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ABSTRACT

Multimodal learning promises to harness complementary information across di-
verse modalities, yet real-world deployments often face missing modalities due
to acquisition costs, privacy constraints, or data corruption, leading to substan-
tial performance degradation. We present SELFMASK, a framework for learning
robust representations in the presence of incomplete multimodal data. During
training, SELFMASK imputes missing modality representations through a masked
representation learning scheme with adaptive masking, where informative masks
are learned from data rather than sampled at random. To guide the imputation
without relying on unavailable ground-truth for missing modalities, we introduce
a cross-modal consistency loss: predicted representations of missing modalities
are required not only to align with semantic content but also to support the recon-
struction of observed ones. This consistency-based objective encourages robust,
semantically grounded representations. Experiments on MIMIC-IV and CMU-
MOSEI demonstrate that SELFMASK consistently improves resilience and predic-
tive accuracy under diverse missing-modality scenarios. Ablation studies further
show that our learned masks outperform conventional random masking, yielding
more reliable cross-modal representations. Our framework is broadly applicable
across multimodal domains, offering a practical solution for real-world settings
where incomplete modalities are the norm.

1 INTRODUCTION

Multimodal learning has emerged as a powerful paradigm for integrating complementary informa-
tion from heterogeneous sources, such as images, text, and time-series signals (Wu et al., 2024; Zong
et al., 2024). By exploiting cross-modal interactions, multimodal approaches often yield richer rep-
resentations and superior predictive performance compared to unimodal methods (Wu et al., 2024).
Yet, most existing frameworks rely on the strong assumption that all modalities are simultaneously
available during both training and inference. In practice, however, this assumption is rarely satisfied.
Modalities may be absent due to acquisition costs, privacy restrictions, sensor malfunction, or data
corruption (Hayat et al., 2022; Zhang et al., 2023; Yao et al., 2024). For instance, many patients’
medical records lack imaging scans, while online media data may include text but not audio. Such
incomplete multimodal conditions often lead to severe performance degradation, undermining the
reliability of multimodal systems in real-world applications (Ma et al., 2021; Li et al., 2025).

Existing approaches to missing modality scenarios can be categorized into three main paradigms.
Generative imputation methods (Boyko et al., 2025; Yao et al., 2024) reconstruct missing raw data
through autoencoder architectures, but they may be expensive for high-dimensional modalities and
exhibit semantic drift in generated content that degrades downstream task performance. Feature
alignment approaches (Wang et al., 2023; Zhang et al., 2023) project modalities into shared repre-
sentation spaces using linear or nonlinear transformations, assuming modalities contain overlapping
semantic information—an assumption that fails for modalities with disjoint information content or
different temporal resolutions. Domain-specific architectures (Hayat et al., 2022; Xu et al., 2024; Li
et al., 2025) incorporate task-specific inductive biases through specialized attention mechanisms or
fusion layers, limiting their applicability to new domains without architectural modifications.
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Figure 1: Missing modality scenario on multimodal data.

While the three paradigms above cover the dominant directions, existing methods also adopt related
strategies that attempt to refine or extend them. Meta-learning approaches (Ma et al., 2021; Zhang
et al., 2023) require extensive support sets with complete modality pairs during training, limiting
their applicability to scenarios with sparse supervision. Disentanglement-based methods (Wang
et al., 2023; Yao et al., 2024; Xu et al., 2024; Li et al., 2025) optimize modality-specific reconstruc-
tion objectives that fail to generalize across heterogeneous data distributions. Masked autoencoder
variants (Boyko et al., 2025; Shah et al., 2023) achieve reconstruction fidelity through computation-
ally expensive generative modeling in high-dimensional input spaces, while contrastive methods
depend critically on carefully designed positive-negative pair sampling strategies. These approaches
fundamentally treat missing modalities as a data corruption problem rather than leveraging modality
incompleteness as a regularization mechanism for learning robust cross-modal representations.

In this work, we introduce SELFMASK, a learning framework designed to handle multimodal data
with missing modalities. Inspired by masked representation learning frameworks (He et al., 2022;
Assran et al., 2023), our framework reconstructs the representations of missing modalities from
masked inputs. However, unlike conventional masked representation learning that relies on ran-
domly sampled masks, we propose an adaptive masking strategy that learns informative masking
patterns directly from data, thereby improving the efficiency of multimodal representation learning.
To further enhance cross-modal robustness, we optimize a representation matching loss that explic-
itly emphasizes consistency across modalities. Although our method can be viewed as an imputation
approach, it differs fundamentally from prior imputation methods that operate in raw input space:
instead, we directly impute missing modality representations, allowing the model to focus on cap-
turing and recovering core semantic content rather than superficial details. We evaluate our method
on the MIMIC-IV and CMU-MOSEI benchmarks, demonstrating consistent gains in both resilience
and predictive accuracy across a range of missing-modality scenarios.

2 METHODS

2.1 PROBLEM SETUP AND NOTATIONS

Consider a multimodal dataset withM modalities withN data points. Each data point may have dif-
ferent subsets of modalities observed, and we denote Oi ⊆ [M ] := {1, . . . ,M} the set of observed
modalities and Mi := [M ] \ Oi the set of missing modalities for the ith data point. The dataset
D = {(X(Oi)

i , yi)}Ni=1 consists of a pair of inputs X(Oi)

i := (X(m)

i )i∈Oi with X(m)

i denoting the ith

input from mth modality, and yi is a label. Similar to X(Oi)

i , we denote the input for the missing
modality as X(Mi)

i . For notational simplicity, we omit the sample index i when the context is clear.

Our primary objective is to learn a robust predictor that maps an input with possibly missing modal-
ities to a quantity to predict. A general framework to achieve this consists of modality-specific en-
coders and a subsequent fusion module. We denote the encoder for the mth modality as E (m) which
maps an input X(m) to a sequence of latent representations Z(m) = [z(m)

1 , . . . , z(m)

T (m) ] ∈ RT (m)×d,
where T (m) is the sequence length and d is the dimension of the representations. These sequences
naturally arise from different data structures: image patches in Vision Transformers (ViTs) (Doso-
vitskiy et al., 2020), token embeddings in text, or temporal segment embeddings in time-series data.
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Figure 2: Overview of SELFMASK. The illustration emphasizes how cross-modal self-masking
provides auxiliary supervision for observed modalities while guiding the representation predictor to
impute coherent missing-modality embeddings, ultimately supporting robust multimodal fusion.

