Under review as a conference paper at ICLR 2026

RLBENCHNET: BENCHMARKING NEURAL ARCHITEC-
TURES WITH PPO ACROSS REINFORCEMENT LEARN-
ING TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) has advanced significantly through the application
of diverse neural network architectures. In this study, we systematically evaluate
the performance of several architectures within RL tasks using a widely adopted
policy gradient algorithm, Proximal Policy Optimization (PPO). The architectures
considered include Long Short-Term Memory (LSTM), Multi-Layer Perceptron
(MLP), Mamba/Mamba-2, Transformer-XL, Gated Transformer-XL, and Gated
Recurrent Unit (GRU). Through comprehensive experiments spanning continuous
control, discrete decision-making, and memory-based environments, we uncover
architecture-specific strengths and limitations. Our results show that: (1) MLPs
excel in fully observable continuous control tasks, offering an effective balance
between performance and efficiency; (2) recurrent architectures such as LSTM and
GRU provide robust performance in partially observable settings with moderate
memory demands; (3) Mamba models achieve up to 4.5x higher throughput than
LSTM and 3.9x higher than GRU, while maintaining comparable performance;
and (4) only Transformer-XL, Gated Transformer-XL, and Mamba-2 succeed
on the most memory-intensive tasks, with Mamba-2 requiring 8x less memory
than Transformer-XL. These findings highlight the trade-offs among architectures
and provide actionable insights for selecting appropriate models in PPO-based RL
under different task characteristics and computational constraints. Code is available
at: https://anonymous.4open.science/r/BenchNetRL-A718

1 INTRODUCTION

Reinforcement learning (RL) has emerged as a powerful framework for sequential decision-making,
with neural networks playing a key role in enabling agents to learn complex policies (Gu et al., [2023]
2025} Silver et al., 2016)). Despite their importance, the influence of neural network architecture
on RL performance across diverse environments remains relatively underexplored in the literature.
In this work, we aim to bridge this gap by systematically evaluating the impact of various neural
network architectures on the performance of RL agents.

To ground our investigation, we choose Proximal Policy Optimization (PPO) (Schulman et al.} 2017)
as the primary algorithm for our study, as it is one of the most widely adopted RL methods, known
for its simplicity and strong empirical performance. Our experiments span a diverse set of benchmark
tasks, offering comprehensive insights into how architectural choices affect learning efficiency
and policy quality in RL. These tasks include environments requiring memory, such as Partially
Observable Markov Decision Processes (POMDPs), and environments focused on continuous control
and discrete decision-making. By analyzing the strengths and weaknesses of architectures such as
LSTM (Hochreiter & Schmidhuber}|1997), GRU (Chung et al., 2014), Transformer-XL (Dai et al.,
2019)), Gated Transformer-XL (GTrXL) (Parisotto et al..[2019), Mamba (Gu & Daol [2024), Mamba-2
(Dao & Gu,[2024) and MLP, we aim to provide actionable insights into the design of RL systems.

Previous works have explored implementation details of PPO (Huang et al., [2022a)), that methods
could be used to improve the agent performance in various environments (Andrychowicz et al.| 2020)),
and studies like (Pleines et al.,|2024) have demonstrated the efficacy of Transformer-XL in episodic
memory tasks. However, these studies often overlook comparisons with simpler architectures, such

https://anonymous.4open.science/r/BenchNetRL-A718

Under review as a conference paper at ICLR 2026

as LSTM, and emerging architectures, like Mamba. Furthermore, existing benchmarks, such as those
conducted in Memory Gym (Pleines et al., [2024) and MiniGrid (Chevalier-Boisvert et al., [2023)),
highlight the need for memory in certain environments but lack comprehensive comparisons across a
broader range of architectures and tasks.

Our contributions are threefold:

* Architecture Benchmarking in RL: We benchmark PPO implementations using a variety of
neural network architectures, including traditional models (MLP, LSTM, GRU) and advanced
architectures (Transformer-XL, GTrXL, Mamba, Mamba-2). We also provide insights into selecting
appropriate neural networks for different settings.

» Evaluation Across Diverse Tasks: We evaluate these neural network architectures across memory-
intensive environments such as MiniGrid; partially observable classical control tasks, including
LunarLander, Acrobot, and CartPole; and both continuous and discrete control domains, such
as MuJoCo (Todorov et al., 2012) and Atari (Bellemare et al., 2013). We further provide a
comprehensive analysis of the experimental results.

* Trade-off and Guideline Analysis: We analyze the trade-offs between memory requirements, com-
putational efficiency, and task performance, offering practical guidelines for selecting architectures
based on task characteristics.

2 RELATED WORK

2.1 MEMORY MODELS FOR REINFORCEMENT LEARNING

Memory modeling in RL has evolved through three main architectural paradigms: recurrent networks,
transformer-based models, and state-space models. Each of these architectures offers distinct
advantages depending on the task characteristics, particularly in environments with varying levels of
partial observability and memory requirements.

Recurrent networks, including LSTM and GRU (Hochreiter & Schmidhuber; |1997; |Chung et al.,
2014), have been the traditional choice for handling partial observability in RL. These architectures
maintain an internal memory state that is updated at each timestep, enabling them to integrate
information over time. Studies like MemoryGym (Pleines et al.,|2024)) have shown that well-tuned
GRU models can outperform even advanced architectures like Transformer-XL in indefinite-horizon
tasks (Pleines et al.,2023). However, their effectiveness is limited in long-horizon scenarios due to
vanishing gradient issues and fixed memory capacity (Lu et al.| [2024).

Transformer-based architectures, such as Transformer-XL and GTrXL (Dai et al., [2019; |Parisotto
et al.,[2019), introduce self-attention mechanisms that excel at modeling long-term dependencies.
These models have demonstrated state-of-the-art performance in partially observable environments
(N1 et al.} 2023)), but their quadratic complexity with sequence length can become a computational
bottleneck. Hybrid models, like the Recurrent Memory Transformer (RMT) (Cherepanov et al.; 2024)
and Recurrent Action Transformer with Memory (RATE) (Bulatov et al., 2024), extend transformer
capabilities by integrating external memory mechanisms.

State-space models, particularly Mamba and Mamba-2 (Gu & Daol 2024; |Dao & Gul, [2024)),
represent a recent innovation, balancing the computational efficiency of recurrent networks with
the expressive capacity of transformers. Mamba employs a selective state-space mechanism that
efficiently captures temporal dependencies without the overhead of self-attention. Mamba-2 further
improves long-horizon memory retention, making it competitive even in highly memory-dependent
tasks. Recent work has integrated Mamba into decision-making frameworks, such as Decision
Mamba (Lv et al.| 2025} |Otal 2024), highlighting its adaptability across tasks.

