
Accepted Paper at Learning from Time Series for Health Workshop ICLR 2024

A NOVEL METHODOLOGICAL FRAMEWORK FOR THE
ANALYSIS OF HEALTH TRAJECTORIES AND SURVIVAL
OUTCOMES IN HEART FAILURE PATIENTS

Juliette Murris1, Tristan Amadei2, Tristan Kirscher2, Antoine Klein2,
Anne-Isabelle Tropeano3 & Sandrine Katsahian1,3
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ABSTRACT

Heart failure (HF) contributes to circa 200,000 annual hospitalizations in France.
With the increasing age of HF patients, elucidating the specific causes of inpatient
mortality became a public health problematic. We introduce a novel methodolog-
ical framework designed to identify prevalent health trajectories and investigate
their impact on death. The initial step involves applying sequential pattern mining
to characterize patients’ trajectories, followed by an unsupervised clustering algo-
rithm based on a new metric for measuring the distance between hospitalization
diagnoses. Finally, a survival analysis is conducted to assess survival outcomes.
The application of this framework to HF patients from a representative sample of
the French population demonstrates its methodological significance in enhancing
the analysis of healthcare trajectories.

1 MOTIVATING EXAMPLE

Heart failure (HF) is a cardiovascular condition characterized by the heart’s inability to pump suffi-
cient blood to meet the body’s oxygen and nutrient needs. It is a prevalent disease, affecting 1 to 2%
of adults in developed countries, and around 64 million people worldwide (Savarese et al., 2022).
Chronic HF often goes with repeated hospitalizations and embodies the condition with highest 30-
days re-hospitalization rate (Constantinou et al., 2021). In France alone, over 1.5 million individuals
suffer from HF, resulting in approximately 200,000 hospitalizations annually. Thus, understanding
primary causes of death in these patients and identifying their most frequent inpatient trajectories
holds significant potential for public health impact.

Electronic health records in France aggregate data from all hospitalizations. The EGB (Echantillon
Généraliste des Bénéficiaires) is a random sample and representative of 1/97th of the population
over a two year follow-up (De Roquefeuil et al., 2009). Trajectories are established using primary
and associated diagnoses based on the International Classification of Disease (10th edition (ICD-
10)). ICD-10 code syntax is text-based, and includes the principal diagnosis category, indication of
surgical procedures, a counter, and a severity indicator (example given in Figure 1, ’05M092’ is the
ICD-10 code for HF).

Figure 1: ICD-10 architecture

The primary objective of this work is to identify frequent inpatient health trajectories in HF patients
in France. Secondary objectives include the investigation of their associations with mortality.
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2 RELATED WORK

The analysis of trajectories in healthcare is a complex task which helps understanding the evolution
of patients pathway over time. Many approaches deal clustering (Chouaı̈d et al., 2022; Lambert
et al., 2023; Zhong et al., 2021), and others with times series, like Markov chains (MacDonald &
Zucchini, 1997) or neural networks (Hewamalage et al., 2021). More recently the advent of text-
based input enabled to collect more and more information (Nguyen et al., 2018; Zhu et al., 2021).

However, none of these methodologies combine pattern mining, clustering and survival analysis
all together, even though these concepts are individually well-established and active research fields
(Kang et al., 2020; Leis et al., 2023; Murris et al., 2023). This work is a demonstration of the
assembling of existing tools to answer concrete clinical need and represents a ”bridging fields”
contribution.

3 METHODOLOGICAL FRAMEWORK

3.1 SEQUENTIAL PATTERN MINING - THE PrefixSpan ALGORITHM

We used sequential pattern mining technique to extract frequent trajectories (Masseglia et al., 2004).
PrefixSpan algorithm uses sequence patterns as tuples (P, sup), where P is a sequential pattern and
sup is the number of sequences in the database that contain P (Pei et al., 2001). The sequence
patterns are used to efficiently compute the support of candidate patterns and avoid unnecessary
database scans. The algorithm efficiently identifies frequent sequential patterns in the database
while maintaining a concise representation of the patterns (see Algorithm 1).