The representations are aggregated by a fusion module fψ with learnable parameters ψ to produce
the final prediction ŷ.

When some modalities are missing, multimodal models must handle incomplete inputs x(m)m ∈ O
while still producing reliable predictions. A common strategy is to impute missing values with
trivial substitutes (e.g., zeros or learnable parameters), but this approach fails to capture important
cross-modal relationships that influence the final prediction. To address this, we propose learning a
representation predictor gϕ with parameters ϕ, which takes encoded representations from observed
modalities and imputes the missing ones by leveraging cross-modal interactions. To achieve this,
we introduce SELFMASK, a simple yet effective cross-modal learning framework for training the
representation predictor. An overview of the framework is shown in Figure 2.

2.2 MISSING MODALITY REPRESENTATION IMPUTATION

To learn the predictor gϕ, we adopt a masked representation learning approach that learns the model
by reconstructing the representations from masked inputs (He et al., 2022). Instead of predicting
raw signals, we learn the predictor to reconstruct in representation space, thereby avoiding wasted
capacity on reconstructing minor artifacts or low-level details in high-dimensional spaces and en-
couraging it to focus on capturing semantic content (Assran et al., 2023; Bardes et al., 2025; Assran
et al., 2025).

The overall training pipeline goes as follows. Given an input x(O), we first apply the masks m(m) for
each modality x(m) in the observed modality set O. For instance, if the mth modality were images,
the masks may be a binary matrix that mask out some pixels or patches of the images. Then we put
the masked input to the encoder E (m) to get

Z̃(m) := [z̃(m)

1 , . . . , z̃(m)

T (m) ] = E (m)(m(m) ⊙ x(m)) ∈ RT
(m)×d. (1)

For missing modality m ∈ M, we introduce a learnable missing token t(m) ∈ Rd that is replicated
to form T(m) = 1T (m) ⊗ t(m) ∈ RT (m)×d, where 1T (m) is a vector of ones of length T (m). Finally,
before putting the representations into the predictor gϕ, we add learnable modality embeddings
e(m) ∈ Rd as replicated form of E(m) = 1T (m) ⊗ e(m) ∈ RT (m)×d to distinguish between differ-
ent modalities. The predictor gϕ then takes these inputs and predicts the representations from the
missing modalities as well as the representations that might have been computed from the unmasked
inputs in the observed modalities,

(Ẑ(m))m∈[M ] := gϕ

(
concat

(
{Z̃(m) +E(m)}m∈O, {T(m) +E(m)}m∈M

))
(2)

In a typical masked representation learning framework, one compares Ẑ(m) with the representation
Z(m) obtained from the unmasked input and minimizes the reconstruction error. In our setting,
however, two key challenges arise:
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• Random masks ignore cross-modal correlations: In multimodal data, different modali-
ties share common semantic content, giving rise to cross-modal correlations. Rather than
masking inputs at random as in single-modality settings, we can exploit these correla-
tions—for example, by designing masks for a specific modality based on information from
other modalities.

• Absence of targets for missing modalities: Unlike the standard case, we lack ground-truth
representations (Z(m))m∈M for missing modalities. Simply skipping learning for these
modalities may be ineffective, particularly when the dataset contains a high proportion of
missing data.

In the following sections, we describe our method to tackle these challenges.

2.3 CROSS-MODAL SELF-MASKING PREDICTION

2.3.1 MASKING THE OBSERVED MODALITIES

In principle, one could predict the missing representations directly without masking the observed
modalities. Since the representation predictor gϕ already provides a mechanism for imputing miss-
ing representations, it could be trained to minimize reconstruction error against the ground truth.
However, aside from the fundamental issue that no ground-truth representations exist for missing
modalities, this approach may also lead to suboptimal solutions.

Specifically, the representations that support task performance and those that are optimal for
missing-modality prediction may not coincide, potentially resulting in representation collapse or the
learning of task-irrelevant features (Balestriero & LeCun, 2024). To mitigate these issues and im-
prove the robustness of representation prediction, we introduce a cross-modal self-masking frame-
work. In this framework, we apply masks to inputs from the observed modalities and train gϕ to
predict the representations for both observed and missing modalities.

The central idea is that randomly masking portions of the observed modalities and requiring the
model to reconstruct them produces a stronger and more stable training signal. This strategy offers
several benefits: (1) it discourages the predictor from overfitting to trivial solutions, (2) it promotes
the learning of semantically meaningful cross-modal relationships, and (3) it provides additional
supervised signals that complement the missing-modality prediction objective.

Nevertheless, naive random masking may still be suboptimal for cross-modal learning. Different
modalities vary in information density and semantic relevance. To address this, we propose to learn
which portions of the observed modalities should be masked so as to maximally benefit representa-
tion prediction for the missing modalities.

2.3.2 MODAL-AWARE MASK PREDICTION.

To determine which parts of the observed modalities to mask, we introduce a mask predictor hω
with parameters ω. The mask predictor is guided by an exponential moving average (EMA) of the
representation predictor parameters ϕ, which serves as a slowly varying reference:

ϕ̄← τ ϕ̄+ (1− τ)stopgrad(ϕ), (3)

where τ ∈ [0, 1) is the decay coefficient and stopgrad(·) is the stop gradient operation blocking the
gradient flow. Using the EMA parameters ϕ̄, we compute the mask prediction as

(σ(m))m∈O = hω
(
gϕ̄

(
concat

(
{Z(m) +E(m)}m∈O, {T(m) +E(m)}m∈M

)))
,

I (m) = TopK(σ(m),K(m)), M(m) = 1[I(m) ̸= 0],
(4)

where TopK(·,K(m)) retains the tokens with the top K(m) values and zeros out the rest, and 1[·]
denotes an indicator function returning one for selected tokens and zero otherwise. With the mask,
the representation for the mth modality is then computed as,

Z̃(m) = E (m)
(
X(m) ⊙ (1−M(m)) +V(m) ⊙M(m)

)
, (5)

where V(m) is a learnable placeholder token to be filled for masked out values in the mth modality.
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The key intuition is that the mask predictor estimates which parts of the representations are most
important according to the current state of the model. Conceptually, it maps representations into
activation signals, where larger values correspond to more informative components. By selectively
masking out these important parts and requiring the model to reconstruct them (and simultaneously
predict the missing modalities), the representation predictor gϕ is encouraged to capture essential
cross-modal relationships and thus learn more robust representations.