These three architectural paradigms offer distinct strengths: recurrent networks provide robust
solutions for short-term memory tasks, transformers excel in complex, long-horizon scenarios,
and state-space models like Mamba achieve an optimal balance of computational efficiency and
performance. Our work systematically benchmarks these architectures in RL, revealing their strengths,
limitations, and suitable application domains.

Under review as a conference paper at ICLR 2026

2.2 BENCHMARKING NEURAL ARCHITECTURES IN RL

Recent years have seen increased interest in systematically evaluating different neural architectures
across diverse RL tasks. Benchmark suites like POPGym (Morad et al.| 2023)) and Memory Gym
(Pleines et al.| 2024) have been developed specifically to assess how different memory models
perform under varying degrees of partial observability. These benchmarks have revealed that no
single architecture dominates across all tasks. While transformers excel when long but finite context
is needed, recurrent networks often have an edge in continuously evolving tasks or when the agent
must generalize from limited training data. Hybrid approaches that combine the strengths of different
architectures (such as the Decision Mamba-Hybrid (Huang et al., [2024) that uses Mamba for long-
term memory and a transformer for short-term decision-making) have shown particular promise in
complex environments.

Our work provides a systematic comparison of PPO implementations across diverse neural archi-
tectures (MLP, LSTM, GRU, Transformer-XL, GTrXL, Mamba, and Mamba-2) within a unified
framework. By focusing solely on these base architectures without external memory augmentation,
we offer a clear analysis of their intrinsic memory capabilities, enabling a direct evaluation of the
trade-offs in performance and computational efficiency across various environments.

3 BENCHMARKING SETTINGS

3.1 NEURAL NETWORK ARCHITECTURE IN RL

To ensure consistency and reproducibility, we build our implementations on CleanRL (Huang et al.,
2022b)), a widely used open-source library for RL algorithms. In our study, the core PPO algorithm is
kept fixed while only the neural network architecture is varied, enabling fair comparisons that isolate
architectural differences from algorithmic factors. Specifically, we benchmark the following neural
network architectures:

(1) MLP: Standard multi-layer perceptron with ReLLU activations, serving as our baseline. In the
baseline configuration, agents received only the current observation at each timestep, referred to as
PPO-1 or MLP Obs. Stack 1. To introduce a simple memory mechanism, we experimented with
PPO-4, also referred as MLP Obs. Stack 4, where four consecutive observations were concatenated
and fed into the network. For Atari, this follows the standard practice of frame stacking the last four
frames. (2) LSTM and GRU: Recurrent networks implemented following CleanRL’s PPO-LSTM
structure, using a single recurrent layer. While this single-layer approach is consistent with typical
implementations, it may have limitations in highly memory-dependent tasks. (3) Transformer-
XL, GTrXL: Implemented using CleanRL’s episodic memory structure for hidden states, which
maintains information across episode boundaries through its segmented recurrent mechanism. This
implementation also employs post-transformer MLP layers. The gated version introduces a learned
gating mechanism in place of traditional skip connections. (4) Mamba/Mamba-2: Integrated using
the official implementation from the mamba - s sm repository. For Mamba, we employed an optimized
training approach utilizing the selective scan mechanism without resetting at episode boundaries,
offering computational advantages but potentially introducing state leakage between episodes. We
incorporated post-model MLP layers and layer normalization.

Particularly, for all architectures, we adjusted network sizes to maintain approximately equal parame-
ter counts (see Table[5]in Appendix [A), ensuring that performance differences reflect architectural
capabilities rather than capacity disparities. Moreover, we provide single-file implementations for
each architecture variant. This strategy makes architectural differences explicit while maintaining
consistent handling of environment interactions, data collection, and policy updates.

3.2 TRAINING PROTOCOLS
We adopted consistent training protocols across all environments, while adjusting hyperparameters to
account for their varying complexity, as summarized in Table[9)and detailed further in Appendix [A]

For all environments, we used the default maximum episode length as specified in their standard
implementations. In MiniGrid tasks, we further increased the challenge by reducing the agent’s

Under review as a conference paper at ICLR 2026

observation window from the default 7x7 to 3x3, making the environments more partially observable
and thus more reliant on memory-based architectures.

3.3 HYPERPARAMETERS AND HARDWARE

We primarily follow CleanRL’s default PPO hyperparameters, with key parameters shown in Table [I0]
from the Appendix [A] The only notable exception was the learning rate for Mamba-based models,
which was reduced following recommendations from recent literature (Luo et al., 2024)) to enhance
stability.

For Mamba, we used the default hyperparameter settings provided in the official implementation, as
the available configuration space is relatively narrow and recent work suggests strong performance
without extensive tuning.

For Transformer-based models, we utilized recommended hyperparameters for environments
where prior work was available (e.g., MiniGrid, MemoryGym). In environments lacking specific
benchmarks, we adjusted settings based on the environment’s complexity, particularly whether it
requires short-term or long-term memory.

All experiments were conducted on the same condition servers. Training throughput, inference
latency, and memory usage were measured using PyTorch’s built-in profiling tools. For more details,
please see Appendix

4 RESULTS AND ANALYSIS

We evaluate the performance of each architecture across diverse environments with varying require-
ments for memory, continuous control, and discrete decision-making.

4.1 CONTINUOUS CONTROL TASKS

To systematically evaluate the impact of neural architectures on continuous control tasks, we con-
ducted benchmarks on three popular MuJoCo environments: Walker2d-v4, HalfCheetah-v4, and
Hopper-v4. These tasks present distinct challenges, ranging from stability-focused control (Hopper)
to speed and efficiency (HalfCheetah). Our results demonstrate that the optimal architecture is highly
task-dependent, reflecting the varying dynamics and control complexities of each environment.

Findings:
* Mamba has the worst performance across all environments, while Mamba-2 shows significant
improvement, with performance comparable to LSTM and GRU while training 5x faster.

e MLP performs well in most tasks, except for Hopper, where short memory capabilities are critical
for maintaining stability.

Specifically, our analysis reveals that environments with simpler, smooth dynamics (like HalfCheetah)
are effectively modeled by feed-forward architectures (MLP), which achieve high performance with
strong sample efficiency. In contrast, environments with higher stability demands (like Hopper) benefit
from recurrent models (GRU, LSTM), which effectively capture temporal dependencies critical for
maintaining balance. Notably, in Walker2d, MLPs again perform competitively, highlighting the
value of simplicity when the task dynamics are less chaotic.