3.2 UNSUPERVISED LEARNING WITH PATIENT CLUSTERING

The clustering of patients brings the interpretability layer to the approach (Pinaire, 2017). Clusters
should fit closely patients’ trajectories based on their successive hospitalization sequences (see Al-
gorithm 2). K-medoids algorithm was used to deal with string data and aims to partition input into
k clusters (Kaur et al., 2014). Each cluster is represented by a single data point called medoid.

Levenshtein distance DL was used to measure the distance between two hospitalization sequences
(Yujian & Bo, 2007). Traditionally, the Levenshtein distance calculates the minimum number of
edits to perform on single-characters to transform the word a into the word b:

DL(a, b) =



max(|a|, |b|) if min(|a|, |b|) = 0,

lev(a1:, b1:) if a[0] = b[0],

1 + min


lev(a1:, b)

lev(a, b1:)

lev(a1:, b1:)

otherwise.

with | · | the number of letters in the word, ·1: the word without its first letter and ·[0] the first letter of
the word. Throughout our study, we will only use the Levenshtein ratio, being the normalized value
with lev(a, b) = DL(a,b)

max(|a|,|b|) with words of the same number of characters, hence max(|a|, |b|) =

|a| = |b|. We used this string-distance to implement a new metric DICD10 to compute the distance
between two ICD-10 codes A and B:

DICD10(A,B) =ω1 × lev(A0:2, B0:2)

+ ω2 × lev(A[2], B[2])

+ ω3 × lev(A3:5, B3:5)

+ ω4 × lev(A[5], B[5])

with Ω = (ωi)i∈[1,4] ∈ N+. This weighted distance thus leverages the information from each
ICD-10 component (as per Figure 1). Then, we compare the ith ICD-10 code of a patient with the
(i − 1)th, ith and (i + 1)th ICD-10 codes of another patient, compute the distances and keep the
minimum in order to get the distance between two patient sequences (Figure 2).
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The distance DP between two patient sequences is the sum of all ICD-10 codes to one
another. This distance respects the symmetry assumption and DP (patienti, patientj) =
DP (patientj , patienti). Further details on the distance matrix are given in Appendix.

Two hyperparameters require settings and are under constraint: Ω the weights of the distance metric,
with 0 ≤ ω4 ≤ ω3 ≤ ω2 ≤ ω1 ≤ 100, and k ∈ [2, 20] the number of clusters. Cross-validation
was used to find optimal hyperparameters using Optuna (Akiba et al., 2019). The score S to be
maximised was defined as follows, for each cluster k:

sp,k =

Np∑
p=1

(P, sup)[p]k − (P, sup)[p]

And S = 1
Np×N

∑N
k=1

∑Np

p sp,k. We set Np = 3. Based on outputs from the PrefixSpan algorithm,
the idea is to determine the most frequently occurring ICD-10 code patterns of lengths 1, 2, 3 within
each cluster, along with their respective frequencies. Subsequently, we calculate the frequency of
these patterns across the entire dataset and compute the difference between the two. We then get the
mean of these differences separately for patterns of length 1, 2, and 3. The clustering score S is then
established by averaging these means.

Figure 2: Measuring distances for two patient sequences

3.3 SURVIVAL ANALYSIS

For each patient, survival time and status are available. We implemented two ensemble methods,
namely random survival forests (RSF) and survival gradient boosting. These methods are survival
analysis counterparts of random forests and gradient boosting algorithms tailored for censored data
(Ishwaran et al., 2008; Hothorn et al., 2006). Cross-validation was performed for hyperparameter
optimization.

Two metrics were used for evaluation. We assessed the goodness of fit using the Akaike information
criterion (AIC), with lower values indicating better fit (Hu, 2007). Besides, the concordance index
(C-index) is a generalization of the ROC-AUC that can effectively handle censored data, providing
a reliable ranking of survival times based on individual risk scores (Harrell et al., 1982; 1984).

