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ABSTRACT

Retrosynthesis, of which the goal is to find a set of reactants for synthesizing a
target product, is an emerging research area of deep learning. While the existing
approaches have shown promising results, they currently lack the ability to consider
availability (e.g., stability or purchasability) of the reactants or generalize to unseen
reaction templates (i.e., chemical reaction rules). In this paper, we propose a
new approach that mitigates the issues by reformulating retrosynthesis into a
selection problem of reactants from a candidate set of commercially available
molecules. To this end, we design an efficient reactant selection framework,
named RETCL (retrosynthesis via contrastive learning), for enumerating all of
the candidate molecules based on selection scores computed by graph neural
networks. For learning the score functions, we also propose a novel contrastive
training scheme with hard negative mining. Extensive experiments demonstrate
the benefits of the proposed selection-based approach. For example, when all 671k
reactants in the USPTO database are given as candidates, our RETCL achieves
top-1 exact match accuracy of 71.3% for the USPTO-50k benchmark, while a
recent transformer-based approach achieves 59.6%. We also demonstrate that
RETCL generalizes well to unseen templates in various settings in contrast to
template-based approaches. The code will be released.

1 INTRODUCTION

Retrosynthesis (Corey, 1991), finding a synthetic route starting from commercially available reactants
to synthesize a target product (see Figure 1a), is at the center of focus for discovering new materials
in both academia and industry. It plays an essential role in practical applications by finding a
new synthetic path, which can be more cost-effective or avoid patent infringement. However,
retrosynthesis is a challenging task that requires searching over a vast number of molecules and
chemical reactions, which is intractable to enumerate. Nevertheless, due to its utter importance,
researchers have developed computer-aided frameworks to automate the process of retrosynthesis for
more than three decades (Corey et al., 1985).

The computer-aided approaches for retrosynthesis mainly fall into two categories depending on their
reliance on the reaction templates, i.e., sub-graph patterns describing how the chemical reaction
occurs among reactants (see Figure 1b). The template-based approaches (Coley et al., 2017b; Segler
& Waller, 2017; Dai et al., 2019) first enumerate known reaction templates and then apply a well-
matched template into the target product to obtain reactants. Although they can provide chemically
interpretable predictions, they limit the search space to known templates and cannot discover novel
synthetic routes. In contrast, template-free approaches (Liu et al., 2017; Karpov et al., 2019; Zheng
et al., 2019; Shi et al., 2020) generate the reactants from scratch to avoid relying on the reaction
templates. However, they require to search the entire molecular space, and their predictions could be
either unstable or commercially unavailable.

We emphasize that retrosynthesis methods are often required to consider the availability of reactants
and generalize to unseen templates in real-world scenarios. For example, when a predicted reactant
is not available (e.g., not purchasable) for a chemist or a laboratory, the synthetic path starting
from the predicted reactant cannot be instantly used in practice. Moreover, chemists often require
retrosynthetic analysis based on unknown reaction rules. This is especially significant due to our
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Figure 1: Examples of (a) a chemical reaction and (b) the corresponding reaction template in the
USPTO-50k dataset. The objective of retrosynthesis is to find the reactants for the given product.

incomplete knowledge of chemical reactions; e.g., 29 million reactions were regularly recorded
between 2009 and 2019 in Reaxys1 (Mutton & Ridley, 2019).

Contribution. In this paper, we propose a new selection-based approach, which allows considering
the commercial availability of reactants. To this end, we reformulate the task of retrosynthesis as
a problem where reactants are selected from a candidate set of available molecules. This approach
has two benefits over the existing ones: (a) it guarantees the commercial availability of the selected
reactants, which allows chemists proceeding to practical procedures such as lab-scale experiments or
optimization of reaction conditions; (b) it can generalize to unseen reaction templates and find novel
synthetic routes.

For the selection-based retrosynthesis, we propose an efficient selection framework, named RETCL
(retrosynthesis via contrastive learning). To this end, we design two effective selection scores in
synthetic and retrosynthetic manners. To be specific, we use the cosine similarity between molecular
embeddings of the product and the reactants computed by graph neural networks. For training the
score functions, we also propose a novel contrastive learning scheme (Sohn, 2016; He et al., 2019;
Chen et al., 2020b) with hard negative mining (Harwood et al., 2017) to overcome a scalability issue
while handling a large-scale candidate set.

To demonstrate the effectiveness of our RETCL, we conduct various experiments based on the
USPTO database (Lowe, 2012) containing 1.8M chemical reactions in the US patent literature.
Thanks to our prior knowledge on the candidate reactants, our method achieves 71.3% test accuracy
and significantly outperforms the baselines without such prior knowledge. Furthermore, our algorithm
demonstrates its superiority even when enhancing the baselines with candidate reactants, e.g., our
algorithm improves upon the existing template-free approach (Chen et al., 2019) by 11.7%. We also
evaluate the generalization ability of RETCL by testing USPTO-50k-trained models on the USPTO-
full dataset; we obtain 39.9% test accuracy while the state-of-the-art template-based approach (Dai
et al., 2019) achieves 26.7%. Finally, we demonstrate how our RETCL can improve multi-step
retrosynthetic analysis where intermediate reactants are not in our candidate set.