2.3.3 MULTI-OBJECTIVE REPRESENTATION PREDICTION.

Given masked representations (Z̃(m))m∈O, the representation predictor learns to estimate missing
modality representations with two complementary objectives. Below, we describe them in detail.

Prediction for observed modalities. Let Ẑ(m) be the representation predicted for the mth modality.
Although our primary goal is to predict the representations for missing modalities, we let the model
reconstruct the representations for the observed modalities as well to encourage learning robust
cross-modal representations. Specifically, we introduce the loss,

Lobs =
1

|O|
∑
m∈O

1

K(m)

∥∥∥(Ẑ(m) − Z(m)
)
⊙M(m)

∥∥∥2
F
, (6)

where ∥ · ∥F denotes the Frobenius norm.

Prediction for missing modalities through cross-modal consistency. Since ground-truth repre-
sentations are unavailable for missing modalities, we enforce a cross-modal consistency objective:
the predicted missing representations should contain sufficient semantic information to support re-
construction of the observed ones. Concretely, we compute

(Z
(m)

)m∈[M ] := gϕ

(
concat

(
{Z̃(m) +E(m)}m∈O, {Ẑ(m) +E(m)}m∈M

))
, (7)

that is, the representations predicted with the missing part replaced by the predicted missing repre-
sentations Ẑ(m). Also, for the representation Z̃(m), we use higher masking ratio (i.e., smaller K(m))
than the one used for Lobs, encouraging gϕ to rely more on the predicted missing representations.
We then compare the reconstructed outputs (Z

(m)
)m∈O against the ground-truth:

Lcross =
1

|O|
∑
m∈O

1

K(m)

∥∥∥(Z(m) − Z(m)

)
⊙M(m)

∥∥∥2
F
. (8)

By minimizing this loss, the model is driven to produce missing representations that are semantically
consistent with the observed ones, enabling reliable cross-modal reconstruction.

2.4 MULTIMODAL FUSION AND TASK PREDICTION

After obtaining complete multimodal representations (observed (Z(m))m∈O and predicted
(Ẑ(m))m∈M)), we aggregated them for the final task prediction.

ŷ = fψ(concat((Z
(m))m∈O, (Ẑ

(m))m∈M)) (9)

The fusion module fψ then combines these modality-specific representations to produce the final
prediction ŷ. The task-specific loss Ltask employs cross entropy for classification tasks and mean
squared error for regression tasks.

2.5 LEARNING OBJECTIVE

The complete training objective combines task loss with our representation prediction losses:

L = Ltask + αLobs + βLcross (10)

where α, β control the relative importance of each reconstruction objective. During training, we ran-
domly simulate missing modality scenarios and apply EMA updates to the mask predictor. During
inference with missing modalities, we use the representation predictor to estimate missing represen-
tations and combine them with observed ones for final prediction. The detailed training pipeline and
algorithmic implementation are provided in the Appendix.

5
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3 EXPERIMENTS

3.1 DATASETS AND EXPERIMENTAL SETUP

Missing Modality Scenario Construction. To rigorously evaluate multimodal systems under miss-
ing modality conditions, we construct controlled experimental scenarios using datasets that contain
complete modality pairs. This approach ensures fair comparison across different missing patterns
and eliminates confounding factors from naturally occurring missing data. We focus on two diverse
domains: clinical prediction with heterogeneous medical data (MIMIC-IV) and sentiment analysis
with synchronized audiovisual content (CMU-MOSEI).

MIMIC-IV Dataset Configuration. We utilize the MIMIC-IV database (Johnson et al., 2023), a
large, publicly available database comprising de-identified health-related data associated with over
200,000 critical care patients. Following the same data processing and experimental setup as Hayat
et al. (2022), we employ three complementary modalities: (1) structured time-series Electronic
Health Records (EHR) containing vital signs, laboratory results, and medication information; (2)
Chest X-ray images (CXR) providing visual diagnostic information; and (3) clinical text reports
(TXT) including discharge summaries and nursing notes that capture clinical reasoning.

To construct missing modality scenarios, we extract paired samples containing all three modalities
from the complete dataset, ensuring that every sample has ground-truth representations for all modal-
ities during training. For in-hospital mortality prediction, we use 4,880 training, 540 validation, and
1,373 test samples. For phenotyping tasks, which involve predicting multiple clinical conditions si-
multaneously, we use 7,744 training, 882 validation, and 2,166 test samples. We evaluate our model
on two critical clinical prediction tasks: in-hospital mortality prediction (binary classification) and
phenotyping (multi-label binary classification for 25 clinical conditions).

CMU-MOSEI Dataset Configuration. We employ the CMU-MOSEI dataset Zadeh et al. (2018),
which contains 22,856 video clips from over 1,000 online YouTube speakers expressing opinions
and sentiments across diverse topics. The dataset provides three synchronized modalities: (1) audio
recordings capturing prosodic features, tone, and vocal characteristics; (2) textual transcriptions con-
taining semantic and linguistic information; and (3) video recordings providing facial expressions,
gestures, and visual cues. We use the standard dataset split with 16,326 training, 1,871 validation,
and 4,659 test samples. All utterances are randomly selected from a variety of topic and monologue
videos, ensuring diverse content representation. Each sample is annotated with sentiment scores
following the annotation scheme of [-3, 3] as established by Xu et al. (2024), where -3 represents
highly negative sentiment and +3 represents highly positive sentiment.

3.2 BASELINES

We benchmark SELFMASK against a diverse set of state-of-the-art multimodal learning systems that
explicitly reason about modality incompleteness or heterogeneous fusion mechanisms, including
SMIL (Ma et al., 2021), which perturbs latent spaces under a Bayesian meta-learning framework;
MedFuse (Hayat et al., 2022), which employs an LSTM-based fusion module for partially paired
records; ShaSpec (Wang et al., 2023), which disentangles common and modality-specific cues via
shared–specific encoders; MoMKE (Xu et al., 2024), a two-stage mixture-of-experts model with a
soft router; DrFuse (Yao et al., 2024), which applies disease-wise attention to disentangle shared
and modality-specific factors; and SimMLM (Li et al., 2025), which leverages a dynamic mixture-
of-modality experts with a More-vs-Fewer ranking loss to guarantee non-degrading inference.