4 RESULTS

This study included adult HF patients who experienced their initial HF hospitalization between 2010
and 2016. The cohort comprised 10,051 patients, accounting for a total of 85,594 hospitalizations.
Five clusters were identified with optimal hyperparameters (ΩT = [85, 75, 55, 40]).

(a) Frequent ICD-10 codes (b) Sankey diagram

Figure 3: Key figures for Cluster 1
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When we examined the ten most frequent ICD-10 codes for the nth hospitalization after HF, we
observed that these ICD-10 codes collectively accounted for approximately 50% from the first to the
tenth occurrence. This indicates significant similarity in the care sequences of these patients (Figure
3). Furthermore, by visualizing the frequent trajectories for the entire HF patients population, we can
identify several common sequences leading to death (e.g., ’05M09’ for HF hospitalization, ’04M05’
for pleurisy, or ’04M13’ for pulmonary edema and respiratory distress).

We also observed a high proportion of deaths during the initial hospitalizations in clusters 2 and 4,
consistent with the older age and shorter hospitalization sequences of these patients (see Appendix).
Additionally, HF patients in cluster 2 who experienced mortality had no more than six hospitaliza-
tions following their first HF episode.

Figure 4 displays the survival trajectories for the most and least optimistic scenarios within each
cluster. Since clusters have varying numbers of individuals, prediction accuracy varies considerably
across models. Specifically, cluster 3 yields more uncertain predictions compared to cluster 5. Aging
consistently emerged as a significant factor contributing to mortality across all clusters, as well as
being male. Prolonged hospital stays are also associated with a more pessimistic trajectory. We
obtained similar results using RSF and survival gradient boosting, yielding a mean C-index of 0.68
(details in Appendix).

Figure 4: Survival predictions in clusters with best and worst scenarios

5 DISCUSSION

By systematically identifying and analyzing frequent hospitalization patterns, we gained valuable
insights into the care sequences of heart failure patients. This comprehensive analysis enabled to not
only discern the most common reasons for hospitalization but also to trace the trajectories that often
culminate in patient mortality.

Our study benefits from a large dataset, which provides a solid foundation for our analyses. A
significant highlight of our methodology is the use of unsupervised clustering, not least with the
introduction of a novel distance metric. More recently, methodological research has been conducted
to create similarity measures for clustering purposes, either based on prevalence (Mannino et al.,
2017), or Bayesian framework (Wu & Hao, 2020). However, our approach enables to keep into
account the numbered order of hospitalizations, and to assess the impact on death using the survival
analysis (Pinaire et al., 2017). Our methodology also allows us to avoid making any a priori as-
sumptions about the patient population, thereby reducing potential biases associated with specific
patient characteristics (clinical discussion is available in Appendix A.4).

Health trajectories is a burning topic in clinical research. Within our methodological framework, we
introduce an innovative approach to comprehending hospitalization sequences and their implications
for survival outcomes. While our focus has been on the HF patients, our approach is adaptable and
can be extended to address more intricate populations, and this way to meet a variety of clinical
challenges.
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Francois-Emery Cotté. Machine learning–based analysis of treatment sequences typology in ad-
vanced non–small-cell lung cancer long-term survivors treated with nivolumab. JCO Clinical
Cancer Informatics, 6:e2100108, 2022.

Panayotis Constantinou, Nathalie Pelletier-Fleury, Valérie Olié, Christelle Gastaldi-Ménager, Yves
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A APPENDIX

A.1 SEQUENTIAL PATTERN MINING

A.1.1 DEFINITIONS

Itemset. Let I = i1, ..., iNp
be the set of Np items. A subset of I is called an itemset. In this study,

a pattern or itemset consists in an ICD-10 code.

Event sequence. An event sequence seq = {e1, ..., em}, ei ⊆ I for 1 ≤ i ≤ m is an ordered list of
itemsets. The event sequence database is the starting point for sequential pattern mining.

Subsequence. An event sequence seqsub = {r1, ..., rq} is a subsequence of seq if there exist
integers 1 ≤ i1 ≤ ... ≤ iq ≤ m, s. t. r1 ⊆ ei1 , ..., rq ⊆ eiq .