We believe our scheme has the potential to improve further in the future, by utilizing (a) additional
chemical knowledge such as atom-mapping or leaving groups (Shi et al., 2020; Somnath et al., 2020);
(b) various constrastive learning techniques in other domains, e.g., computer vision (He et al., 2019;
Chen et al., 2020b; Hénaff et al., 2019; Tian et al., 2019), audio processing (Oord et al., 2018), and
reinforcement learning (Srinivas et al., 2020).

2 SELECTION-BASED RETROSYNTHESIS VIA CONTRASTIVE LEARNING

2.1 OVERVIEW OF RETCL

In this section, we propose a selection framework for retrosynthesis via contrastive learning, coined
RETCL. Our framework is based on solving the retrosynthesis task as a selection problem over a
candidate set of commercially available reactants given the target product. Especially, we design a
selection procedure based on molecular embeddings computed by graph neural networks and train
the networks via contrastive learning.

To this end, we define a chemical reactionR → P as a synthetic process of converting a reactant-set
R = {R1, . . . , Rn}, i.e., a set of reactant molecules, to a product molecule P (see Figure 1a). We

1A chemical database, https://www.reaxys.com
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Figure 2: Illustration of the search procedure in RETCL. It first (1-3) selects reactants sequentially
based on ψ(R|P,Rgiven), and then (4) check the synthesizability of the selected reactant-set based
on φ(P |R). The overall score is the average over all scores from (1) to (4).

aim to solve the problem of retrosynthesis by finding the reactant-setR from a candidate set C which
can be synthesized to the target product P . Especially, we consider the case when the candidate set
C consists of commercially available molecules. Throughout this paper, we say that the synthetic
direction (fromR to P ) is forward and the retrosynthetic direction (from P toR) is backward.

Note that our framework stands out from the existing works in terms of the candidate set C. To be
specific, (a) template-free approaches (Lin et al., 2019; Karpov et al., 2019; Shi et al., 2020) choose C
as the whole space of (possibly unavailable) molecules; and (b) template-based approaches (Coley
et al., 2017b; Segler & Waller, 2017; Dai et al., 2019) choose C as possible reactants extracted from
the known reaction templates. In comparison, our framework neither requires (a) search over the
entire space of molecules, or (b) domain knowledge to extract the reaction templates.

We now briefly outline the RETCL framework. Our framework first searches the most likely reactant-
setsR1, . . . ,RT ⊂ C in a sequential manner based on a backward selection score ψ(R|P,Rgiven),
and then ranks the reactant-sets using ψ(R|P,Rgiven) and another forward score φ(P |R). For
learning the score functions, we propose a novel contrastive learning scheme with hard negative
mining for improving the selection qualities. We next provide detailed descriptions of the search
procedure and the training scheme in Section 2.2 and 2.3, respectively.

2.2 SEARCH PROCEDURE WITH GRAPH NEURAL NETWORKS

We first introduce the search procedure of RETCL in detail. To find a reactant-setR = {R1, . . . , Rn},
we select each elementRi sequentially from the candidate set C based on the backward (retrosynthetic)
selection score ψ(R|P,Rgiven). It represents a selection score of a reactant R given a target product
P and a set of previously selected reactantsRgiven ⊂ C. Note that the score function is also capable
of selecting a special reactant Rhalt to stop updating the reactant-set. Using beam search, we choose
top T likely reactant-setsR1, . . . ,RT .

Furthermore, we rank the chosen reactant-setsR1, . . . ,RT based on the backward selection score
ψ(R|P,Rgiven) and the forward (synthetic) score φ(P |R). The latter represents the synthesizability
ofR for P . Note that ψ(R|P,Rgiven) and φ(P |R) correspond to backward and forward directions
of a chemical reaction R → P , respectively (see Section 2.1 and Figure 1a). Using both score
functions, we define an overall score on a chemical reactionR → P as follows:

score(P,R) =
1

n+ 2

(
max
π∈Π

n+1∑
i=1

ψ(Rπ(i)|P, {Rπ(1), . . . , Rπ(i−1)}) + φ(P |R)

)
, (1)

whereRn+1 = Rhalt and Π is the space of permutations defined on the integers 1, . . . , n+1 satisfying
π(n+1) = n+1. Based on score(P,R), we decide the rankings of R1, . . . ,RT for synthesizing
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the target product P . We note that the maxπ∈Π operator and the 1
n+2 term make the overall score

(equation 1) be independent of order and number of reactants, respectively. Figure 2 illustrates this
search procedure of our framework.

Score design. We next elaborate our design choices for the score functions ψ and φ. We first observe
that the molecular graph of the product P can be decomposed into subgraphs from each reactant
of the reactant-set R, as illustrated in Figure 1a. Moreover, when selecting reactants sequentially,
the structural information of the previously selected reactants Rgiven should be ignored to avoid
duplicated selections. From these observations, we design the scores ψθ(R|P,Rgiven) and φ(P |R)
as follows:

ψ(R|P,Rgiven) = CosSim

(
fθ(P )−

∑
S∈Rgiven

gθ(S), hθ(R)

)
,

φ(P |R) = CosSim
(∑

R∈R
gθ(R), hθ(P )

)
,

where CosSim is the cosine similarity and fθ, gθ, hθ are embedding functions from a molecule to a
fixed-sized vector with parameters θ. Note that one could think that fθ and gθ are query functions for
a product and a reactant, respectively, while hθ is a key function for a molecule. Such a query-key
separation allows the search procedure to be processed as an efficient matrix-vector multiplication.
This computational efficiency is important in our selection-based setting because the number of
candidates is often very large, e.g., |C| ≈ 6× 105 for the USPTO dataset.

