
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MANIPEVALAGENT: PROMPTABLE AND EFFICIENT
EVALUATION FRAMEWORK FOR ROBOTIC MANIPULA-
TION POLICIES

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, robotic manipulation policies have made substantial progress.
However, evaluating these policies typically requires large-scale sampling in sim-
ulation benchmarks, leading to high time costs. Moreover, existing evaluation
pipelines are usually fixed, do not account for user needs, and report only a single
scalar score, lacking interpretability. In contrast, human experts can quickly form
an intuitive impression of a policy’s capabilities from just a handful of executions.
We therefore propose ManipEvalAgent, an efficient, promptable, and dynamically
multi-round evaluation framework for robotic manipulation policies. The frame-
work conducts small-batch, multi-round evaluations and adaptively plans subse-
quent evaluation steps based on intermediate observations from each round. Via
code generation, it constructs tasks and evaluation functions within simulator. By
generating evaluation functions and leveraging vision–language models (VLMs)
for video understanding, ManipEvalAgent provides user-instruction-centric, fine-
grained analysis. Our approach offers three key advantages: (1) efficiency, no
need for massive sampling; (2) promptable, planning the evaluation process ac-
cording to user queries; and (3) interpretability, providing diagnostic text that
goes beyond a single score. Across multiple settings, our evaluation method sig-
nificantly shortens the overall time compared with traditional simulation bench-
marks, while reaching conclusions comparable to those from large-scale simula-
tion benchmarks.

1 INTRODUCTION

Time-Consuming Efficient

Fixed Simulation Evaluation Process

: no other explanation

Success Rate: 0.63

: no user input

Existing Simulation Benchmarks ManipEvalAgent (Ours)

Summary:
Strengths: Good position generalization within ~10–12 cm; robust to color.
Weaknesses: Sensitive to high gloss and ≥1.2× size.
……
Recommendation:……

User

……

Based on the observations of 1st round evaluation results,
the model do well in Position generalization.
Next, we can explore the Appearance generalization

To evaluation the generalize to operated objects,
we can first evaluation on tasks about Position generalization

How well does the policy generalize to operated objects?

Execution

Execution

Code Generation ……

Code Generation ……

Figure 1: Example of ManipEvalAgent. Widely used simulation benchmarks evaluate on fixed
task sets with fixed procedures, require large amounts of sampling, and report only success rates.
ManipEvalAgent performs multi-round, few-sample evaluations conditioned on user queries, dy-
namically generates tasks and tools, and ultimately outputs detailed analyses that are both efficient
and interpretable.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In recent years, robotic manipulation has advanced rapidly, driven by progress in diffusion models
((Chi et al., 2023)) and breakthroughs in general vision–language–action (VLA) models ((Kim et al.,
2024; Shukor et al., 2025; Liu et al., 2024)), as well as the availability of internet-scale demonstration
data ((O’Neill et al., 2024)); together, these developments have pushed end-to-end capabilities from
perception to action and expanded the boundaries of practical applications.

With the progress in robotic manipulation policies, effective evaluation has become increasingly crit-
ical for identifying their limitations and directions for improvement. Existing benchmarks ((Chen
et al., 2025; Liu et al., 2023; James et al., 2020; Mees et al., 2022; Yu et al., 2020)) provide stan-
dardized environments and task suites, together with unified evaluation pipelines and data resources,
laying the groundwork for systematic model comparisons and enabling more comprehensive perfor-
mance analyses. Nevertheless, prevailing practice largely relies on fixed evaluation pipelines and
pre-defined task sets, lacks user input and customization, and is ill-suited to open-ended needs.
Meanwhile, static benchmarks typically require exhaustive execution over all predefined tasks and
all candidate policies, incurring substantial time and compute costs. More importantly, conclusions
are often compressed into single metrics such as success rate, with little diagnosis of “why” and
“under what conditions” failures occur, making it difficult to directly guide model iteration and sys-
tem deployment. Compared with static benchmarks, experienced human evaluators can often form
a reliable impression of a robotic manipulation policy’s overall competence through small-batch,
hands-on interactive trials.