Support. Let B = {seq1, ..., seqNp
} a set of sequences. The support FreqB(seq) of a sequence

seq is the number of sequences in B that have seq as a subsequence. The higher the support, the
more frequently the pattern occurs in the database.

Frequent sequential pattern. An event sequence seq is frequent and called a frequent sequential
pattern if its support is greater than or equal to a minimum threshold σ : FreqB(seq) ≥ σ.

A.1.2 ALGORITHM

The PrefixSpan algorithm was retained and uses the concept of ”prefixes” to efficiently search for
frequent patterns in a sequence database . The algorithm works by first identifying all frequent
single-item sequences, and then iteratively extending these prefixes to form longer sequential pat-
terns.

The algorithm starts with an empty prefix and the entire dataset as the initial projected database.
It then recursively explores and extends the prefixes while checking the support of the generated
sequences. Frequent sequences above the minimum support threshold are output, and the process
continues until no more frequent sequences can be found.

Algorithm 1 The PrefixSpan algorithm

1. Initialize: Start with an empty set of frequent patterns I0 = ∅
2. Frequent Items: For each item i in the first sequence seq1 of the input data, create a single-

ton pattern
3. Generate Sequences: For each frequent item i found in step 2, extend the current prefix

sequence by adding that item to the set of frequent patterns
4. Recursive Search: For each new sequence created in step 3, repeat steps 2 and 3 recursively.

For each pattern:
(a) Construct a database of all sequences that contain the pattern as a subsequence
(b) For each item that appears after the last item of the pattern in the input data, create a new

pattern by extending the pattern with the item
(c) Compute the support of the new pattern by concatenating the support of the item with

the support of the database
(d) If the new pattern is frequent in the database, add it to the set of frequent patterns and

continue the recursive search

PrefixSpan algorithm is known for its efficiency and scalability, particularly for mining long sequen-
tial patterns (Mabroukeh & Ezeife, 2010). Of note, several sequential pattern mining algorithms
were experimented, like APriori (Al-Maolegi & Arkok, 2014). Similar support for patterns were
found but computing time was much higher. This is in line with existing literature in terms of
run-time and memory usage (Jian Pei et al., 2001).

8



Accepted Paper at Learning from Time Series for Health Workshop ICLR 2024

Table 1: Most occurring patterns in health care pathway for each patient clusters

Cluster Count Freq. Top1 pattern (len1) Count Freq. Top1 pattern (len2) Count Freq. Top1 pattern (len3)

1 833 0.610 [’Death’] 507 0.371 [’05M09’, ’Death’] 301 0.220 [’05M09’, ’05M09’, ’Death’]

2 3467 0.685 [’Death’] 1542 0.305 [’05M09’, ’Death’] 336 0.066 [’05M09’, ’05M09’, ’Death’]

3 22 0.629 [’23M20’] 15 0.429 [’23M20’, ’23M20’] 8 0.229 [’23M20’, ’23M20’, ’23M20’]

4 2082 0.651 [’Death’] 1111 0.347 [’05M09’, ’Death’] 487 0.152 [’05M09’, ’05M09’, ’Death’]

5 224 0.579 [’05M09’] 132 0.341 [’05M09’, ’05M09’] 75 0.194 [’05M09’, ’05M09’, ’05M09’]

Table 2: Second most occurring patterns in health care pathway for each patient clusters

Cluster Count Freq. Top2 pattern (len1) Count Freq. Top2 pattern (len2) Count Freq. Top2 pattern (len3)

1 777 0.569 [’05M09’] 431 0.316 [’05M09’, ’05M09’] 256 0.187 [’05M09’, ’05M09’, ’05M09’]

2 2032 0.401 [’05M09’] 489 0.097 [’04M05’, ’Death’] 104 0.021 [’05M09’, ’05M09’, ’05M09’]

3 18 0.514 [’05M09’] 10 0.286 [’23M20’, ’16M11’] 8 0.229 [’23M20’, ’23M20’, ’23M20’]

4 1586 0.496 [’05M09’] 642 0.201 [’05M09’, ’05M09’] 285 0.089 [’05M09’, ’05M09’, ’05M09’]