To parameterize the embedding functions fθ, gθ and hθ, we use the recently proposed graph neural
network (GNN) architecture, structure2vec (Dai et al., 2016; 2019). The implementation details of
the architecture is described in Section 3.1.

Incorporating reaction types. A human expert could have some prior information about a reaction
type, e.g., carbon-carbon bond formation, for the target product P . To utilize this prior knowledge, we
add trainable embedding bias vectors u(t) and v(t) for each reaction type t into the query embeddings
of ψ and φ, respectively. For example, φ(P |R) becomes CosSim(

∑
R∈R gθ(R) + v(t), hθ(P )).

The bias vectors are initialized by zero at beginning of training.

2.3 TRAINING SCHEME WITH CONTRASTIVE LEARNING

Finally, we describe our learning scheme for training the score functions defined in Section 2.1
and 2.2. We are inspired by how the score functions ψ(R|P,Rgiven) and φ(P |R) resemble the
classification scores of selecting (a) the reactant R given the product P and the previously selected
reactantsRgiven and (b) the product P given all of the selected reactantsR, respectively. Based on
this intuition, we consider two classification tasks with the following probabilities:

p(R|P,Rgiven, C) =
exp(ψ(R|P,Rgiven)/τ)∑

R′∈C\{P} exp(ψ(R′|P,Rgiven)/τ)
,

q(P |R, C) =
exp(φ(P |R)/τ)∑

P ′∈C\R exp(φ(P ′|R)/τ)
,

where τ is a hyperparameter for temperature scaling and C is the given candidate set of molecules.
Note that we do not consider P and R ∈ R as available reactants and products for the classification
tasks of p and q, respectively. This reflects our prior knowledge that the product P is always different
from the reactantsR in a chemical reaction. As a result, we arrive at the following losses defined on
a reaction of the product P and the reactant-setR = {R1, . . . , Rn}:

Lbackward(P,R|θ, C) = −max
π∈Π

n+1∑
i=1

log p(Rπ(i)|P, {Rπ(1), . . . , Rπ(i−1)}, C),

Lforward(P,R|θ, C) = − log q(P |R, C),

whereRn+1 = Rhalt and Π is the space of permutations defined on the integers 1, . . . , n+1 satisfying
π(n+1) = n+1. We note that minimizing the above losses increases the scores ψ(R|P,Rgiven) and
φ(P |R) of the correct pairs of product and reactants, i.e., numerators, while decreasing that of wrong
pairs, i.e., denominators. Such an objective is known as contrastive loss which has recently gained
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much attention in various domains (Sohn, 2016; He et al., 2019; Chen et al., 2020b; Oord et al., 2018;
Srinivas et al., 2020).

Unfortunately, the optimization of Lbackward and Lforward is intractable since the denominators of
p(R|P,Rgiven, C) and q(P |R, C) require summation over the large set of candidate molecules C. To
resolve this, for each mini-batch of reactions B sampled from the training dataset, we approximate C
with the following set of molecules:

CB = {M | ∃ (R, P ) ∈ B such that M = P or M ∈ R},

i.e., CB is the set of all molecules in B. Then we arrive at the following training objective:

L(B|θ) =
1

|B|
∑

(R,P )∈B

(
Lbackward(P,R|θ, CB) + Lforward(P,R|θ, CB)

)
. (2)

Hard negative mining. In our setting, molecules in the candidate set CB are easily distinguishable.
Hence, learning to discriminate between them is often not informative. To alleviate this issue, we
replace the CB with its augmented version C̃B by adding hard negative samples, i.e., similar molecules,
as follows:

C̃B = CB ∪
⋃

M∈CB
{Top-K nearest neighbors of M from C},

where K is a hyperparameter controlling hardness of the contrastive task. The nearest neighbors
are defined with respect to the cosine similarity on {hθ(M)}M∈C . Since computing all embeddings
{hθ(M)}M∈C for every iteration is time-consuming, we update information of the nearest neighbors
periodically. We found that the hard negative mining plays a significant role in improving the
performance of RETCL (see Section 3.3).

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Dataset. We mainly evaluate our framework in USPTO-50k, which is a standard benchmark for
the task of retrosynthesis. It contains 50k reactions of 10 reaction types derived from the US patent
literature, and we divide it into training/validation/test splits following Coley et al. (2017b). To
apply our framework, we choose the candidate set of commercially available molecules C as the all
reactants in the entire USPTO database as Guo et al. (2020) did. This results in the candidate set with
a size of 671,518. For the evaluation metric, we use the top-k exact match accuracy, which is widely
used in the retrosynthesis literature. We also experiment with other USPTO benchmarks for more
challenging tasks, e.g., generalization to unseen templates. We provide a more detailed description of
the USPTO benchmarks in Appendix A.