To leverage the advantages of human-like evaluation, and inspired by agent-related studies ((Gu
et al., 2024; Zhuge et al., 2024; Qian et al., 2023; Zhang et al., 2024a)), we introduce ManipEvalA-
gent for robotic manipulation—a paradigm that imitates how humans assess manipulation policies.
ManipEvalAgent delivers three key properties: 1) Efficiency: it dynamically adapts the evaluation
path based on intermediate results, avoiding redundant test cases to achieve efficient evaluation . 2)
Promptable evaluation: unlike popular robotic manipulation benchmarks ((Chen et al., 2025; Liu
et al., 2023)), it accepts user input in natural language and performs flexible, customized evaluation
according to user needs. 3) Detailed results: it implements functions to process diverse feedback
from the simulation environment and analysis, providing interpretable and detailed insights that go
beyond a single numeric score.

ManipEvalAgent first accepts open-ended user input to specify what to evaluate and which policy to
assess, then decomposes the problem into a set of sub-aspects. Leveraging simulation-environment
APIs, it generates scene, task and produces reusable metric evaluators as Python code. It executes the
policy to run the evaluation, monitors intermediate results, and dynamically refines the subsequent
exploration. Finally, it generates a detailed natural-language report for the user.

We demonstrate the versatility of the ManipEvalAgent through experiments. The results show that it
delivers performance comparable to existing full benchmark pipelines while significantly reducing
evaluation time.

Our primary contribution is ManipEvalAgent, a human expert–like evaluation framework for robotic
manipulation policies that addresses the limitations of existing methods in capabilities and efficiency.
We introduce a scheme that enables robust generation of simulation tasks and evaluation functions.
We also collect common concerns and construct an open-ended user query dataset for evaluating
robotic manipulation policies. Finally, we validate our approach against several widely adopted
robotic manipulation benchmarks and show that it achieves evaluation accuracy comparable to stan-
dard benchmarks while substantially reducing evaluation time.

2 RELATED WORK

2.1 ROBOTIC MANIPULATION POLICY

The development of robotic manipulation policies has progressed from single-task methods to large-
scale generalist approaches. At the foundational level, Diffusion Policy ((Chi et al., 2023)) estab-
lished the diffusion-based paradigm for action modeling. Building upon this milestone, subsequent
works such as 3D Diffusion Policy ((Ze et al., 2024)) and AdaptDiffuser ((Liang et al., 2023))
extended the approach to 3D action modeling and adaptive planning, respectively, enhancing ro-
bustness while still focusing on task-specific domains. RISE ((Wang et al., 2024a)) demonstrates

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

the potential of 3D perception to improve the stability and generalization of imitation learning,
while DensePolicy ((Su et al., 2025)) and Chain-of-Action ((Pan et al., 2024)) illustrate the pos-
sibilities of adjusting the mechanisms by which policies generate actions. The field then shifted
toward generalist and cross-environment policies: RT-1 ((Brohan et al., 2022)) pioneered a unified
transformer architecture integrating vision, language, and action for real-time kitchen manipulation,
RT-2 ((Zitkovich et al., 2023)) further enabled the transfer of web-scale knowledge into robotic con-
trol, and RDT-1B ((Liu et al., 2024)) together with π0 ((Black et al., 2024)) expanded the frontier
through large-scale bimanual datasets and flow-based universal control. At the framework level,
OpenVLA ((Kim et al., 2024)) introduced an open-source interface for community research, Co-
gACT ((Li et al., 2024a)) explored the integration of cognition and action, while Octo ((Team et al.,
2024)) and OpenVLA-OFT ((Kim et al., 2025)) targeted efficient adaptation and fine-tuning under
limited compute.