5 223 0.576 [’Death’] 129 0.333 [’05M09’, ’Death’] 75 0.194 [’05M09’, ’05M09’, ’Death’]

Table 3: Third most occurring patterns in health care pathway for each patient clusters

Cluster Count Freq. Top3 pattern (len1) Count Freq. Top3 pattern (len2) Count Freq. Top3 pattern (len3)

1 456 0.334 [’05K10’] 255 0.187 [’04M05’, ’Death’] 124 0.091 [’05K10’, ’05M09’, ’Death’]

2 615 0.121 [’04M05’] 418 0.083 [’05M09’, ’05M09’] 102 0.020 [’02C05’, ’05M09’, ’Death’]

3 13 0.371 [’06M03’] 9 0.257 [’23M20’, ’05M09’] 8 0.229 [’23M20’, ’23M20’, ’23M20’]

4 823 0.257 [’02C05’] 505 0.158 [’04M05’, ’Death’] 208 0.065 [’02C05’, ’05M09’, ’Death’]

5 167 0.432 [’05K10’] 88 0.227 [’05K10’, ’05M09’] 56 0.145 [’05K10’, ’05M09’, ’05M09’]
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Table 4: Proportions of top 10 ICD-10 codes in nth hospitalization after first hospitalization for heart
failure - Deceased patients

0 1 2 3 4 5 6 7 8 9

05M09 1.000 0.169 0.155 0.143 0.131 0.134 0.137 0.124 0.124 0.123
Death 0.165 0.148 0.156 0.143 0.144 0.154 0.156 0.132 0.137
05K10 0.043 0.020 0.021 0.014 0.019 0.017 0.023 0.022 0.015
05M08 0.024 0.017 0.016 0.016
04M05 0.023 0.028 0.033 0.026 0.030 0.029 0.018 0.023 0.015
23M20 0.019 0.019 0.016 0.022 0.018 0.017 0.020 0.022 0.015
04M13 0.017 0.014 0.016 0.016 0.019 0.018
02C05 0.016 0.017 0.017 0.016 0.014 0.019 0.020
16M11 0.015 0.020 0.020 0.019 0.023 0.021 0.023 0.022 0.022
05K06 0.013 0.015 0.016 0.014
04M20 0.014 0.016 0.019 0.016 0.014 0.017
06M03 0.015 0.015
09M05 0.014
10M16 0.019 0.014
11M04 0.018
23M06 0.012
23Z02 0.014 0.017
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A.2 CLUSTERING

A.2.1 DISTANCE MATRIX

Because we are working with strings of characters instead of numerical values - and we must keep
those strings, we cannot encode them into numerical values - we cannot directly apply clustering
algorithms on our data. With N the total number of patients, the distance matrix A writes

∀(i, j) ∈ [1, N ], Ai,j = DP (patienti, patientj) (1)

Two properties are noted:

• ∀i ∈ [1, N ], Ai,i = 0,

• AT = A⇔ ∀(i, j) ∈ [1, N ], Ai,j = Aj,i.

A.2.2 K-MEDOIDS ALGORITHM

The algorithm proceeds iteratively:

1. Select k random medoids from the dataset;

2. Each data point is assigned to its closest medoid and calculates the total distance between
them;

3. Improve the clustering by iteratively swapping one of the medoids with a non-medoid point
and recompute the total distance;

4. Whenever the total distance decreases, the swap is accepted and the new point becomes the
medoid for the cluster.

This process is repeated until no further improvement can be made. The pseudo-code is provided
below.