Specifically, Figure [I] presents learning curves for the MuJoCo environments (Walker2d-v4,
HalfCheetah-v4, and Hopper-v4), revealing distinct architectural advantages across different con-
tinuous control tasks: (1) In Walker2d-v4, MLP achieves the best performance (approximately
3250), demonstrating outstanding stability and good sample efficiency. GRU and Mamba-2 follow
closely, reflecting solid temporal modeling abilities, while Transformer-XL reaches a lower asymptote.
Original Mamba trails substantially, suggesting optimization instability or inadequacy for complex
motor control. (2) In HalfCheetah-v4, LSTM and PPO-1 consistently outperform all others, showing
the highest reward (approximately 3350). The smooth progression indicates robustness and effective
temporal integration in continuous action spaces. Transformer-XL, GRU, and Mamba-2 achieve

Under review as a conference paper at ICLR 2026

Walker2d-v4 HalfCheetah-v4 Hopper-v4

MLP Obs. Stack 1 5000 MLP Obs. Stack 1 MLP Obs. Stack 1
—— MLP Obs. Stack 4 —— MLP Obs. Stack 4 ~—— MLP Obs. Stack 4
— GRU 4000{ —— GRU 2500, —— GRU

LSTM LST™M LST™M
—— Mamba-2 3000 —— Mamba-2 2000 == Mamba-2

Mamba Mamba Mamba
20001 — TrxL — XL — TXL — —— —
— GTrXL —— GTrXL

4000

u
8
8
S

2000

Average Reward

1000 1000{ —— GTrXL

1000

Figure 1: Average returns for MuJoCo tasks. MLP and LSTM demonstrate competitive or superior
performance in Walker2d and HalfCheetah, while GRU and Transformer-XL perform best in Hopper.

Pong-v5 Breakout-v5 SeaQuest-v5
| - — -~ = 400 MLP Obs. Stack 1

— liLr 05, Stackh 2500 MLP Obs. Stack 1
— &R '/ 2250 = MLP Obs. Stack 4

LsT™M i — GRU
4 2000 LSTM

— Mamba2 o
MLP Obs, Stack1 | Mamba A
7
—— MLPObs.Stack4 | o | — TXL Pl
— GRU — om)
LsTM
— Mamba-2
Mamba
— X
— e

17501 === Mamba-2
b A 1500 Mamba

Average Reward

oy — Tt/

. 12500 G
1000 ’

750

™ M s M M m iom FLU TR aM 5M 6!

“Taining Steps “Training Steps. ™ Training Steps
Figure 2: Average returns for Atari environments. Mamba and MLP with frame stacking excel
in Pong, while LSTM and MLP with frame stacking perform best in Breakout. In SeaQuest, all

architectures perform similarly, with only Transformer-XL slightly higher reward.

moderate success but lag in both final reward and convergence speed, while the original Mamba
significantly underperforms. (3) In Hopper-v4, GRU and Transformer-XL perform best, reaching
high and stable rewards, showing that moderate complexity sequence models suit tasks requiring
balance and stability. MLP performs worse than others, reinforcing the value of recurrence in tasks
with strong stability constraints.

4.2 DISCRETE CONTROL TASKS

Mamba and Mamba-2 excel in discrete control tasks like Pong, achieving rapid convergence due to
efficient state-space modeling. However, Mamba struggles in more complex scenarios like Breakout,
where its limited temporal modeling becomes a disadvantage. LSTM and GRU demonstrate strong
performance in strategic environments like Breakout, but their added complexity can slow learning in
simpler tasks (e.g. Pong). Gated Transformer-XL (GTrXL) shows only minor improvements over
Transformer-XL, indicating that the gating mechanism provides limited benefits in these tasks.

Finding: Mamba and Mamba-2 achieve fast convergence in reactive tasks like Pong but underper-
form in strategic environments like Breakout, where LSTM and GRU excel despite slower learning,
while GTrXL offers only marginal gains over Transformer-XL.

For instance, results for Atari environments (Figure [2)) reveal environment-specific architectural
advantages: (1) In Pong-v5, Mamba, Mamba-2, and MLP rapidly reach maximum reward (20)
with excellent sample efficiency (approximately 2M steps), indicating effectiveness in deterministic,
reaction-time critical environments. GTrXL performs slightly better than standard Transformer-XL,
suggesting that the gating mechanism enhances learning stability. LSTM and GRU exhibit slower
learning, indicating that their recurrent nature introduces additional complexity in learning optimal
behaviors, which may not be necessary for a straightforward, deterministic task like Pong. (2) For
Breakout-vS, PPO-4 and recurrent architectures (GRU, LSTM) achieve the highest performance
(approximately 360), steadily increasing reward and demonstrating good generalization and rep-
resentation learning. All other architectures perform worse, implying difficulties with modeling
task-specific structured temporal dynamics or input complexity in this Atari task.

4.3 PARTIALLY OBSERVABLE CONTROL TASKS

Traditional recurrent architectures (GRU/LSTM) excel in simpler, short-horizon partially observable
tasks. Transformer-XL demonstrates strong performance in complex, partially observable settings, ef-

Under review as a conference paper at ICLR 2026

CartPole-v] Masked LunarLander-v2 Masked Acrobot-vl Masked
300- MLP Obs. Stack 1
—— MLP Obs. Stack 4
2001 — GRU
LsTM
— Mamba2

MLP Obs. Stack 1
—— MLP Obs. Stack 4
— GRU Al
o P
— Mamba2)
300 Mambar'| /.
| e

¥ -100{ ¢
|
—200{ |

-300

Average Reward

~a00{

] El By E] T B Ed B M
Training Steps. Training Steps Training Steps

Figure 3: Average returns for masked classic control tasks. Recurrent architectures and stacked MLPs
excel in CartPole, while Transformer-XL performs best in LunarLander.

MiniGrid-Doorkey-8x8 MiniGrid-Memory-511 MiniGrid-RedBlueDoors-6x6-v0
MLP Obs: Stacksl: 10— MLP Obs. Stack 4___

—— MLP Obs. Stack 4 — GRu > |
s. Stacl o l-i 08 / =y —
=y MLP Obs. Stack 1
! ~
|

X Mamba
— XL
of = oTL

LsTM
—— Mamba-2
—— MLP Obs. Stack 4
— GRU
LSTM
T — Mamba2 |
Mamba
0.2 — TXL
— GTXL

o
®
H
o
g
&
g
S
z
o

2m EQ am E] T4 M 3M aM SM 6M M &M oM 10M 1im 5M 6!
Training Steps Training Steps

" aining steps
Figure 4: Average returns for MiniGrid environments. In DoorKey-8x8, original Mamba shows the
fastest convergence, while in Memory-S11, only Transformer-XL and Mamba-2 achieve meaningful
learning, with Mamba-2 reaching near-optimal performance.

fectively integrating information across longer time spans. GTrXL offers no substantial improvement
over Transformer-XL, indicating limited benefits from the gating mechanism. Mamba exhibits poor
performance and instability, potentially due to implementation challenges and information leakage
across episodes. PPO-4 achieves fast and reliable performance, balancing simplicity and short-term
memory.