3.3 IMPLEMENTATION DETAILS

Model Architecture. For MIMIC-IV, we employ domain-specific encoders: a Transformer en-
coder for structured EHR time-series data, SigLIP2 (Tschannen et al., 2025) for chest X-ray im-
ages, and CXR-BERT (Boecking et al., 2022) for clinical text reports. For CMU-MOSEI, we use
wav2vec (Schneider et al., 2019) for audio, DeBERTa (He et al., 2021) for text, and MA-Net (Zhao
et al., 2021) for video processing. All encoders are pre-trained on their respective modalities. The
representation predictor gϕ and mask predictor hω are implemented as multi-layer Transformers with
hidden dimension 256. The fusion module fψ is a single-layer Transformer that aggregates multi-
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Table 1: Mortality prediction under missing modality scenarios on MIMIC-IV dataset.

Scenario Method AUROC (↑) AUPRC (↑) ACC (↑) F1-w (↑) NLL (↓)
No Missing Baseline 86.7 ±0.4 61.6 ±1.9 87.9 ±0.6 86.2 ±1.2 0.303 ±0.011

zero-fill 74.3 ±4.8 36.5 ±3.7 80.7 ±2.4 80.9 ±1.7 0.455 ±0.056

random-fill 72.2 ±4.1 35.5 ±2.6 81.0 ±2.5 80.7 ±1.4 0.431 ±0.028

SMIL 74.4 ±1.3 35.3 ±1.4 82.7 ±1.8 82.3 ±0.7 0.745 ±0.184

MedFuse 76.2 ±0.6 35.2 ±1.1 83.2 ±0.8 80.2 ±0.5 0.831 ±0.228

ShaSpec 75.5 ±1.9 38.4 ±2.3 85.5 ±0.2 81.5 ±0.9 0.372 ±0.013

MoMKE 77.3 ±0.7 41.2 ±1.4 84.2 ±0.8 83.0 ±0.6 0.386 ±0.013

SimMLM 77.0 ±0.5 41.5 ±1.5 84.7 ±0.4 83.2 ±0.6 0.381 ±0.012

Random
Modality
Missing

Ours 78.8 ±0.8 43.7 ±1.3 85.1 ±1.5 83.6 ±0.6 0.365 ±0.015

modal representations for final prediction for MIMIC-IV, and MLP with residual path for CMU-
MOSEI.

Training Configuration. We train all models using the Adam optimizer with batch size 16. Learn-
ing rates are task-specific: 1× 10−5 for mortality prediction, 5× 10−5 for phenotyping on MIMIC-
IV, and 1 × 10−4 for sentiment analysis on CMU-MOSEI. Models are trained for 100 epochs with
early stopping based on validation performance. We apply dropout (rate=0.3) and set loss weights
α = 0.01 and β = 0.1 for the representation prediction objectives Lobs and Lcross respectively.

Masking Strategy Configuration. During training, we employ adaptive masking with context-
dependent ratios: 25% masking ratio for standard reconstruction (Lobs) and 50% for cross-modal
consistency (Lcross). The mask predictor uses exponential moving average (EMA) updates with
decay coefficient τ = 0.996 to provide stable masking guidance. This dual-ratio strategy encourages
the model to rely more heavily on predicted missing representations during cross-modal consistency
learning.

Missing Modality Simulation and Evaluation Protocol. Our experimental design carefully bal-
ances training robustness with evaluation comprehensiveness. During training, we employ a dy-
namic missing modality simulation where each batch randomly drops different combinations of
modalities with equal probability. This creates a diverse set of missing patterns that forces the model
to learn generalizable cross-modal relationships rather than memorizing specific missing configura-
tions. The random simulation covers all possible missing scenarios: single modality available, two
modalities available, and complete modality sets, ensuring that the representation predictor learns to
handle any arbitrary missing pattern.

For evaluation, we design systematic missing scenarios that reflect real-world deployment chal-
lenges. We construct two primary evaluation conditions: (1) Partial Missing Scenarios where ex-
actly one modality is missing (50% of test samples), simulating common situations like equipment
failure, data corruption, or acquisition constraints; and (2) Severe Missing Scenarios where exactly
two modalities are missing (remaining 50% of test samples), representing critical situations where
only minimal information is available. This balanced protocol ensures comprehensive assessment
across different levels of data incompleteness and provides insights into model degradation patterns
under increasing data scarcity. All experiments are conducted with three independent runs using dif-
ferent random seeds, and we report mean performance and standard deviation across runs to ensure
statistical significance and reproducibility.

3.4 CLINICAL PREDICTION RESULTS ON MIMIC-IV DATA

The results on MIMIC-IV demonstrate the effectiveness of our cross-modal learning framework
across two critical clinical prediction tasks. Tables 1 and 2 present comprehensive comparisons
under random missing modality scenarios, where our method consistently outperforms state-of-the-
art baselines.

3.5 SENTIMENT ANALYSIS RESULTS ON CMU-MOSEI DATA

Table 3 presents results on the CMU-MOSEI dataset for sentiment prediction under missing modal-
ity conditions. The results validate the generalizability of our approach across different domains and
modality types.
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Table 2: Phenotyping prediction under missing modality scenarios on MIMIC-IV dataset.

Scenario Method AUROC (↑) AUPRC (↑) ACC (↑) F1-w (↑) NLL (↓)
No Missing Baseline 73.7 ±0.1 47.0 ±0.2 80.8 ±0.2 78.2 ±0.1 0.422 ±0.001

zero-fill 64.2 ±0.2 36.0 ±0.1 76.9 ±0.8 75.2 ±0.3 0.505 ±0.006

random-fill 61.7 ±0.3 34.5 ±0.1 77.6 ±0.3 74.9 ±0.1 0.491 ±0.003

SMIL 59.1 ±2.9 30.0 ±2.6 78.3 ±0.2 70.3 ±0.1 0.479 ±0.006

MedFuse 61.9 ±0.9 32.4 ±0.4 78.9 ±0.1 72.6 ±0.5 0.474 ±0.001

ShaSpec 65.6 ±0.4 35.1 ±0.4 79.2 ±0.2 73.1 ±0.7 0.459 ±0.001

MoMKE 66.3 ±0.2 37.5 ±0.3 77.2 ±0.6 75.6 ±0.3 0.503 ±0.006

SimMLM 69.5 ±0.3 41.4 ±0.3 79.9 ±0.1 76.6 ±0.1 0.445 ±0.001

Random
Modality
Missing

Ours 71.2 ±0.4 43.8 ±0.6 81.1 ±0.3 78.4 ±0.2 0.441 ±0.003

Table 3: Sentiment prediction under missing modality scenarios on CMU-MOSEI dataset.