Algorithm 2 K-Medoids Algorithm

Require: D: dataset, k: number of clusters
Ensure: C: set of clusters, M : set of medoids

1: Initialize M with k random data points from D
2: Assign each data point in D to its closest medoid
3: Calculate the total distance TD of all data points to their assigned medoids
4: change← true
5: iter ← 1
6: while change do
7: change← false
8: for all m ∈M do
9: for all p ∈ D \M do

10: Swap m with p
11: Assign each data point in D to its closest medoid
12: Calculate the total distance TD′ of all data points to their assigned medoids
13: if TD′ < TD then
14: M ← updated set of medoids
15: C ← updated set of clusters
16: TD ← TD′

17: change← true
18: else
19: Swap m with p ▷ Revert swap
20: end if
21: end for
22: end for
23: end while
24: return C, M

11
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A.2.3 CLUSTERS VISUALIZATION

Except for cluster 3, there were no significant differences amongst clusters. Cluster 3 with only 35
patients, stood out due to a considerably higher number and/or longer duration of hospitalizations
compared to other patients. Other clusters included 1,366 patients (mean (sd) age = 78 (12.4) and
44.8% were women), 5,063 patients (mean (sd) age = 83 (13.8) and 55.6% were women), 3,200
patients (mean (sd) age = 81 (12.3) and 47.8% were women), and 387 patients (mean (sd) age = 72
(13.8) and 44.2% were women), respectively.

(a) Cluster 1

(b) Cluster 2 (c) Cluster 3

(d) Cluster 4 (e) Cluster 5

Figure 5: Most frequent ICD-10 codes after first hospitalization for heart failure - Deceased patients
- Cluster 1 to 5

Here is the Python code to generate the figures above:

Listing 1: Python code to compute most frequent ICD-10 codes after first hospitalization for heart
failure
l e n g t h c a r e p a t h w a y = 10
t o p k = 5 # we ’ l l c o n s i d e r t h e t o p 5 most f r e q u e n t ICD−10 codes

# f o r each s t e p i n t h e care pathways

d a t a b a s e t o p k f r e q u e n t c o d e s = {}

12
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f o r i in range ( l e n g t h c a r e p a t h w a y ) :
# f o r h o s p i t a l i z a t i o n i i n a l l ca re pathways ,
# c o n s i d e r t h e 5 most f r e q u e n t ICD−10 codes found
# t h e k most f r e q u e n t codes per h o s p i t a l i z a t i o n s t e p were found p r e v i o u l s y
# t h r o u g h w i t h t e x t min ing a l g o r i t h m s
t o p k f r e q u e n t c o d e s i = d f . i l o c [ i ] . s o r t v a l u e s ( a s c e n d i n g = F a l s e ) [ : t o p k ]
d a t a b a s e t o p k f r e q u e n t c o d e s [ f ’{ i } ’ ] = t o p k f r e q u e n t c o d e s i

d a t a b a s e t o p k f r e q u e n t c o d e s = pd . DataFrame ( d a t a b a s e t o p k f r e q u e n t c o d e s ) . t r a n s p o s e ( )
d a t a b a s e t o p k f r e q u e n t c o d e s . p l o t ( k ind = ’ b a r ’ , s t a c k e d =True ) ) ;

Table 5: Samples of the database top k frequent codes dataframe

04M05 04M13 04M24 05K10 05M08 05M09 05M22 10M16 11M04 16M11 23M20 23Z02 Death

0 NaN NaN NaN NaN NaN 1111.000000 NaN NaN NaN NaN NaN NaN
1 23.000000 NaN NaN 34.000000 28.000000 204.000000 NaN NaN NaN NaN NaN 118.000000
2 37.000000 NaN NaN NaN 18.000000 191.000000 NaN NaN NaN 23.000000 NaN NaN 108.000000
3 39.000000 20.000000 NaN NaN NaN 160.000000 NaN NaN NaN NaN NaN 18.000000 124.000000
4 21.000000 NaN NaN NaN NaN 110.000000 NaN NaN NaN 15.000000 14.000000 NaN 133.000000

(a) Sankey Diagram Cluster 1

(b) Sankey Diagram Cluster 2 (c) Sankey Diagram Cluster 3

(d) Sankey Diagram Cluster 4 (e) Sankey Diagram Cluster 5

Figure 6: Sankey Diagrams: patient frequent flows at the cluster level
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Here is the Python code for the generateSankey function using the prefixspan library:

