.5 77.1 88.9 84.5 97.4 98.2 97.6 98.1
R@10 79.6 80.7 84.4 93.3 90.7 98.7 99.3 98.9 98.9

MSCOCO𝐹𝐺

R@1 34.7 37.2 39.9 39.2 64.2 68.9 70.1 68.1 72.6
R@5 64.2 66.6 69.0 64.0 86.9 88.0 89.6 88.5 90.2
R@10 77.1 77.9 80.1 73.7 91.3 93.0 95.9 93.7 94.2

Filckr30K𝐹𝐺

R@1 44.7 45.6 54.1 71.3 90.1 90.0 92.8 91.6 92.5
R@5 74.8 76.3 80.9 90.6 98.6 98.5 99.5 98.6 99.0
R@10 83.5 84.7 87.6 94.7 99.5 99.2 99.9 99.4 99.4

ReCoS𝑣1
R@1 19.6 20.5 27.0 54.2 67.6 68.3 79.3 73.7 74.9
R@5 42.1 43.7 50.9 81.5 81.6 80.1 89.1 88.7 88.4
R@10 52.5 52.8 59.6 87.8 84.1 81.5 89.5 90.9 90.7

Table 3: Comparison results for CLIP across three versions
of our benchmark.

Test Mode Image→ Text Text → Image

R@1 R@5 R@10 R@1 R@5 R@10

𝑅𝑒𝐶𝑜𝑆𝑣0 83.0 92.4 94.6 70.6 88.2 92.9
𝑅𝑒𝐶𝑜𝑆𝑣1 67.5 88.6 92.5 54.2 81.5 87.8
𝑅𝑒𝐶𝑜𝑆𝑣2 - - - 25.0 50.1 60.1

5 CONCLUSIONS
In this study, we scrutinize common benchmarks for image-text
retrieval and find that they fail to fully assess the true capabilities
of fine-grained cross-modal semantic alignment due to the coarse

granularity of images and texts, excessive descriptive information,
and overly simplistic retrieval scenarios. Therefore, We propose
𝑅𝑒𝐶𝑜𝑆 , a novel image-text benchmark, designed to address chal-
lenges in cross-modal retrieval in real-life scenarios, with three
versions: 𝑅𝑒𝐶𝑜𝑆𝑣0, 𝑅𝑒𝐶𝑜𝑆𝑣1, and 𝑅𝑒𝐶𝑜𝑆𝑣2.To compare with existing
benchmarks, we select the moderately challenging 𝑅𝑒𝐶𝑜𝑆𝑣1 as the
standard benchmark, where each image is annotated. By evaluating
representative image-text retrieval models on 𝑅𝑒𝐶𝑜𝑆 , we demon-
strate and analyze the models’ fine-grained semantic understanding
capabilities across various subtasks through extensive experiments.
The experimental results indicate that even state-of-the-art retrieval
models exhibit certain limitations in real-world scenarios. In the
future, we aim to extend more complex retrieval subtasks, such as
complex charts, intricate flowcharts, with the hope that the novel
benchmark will inspire further research into cross-modal retrieval.
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