Scenario Method AUROC (↑) AUPRC (↑) ACC (↑) F1-w (↑) NLL (↓)
No Missing Baseline 93.7 ±0.1 95.9 ±0.1 86.7 ±0.1 86.6 ±0.0 0.588 ±0.001

zero-fill 83.3 ±0.4 89.0 ±0.4 76.6 ±0.1 76.3 ±0.2 0.625 ±0.001

random-fill 75.5 ±0.6 83.4 ±0.6 68.4 ±0.6 68.6 ±0.5 0.628 ±0.002

SMIL 82.7 ±1.3 88.4 ±0.7 76.7 ±0.9 76.4 ±0.9 0.619 ±0.002

MedFuse 81.6 ±1.3 87.4 ±1.3 72.8 ±2.9 72.9 ±2.6 0.635 ±0.001

ShaSpec 84.1 ±0.5 89.1 ±0.6 77.7 ±0.5 76.7 ±0.4 0.616 ±0.001

MoMKE 84.1 ±0.3 89.2 ±0.6 77.6 ±0.3 77.1 ±0.5 0.618 ±0.000

SimMLM 85.2 ±0.9 90.1 ±0.6 78.7 ±1.1 78.2 ±1.1 0.616 ±0.001

Random
Modality
Missing

Ours 87.1 ±0.3 91.8 ±0.4 80.2 ±0.5 79.8 ±0.4 0.612 ±0.002

3.6 RESULTS ANALYSIS AND DISCUSSION

Superior Performance Across Domains. Our SELFMASK method consistently achieves the best
performance across all tasks and datasets. For MIMIC-IV mortality prediction, we achieve 78.8%
AUROC, outperforming the strongest baseline SimMLM (77.0% AUROC) by 1.8 percentage points.
Similarly, for phenotyping, our method reaches 71.2% AUROC compared to SimMLM’s 69.5%. On
CMU-MOSEI, we achieve 87.1% AUROC versus SimMLM’s 85.2%, demonstrating the generaliz-
ability of our approach across medical and multimedia domains.

Robustness Under Severe Missing Scenarios. Particularly noteworthy is our method’s perfor-
mance under challenging missing modality conditions. While baseline methods show significant
degradation when multiple modalities are missing, our approach maintains relatively stable perfor-
mance. For instance, in phenotyping prediction, our method achieves only a 7.9 percentage point
drop in AUROC (73.7% → 71.2%) compared to much larger drops for baseline methods, demon-
strating superior robustness.

Ablation Study Insights. The ablation study (Table 4) reveals the complementary nature of our loss
components. The cross-modal consistency loss Lcross contributes more significantly to performance
(78.3% AUROC) than the observed modality loss Lobs (76.2% AUROC), confirming our hypothesis
that learning to predict missing representations through cross-modal consistency is crucial for robust
multimodal learning. The combination of both losses yields the best performance (78.8% AUROC),
validating our multi-objective learning approach.

Visualization of Learned Masks. Figure 3 visualizes the masks learned by the mask predictor hω .

4 RELATED WORKS

4.1 MODELING UNDER MISSING MODALITIES

Missing modalities remain a key challenge in deploying multimodal systems across clinical, affec-
tive, and perceptual tasks (Yao et al., 2024; Zhang et al., 2023). Early work used variational or
adversarial generators to recover missing views (Dorent et al., 2019; Sharma & Hamarneh, 2019),
but pixel- or token-level synthesis is noisy and computationally heavy (Yao et al., 2024). Recent
methods instead reason in latent space. SMIL (Ma et al., 2021) perturbs unimodal embeddings
via Bayesian meta-learning to mimic full-modality features under incomplete data, while M3Care
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Figure 3: Visualization of learned masks.

Table 4: Ablation study of target prediction representation.

Lobs Lcross AUROC (↑) AUPRC (↑) ACC (↑) F1-w (↑) NLL (↓)
✗ ✗ 74.3 ±4.8 36.5 ±3.7 80.7 ±2.4 80.9 ±1.7 0.455 ±0.056

✔ ✗ 76.2 ±1.8 41.6 ±0.2 84.2 ±0.5 82.8 ±0.1 0.381 ±0.010

✗ ✔ 78.3 ±0.3 42.4 ±1.6 85.5 ±0.7 83.1 ±0.6 0.362 ±0.011

✔ ✔ 78.8 ±0.8 43.7 ±1.3 85.1 ±1.5 83.6 ±0.6 0.365 ±0.015

(Zhang et al., 2023) transfers cues through a modality-adaptive graph. Shared-/specific-factor mod-
els further separate common from unique modality cues: ShaSpec (Wang et al., 2023) regularizes
the split via distribution alignment and domain classification, and DrFuse (Yao et al., 2024) adds
Jensen–Shannon alignment and orthogonality for clinical text and imaging. Mixture-of-experts ap-
proaches dynamically combine unimodal predictors: MoMKE (Xu et al., 2024) distills experts and
routes them with a Soft Router, while SimMLM (Li et al., 2025) introduces modality gating with a
“More-vs-Fewer” ranking loss to guarantee monotonic gains as modalities increase.

4.2 REPRESENTATION LEARNING FOR MULTIMODAL ROBUSTNESS

Self-supervised learning (SSL) leverages unlabeled data to capture modality-agnostic structure,
complementing supervised adaptation. Contrastive objectives align partial and complete views of the
same instance to prevent modality collapse (Shah et al., 2023; Haghighi et al., 2023). For example,
MUSE (Shah et al., 2023) couples supervised and unsupervised graph contrastive losses to handle
both modality and label sparsity, while other works design augmentations that keep embeddings sta-
ble under structured dropout (Yin et al., 2023). Masked autoencoding treats missing modalities as
extreme masks: impuTMAE (Boyko et al., 2025) extends ViT-MAE to heterogeneous medical in-
puts, and analyses show masking noise emphasizes perceptually informative subspaces (Balestriero
& LeCun, 2024). Joint-Embedding Predictive Architectures (JEPA) instead predict latent codes
of missing views from available ones, avoiding contrastive negatives and remaining effective with
partial observations (Yin et al., 2024).