Finding: GRU and LSTM perform well in simple, short-horizon tasks, while Transformer-XL
excels in complex, partially observable settings; GTrXL adds little benefit, Mamba struggles with
instability, and PPO-4 offers fast, stable learning with minimal complexity.

For example, Figure [3] shows results for masked classic control environments (CartPole-v1,
LunarLander-v2, and Acrobot-vl), where we removed all velocity information to create partial
observability: (1) In CartPole-vl Masked, GRU, LSTM, PPO-4, and Mamba-2 rapidly achieve
maximum reward (approximately 500), demonstrating superior sample efficiency (approximately
1.5M steps) and robustness in masked, short-horizon tasks. (2) Transformer-XL has slower conver-
gence and lower rewards, possibly due to overfitting or a lack of efficient representation of short-term
masked inputs. (3) For LunarLander-v2 Masked, Transformer-XL/GTrXL, and PPO-4 are highly
effective (200+ reward), especially Transformer-XL, which steadily overcomes partial observability
(approximately 3M steps), revealing advantages of self-attention in inferring masked state elements.
Mamba and Mamba-2 notably struggle, highlighting possible brittleness to masked or noisy obser-
vations. GRU and LSTM perform moderately well but plateau quickly, suggesting limitations in
extracting masked information compared to self-attention mechanisms. (4) In Acrobot-vl Masked,
Mamba-2 and PPO-4 reach near-optimal performance and attain the best final return. LSTM and
GRU eventually approach similar asymptotes but converge more slowly. Transformer-XL plateaus
substantially lower, GTrXL is worse, and PPO-1 baselines fail to learn under masking. This suggests
that for dynamics with strong temporal coupling, selective state-space modeling (Mamba-2) and
classical recurrence are more effective than self-attention, while simple feed-forward memory proxies
are insufficient.

4.4 MEMORY-INTENSIVE TASKS

Based on the comprehensive experiment results, Mamba-2, Transformer-XL, and GTrXL are the only
architectures capable of effectively solving long-horizon memory tasks, with GTrXL demonstrating
more stable learning curves due to the gating mechanism. Both Mamba variants and Transformer-XL
also excel in environments requiring complex credit assignment, such as DoorKey. In contrast,

Under review as a conference paper at ICLR 2026

conventional recurrent architectures (LSTM, GRU) and simple MLP models struggle in these settings.
For example, as shown in Figure 4] presents results for our most memory-demanding environments:
MiniGrid Memory-S11, DoorKey-8x8, and RedBlueDoors-6x6.

Finding: Mamba-2, Transformer-XL, and GTrXL are uniquely effective in long-horizon memory
and complex credit assignment tasks, with GTrXL offering added stability via gating, while
traditional recurrent and MLP models fall short.

In DoorKey-8x8, the original Mamba architecture demonstrates remarkable sample efficiency,
rapidly converging to the highest reward. Its learning curve sharply surpasses other models, indicating
superior mid-length memory and efficient representation learning. Transformer-XL and GTrXL
achieve a strong result slightly slower, demonstrating good generalizability but moderate sample
efficiency. Mamba-2 achieves moderate success more slowly, suggesting potential optimization
challenges on shorter-horizon memory tasks compared to original Mamba. Surprisingly, a simple
PPO-1 outperforms standard recurrent architectures (LSTM, GRU), suggesting that minimal state
abstraction is sufficient in less complex tasks.

In the highly challenging Memory-S11 environment, Mamba-2 significantly outperforms all
other architectures, achieving near-optimal reward (approximately 0.96) with remarkable stabil-
ity. Transformer-XL exhibits steady and stable performance but converges at a slightly lower optimal
reward with higher variance. GTrXL achieves similar results but get higher mean reward, indicating
that gating mechanism provides more stable learning curves. LSTM, GRU, MLP, and original Mamba
show no meaningful learning beyond random exploration, indicating their limited capabilities in tasks
requiring extensive memory.

In RedBlueDoors-6x6, the agent is required to remember a color cue and perform delayed,
symbol-conditioned navigation. TrXL and GTrXL solve it reliably. Mamba-2 also solves the
task but exhibits small oscillations during training. The original Mamba plateaus lower.

4.5 COMPUTATIONAL EFFICIENCY ANALYSIS
The detailed measurements of computational efficiency across architectures are presented in the

Appendix [A] while the average results across tasks are summarized in Table[I] These metrics are
critical for evaluating the practical applicability of each approach in resource-constrained settings:

Table 1: Average Computational Metrics Across Architectures

Metric PPO-1 PPO-4 LSTM GRU TrXL GTrXL Mamba Mamba-2
Final Steps Per Second (SPS) 1T 3539 3305 604 701 1856 1890 2734 2455
Training Time (min) | 16.59 18.84 121.90 91.04 30.33 2942 21.20 22.97
Inference Latency (ms) | 0.856 0.899 1.006 0971 2.171 2.147 1.304 1.489

GPU Mem. Allocated (GB) | 0.035 0.660 0.194 0.194 1.765 1.330 0.217 0.219
GPU Mem. Reserved (GB) | 0327 0983 0343 0349 5508 4.968 0.362 0.662

Finding: Mamba models are ideal for resource-constrained environments where fast throughput
and low memory usage are critical compared with other architectures such as Transformer XL,
LSTM and GRU.

Mamba achieves exceptional computational efficiency, being 4.5x faster than LSTM, 3.9x faster
than GRU, and 1.5x faster than Transformer-XL, while maintaining low memory usage (8x less than
Transformer-XL). Mamba-2, despite being slightly slower, retains significant efficiency advantages
over LSTM and Transformer-XL.

Mamba achieves an average of 2734 steps per second (SPS), which is significantly faster than LSTM,
GRU, and Transformer-XL, though still slower than MLP (1.3x). This throughput advantage translates
directly to training time improvements, with Mamba completing the same number of environment
interactions in approximately one-quarter the time required by LSTM.

In terms of inference latency (reported in the Appendix), Mamba maintains relatively low response
times (1.30 ms on average), comparable to recurrent models such as LSTM (1.01 ms) and GRU

Under review as a conference paper at ICLR 2026

(0.971 ms). While Mamba is approximately 1.3x slower than GRU and LSTM, it is still significantly
faster (1.66x) than Transformer-XL, which averages 2.17 ms. Despite these differences, all models
demonstrate low-latency performance overall, and such variations are unlikely to pose significant
challenges in most real-world applications where fast decision-making is required.