2.2 DATASETS AND BENCHMARKS FOR ROBOTIC MANIPULATION

Evaluation for robotic manipulation has evolved from foundational physics-based simulators to
large-scale, cross-embodiment datasets that strengthen sim-to-real transfer. Early platforms such
as SAPIEN ((Xiang et al., 2020)) enabled part-level modeling of thousands of articulated objects
with high-fidelity dynamics, while ManiSkill2 ((Gu et al., 2023)) unified task families, render-
ing, and millions of expert demonstrations into a standardized pipeline. Building on these foun-
dations, benchmarks emerged to test generalization across tasks and modalities: Meta-World ((Yu
et al., 2020)) established a multi-task suite, CALVIN ((Mees et al., 2022)) introduced language-
conditioned long-horizon tasks, and LIBERO ((Liu et al., 2023)) emphasized lifelong learning with
compositional knowledge transfer. As the field moved toward real-world robustness, large-scale
datasets became central: Open X-Embodiment ((O’Neill et al., 2024)) aggregated over a million tra-
jectories across diverse robots, Bridge Data ((Ebert et al., 2021)) facilitated cross-domain transfer,
and RoboMIND ((Wu et al., 2024)) standardized teleoperation data across embodiments to close
the sim-to-real gap. In the domain of bimanual and digital-twin evaluation, RoboTwin ((Mu et al.,
2024)) recreated real demonstrations in simulation to provide aligned benchmarks, while RoboTwin-
2.0 ((Chen et al., 2025)) integrated LLM feedback and systematic domain randomization to generate
richer and more challenging corpora that enhance robustness and generalization. Unlike these static
task-set–driven evaluations, our ManipEvalAgent reframes evaluation as a promptable, interactive,
and adaptive process that combines rule-based metrics with VLM-driven understanding, dynami-
cally generates tasks and tools, and delivers diagnostics.

2.3 LLM-BASED AGENT

In recent years, large language models (LLMs) have shown significant progress in understanding
and reasoning capabilities, demonstrating strong potential in multi-tasking and complex reasoning.
Chain-of-thought prompting can effectively guide LLMs in reasoning ((Wei et al., 2022; Kojima
et al., 2022)). Autonomous agents ((Wang et al., 2024c; Zhou et al., 2023b; Zhang et al., 2025b;
Hong et al., 2024; Yao et al., 2023)) based on LLMs are systems that can autonomously follow
user instructions and use available tools to perform complex tasks, gradually becoming a focus
of attention. Researchers have also explored how agent systems can achieve goals through multi-
turn interactions in various environments ((Wang et al., 2023a; Zhou et al., 2023a; Wang et al.,
2024b)), especially showing high effectiveness in improving long-term task completion. LLM-
based agent systems have demonstrated the potential to replace human evaluation and have shown
high alignment with human evaluation results in task assessment ((Gu et al., 2024; Zhuge et al.,
2024; Zhang et al., 2024a)). Despite advances in reasoning and task automation, applying these
methods to the automated evaluation of robotic manipulation policies within simulation engines
remains largely unexplored, and our proposed ManipEvalAgent fills this gap.

3 METHOD

ManipEvalAgent is driven by collaborating VLM-based agents and simulates human-expert assess-
ment through a few-shot, multi-round interactive process to achieve efficient and customizable eval-
uation of robotic manipulation policies. As shown in Figure 2, ManipEvalAgent consists of three
stages: (a) Proposal, where the Plan Agent decomposes the user query into orthogonal sub-aspects;

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Sub-Aspect

Observations

Proposes

Robotic Manipulation Policy
Plan Agent

(a) Proposal Stage (b) Genaration Stage (c) Execution Stage

User Query

Evaluation
FeedbackUser

Evaluation Toolkit Simulation Engine

Manipulation

Evaluation

ToolGen Agents

Code Generation ……

Tool 1 Tool 2 Tool n

TaskGen Agents

Code Generation
……

Task 1 Task 2 Task n

Figure 2: Overview of ManipEvalAgent framework. The system comprises three stages that form a
multi-round feedback loop

(b) Generation, where the TaskGen/ToolGen agents perform code generation against the simulation
environment interfaces to produce a set of tasks and evaluation tools; and (c) Execution, where the
robotic manipulation policy is run in the simulation environment and evaluated by the Evaluation
Toolkit. These three stages form a multi-round feedback loop, with the system continually adjusting
the evaluation based on intermediate observations.