Hyperparameters. We use a single shared 5-layer structure2vec (Dai et al., 2016; 2019) architecture
and three separate 2-layer residual blocks with an embedding size of 256. To obtain graph-level
embedding vectors, we use sum pooling over mean pooling since it captures the size information of
molecules. For contrastive learning, we use a temperature of τ = 0.1 and K = 4 nearest neighbors
for hard negative mining. More details are provided in Appendix B.

3.2 SINGLE-STEP RETROSYNTHESIS IN USPTO-50K

Table 1 evaluates our RETCL and other baselines using the top-k exact match accuracy with k ∈
{1, 3, 5, 10, 20, 50}. We first note that our framework significantly outperforms a concurrent selection-
based approach,2 Bayesian-Retro (Guo et al., 2020), by 23.8% and 23.7% in terms of top-1 accuracy
when reaction type is unknown and given, respectively. Furthermore, ours also outperforms template-
based approaches utilizing the different knowledge, i.e., reaction templates instead of candidates,
with a large margin, e.g., 18.8% over GLN (Dai et al., 2019) in terms of top-1 accuracy when reaction
type is unknown.

2Note that Bayesian-Retro (Guo et al., 2020) is not scalable to a large candidate set. See Section 4 for details.
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Table 1: The top-k exact match accuracy (%) of computer-aided approaches in USPTO-50k. The
template-based approaches use the knowledge of reaction templates while others do not. †The results
are reproduced using the code of Chen et al. (2019).

Category Method Top-1 Top-3 Top-5 Top-10 Top-20 Top-50

Reaction type is unknown

Template-free

Transformer (Karpov et al., 2019) 37.9 57.3 62.7 - - -
SCROP (Zheng et al., 2019) 43.7 60.0 65.2 68.7 - -

Transformer (Chen et al., 2019) 44.8 62.6 67.7 71.1 - -
G2Gs (Shi et al., 2020) 48.9 67.6 72.5 75.5 - -

Template-based
retrosim (Coley et al., 2017b) 37.3 54.7 63.3 74.1 82.0 85.3

neuralsym (Segler & Waller, 2017) 44.4 65.3 72.4 78.9 82.2 83.1
GLN (Dai et al., 2019) 52.5 69.0 75.6 83.7 89.0 92.4

Selection-based Bayesian-Retro (Guo et al., 2020) 47.5 67.2 77.0 80.3 - -
RETCL (Ours) 71.3 86.4 92.0 94.1 95.0 96.4

Reaction type is given as prior

Template-free

seq2seq (Liu et al., 2017) 37.4 52.4 57.0 61.7 65.9 70.7
Transformer† (Chen et al., 2019) 54.1 70.0 74.2 77.8 80.4 83.3

SCROP (Zheng et al., 2019) 59.0 74.8 78.1 81.1 - -
G2Gs (Shi et al., 2020) 61.0 81.3 86.0 88.7 - -

Template-based
retrosim (Coley et al., 2017b) 52.9 73.8 81.2 88.1 91.8 92.9

neuralsym (Segler & Waller, 2017) 55.3 76.0 81.4 85.1 86.5 86.9
GLN (Dai et al., 2019) 64.2 79.1 85.2 90.0 92.3 93.2

Selection-based Bayesian-Retro (Guo et al., 2020) 55.2 74.1 81.4 83.5 - -
RETCL (Ours) 78.9 90.4 93.9 95.2 95.8 96.7

Table 2: The top-k exact match accuracy (%) of our RETCL, Transformer (Chen et al., 2019) and
GLN (Dai et al., 2019) with discarding predictions not in the candidate set C.

Category Method Top-1 Top-5 Top-10 Top-50 Top-100 Top-200

Reaction type is unknown

Template-free Transformer (Chen et al., 2019) 59.6 74.3 77.0 79.4 79.5 79.6
RETCL (Ours) 71.3 92.0 94.1 96.4 96.7 97.1

Template-based GLN (Dai et al., 2019) 77.3 90.0 92.5 93.3 93.3 93.3

Reaction type is given as prior

Template-free Transformer (Chen et al., 2019) 68.4 82.4 84.3 85.9 86.0 86.1
RETCL (Ours) 78.9 93.9 95.2 96.7 97.1 97.5

Template-based GLN (Dai et al., 2019) 82.0 91.7 92.9 93.3 93.3 93.3

Incorporating the knowledge of candidates into baselines. However, it is hard to fairly compare
between methods operating under different assumptions. For example, template-based approaches
require the knowledge of reaction templates, while our selection-based approach requires that of
available reactants. To alleviate such a concern, we incorporate our prior knowledge of candidates C
into the baselines; we filter out reactants outside the candidates C from the predictions made by the
baselines. As reported in Table 2, our framework still outperforms the template-free approaches with
a large margin, e.g., Transformer (Chen et al., 2019) achieves 68.4% in the top-1 accuracy, while we
achieve 78.9% when reaction type is given. Although GLN uses more knowledge than ours in this
setting, its top-k accuracy is saturated to 93.3% which is the coverage of known templates, i.e., the
upper bound of template-based approaches. However, our framework continues to increase the top-k
accuracy as k increases, e.g., 97.5% in terms of top-200 accuracy. We additionally compare with
SCROP (Zheng et al., 2019) using their publicly available predictions with reaction types; SCROP
achieves 70.4% in the top-1 accuracy, which also underperforms ours.