Memory efficiency shows perhaps the most dramatic differences between architectures. Mamba
requires only 0.217 GB of GPU memory on average, which is 8.1x less than Transformer-XL (1.765
GB) while achieving comparable or superior performance in most environments. This substantial
memory advantage makes Mamba suitable for deployment on resource-constrained edge devices or
for scaling to larger batch sizes on standard hardware.

4.6 ARCHITECTURE-ENVIRONMENT COMPATIBILITY

Our comprehensive evaluation reveals clear patterns regarding which architectures excel in particular
environments:

Memory-independent tasks: In environments with relatively smooth or Markovian dynamics, such
as continuous control tasks (Walker2d, HalfCheetah) and reaction-based games (Pong), simpler
architectures like MLPs and Mamba perform effectively by capturing immediate dependencies with
high stability. However, for tasks requiring strategic planning (e.g., Breakout), models with recurrent
structure or stacked inputs (like LSTM and MLP Stack-4) are better suited.

Partially observable environments: The optimal architecture depends on the complexity of the
hidden state. In simpler masked tasks (CartPole), traditional recurrent architectures (GRU/LSTM)
excel, while more complex partially observable environments (LunarLander) benefit from attention
mechanisms (Transformer-XL) that can more effectively infer hidden variables.

Memory tasks: In environments requiring moderate memory capabilities (DoorKey-8x8), the original
Mamba architecture demonstrates outstanding sample efficiency and performance, suggesting its
selective state-space approach provides an ideal inductive bias for mid-length memory requirements.
However in long-horizon tasks only Mamba-2 and Transformer-XL can effectively solve tasks
requiring extensive memory (Memory-S11), with Mamba-2 achieving superior performance. This
indicates that advanced state-space models with selective attention mechanisms are uniquely suited
to long-term dependency modeling in RL.

These patterns provide actionable guidance for practitioners: architecture selection should be driven
by the specific memory and control requirements of the target environment, with simpler architectures
preferred unless the task specifically demands long-term memory retention or complex partially
observable state inference.

4.7 PRACTICAL GUIDELINES FOR PRACTITIONERS

Based on our comprehensive evaluation, we propose the following guidelines for selecting neural
architectures in RL:

(1) Start with MLP: For most tasks, particularly those with largely Markovian dynamics (e.g.,
MuJoCo), Multi-Layer Perceptrons (MLPs) provide an excellent balance of performance, stability,
and computational efficiency. They are fast to train and offer strong baseline performance.

(2) Prioritize Mamba-2 for Sequence Tasks: If the task involves temporal dependencies or partial
observability, Mamba-2 should be your first choice. It offers a unique combination of fast training
(approximately 5x faster than LSTM/GRU) and competitive performance, making it a practical first
option for sequence modeling.

(3) Explore LSTM and GRU if Mamba-2 Falls Short: In cases where Mamba-2 does not achieve
satisfactory results, consider trying LSTM and GRU. While they require significantly longer training
times, they may outperform Mamba-2 in some environments due to their well-established memory
modeling capabilities.

(4) Reserve Transformers for Challenging Memory Tasks: Transformers (Transformer-XL,
GTrXL) should be considered only for environments that are extremely memory-intensive, such as
long-horizon planning or complex partially observable tasks. Their high computational cost and

Under review as a conference paper at ICLR 2026

implementation complexity make them unsuitable for most practical applications unless the task is
specifically designed to benefit from long-range memory modeling.

These guidelines serve as a starting point, but optimal architecture selection should ultimately depend
on the specific characteristics of the target environment and the available computational resources.

4.8 FUTURE WORK

This work opens several directions for further research. First, a more thorough hyperparameter
optimization process, beyond default CleanRL settings, could provide a fairer comparison across
architectures, particularly for Transformer-XL and Mamba, which may benefit from task-specific
tuning. Second, architectural ablation studies are needed to isolate the contributions of specific
components, such as recurrence depth, attention heads, or state-space scan mechanisms, to better
understand performance—efficiency tradeoffs.

Another important technical improvement involves adding proper hidden state resets to Mamba,
as our current implementation allows information leakage between episodes, potentially affecting
performance in episodic tasks. Future work should also explore deeper or stacked versions of each
architecture to investigate scaling behaviors. Finally, extending our evaluation beyond PPO to other
RL algorithms (e.g., SAC (Haarnoja et al.l 2018), TD3 (Fujimoto et al.,|2018)) and exploring hybrid
architectures that combine recurrence, attention, and state-space memory could lead to more flexible
and robust solutions for partially observable environments.

5 DISCUSSION AND CONCLUSION

In this work, we systematically evaluate neural network architectures for RL under a unified PPO
framework. We find that greater complexity does not necessarily yield better performance: MLPs
remain strong in fully observable tasks, Mamba-2 combines high throughput with competitive
accuracy in memory-intensive settings, and Transformers excel only in extreme memory-demanding
tasks at much higher cost. These results highlight practical trade-offs and provide guidance for
architecture selection in RL:

1) Mamba vs. Mamba-2: While Mamba exhibits inconsistent performance across environ-
ments, Mamba-2 consistently achieves strong results. It combines competitive accuracy in
memory-intensive tasks with outstanding efficiency, training 5.3 x faster than LSTM and
GRU and requiring 8.1x less GPU memory than Transformer-XL.

2) MLPs for Markovian tasks: Simpler architectures such as MLPs remain highly effective
in fully observable environments (e.g., MuJoCo). Their low complexity and fast training
make them a practical first choice when temporal dependencies are limited.

3) Efficient recurrent modeling: For tasks with moderate temporal dependencies, Mamba-2
is a strong starting point due to its efficient state-space design and high throughput. If
Mamba-2 proves unstable or underperforms, LSTM and GRU remain robust alternatives.

4) Transformers for extreme memory demands: Transformer-based models (e.g.,
Transformer-XL, GTrXL) are computationally expensive and memory-intensive. They
are best suited for environments with extensive memory requirements (e.g., MiniGrid
Memory-S11). Between them, GTrXL generally offers smoother learning curves, lower
variance, and slightly stronger final performance.

5) Complexity vs. performance: Crucially, our findings challenge the assumption that more
complex architectures inherently yield better performance. The strong results of MLPs
and Mamba-2 demonstrate that efficient architectures are often preferable, particularly in
resource-constrained settings. We recommend practitioners begin with lightweight models
and scale complexity only when task demands justify it.

Overall, these findings highlight the trade-offs among efficiency, stability, and representational
capacity across architectures. For practical applications, we recommend starting with efficient models
such as MLPs or Mamba-2, and scaling to more complex architectures like LSTMs, GRUs, or
Transformers only when task characteristics necessitate it.