3.1 PRELIMINARIES

Embodied Setting. A simulator S = (Ω,Γ) provides capabilities Ω and constraints Γ (e.g., avail-
able assets, interfaces). The policy π can be either language-conditioned, written as π(at|ot, l),
or language-unconditioned, written as π(at|ot). A task τ is a program that constructs an initial
scene and defines a success checker check success(s0:T), whose return value is a bool. Here
s0:T = {s0, s1, . . . , sT } denotes the trajectory of environment states from the initial state s0 to the
final state sT . A rollout is

ζ = Rollout(π, τ, seed) = {(st,ot,at)}Tt=0, I0:T = Render(ζ) , (1)

where I0:T are rendered frames (images or videos) for vision-based evaluation. Evaluation aspects
are denoted by a ∈ A (e.g., appearance generalization). Unlike a large fixed test set C, our frame-
work decomposes evaluation into a small dynamic set of sub-aspects A = {aj} discovered during
evaluation.

Agentic Generation. The evaluation process is driven by agents. A planning agent Plan simulates
a human evaluator and iteratively proposes sub-aspects aj based on prompt Ψ and previous results
Y1:t. For each aj , a task is synthesized by TaskGen:

τj = TaskGen(aj ,S,Kltask,Klasset,Kldoc) , (2)

where Kltask is a task library storing reusable task programs, Klasset is an asset library listing avail-
able objects and environments in the simulator, and Kldoc is a documentation library indexing
simulator interfaces and usage patterns. The synthesized task includes scene construction and a
check success function returning a bool. ToolGen Agents ToolGen then assigns evaluation
tools ek ∈ T, either (i) rule-based metrics r : ζ 7→ Rd, meaning that the tool takes a trajectory ζ as
input and outputs numerical results, or (ii) VQA-based metrics q : (I0:T , Q) 7→ Rd, meaning that
the tool takes rendered frames I0:T together with aspect-specific questions Q(aj , τj) as input and
outputs numerical results. Each sub-aspect is thus paired with the task τj and the tool ek.

Evaluation Pipeline. In ManipEvalAgent, each sub-aspect aj is paired with the task τj and the tool
ek. The evaluation proceeds as:

ζj,m = Rollout(π, τj , seedm), yj,m =

{
r(ζj,m), rule-based tool,
q(I0:T , Q), VQA-based tool.

(3)

The sampled results are collected as

Yj = Aggregate{yj,m}Mj

m=1, Y = Aggregate{Yj}Nj=1 , (4)

where Mj denotes the number of sampled trajectories for sub-aspect aj , N is the total number of
sub-aspects discovered during evaluation, and Aggregate denotes a general aggregation operator,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

which combines multiple evaluation results into a single summary. The final output combines nu-
merical scores with interpretability. By contrast, classical methods rely on a fixed test set C, require
large-scale sampling, and usually provide only simple scores, making them inefficient and less in-
formative.

3.2 PROPOSAL STAGE

The Plan Agent is responsible for planning, observing, and summarizing the evaluation process
based on the user’s query. It simulates human behavior during evaluation—including planning and
adjusting the evaluation direction, observing intermediate results, and summarizing final outcomes.
As a core component of the framework, the Plan Agent not only interacts with the user but also
drives the entire evaluation pipeline.

Concretely, upon receiving a user query, the Plan Agent first reads a system-level prompt (system
prompt) that specifies: the simulator’s capabilities and constraints, and meta-information about the
policy under evaluation (e.g., whether it is language-conditioned). The Plan Agent then identifies an
initial sub-aspect to evaluate and iteratively refines it based on feedback from intermediate results.
This process continues until sufficient evidence has been collected, after which the agent provides a
detailed analysis and summary.