3.3 ANALYSIS AND ABLATION STUDY

Failure cases. Figure 3 shows examples of wrong predictions from our framework. We found that
the reactants of wrong predictions are still similar to the ground-truth ones. For example, the top-3
predictions of the examples A and B are partially correct; the larger reactant is correct while the
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Figure 3: Failure cases of RETCL.

Example A Top 4 nearest neighbors of A Example B Top 4 nearest neighbors of B 

Figure 4: The top-4 nearest neighbors of two randomly sampled molecules in C.

smaller one is slightly different. In the example C, the ring at the center of the product is broken
in the ground-truth reactants while our RETCL predicts non-broken reactants. Surprisingly, in a
chemical database, Reaxys, we found a synthetic route starting from reactants in the top-2 prediction
to synthesize the target product. We attach the corresponding route to Appendix C. These results
show that our RETCL could provide meaningful information for retrosynthetic analysis in practice.

Nearest neighbors on molecular embeddings. For hard negative mining described in Section 2.3,
it is required to find similar molecules using the cosine similarity on {hθ(M)}M∈C . As illustrated in
Figure 4, hθ(M) is capable of capturing the molecular structures.

Table 3: Ablation study.
φ(P |R) K sum Top-1 Top-10

X 59.5 79.8
X 1 69.6 92.2
X 2 70.9 92.7
X 4 71.1 92.9

4 69.8 90.3
X 4 X 71.3 94.1

Effect of components. Table 3 shows the effect of components
of our framework. First, we found that the hard negative mining
as described in Section 2.3 increases the performance signifi-
cantly. This is because there are many similar molecules in the
candidate set C, thus a model could predict slightly different
reactants without hard negative mining. We also demonstrate the
effect of checking the synthesizablity of the predicted reactants
with φ(P |R). As seen the fourth and fifth rows in Table 3, using
φ(P |R) provides a 2.6% gain in terms of top-10 accuracy. Moreover, we empirically found that sum
pooling for aggregating node embedding vectors is more effective than mean pooling. This is because
the former can capture the size of molecules as the norm of graph embedding vectors.

3.4 MORE CHALLENGING RETROSYNTHESIS TASKS

Generalization to unseen templates. The advantage of our framework over the template-based
approaches is the generalization ability to unseen reaction templates. To demonstrate it, we remove
reactions of classes (i.e., reaction types) from 6 to 10 in training/validation splits of the USPTO-50k
benchmark. Then the number of remaining reactions is 27k. In this case, the templates extracted from
the modified dataset cannot be applied to the reactions of different classes. Hence the template-based
approaches suffer from the generalization issue; for example, GLN (Dai et al., 2019) cannot provide
correct predictions for reactions of unseen types as reported in Table 4, while our RETCL is able to
provide correct answers.

Table 5: Generalization to USPTO-full.
Method Top-1 Top-10 Top-50

Transformer (Chen et al., 2019) 29.9 46.6 51.0
GLN (Dai et al., 2019) 26.7 42.2 46.7

RETCL (Ours) 39.9 57.1 60.9

We also conduct a more realistic experiment: test-
ing on a larger dataset, the test split of USPTO-
full dataset preprocessed by Dai et al. (2019), us-
ing a model trained on a smaller dataset, USPTO-
50k. We note that the number of reactions for
training, 40k, is smaller than that of testing reac-
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Table 4: The top-10 exact match accuracy (%) of our RETCL and GLN (Dai et al., 2019) trained
on USPTO-50k without reaction types from 6 to 10. The average column indicates the average of
class-wise accuracy for each reaction type.

Reaction type

Method Average 1 2 3 4 5 6 7 8 9 10

GLN (Dai et al., 2019) 39.7 84.3 92.2 70.7 59.3 89.7 0.0 0.0 0.0 0.5 0.0
RETCL (Ours) 55.6 93.9 97.6 86.4 67.0 95.6 59.1 11.9 18.3 26.1 0.0

tions, 100k. As reported in Table 5, our framework provides a consistent benefit over the template-
based approaches. These results show that our strength of generalization ability.

Table 6: Multi-step retrosynthesis.
Single Hybrid

Single-step model MLP TF TF+TF RETCL+TF

Succ. rate (%) 86.84 91.05 90.54 96.84
Avg. length - 4.30 4.31 3.90

Multi-step retrosynthesis. To consider a more
practical scenario, we evaluate our algorithm for
the task of multi-step retrosynthesis. To this end,
we use the synthetic route benchmark provided
by Chen et al. (2020a). Here, we assume that
only the building blocks (or starting materials)
are commercially available, and intermediate reactants require being synthesized from the building
blocks. In this challenging task, we demonstrate how our method could be used to improve the
existing template-free Transformer model (TF, Chen et al. 2019). Given a target product, the hybrid
algorithm operates as follows: (1) our RETCL proposes a set of reactants from the candidates C; (2)
TF proposes additional reactants outside the candidates C; (3) TF chooses the top-K reactants based
on its log-likelihood of all the proposed reactants. As an additional baseline, we replace RETCL by
another independently trained TF in the hybrid algorithm. We use Retro* (Chen et al., 2020a) for
efficient route search with the retrosynthesis models and evaluate the discovered routes based on
the metrics used by Kishimoto et al. (2019); Chen et al. (2020a). As reported in Table 6, our model
can enhance the search quality of the existing template-free model in the multi-step retrosynthesis
scenarios. This is because our RETCL is enable to recommend available and plausible reactants to TF
for each retrosynthesis step. Note that the MLP column is the same as reported in Chen et al. (2020a)
which uses a template-based single-step MLP model. The detailed description of this multi-step
retrosynthesis experiment and the discovered routes are provided in Appendix D.