Under review as a conference paper at ICLR 2026

REFERENCES

Marcin Andrychowicz, Anton Raichuk, Piotr Stariczyk, Manu Orsini, Sertan Girgin, Raphael Marinier,
Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, and Olivier
Bachem. What matters in on-policy reinforcement learning? a large-scale empirical study, 2020.
URL https://arxiv.org/abs/2006.05990.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253-279,
June 2013. ISSN 1076-9757. doi: 10.1613/jair.3912. URL http://dx.doi.org/10.1613/
Jair.3912.

Aydar Bulatov, Yuri Kuratov, Yermek Kapushev, and Mikhail S. Burtsev. Scaling transformer to Im
tokens and beyond with rmt, 2024. URL https://arxiv.org/abs/2304.11062.

Egor Cherepanov, Alexey Staroverov, Dmitry Yudin, Alexey K. Kovalev, and Aleksandr I. Panov.
Recurrent action transformer with memory, 2024. URL https://arxiv.org/abs/2306.
09459,

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems, Salem
Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modular &
customizable reinforcement learning environments for goal-oriented tasks, 2023. URL https:
//arxiv.org/abs/2306.13831.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling, 2014. URL https://arxiv.org/
abs/1412.3555.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Ruslan Salakhutdinov.
Transformer-x1: Attentive language models beyond a fixed-length context, 2019. URL https
//arxiv.org/abs/1901.02860.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality, 2024. URL https://arxiv.org/abs/2405.21060.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In Proceedings of the 35th International Conference on Machine Learning (ICML),
pp. 1587-1596. PMLR, 2018.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
URLhttps://arxiv.org/abs/2312.00752.

Shangding Gu, Jakub Grudzien Kuba, Yuanpei Chen, Yali Du, Long Yang, Alois Knoll, and Yaodong
Yang. Safe multi-agent reinforcement learning for multi-robot control. Artificial Intelligence, 319:
103905, 2023.

Shangding Gu, Bilgehan Sel, Yuhao Ding, Lu Wang, Qingwei Lin, Alois Knoll, and Ming Jin.
Safe and balanced: A framework for constrained multi-objective reinforcement learning. /EEE
Transactions on Pattern Analysis and Machine Intelligence, 2025.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, 2018. URL https:
//arxiv.org/abs/1801.01290.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

Shengyi Huang, Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto, and
Weixun Wang. The 37 implementation details of proximal policy optimization. In
ICLR Blog Track, 2022a. URL https://iclr-blog-track.github.i10/2022/03/
25/ppo-implementation-details/L https://iclr-blog-track.github.io/2022/03/25/ppo-
implementation-details/.

10

https://arxiv.org/abs/2006.05990
http://dx.doi.org/10.1613/jair.3912
http://dx.doi.org/10.1613/jair.3912
https://arxiv.org/abs/2304.11062
https://arxiv.org/abs/2306.09459
https://arxiv.org/abs/2306.09459
https://arxiv.org/abs/2306.13831
https://arxiv.org/abs/2306.13831
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1901.02860
https://arxiv.org/abs/1901.02860
https://arxiv.org/abs/2405.21060
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

Under review as a conference paper at ICLR 2026

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and Jodo G.M. Aratijo. Cleanrl: High-quality single-file implementations of deep reinforce-
ment learning algorithms. Journal of Machine Learning Research, 23(274):1-18, 2022b. URL
http://jmlr.org/papers/v23/21-1342.htmll

Sili Huang, Jifeng Hu, Zhejian Yang, Liwei Yang, Tao Luo, Hechang Chen, Lichao Sun, and Bo Yang.
Decision mamba: Reinforcement learning via hybrid selective sequence modeling, 2024. URL
https://arxiv.org/abs/2406.000709.

Chenhao Lu, Ruizhe Shi, Yuyao Liu, Kaizhe Hu, Simon S. Du, and Huazhe Xu. Rethinking
transformers in solving pomdps, 2024. URL https://arxiv.org/abs/2405.17358.

Fan-Ming Luo, Zuolin Tu, Zefang Huang, and Yang Yu. Efficient recurrent off-policy RL requires
a context-encoder-specific learning rate. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024. URL https://openreview.net/forum?id=
tSWoT8ttkO.

Qi Lv, Xiang Deng, Gongwei Chen, Michael Yu Wang, and Ligiang Nie. Decision mamba: A
multi-grained state space model with self-evolution regularization for offline rl, 2025. URL
https://arxiv.orqg/abs/2406.05427.

Steven Morad, Ryan Kortvelesy, Matteo Bettini, Stephan Liwicki, and Amanda Prorok. Popgym:
Benchmarking partially observable reinforcement learning, 2023. URL|https://arxiv.org/
abs/2303.01859!.

Tianwei Ni, Michel Ma, Benjamin Eysenbach, and Pierre-Luc Bacon. When do transformers shine
in r1? decoupling memory from credit assignment, 2023. URL https://arxiv.org/abs/
2307.03864.

Toshihiro Ota. Decision mamba: Reinforcement learning via sequence modeling with selective state
spaces, 2024. URL https://arxiv.org/abs/2403.19925,

Emilio Parisotto, H. Francis Song, Jack W. Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant M.
Jayakumar, Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, Matthew M.
Botvinick, Nicolas Heess, and Raia Hadsell. Stabilizing transformers for reinforcement learning,
2019. URL https://arxiv.org/abs/1910.06764.

Marco Pleines, Matthias Pallasch, Frank Zimmer, and Mike Preuss. Transformerxl as episodic
memory in proximal policy optimization. Github Repository, 2023. URL https://github.
com/MarcoMeter/episodic—-transformer—-memory—-ppo.

Marco Pleines, Matthias Pallasch, Frank Zimmer, and Mike Preuss. Memory gym: Towards endless
tasks to benchmark memory capabilities of agents, 2024. URL https://arxiv.org/abs/
2309.17207.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

David Silver, Aja Huang, Chris J] Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484—489, 2016.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026-5033.
IEEE, 2012.

11

http://jmlr.org/papers/v23/21-1342.html
https://arxiv.org/abs/2406.00079
https://arxiv.org/abs/2405.17358
https://openreview.net/forum?id=tSWoT8ttkO
https://openreview.net/forum?id=tSWoT8ttkO
https://arxiv.org/abs/2406.05427
https://arxiv.org/abs/2303.01859
https://arxiv.org/abs/2303.01859
https://arxiv.org/abs/2307.03864
https://arxiv.org/abs/2307.03864
https://arxiv.org/abs/2403.19925
https://arxiv.org/abs/1910.06764
https://github.com/MarcoMeter/episodic-transformer-memory-ppo
https://github.com/MarcoMeter/episodic-transformer-memory-ppo
https://arxiv.org/abs/2309.17207
https://arxiv.org/abs/2309.17207
https://arxiv.org/abs/1707.06347

Under review as a conference paper at ICLR 2026

A PERFORMANCE METRICS.