3.3 GENERATION STAGE

3.3.1 TASK GENERATION

Visual Self-Reflection

Simulation Engine

Is the Task Implementation
Aligned with the Description?

Retrieval

Human Experts

Structured
Summary

Summary

Retrieval

Databases of Simulation Engine

Assets

README (to Agent) Tasks

Observation

Code Generation

Task Proposal

TASK_NAME = {

 "task_name": "beat_block_hammer,

 "task_description": "...",

 ……

 "actor_list": ……

}

Task Code

Task Propose

Diagnosis and Advice

Context from Proposal Stage

Task: BeatBlockHammer

class BeatBlockHammer(Task):

 ...

 def load_Actor(self):

 self.hammer = Actor("020_hammer", mass=1e-3)

 p = rand_pose(..., z=0.76, avoid_center=True)

 self.block = Box(pose=p, half=0.025, color="red")

 ...

 ...

 def check_success(self):

...

 return near(self.hammer.fp(0).xy, self.block.fp(1).xy)

 and contact(self.hammer, self.block)

TaskGen Agents

Retrieval AugmentedOffline Extractor

Documents

Figure 3: Our task-generation pipeline produces task code based on the outcomes of the proposal
stage. The pipeline is composed of multiple agents and consists of one main flow plus three aug-
mentation modules.

In the generation phase, TaskGen Agents generate robot-manipulation tasks runnable in the simula-
tor for each “sub-aspect” produced at the proposal stage. Concretely, the agent outputs a single-task
Python file comprising two core parts: (i) the task scene, where—by referencing the simulator’s
existing task-building interfaces and implementations—the agent generate code and populates the
scene with relevant and necessary objects (assets) to form the initial state required by the manipula-
tion task; and (ii) the success criterion, which determines during each rollout whether the manipula-
tion policy has successfully completed the task, likewise generated as a check success method. The
entire workflow follows a reuse-first engineering principle: we first retrieve tasks in the simulator

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

that can be directly reused; if they meet the requirements, we adopt them as is, and only trigger
generation when reuse is impossible, thereby saving generation time and improving completeness.

Although direct few-shot prompting code generation yields a moderate but suboptimal success rate,
it exposes three practical issues: (1) the agent cannot fully understand the fine-grained details of
the simulator’s interfaces from example code alone, and the substantial existing documentation and
experiential knowledge about the simulator are not systematically exploited; (2) Because documents
like ReadMe.md is primarily written for human developers, its format is not always effectively con-
sumable by agents; and (3) there is no intuitive, low-cost mechanism that promptly makes the agent
aware of deviations and errors in the generated scenes. To address these, we introduce three targeted
enhancements into the pipeline: Retrieval-Augmented Generation (RAG), visual self-reflection, and
README.Agent.

RAG. We build several knowledge bases offline and retrieve from them at generation time: a Task
Library that stores currently available tasks in the simulator—during code generation, the agent re-
trieves several similar tasks as few-shot exemplars to guide the generation of the new task; an Asset
List that records available assets in the environment and their descriptions—retrieved during task
proposal to constrain the task from invoking non-existent assets; and simulator-related documen-
tation, which is likewise indexed as a database and retrieved. Implementation details of RAG are
provided in Appendix A.3.1.

Visual self-reflection. We provide a lightweight feedback loop: for each task produced by TaskGen
Agents, a simple script renders the first frame of the scene in the simulator to visually compare
the generated result with the intended “vision” of the task proposal. Once unacceptable deviations
are detected, the system emits diagnostics and suggestions to revise the scene-building and success-
checking code.

README.Agent. Inspired by best practices in code generation ((Wijaya et al., 2025)), we propose
README.Agent—Agent-oriented documentation that is likewise retrievable via RAG. It is con-
structed by human experts together with an automated program that produces structured summaries
of files in database, and it distills interface notes, patterns, and caveats about the simulator. All of
this is built offline on a periodic schedule.