4 RELATED WORK

The template-based approaches (Coley et al., 2017b; Segler & Waller, 2017; Dai et al., 2019) rely on
reaction templates that are extracted from a reaction database (Coley et al., 2017a; 2019) or encoded
by experts (Szymkuć et al., 2016). They first select one among known templates, and then apply it to
the target product. On the other hand, template-free methods (Liu et al., 2017; Karpov et al., 2019;
Zheng et al., 2019; Shi et al., 2020) consider retrosynthesis as a conditional generation problem such
as machine translation. Recently, synthon-based approaches (Shi et al., 2020; Somnath et al., 2020)
have also shown the promising results based on utilizing the atom-mapping between products and
reactants as an additional type of supervisions.

Concurrent to our work, Guo et al. (2020) also propose a selection-based approach, Bayesian-Retro,
based on sequential Monte Carlo sampling (Del Moral et al., 2006). As reported in Table 1, our
RETCL significantlly outperforms Bayesian-Retro. The gap is more evident since it uses 6× 105

forward evaluations (i.e., 6 hours3) of Molecular Transformer (Schwaller et al., 2019a) for single-step
retrosynthesis of one target product while our RETCL requires only one second.

5 CONCLUSION

In this paper, we propose RETCL for solving retrosynthesis. To this end, we reformulate retrosynthesis
as a selection problem of commercially available reactants, and propose a contrastive learning scheme
with hard negative mining to train our RETCL. Through the extensive experiments, we show that
our framework achieves outstanding performance for the USPTO benchmarks. Furthermore, we
demonstrate the generalizability of RETCL to unseen reaction templates. We believe that extending

3See https://github.com/zguo235/bayesian_retro.
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our framework to multi-step retrosynthesis or combining with various contrastive learning techniques
in other domains could be interesting future research directions.
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Olivier J Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi, Carl Doersch, SM Eslami, and
Aaron van den Oord. Data-efficient image recognition with contrastive predictive coding. arXiv
preprint arXiv:1905.09272, 2019.

Pavel Karpov, Guillaume Godin, and Igor V Tetko. A transformer model for retrosynthesis. In
International Conference on Artificial Neural Networks, pp. 817–830. Springer, 2019.

9



Under review as a conference paper at ICLR 2021

Akihiro Kishimoto, Beat Buesser, Bei Chen, and Adi Botea. Depth-first proof-number search
with heuristic edge cost and application to chemical synthesis planning. In Advances in Neural
Information Processing Systems, pp. 7226–7236, 2019.

Kangjie Lin, Youjun Xu, Jianfeng Pei, and Luhua Lai. Automatic retrosynthetic pathway planning
using template-free models. arXiv preprint arXiv:1906.02308, 2019.

Bowen Liu, Bharath Ramsundar, Prasad Kawthekar, Jade Shi, Joseph Gomes, Quang Luu Nguyen,
Stephen Ho, Jack Sloane, Paul Wender, and Vijay Pande. Retrosynthetic reaction prediction using
neural sequence-to-sequence models. ACS central science, 3(10):1103–1113, 2017.

Daniel Mark Lowe. Extraction of chemical structures and reactions from the literature. PhD thesis,
University of Cambridge, 2012.

Troy Mutton and Damon D Ridley. Understanding similarities and differences between two prominent
web-based chemical information and data retrieval tools: Comments on searches for research
topics, substances, and reactions. Journal of Chemical Education, 96(10):2167–2179, 2019.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS 2017 Autodiff Workshop, 2017.

Nadine Schneider, Nikolaus Stiefl, and Gregory A Landrum. What’s what: The (nearly) definitive
guide to reaction role assignment. Journal of chemical information and modeling, 56(12):2336–
2346, 2016.
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A DATASET DETAILS

We here describe the details of USPTO datasets. The reactions in the USPTO datasets are derived
from the US patent literature (Lowe, 2012). The entire set, USPTO 1976-2016, contains 1.8 million
raw reactions. The commonly-used benchmark of single-step retrosynthesis is USPTO-50k containing
50k clean atom-mapped reactions which can be classified into 10 broad reaction types (Schneider
et al., 2016). See Table 7a for the information of the reaction types. For generalization experiments
in Section 3.4, we introduce a filtered dataset, USPTO-50k-modified, which contains reactions of
reaction types from 1 to 5. We report the number of reactions of the modified dataset in Table
7b. We also use the USPTO-full dataset, provided by Dai et al. (2019), which contains 1.1 million
reactions. Note that we use only the test split of USPTO-full (i.e., only 101k reactions) for testing
generalizability. Note that we do not use atom-mappings in the USPTO benchmarks. Moreover, we
do not consider reagents for single-step retrosynthesis following prior work (Liu et al., 2017; Dai
et al., 2019; Lin et al., 2019; Karpov et al., 2019).