5 CONCLUSION

We presented SELFMASK, a multimodal learning framework enhanced with adaptive masking and
representation imputation to handle missing-modality scenarios. Our approach learns masking pat-
terns tailored to observed modalities while imputing missing representations through cross-modal
interactions. The key contributions include multi-objective representation prediction with comple-
mentary losses, cross-modal consistency regularization that enables training without ground-truth
for missing modalities. Experiments on MIMIC-IV and CMU-MOSEI demonstrate consistent gains
over state-of-the-art baselines under diverse missing-modality conditions.

6 USE OF LLMS

We employed large language models (LLMs) solely for polishing the writing. They were not used
for other purposes, such as retrieving related work or generating new ideas.

9
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A TRAINING PIPELINE

Algorithm 1 summarizes the complete training procedure for our cross-modal self-masking frame-
work. The algorithm alternates between missing modality simulation, masking pattern learning, and
multi-objective optimization to achieve robust missing modality handling.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 PERFORMANCE COMPARISON OF MODALITY COMBINATIONS

This section presents a comprehensive analysis of how different modality combinations affect model
performance across three datasets: MIMIC-IV (mortality and phenotyping tasks) and CMU-MOSEI
(sentiment analysis). The results demonstrate the complementary nature of multimodal information
and highlight the performance degradation risks when modalities are missing.

Individual Modality Performance. We first evaluate the performance of unimodal base-
lines to establish individual modality contributions. For MIMIC-IV tasks, we employ: (1)
Transformer (Vaswani et al., 2017) for structured Electronic Health Records (EHR), pro-
cessing tabular clinical data through self-attention mechanisms; (2) SigLIP2 (Tschannen et al.,
2025) for Chest X-ray (CXR) images, utilizing contrastive learning with sigmoid loss for vision-
language alignment; and (3) CXR-BERT (Boecking et al., 2022) for radiology reports (TXT), a
domain-adapted BERT model pre-trained on chest X-ray reports. For CMU-MOSEI, we use: (1)
wav2vec (Schneider et al., 2019) for audio processing, learning contextualized speech representa-
tions; (2) DeBERTa (He et al., 2021) for text understanding with improved attention mechanisms;
and (3) MA-Net (Zhao et al., 2021) for video analysis through multimodal attention networks.

Multimodal Fusion Benefits. The results consistently show that combining multiple modalities
yields superior performance compared to individual modalities. For mortality prediction on MIMIC-
IV, the three-modal fusion (EHR+CXR+TXT) achieves 86.7% AUROC, substantially outperforming
the best unimodal baseline (CXR-BERT: 83.0%). Similarly, for phenotyping, the three-modal ap-
proach reaches 73.7% AUROC versus 72.3% for the best unimodal model. On CMU-MOSEI, the
improvement is even more pronounced, with three-modal fusion achieving 93.7% AUROC com-
pared to 92.9% for the best unimodal baseline (DeBERTa). This consistent pattern across tasks and
datasets demonstrates that different modalities provide complementary information that enhances
predictive performance.

Two-Modal Combinations. The two-modal fusion results reveal interesting patterns about modality
synergies. In MIMIC-IV mortality prediction, the EHR+TXT combination (86.5% AUROC) per-
forms nearly as well as the full three-modal setup, suggesting strong complementarity between struc-
tured clinical data and free-text reports. Conversely, EHR+CXR shows more modest improvements
(81.4% AUROC), indicating that imaging and structured data may have overlapping information
content. For CMU-MOSEI, the Text+Video combination (93.5% AUROC) performs exceptionally
well, while Audio+Video shows limited synergy (74.9% AUROC), highlighting the dominant role
of textual information in sentiment analysis.

Missing Modality Impact. These results implicitly demonstrate the vulnerability of multimodal
systems to missing modalities. When comparing three-modal fusion to two-modal combinations,
we observe performance drops ranging from minimal (MIMIC-IV mortality: 86.7% → 86.5% for
EHR+TXT) to substantial (CMU-MOSEI: 93.7% → 74.9% for Audio+Video). The magnitude of
degradation depends on the relative importance and complementarity of the missing modality. This
analysis motivates the need for robust missing modality handling approaches, as real-world deploy-
ment scenarios frequently encounter incomplete data due to acquisition costs, privacy constraints,
or technical limitations.

The comprehensive evaluation across different modality combinations provides crucial insights into
multimodal system design and highlights the importance of developing methods that can maintain
performance under missing modality conditions.
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Table 5: Modality combination comparison for mortality prediction task on MIMIC-IV.

Model EHR CXR TXT AUROC (↑) AUPRC (↑) ACC (↑) F1-w (↑) NLL (↓)
Transformer ✔ 79.6 ±0.4 44.3 ±0.1 85.3 ±0.2 83.6 ±0.5 0.353 ±0.002

SigLip2 ✔ 77.2 ±1.1 37.2 ±1.5 84.9 ±0.3 79.5 ±0.2 0.374 ±0.011

CXR-BERT ✔ 83.0 ±1.4 51.8 ±3.2 86.6 ±0.4 83.5 ±1.3 0.337 ±0.010

✔ ✔ 81.4 ±0.6 47.1 ±2.0 85.2 ±0.6 83.8 ±0.5 0.357 ±0.032

✔ ✔ 86.5 ±0.2 60.0 ±0.7 88.0 ±0.2 87.0 ±0.4 0.308 ±0.015Two-modal Fusion
✔ ✔ 83.0 ±1.0 50.6 ±3.6 87.0 ±0.6 84.7 ±1.4 0.335 ±0.016

Three-modal Fusion
(baseline) ✔ ✔ ✔ 86.7 ±0.4 61.6 ±1.9 87.9 ±0.6 86.2 ±1.2 0.303 ±0.011

Table 6: Modality combination comparison for phenotyping prediction task on MIMIC-IV.