Table 2: Final Steps Per Second (SPS) for Various Architectures and Environments (Rounded)

Environment PPO-1 PPO-4 LSTM GRU TrXL GTrXL Mamba Mamba-2
MiniGrid-MemoryS11-v0 3191 2544 802 924 1697 1869 2850 2698
MiniGrid-DoorKey-8x8-v0 3496 2770 828 957 1684 1868 3031 2844
Breakout-v5 1521 1487 626 701 1188 1179 1329 1245
Pong-v5 1753 1699 666 742 1322 1310 1512 1404
CartPole-v1 7046 6930 991 1151 3781 3594 4643 3827
LunarLander-v2 5979 5726 897 1061 2585 2489 4018 3398
Walker2d-v4 2738 2675 210 256 1430 1436 2270 2121
HalfCheetah-v4 3315 3212 211 259 1577 1706 2632 2429
Hopper-v4 2808 2703 208 256 1440 1555 2325 2133
Average 3539 3305 604 701 1856 1890 2734 2455

Table 3: Training Time (in Minutes) for Various Architectures and Environments (3 million total

timesteps)
Environment PPO-1 PPO-4 LSTM GRU TrXL GTrXL Mamba Mamba-2
MiniGrid-DoorKey-8x8-v0 14.31 18.06 60.33 5222 29.68 26.76 16.50 17.59
MiniGrid-MemoryS11-v0 15.67 19.66 62.31 54.04 2946 26.74 17.75 18.54
Breakout-v5 3291 3365 79.78 7129 42.10 4243 37.66 40.17
Pong-v5 28.55 2946 75.03 67.34 37.83 38.20 33.10 35.64
CartPole-v1 7.11 7.23 50.41 4343 1323 1392 10.78 13.07
LunarLander-v2 8.37 8.74 55.66 47.11 19.34 20.10 12.45 14.72
Walker2d-v4 18.27 18.70 237.78 194.69 3495 35.13 22.03 23.58
HalfCheetah-v4 15.10 1558 23642 19239 31.70 29.32 19.00 20.59
Hopper-v4 17.82 1851 23937 96.81 3470 32.15 21.51 23.44
Average 16.59 1884 12190 91.04 3033 2942 21.20 22.97

Table 4: Evaluation Results (Mean =+ Std) of Final Average Episode Return.

Environment PPO-1 PPO-4 LSTM GRU TrXL GTrXL Mamba Mamba-2
MiniGrid

MemoryS11 - 0.49 +£0.02 0.51 £0.04 0.49 +0.02 0.88 £ 0.18 093 +0.11 0.49 +0.03 0.96 + 0.01
DoorKey 0.60 £ 0.50 0.48 +0.51 0.49 +0.52 0.36 + 0.50 0.73 +£0.45 0.84 +0.34 0.85 +0.34 0.69 +0.43
Atari

Breakout 220.5 +27.6 372.7 £20.3 327.8 +38.4 3322 4+434 180.4 £ 55.5 208.7 +38.3 202.9 + 89.0 239.2 +39.5
Pong 20.98 + 0.03 20.69 + 0.33 20.75 £ 0.14 10.71 + 18.76 20.41 £1.20 20.81 £0.1 20.82 +£0.10 20.89 +0.09
Classic Control

Cartpole 494 +£2.1 458.7 +£28.9 484.6 + 26.6 4494 +152.8 281.8 +41.2 305.8 + 40.6 272.8 + 104.7 434.2 £90.5
LunarLander 16.6 +28.9 190.1 +11.8 123.8 £ 38.0 204.8 £23.2 2449 +13.1 236.5+ 8.5 -313.2 +£235.1 425 £182.2
MuJoCo

HalfCheetah 39188 +312.8 31164 +£612.0 3997.4 +1378.8 2745.0+ 1118.1 3240.8 +848.8 3464.0 +921.7 223874+ 627.2 3718.0 £528.5
Hopper 1194.1 £200.4 1366.4 4 495.1 1574.4 £ 842.7 1676.6 +724.5 1712.0 +741.6 14285+ 7114 1409.2 £635.7 1390.2 £ 639.3
Walker2d 3379.3 +£1039.8 3152.1+193.0 3056.1 £547.4 31703 £355.4 3206.1 +528.0 2765.7 +937.4 2512.6 4+ 1000.5 3038.0 & 505.2

Table 5: Number of Parameters (in Thousands) for Various Architectures and Environments

Environment PPO-1 LSTM GRU TrXL GTrXL Mamba Mamba-2
Hopper-v4 39.7 38.6 39.1 37.8 44.9 40.1 43.8
HalfCheetah-v4 40.4 39.2 39.7 38.3 45.5 40.7 44 .4
Walker2d-v4 40.4 39.2 39.7 38.3 45.5 40.7 44 .4
Pong-v5 2527.2 2468.8 2271.7 2669.2 2639.3 2413.9 2805.3
Breakout-v5 27312 2468.3 2271.1 2668.2 2638.4 2413.0 2804.3
LunarLander-v2 1057.8 1057.8 1042.8 1035.3 1070.1 1089.0 973.0
CartPole-v1 265.2 265.5 268.6 261.9 264.5 262.6 226.0
MiniGrid-MemoryS11-v0 2470.9 2473.1 2276.0 24084 2591.7 2470.9 2426.0
MiniGrid-DoorKey-8x8-v0 2531.8 2473.1 2465.2 24084 2510.6 2357.8 2426.0

12

Under review as a conference paper at ICLR 2026

Table 6: Inference Latency (ms) for Various Architectures and Environments
Environment PPO-1 PPO-4 LSTM GRU TrXL GTrXL Mamba Mamba-2

MiniGrid-MemoryS11-v0 1.139 1309 1290 1.254 2917 2.729 1.603 1.780
MiniGrid-DoorKey-8x8-vO ~ 1.093 1.249 1.215 1.171 2845 2.666 1.534 1.754

Breakout-v5 1.016 1.040 1.180 1.127 1.792 1.941 1.495 1.668
Pong-v5 1.024 1.047 1.167 1.132 1.775 1.946 1.488 1.690
CartPole-v1 0.739 0.729 0909 0.887 1.455 1.600 1.158 1.347
LunarLander-v2 0.725 0.736 0956 0920 1973 2.249 1.176 1.367
Walker2d-v4 0.658 0.660 0.776 0.748 2268 2.073 1.093 1.260
HalfCheetah-v4 0.649 0.656 0.780 0.747 2245 2.056 1.099 1.263
Hopper-v4 0.659 0.666 0.780 0.749 2272 2.061 1.093 1.272
Average 0.856 0.899 1.006 0971 2171 2.147 1.304 1.489

Table 7: GPU Memory Allocated (GB) for Various Architectures and Environments
Environment PPO-1 PPO-4 LSTM GRU TrXL GTrXL Mamba Mamba-2