Table 7: The detailed information on USPTO datasets.

(a) The information about reaction types in USPTO-50k.

ID Fraction (%) Description

1 30.3 heteroatom alkylation and arylation
2 23.8 acylation and related processes
3 11.3 C-C bond formation
4 1.8 heterocycle formation
5 1.3 protections
6 16.5 deprotections
7 9.2 reductions
8 1.6 oxidations
9 3.7 functional group interconversion (FGI)

10 0.5 functional group addition (FGA)

(b) The number of reactions in USPTO datasets.

Dataset Split # of reactions

USPTO-50k
Train 40,008
Val 5,001
Test 5,007

USPTO-50k-modified
Train 27,429
Val 3,429
Test 5,007

USPTO-full
Train 810,496
Val 101,311
Test 101,311
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B IMPLEMENTATION DETAILS

We here provide a detailed description of our implementation. Since the USPTO datasets provide
molecule information based on the SMILES (Weininger, 1988) format, we convert a SMILES
representation to a bidirectional graph with atom and bond features. To this end, we use RDKit4

and Deep Graph Library (DGL) (Wang et al., 2019). Let G = (V,E) be the molecular graph, and
X(v) ∈ Rdatom and X(uv) ∈ Rdbond are features for an atom v ∈ V and a bond uv ∈ E in the
molecular graph G, respectively. The atom feature X(v) includes the atom type (e.g., C, I, B), degree,
formal charge, and so on; the bond feature X(uv) includes the bond type (single, double, triple or
aromatic), whether the bond is in a ring, and so on. For more details, we highly recommend to see
DGL and its extension, DGL-LifeSci.5

Architecture. We build our graph neural network (GNN) architecture based on the molecular graph
G with features X as follows:

H(0)(v)← ReLU

(
BN

(
W

(0)
atomX(v) +

∑
u∈N (v)

W
(0)
bondX(uv)

))
,

H(l)(v)← ReLU

(
BN

(
W

(l)
1

∑
u∈N (v)

H(l−1)(u) +
∑

u∈N (v)
W

(l)
bondX(uv)

))
,

H(l)(v)← ReLU
(
BN
(
W

(l)
2 H(l)(v) +H(l−1)(v)

))
, for l = 1, 2, . . . , L,

H(v)←WlastH
(L)(v),

where N (v) is the set of adjacent vertices with v. This architecture is based on structure2vec (Dai
et al., 2019; 2016), however it is slightly different with the model used by Dai et al. (2019): we
use ReLU after BN instead of BN after ReLU; we append a last linear model Wlast. Based on the
atom-level embeddings H(v), we construct query and key embeddings fθ, gθ, and hθ using three
separate residual blocks as follows:

fθ(M)←
∑
v∈V

(
H(v) + BN(W

(f)
2 ReLU(BN(W

(f)
1 ReLU(H(v)))))

)
,

gθ(M)←
∑
v∈V

(
H(v) + BN(W

(g)
2 ReLU(BN(W

(g)
1 ReLU(H(v)))))

)
,

hθ(M)←
∑
v∈V

(
H(v) + BN(W

(h)
2 ReLU(BN(W

(h)
1 ReLU(H(v)))))

)
,

where M is the corresponding molecule with the molecular graph G. Note that θ includes all W
defined above, and we omit bias vectors of the linear layers due to the notational simplicity. We found
that these design choices, e.g., sharing GNN layers and using residual layers, also provide an accuracy
gain. Therefore, more sophisticated architecture designs could provide further improvements; we
leave it for future work.

Optimization. For learning the parameter θ, we use the stochastic gradient descent (SGD) with a
learning rate of 0.01, a momentum of 0.9, a weight decay of 10−5, a batch size of 64, and a gradient
clip of 5.0. We train our model for 200k iterations and evaluate on the validation split every 1000
iterations. The information of the nearest neighbors is also updated every 1000 iterations. When
evaluating on the test split, we use the best validation model with a beam size of 200.

To sum up, we use Pytorch (Paszke et al., 2017) for automatic differentiation, Deep Graph Library
(Wang et al., 2019) for building graph neural networks, and RDKit for processing SMILES (Weininger,
1988) representations. All our models can be executed on single NVIDIA RTX 2080 Ti GPU.

4Open-Source Cheminformatics Software, https://www.rdkit.org/
5Bringing Graph Neural Networks to Chemistry and Biology, https://lifesci.dgl.ai/
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C FAILURE CASE STUDY

Figure 5: A synthetic path existing in Reaxys based on RETCL’s prediction.

As illustrated in Figure 5, we found that our RETCL’s prediction differs from the ground-truth
reactants in USPTO-50k, however, it exists as a 3-step reaction with two reagents (sodium acetate and
thiophene) in the chemical literature (Gonda & Novak, 2015).6 Note that our framework currently
does not consider reagent prediction. Therefore, our prediction can be regarded as an available (i.e.,
correct) synthetic path in practice.