Model EHR CXR TXT AUROC (↑) AUPRC (↑) ACC (↑) F1-w (↑) NLL (↓)
Transformer ✔ 66.4 ±0.2 35.6 ±0.2 79.4 ±0.1 74.4 ±0.5 0.457 ±0.000

SigLip2 ✔ 65.7 ±0.3 34.9 ±0.5 78.7 ±0.7 74.3 ±1.2 0.467 ±0.010

CXR-BERT ✔ 72.3 ±0.4 45.5 ±0.6 80.1 ±0.1 77.8 ±0.1 0.439 ±0.005

✔ ✔ 64.0 ±0.4 33.0 ±0.4 78.5 ±0.3 74.4 ±0.2 0.467 ±0.003

✔ ✔ 71.1 ±4.2 43.3 ±6.5 80.4 ±0.8 76.8 ±2.3 0.434 ±0.019Two-modal Fusion
✔ ✔ 72.9 ±0.1 46.1 ±0.2 80.2 ±0.3 78.0 ±0.1 0.433 ±0.004

Three-modal Fusion
(baseline) ✔ ✔ ✔ 73.7 ±0.1 47.0 ±0.2 80.8 ±0.2 78.2 ±0.1 0.421 ±0.002

C DETAILED EXPERIMENTAL SETUP

C.1 DATASET CONFIGURATION DETAILS

Missing Modality Scenario Construction. To rigorously evaluate multimodal systems under miss-
ing modality conditions, we construct controlled experimental scenarios using datasets that contain
complete modality pairs. This approach ensures fair comparison across different missing patterns
and eliminates confounding factors from naturally occurring missing data. We focus on two diverse
domains: clinical prediction with heterogeneous medical data (MIMIC-IV) and sentiment analysis
with synchronized audiovisual content (CMU-MOSEI). This diversity allows us to demonstrate the
generalizability of our cross-modal learning framework across different data types and task charac-
teristics.

MIMIC-IV Dataset Configuration. We utilize the MIMIC-IV database (Johnson et al., 2023), a
large, publicly available database comprising de-identified health-related data associated with over
200,000 critical care patients. Following the same data processing and experimental setup as Hayat
et al. (2022), we employ three complementary modalities:

• Structured time-series Electronic Health Records (EHR): Contains vital signs, labora-
tory results, and medication information collected during patient stays. We extract time-
series features using sliding windows and normalize values using z-score normalization.

• Chest X-ray images (CXR): Provides visual diagnostic information from radiographic
imaging. Images are resized to 224×224 pixels and normalized using ImageNet statistics.

• Clinical text reports (TXT): Includes discharge summaries and nursing notes that capture
clinical reasoning and patient narratives. Text is tokenized using clinical BERT tokenizer
with maximum sequence length of 512.

To construct missing modality scenarios, we extract paired samples containing all three modalities
from the complete dataset, ensuring that every sample has ground-truth representations for all modal-
ities during training. For in-hospital mortality prediction, we use 4,880 training, 540 validation, and
1,373 test samples. For phenotyping tasks, which involve predicting multiple clinical conditions si-
multaneously, we use 7,744 training, 882 validation, and 2,166 test samples. We evaluate our model
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Table 7: Modality combination comparison for sentiment prediction task on CMU-MOSEI.

Model Audio Text Video AUROC (↑) AUPRC (↑) ACC (↑) F1-w (↑) NLL (↓)
wav2vec ✔ 73.7 ±0.1 79.5 ±0.2 71.9 ±0.5 69.9 ±1.0 0.642 ±0.001

DeBERTa ✔ 92.9 ±0.1 95.4 ±0.1 85.9 ±0.1 85.8 ±0.1 0.591 ±0.001

MA-Net ✔ 70.9 ±0.2 79.4 ±0.1 68.7 ±0.4 66.8 ±0.6 0.642 ±0.001

✔ ✔ 93.2 ±0.0 95.6 ±0.0 86.2 ±0.1 86.1 ±0.0 0.589 ±0.000

✔ ✔ 74.9 ±0.3 81.5 ±0.3 70.7 ±0.2 68.3 ±0.9 0.639 ±0.002Two-modal Fusion
✔ ✔ 93.5 ±0.0 95.7 ±0.0 86.6 ±0.1 86.5 ±0.1 0.588 ±0.001

Three-modal Fusion
(baseline) ✔ ✔ ✔ 93.7 ±0.1 95.9 ±0.1 86.7 ±0.1 86.6 ±0.0 0.588 ±0.001

on two critical clinical prediction tasks: in-hospital mortality prediction (binary classification) and
phenotyping (multi-label classification for 25 clinical conditions).

CMU-MOSEI Dataset Configuration. We employ the CMU-MOSEI dataset Zadeh et al. (2018),
which contains 22,856 video clips from over 1,000 online YouTube speakers expressing opinions
and sentiments across diverse topics. The dataset provides three synchronized modalities:

• Audio recordings: Capturing prosodic features, tone, and vocal characteristics. Audio is
resampled to 16kHz and processed using mel-spectrogram features with 80 mel-frequency
bins.

• Textual transcriptions: Containing semantic and linguistic information. Text is processed
using subword tokenization with vocabulary size of 30,000.

• Video recordings: Providing facial expressions, gestures, and visual cues. Video frames
are extracted at 30fps and resized to 224×224 pixels.

We use the standard dataset split with 16,326 training, 1,871 validation, and 4,659 test samples. All
utterances are randomly selected from a variety of topic and monologue videos, ensuring diverse
content representation. Each sample is annotated with sentiment scores following the annotation
scheme of [-3, 3] as established by Xu et al. (2024), where -3 represents highly negative sentiment
and +3 represents highly positive sentiment.

C.2 MISSING MODALITY SIMULATION AND EVALUATION PROTOCOL

Our experimental design carefully balances training robustness with evaluation comprehensiveness.
During training, we employ a dynamic missing modality simulation where each batch randomly
drops different combinations of modalities with equal probability. This creates a diverse set of
missing patterns that forces the model to learn generalizable cross-modal relationships rather than
memorizing specific missing configurations. The random simulation covers all possible missing
scenarios: single modality available, two modalities available, and complete modality sets, ensuring
that the representation predictor learns to handle any arbitrary missing pattern.

For evaluation, we design systematic missing scenarios that reflect real-world deployment chal-
lenges. We construct two primary evaluation conditions:

• Partial Missing Scenarios: Exactly one modality is missing (50% of test samples), simu-
lating common situations like equipment failure, data corruption, or acquisition constraints.

• Severe Missing Scenarios: Exactly two modalities are missing (remaining 50% of test
samples), representing critical situations where only minimal information is available.