MiniGrid-MemoryS11-v0 0.702 2.644 0.705 0.701 5.729 4.371 0.788 0.799
MiniGrid-DoorKey-8x8-vO ~ 0.702 2.644 0.705 0.705 2341 1.870 0.796 0.799

Pong-v5 0.113 0274 0.116 0.115 0.712 0.636 0.125 0.125
Breakout-v5 0.113 0274 0.116 0.116 0.730 0.650 0.125 0.125
CartPole-v1 0.020 0.020 0.021 0.021 0353 0.282 0.023 0.025
LunarLander-v2 0.020 0.020 0.036 0.035 1.034 0.804 0.039 0.043
Walker2d-v4 0.018 0.022 0.018 0.018 1.657 1.125 0.020 0.020
HalfCheetah-v4 0.018 0.022 0.018 0.018 1.648 1.108 0.020 0.020
Hopper-v4 0.018 0.021 0.018 0.018 1.677 1.128 0.019 0.019
Average 0.035 0.660 0.194 0.194 1.765 1.330 0.217 0.219

Table 8: GPU Memory Reserved (GB) for Various Architectures and Environments
Environment PPO-1 PPO-4 LSTM GRU TrXL GTrXL Mamba Mamba-2

MiniGrid-MemoryS11-v0 1.133 3941 1.131 1.203 18.630 15.707 1.236 1.285
MiniGrid-DoorKey-8x8-v0 1.133 3.941 1.131 1.127 8.494 12.556 1.238 1.285

Pong-v5 0264 0393 0273 0.268 2.002 1.781 0.285 0.396
Breakout-v5 0264 0391 0273 0.268 2.204 1.984 0.283 0.396
CartPole-v1 0.027 0.027 0.049 0.051 1.089 0.970 0.051 0.512
LunarLander-v2 0.027 0.027 0.068 0.066 2.955 2.292 0.063 0.541
Walker2d-v4 0.031 0.051 0.053 0.053 5.461 3.631 0.033 0.514
HalfCheetah-v4 0.031 0.051 0.053 0.053 3.668 2.504 0.033 0.514
Hopper-v4 0.031 0.029 0.053 0.053 5.070 3.288 0.033 0.514
Average 0.327 0983 0343 0349 5508 4.968 0.362 0.662

B HYPERPARAMETERS

All experiments were conducted on a single NVIDIA RTX A5000 GPU and Intel Xeon W-1390p
to ensure consistent performance measurement. For reproducibility and transparency, we list the
detailed hyperparameters and training settingsﬂ used throughout our experimental evaluation:

'"https://anonymous. 4open.science/r/BenchNetRL-A718

13

https://anonymous.4open.science/r/BenchNetRL-A718

Under review as a conference paper at ICLR 2026

Table 9: Training settings. Steps and seeds to the right are for computational metrics.

Domain Environment Steps Seeds | Steps Seeds
Classic Control ~ CartPole-v1 M 8 3M 3
Classic Control ~ LunarLander-v2 M 8 3M 3
Classic Control Acrobot-v1 M 8 3M 3
Atari Pong-v5 10M 8 3M 3
Atari Breakout-v5 10M 8 3M 3
Atari SeaQuest-v5 6M 8 M 3
Mujoco HalfCheetah-v4 M 8 3M 3
Mujoco Hopper-v4 M 8 3M 3
Mujoco Walker2d-v4 M 8 M 3
MiniGrid MemoryS11-v0 15M 8 M 3
MiniGrid DoorKey-8x8-v0 M 8 M 3
MiniGrid RedBlueDoors-6x6-v0 6M 8 3M 3

Table 10: Common Training Hyperparameters by Domain

Parameter MiniGrid MuJoCo Classic Control Atari
Total timesteps 1.5x 10" 5 x 106 5 x 10° 1 x 107
Batch size 8192 16384 2048 2048
Mini-batch size 1024 2048 256 256

Environments 16 8 16 16

Steps / env 512 2048 128 128
Update epochs 4 10 4 4
Discount factor () 0.995 0.99 0.99 0.99
GAE)\ 0.95 0.95 0.95 0.95
Learning rate (Adam) 2.5 x 107% 3 x 107 2.5 x 107* 2.5 x 107*
Value loss coef. (c,) 0.5 0.5 0.5 0.5
Clip coefficient 0.1 0.1 0.1 0.1
Max grad norm 0.5 0.5 0.5 0.5

Table 11: Model-Specific Hyperparameters (values listed as MiniGrid / MuJoCo / Classic / Atari)

2/112/1 22121
1.5e-4/3e-4/1.5e-4/1.5e-4 1.5e-4/3e-4/1.5¢e-4/1.5e-4

Expand ratio
Learning rate

Param PPO-4/PPO-1 LSTM GRU TRXL GTrXL Mamba Mamba-2
Hidden dim 512/90/256/512 512/64/256/512 512/64/256/512 384/64/284/512 376/64/336/448 380/70/284/450 384/64/164/512
Entropy coef. 1e-4/0/0.01/0.01 1e-4/0/0.01/0.01 1e-4/0/0.01/0.01 1e-2/0.01/0.01/0.01 0.01/0.01/0.01/0.01 1e-2/0/0.01/0.01 1e-2/0/0.01/0.01
RNN hidden dim - 256/64/128/256 256/78/160/256 - - - -
TRXL layers - - 33111 212121 - -
TRXL heads - - - 4141412 4141412 - -

TRXL memory len. - - - 119/64/32/64 119/64/32/64 - -

dyaie - - - - - 64/64/64/64 128/64/128/64
deony - - - 4/4/4/4 4/4/4/4

14

Under review as a conference paper at ICLR 2026

LICENSES FOR EXISTING ASSETS
We use the following open-source assets, with licenses listed for each:

* gym-minigrid (MiniGrid): Apache License 2.0.

* MuJoCo physics engine: Apache License 2.0; mujoco-py bindings: MIT License.
* Arcade Learning Environment (Atari ALE): GNU General Public License v3.0.
* CleanRL: MIT License.

* mamba-ssm: MIT License.

15

	Introduction
	Related Work
	Memory Models for Reinforcement Learning
	Benchmarking Neural Architectures in RL

	Benchmarking Settings
	Neural Network Architecture in RL
	Training Protocols
	Hyperparameters and Hardware

	Results and Analysis
	Continuous Control Tasks
	Discrete Control Tasks
	Partially Observable Control Tasks
	Memory-Intensive Tasks
	Computational Efficiency Analysis
	Architecture-Environment Compatibility
	Practical Guidelines for Practitioners
	Future Work

	Discussion and Conclusion
	Performance Metrics.
	Hyperparameters