6We found this synthetic path and the corresponding literature from a chemical database, Reaxys. Note that
the sodium acetate and the thiophene are considered as reagents in Reaxys.
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D MULTI-STEP RETROSYNTHESIS

For the multi-step retrosynthesis experiment described in Section 3.4, we use a synthetic route
dataset provided by Chen et al. (2020a). This dataset is constructed from the USPTO (Lowe, 2012)
database like other benchmarks. We recommend to see Chen et al. (2020a) for the construction details.
The dataset contains 299202 training routes, 65274 validation routes, and 190 test routes. We first
extract single-step reactions and molecules from the training and validation splits of the dataset. The
extracted reactions are used for training our RETCL and Transformer (TF, Chen et al. 2019), and the
molecules are used as the candidate set Ctrain7 for ours. When testing the single-step models with
Retro* (Chen et al., 2020a), we use all starting molecules (i.e., 114802 molecules) in the routes in the
dataset as the candidate set C. This reflects more practical scenarios because intermediate reactants
often be unavailable in multi-step retrosynthesis. We remark that TF also uses the candidate set C as
the prior knowledge for finishing the search procedure.

The evaluation metrics used in Section 3.4 are success rate and average length of routes. The success
means that a synthetic route for a target product is successfully discovered under a limit of the number
of expansions. We set the limit by 100 and use only the top-5 predictions of a single or hybrid model
for each expansion. When computing the average length, we only consider the cases where all the
single-step models discover routes successfully. As Chen et al. (2020a) did, we use the negative
log-likelihood computed by TF as the reaction cost.

Figure 6 and 7 illustrate the discovered routes by TF and RETCL+TF under the aforementioned
setting. The molecules in the blue boxes are building blocks (i.e., available reactants) and the numbers
indicate the reaction costs (i.e., the negative log-likelihoods computed by TF). As shown in the
figures, our algorithm allows to discover a shorter and cheaper route.

0.4364

Target product

Total cost: 3.8009

2.9604

0.4040

(a) Transformer

0.4364

Total cost: 2.4318

Target product

1.9954

(b) RETCL+Transformer (ours)

Figure 6: Synthetic routes discovered by (a) Transformer and (b) our RETCL+Transformer.

7Note that this candidate set is used only for training.
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0.1062

Total cost: 6.9446

Target product

2.7295

0.6537

0.7298

0.5370

1.9935

0.1946

(a) Transformer

0.1062

0.0113

0.8532

0.4238

Total cost: 6.5565

5.1618

Target product

(b) RETCL+Transformer (ours)

Figure 7: Synthetic routes discovered by (a) Transformer and (b) our RETCL+Transformer.
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E GENERALIZATION TO UNSEEN CANDIDATES

The knowledge of the candidate set C could be updated after learning the RETCL framework. In this
case, the set used in the test phase is larger than that in the training phase, i.e., Ctrain ( Ctest. One
can learn the framework once again, however someone want to use it instantly without additional
training. To validate that our framework can generalize to unseen candidates, we conduct an additional
experiments with a smaller candidate set Csmall. We first train our model with Ctrain = Csmall and
then test with the larger candidate set Ctest = Clarge. Here we consider two cases of Csmall: (a)
91k molecules in training and validation splits of USPTO-50k; (b) 100k molecules in all splits of
USPTO-50k. As reported in Table 8, the model trained with Csmall achieves comparable performance
to the model trained with Clarge. This demonstrates that our model trained with a small corpora (e.g.,
USPTO-50k) can work with unseen candidates.

Table 8: Generalization to unseen candidates.

|Ctrain| |Ctest| Top-1 Top-3 Top-5 Top-10 Top-20 Top-50

671,518
671,518

71.3 86.4 92.0 94.1 95.0 96.4
100,508 68.8 84.1 87.6 90.0 91.8 93.5
91,297 69.0 84.9 88.1 91.0 92.8 94.4
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F RESTRICTION OF KNOWLEDGE OF CANDIDATE REACTANTS

One might have very restricted knowledge of the candidate set C of commercially available reactants
due to own circumstances such as a budget limit. In this case, one of ground-truth reactants might
be missing from the candidate set. Since there exist multiple solutions in the retrosynthesis task,
retrosynthesis tools should be able to provide alternative solutions in such a case. To verify that
our RETCL can recommend such a solution, we experiment with varying sizes of the candidate set
C. Remark that using a smaller candidate set means only a small number of reactants is practically
available, thus performance degradation is expected. Here, we use two metrics: exact-match accuracy
and coverage proposed by Schwaller et al. (2019b). To be specific, the coverage measures whether
the target product is synthesized from the predicted reactant-set made by RetCL using a forward
synthesis model (Schwaller et al., 2019a). This can evaluate plausibility of the prediction even if one
of the reactants is missing from the candidate set. We report the metrics using top-10 predictions
in the USPTO-50k test split. As shown in Table 9, even though some ground-truth candidates are
missing, our framework can provide plausible solutions.

Table 9: Top-10 exact-match accuracy (%) and coverage (%) under restricted knowledge of the
candidate set C of commercially available reactants.

Subset size 25% 50% 75% 100%

Exact-match 10.2 29.9 57.9 93.8
Coverage 25.3 52.1 72.7 89.0

Exact-match or Coverage 27.4 56.8 79.3 97.9
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