This balanced protocol ensures comprehensive assessment across different levels of data incom-
pleteness and provides insights into model degradation patterns under increasing data scarcity. All
experiments are conducted with three independent runs using different random seeds, and we report
mean performance and standard deviation across runs to ensure statistical significance and repro-
ducibility.
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D IMPLEMENTATION DETAILS

D.1 MODEL ARCHITECTURE DETAILS

Modality-Specific Encoders. For MIMIC-IV, we employ domain-specific encoders optimized for
each data type:

• EHR Encoder: A 2-layer Transformer encoder with 4 attention heads and hidden dimen-
sion 256. We apply temporal positional encoding to capture time-series patterns in vital
signs and lab results.

• CXR Encoder: SigLIP2 (Tschannen et al., 2025) vision transformer pretrained on large-
scale image-text pairs, fine-tuned on chest X-ray data with input resolution 224×224.

• TXT Encoder: CXR-BERT (Boecking et al., 2022) specifically trained on clinical text,
with maximum sequence length 512 and hidden dimension 768.

For CMU-MOSEI, we use:

• Audio Encoder: wav2vec (Schneider et al., 2019) pretrained on LibriSpeech, with feature
dimension 768 and context window of 25ms.

• Text Encoder: DeBERTa (He et al., 2021) with enhanced mask decoder and disentangled
attention, hidden dimension 768.

• Video Encoder: MA-Net (Zhao et al., 2021) for facial expression recognition, processing
16-frame clips with 3D convolutions.

All encoders are initialized with their respective pretrained weights and fine-tuned end-to-end during
training.

Cross-Modal Components. The representation predictor gϕ is implemented as a 2-layer Trans-
former with:

• Hidden dimension: 256

• Attention heads: 8

• Dropout rate: 0.3

• Layer normalization applied before each sub-layer

• Residual connections around each sub-layer

The mask predictor hω shares the same architecture as gϕ but operates on concatenated representa-
tions to generate masking scores. The fusion module fψ is a single-layer Transformer that aggre-
gates multimodal representations for final prediction, with output dimension matching the number
of classes for each task.

D.2 TRAINING CONFIGURATION DETAILS

Optimization Settings. We train all models using the Adam optimizer (Kingma & Ba, 2015) with
the following task-specific configurations:

Task Learning Rate Batch Size Epochs

MIMIC-IV Mortality 1× 10−5 16 100
MIMIC-IV Phenotyping 5× 10−5 16 100
CMU-MOSEI Sentiment 1× 10−4 16 100

Table 8: Task-specific training configurations.

We apply gradient clipping with maximum norm 1.0 to prevent gradient explosion. Early stopping
is employed based on validation performance with patience of 10 epochs.
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Regularization. We apply dropout with rate 0.3 to all Transformer layers. For the representation
prediction objectives, we set loss weights α = 0.01 for observed modality reconstruction (Lobs) and
β = 0.1 for cross-modal consistency (Lcross). These weights were determined through grid search
on validation sets.

The mask predictor uses exponential moving average (EMA) updates with decay coefficient τ =
0.996 to provide stable masking guidance. This dual-ratio strategy encourages the model to rely
more heavily on predicted missing representations during cross-modal consistency learning.

E USE OF LLMS

We employed large language models (LLMs) solely for polishing the writing. They were not used
for other purposes, such as retrieving related work or generating new ideas.
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Algorithm 1 Cross-modal Self-Masking (SELFMASK) Training

Require: Multimodal dataset D = {({x(m)
i }Mm=1, yi)}Ni=1

Require: Modality encoders {E(m)}Mm=1, representation predictor gϕ, fusion module fψ
Require: Loss weights α, β, EMA decay coefficient τ
Ensure: Trained model parameters ϕ, ψ, ω

1: Initialize representation predictor gϕ and EMA mask predictor gϕ̄ with ϕ̄← ϕ

2: Initialize fusion module fψ and mask scoring head hω
3: for each training epoch do
4: for each batch {({x(m)

i }Mm=1, yi)}i∈batch do
5: // Step 1: Extract representations from all modalities
6: for m = 1 to M do
7: Z(m) ← E(m)(x(m)) // Extract modality representations

8: end for
9: // Step 2: Simulate missing modality scenario

10: Sample missing modality setM⊆ {1, 2, . . . ,M}
11: O ← {1, 2, . . . ,M} \M // Observed modalities

12: // Step 3: Generate masking patterns for observed modalities
13: Zconcat ← concat({Z(m) +E(m)}m∈O, {T(m) +E(m)}m∈M)

14: (σ(m))m∈O ← hω(gϕ̄(Zconcat)) // Mask prediction

15: for m ∈ O do
16: I(m) ← TopK(σ(m),K(m)) // Select top-K tokens

17: M(m) ← 1[I(m) ̸= 0] // Create mask

18: Z̃(m) ← E(m)(X(m) ⊙ (1−M(m)) +V(m) ⊙M(m)) // Masked representation

19: end for
20: // Step 4: Multi-objective representation prediction
21: Zinput ← concat({Z̃(m) +E(m)}m∈O, {T(m) +E(m)}m∈M)

22: (Ẑ(m))m∈[M ] ← gϕ(Zinput) // Cross-modal representation prediction

23: // Step 5: Compute observed modality reconstruction loss
24: Lobs ← 1

|O|
∑
m∈O

1
K(m) ∥(Ẑ(m) − Z(m))⊙M(m)∥2F // Observed modality loss

25: // Step 6: Cross-modal consistency prediction
26: Zcross ← concat({Z̃(m) +E(m)}m∈O, {Ẑ(m) +E(m)}m∈M) // Use higher

masking ratio

27: (Z
(m)

)m∈[M ] ← gϕ(Zcross)

28: Lcross ← 1
|O|

∑
m∈O

1
K(m) ∥(Z

(m) − Z(m))⊙M(m)∥2F // Cross-modal

consistency

29: // Step 7: Task prediction and loss
30: ŷ ← fψ(concat((Z(m))m∈O, (Ẑ

(m))m∈M)) // Fusion and prediction

31: Ltask ← TaskLoss(ŷ, y)
32: // Step 8: Combined loss and optimization
33: L ← Ltask + αLobs + βLcross

34: Update ϕ, ψ, ω via ∇L
35: // Step 9: EMA update for mask predictor
36: ϕ̄← τ ϕ̄+ (1− τ) · stopgrad(ϕ) // EMA update

37: end for
38: end for
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