Listing 2: Python code for generating Sankey diagrams using PrefixSpan
from p r e f i x s p a n i m p o r t P r e f i x S p a n

d e f g e n e r a t e S a n k e y ( d f c a r e p a t h w a y s , c l u s t e r n , t o p k f r e q u e n t c o d e s ) :
# d f c a r e p a t h w a y s r e p r e s e n t s t h e pa thways o f d e c e a s e d h e a r t − f a i l u r e p a t i e n t s
d f p a t h w a y s c l u s t e r = d f c a r e p a t h w a y s . l o c [ d f c a r e p a t h w a y s . c l u s t e r == c l u s t e r n ]
n b p a t i e n t s c l u s t e r n = l e n ( d f p a t h w a y s c l u s t e r )
d f p a t h w a y s 2 3 = d f p a t h w a y s c l u s t e r . a s t y p e ( s t r ) . i l o c [ : , 2 : 4 ]
# keep f i r s t and second ICD−10 codes
d f p a t h w a y s 3 4 = d f p a t h w a y s c l u s t e r . a s t y p e ( s t r ) . i l o c [ : , 3 : 5 ]
# keep second and t h i r d ICD−10 codes

c o r p u s h e a r t f a i l u r e s = [ ]
f o r p a t i e n t i n r a n g e ( n b p a t i e n t s c l u s t e r n ) :

i c d c o d e s = [ d f p a t h w a y s 2 3 . i l o c [ p a t i e n t ] [ 0 ] , d f p a t h w a y s 2 3 . i l o c [ p a t i e n t ] [ 1 ] ]
c o r p u s h e a r t f a i l u r e s . append ( i c d c o d e s )

ps = P r e f i x S p a n ( c o r p u s h e a r t f a i l u r e s )
ps . min len = 2
o u t p u t c o r p u s = ps . t opk ( t o p k f r e q u e n t c o d e s )

c o r p u s h e a r t f a i l u r e s 2 = [ ]
f o r p a t i e n t i n r a n g e ( n b p a t i e n t s c l u s t e r n ) :

i f s t r ( d f p a t h w a y s 3 4 . i l o c [ p a t i e n t ] [ 1 ] ) ! = ’ nan ’ :
i c d c o d e s = [ d f p a t h w a y s 3 4 . i l o c [ p a t i e n t ] [ 0 ] , d f p a t h w a y s 3 4 . i l o c [ p a t i e n t ] [ 1 ] ]
c o r p u s h e a r t f a i l u r e s 2 . append ( i c d c o d e s )

e l s e :
c o r p u s h e a r t f a i l u r e s 2 . append ( [ d f p a t h w a y s 3 4 . i l o c [ p a t i e n t ] [ 0 ] , ’ nan ’ ] )

p s c o r p u s 2 = P r e f i x S p a n ( c o r p u s h e a r t f a i l u r e s 2 )
p s c o r p u s 2 . min len = 2
o u t p u t c o r p u s 2 = p s c o r p u s 2 . t opk ( t o p k f r e q u e n t c o d e s )

r e t u r n o u t p u t c o r p u s , o u t p u t c o r p u s 2

The outputs of the function generateSankey above are then used with HTML code to create the
clean Sankey outputs.

We also evaluated the clusters by calculating the minimum distance between the ICD-10 code of
each data point and the ICD-10 codes of the cluster’s medoid (see Figure 7). The shading in the
graphs indicates the extent to which the ICD-10 code deviates from the hospitalization pattern of
the patient medoid. Lighter areas, particularly in clusters 1 and 5, suggest that the data points within
these clusters exhibit relatively close similarity to one another.

A.3 SURVIVAL ANALYSIS

We define the survival function

S(t) = P[T > t] = 1− F (t) =

∫ ∞

t

f(u)du

with f the density and F the distribution function. T is the time of occurrence of some specific
event, time to death in our case. We introduce censoring C to the labels, whenever the patient died
or not with T ∗ = min(T,C) and ∆ = ⊮{T≤C}.

A convenient way of modeling relationships between T and explanatory features X is the hazard
function. Let λ(t|X) denote the hazard function associated with the distribution of T given X .
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Figure 7: Distance of ICD-10 codes with the medoid for each cluster

The Cox proportional hazard (CPH) is the most common approach to model survival events (Cox,
1972). It writes

λ(t|X) = λ∗
0(t) exp(f

∗(X))

λ∗
0 is the baseline hazard function and usually f∗(X) = XTβ with β ∈ Rd.

This model assumes hazards to be proportional, i.e. hazard ratios to be independent of time as

λi(t|Xi = xi)

λj(t|Xj = xj)
= exp(f∗(xi)− f∗(xj))

This approach can be penalized and/or include splines to handle non-linear relations (Tibshirani,
1996). This semi-parametric approach was applied to the data, however its main assumptions were
never met. For this reason ensemble methods were selected.

Here is the Python code for the Survival random forest function using the scikit
survival library:

Listing 3: Python code for generating the Grid Search over the number of estimator in our survival
random forest
d a t a = p r o f i l p a t i e n t [ [ ’ y n a i s ’ , ’ BEN SEX COD ’ , ’ Nb hosp i t ’ , ’CHOC’ , ’ N b j o u r s s e j ’ ] ]
Labe l = p r o f i l p a t i e n t [ [ ’ Mort ’ , ’ Nb su rv i e ’ ] ] . t o r e c o r d s ( i n d e x = F a l s e )

X t r a i n , X t e s t , y t r a i n , y t e s t = t r a i n t e s t s p l i t ( da t a , Label , t e s t s i z e = 0 . 2 5 )
L i s t e s c o r e = [ ]
L i s t e n b e s t i m a t o r s = [ ]
r s f = R a n d o m S u r v i v a l F o r e s t ( m i n s a m p l e s s p l i t =10 ,

m i n s a m p l e s l e a f =15 ,
n j o b s = −1 ,
r a n d o m s t a t e = r a n d o m s t a t e ,
v e r b o s e =0)

f o r i i n r a n g e ( 1 , 2 0 ) :
n e s t i m a t o r s = i * 1
r s f . s e t p a r a m s ( n e s t i m a t o r s = n e s t i m a t o r s )
r s f . f i t ( X t r a i n , y t r a i n )
L i s t e s c o r e . append ( r s f . s c o r e ( X t e s t , y t e s t ) )
L i s t e n b e s t i m a t o r s . append ( n e s t i m a t o r s )
p r i n t ( r s f . s c o r e ( X t e s t , y t e s t ) )

p l t . p l o t ( L i s t e n b e s t i m a t o r s , L i s t e s c o r e )
p l t . x l a b e l ( ” ” )
p l t . y l a b e l ( ” ” )
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p l t . g r i d ( True )

Table 6: Evaluation for each cluster

Cluster AIC C-Index
1 8,495 0.612
2 41,748 0.640
3 39 0.887
4 24,015 0.621
5 1773 0.543

A.4 CLINICAL DISCUSSION

The cohort of this study was comparable to other similar studies, namely in terms of age and gender,
and with poor prognosis with high rate of hospitalization and mortality (Farré et al., 2017). The
results obtained from this work may thus be comparable to those of other similar groups. For
this reason, age and being male being strongly associated with mortality were expected findings
(Simpson et al., 2020).

Nevertheless, our study is subject to several limitations. First, the inclusion of primary diagnoses
alongside the principal diagnoses in hospitalizations could provide a more comprehensive view of
patients’ medical histories, enabling a deeper understanding of their healthcare trajectories. Unfor-
tunately, acquiring such data presents a challenge, as only a limited subset of hospitalizations in
our dataset contains this information. Consequently, our analysis is constrained to ICD-10 codes.
Besides, the sequential pattern mining analysis uncovered certain high-risk patterns that could po-
tentially serve as additional features in our survival model, similar to our inclusion of cardiac shock.
Integrating these factors into our model would enable to quantify the excess mortality associated
with these risky healthcare sequences. We believe that this additional information could enhance
the precision of our predictions and yield a more nuanced understanding of the underlying causes of
mortality among heart failure patients.
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