3.3.2 TOOL GENERATION

def check_grasp_reachability(……) :

 ……

 return ee_pos - handle_pos

ToolGen Agents

Tool Code

Code Generation

Tool Proposal

 "tool_name": "check_grasp_reachability,

 "tool_description": "...",

 "tool_name": "safety_margin,

 "tool_description": "...",

ProposedContext from Proposal Stage

Task Code from TaskGen Agent

def safety_margin(self, actor, required_margin=0.03):

……

 return float(nearest_gap - required_margin)ToolsDocuments

Retrievel

Figure 4: Tool generation pipeline of ToolGen Agents.

ToolGen Agents ingests the proposal-stage context and the code from task-generation, and assigns
an evaluation tool to each task. Tools come in two flavors: rule-based metrics and VQA-based
metrics. The former are Python functions built on the simulator interface that take the simulation
environment as input and output a scalar (or a structured score). The latter target information that is
hard to obtain via the simulator interface, leveraging VQA with a vision-language model (VLM) to
provide flexible evaluation.

The system maintains a toolkit of currently available tools and is open and extensible. Human
experts prepare validated, commonly used tool functions that can be invoked directly and also serve
as few-shot exemplars for code generation. The workflow follows a retrieval-first principle: when
a new tool is needed, the system first retrieval the toolkit to reuse a suitable tool; if none is found,
it retrieves similar tools and generate a new one via few-shot prompting, then registers it into the
toolkit. After executes of the robotic manipulation policy, the module evaluates each sample with
the appropriate tools. All results are then aggregated and returned to the Plan Agent for further
recommendations or summarization.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Compared with existing simulation benchmarks, ManipEvalAgent significantly reduces the
overall evaluation time across multiple robot manipulation policies.

Models RoboTwin LIBERO Ours
ACT 167 min, 56592 samples 117 min, 29546 samples 42 min, 16927 samples
DP 171 min, 55551 samples 132 min, 29059 samples 45 min, 16895 samples
DP3 159 min, 52087 samples 113 min, 28343 samples 44 min, 15638 samples
RDT 210 min, 55435 samples 132 min, 28878 samples 63 min, 16676 samples
π0 164 min, 51087 samples 103 min, 26732 samples 43 min, 15336 samples

3.4 EXECUTION STAGE

In execution stage, robotic manipulation policy runs on the tasks generated by TaskGen Agents,
uses the tools specified or generated by ToolGen Agents for sampling and evaluation, and returns
the evaluation results.

The evaluation toolkit consists of Python functions implemented against the simulator interfaces.
These functions monitor the simulator while the policy is running and return a scalar value. The
module is open and extensible, and can continuously accept newly generated tools.

However, some information is difficult to obtain solely from simulator interfaces, so more flexible
evaluation tools are additionally required. As a complement, we introduce into the evaluation toolkit
a paradigm based on vision–language models (VLMs), which uses a visual question answering
(VQA) format to flexibly assess various aspects of robotic manipulation task execution.

Finally, all evaluation results are aggregated and returned to the Plan Agent for further proposals or
summarization.

4 EXPERIMENTS

In this section, we address three questions through experiments: (1) relative to existing benchmarks
and their evaluation dimensions, do we achieve comparable effectiveness; (2) under open-ended
user queries, how well does our approach perform; and (3) during the code-generation stage, how
do individual modules contribute to the overall generation results. Please refer to the Appendix A.3
for detailed system implementation details.

4.1 QUANTITATIVE EXPERIMENTS ON EXISTING ROBOTIC MANIPULATION BENCHMARKS

4.1.1 EXPERIMENTAL SETUP

We evaluate our approach on three widely used simulation benchmarks: RoboTwin 2.0 ((Chen et al.,
2025)), and LIBERO ((Liu et al., 2023)). We select five open-source models as the evaluated robot
manipulation policies: single-task policies ACT ((Zhao et al., 2023)), Diffusion Policy ((Chi et al.,
2023)), and DP3 ((Ze et al., 2024)); and VLA models RDT-1B ((Liu et al., 2024)) and π0 ((Black
et al., 2024)).

For further details—e.g., experimental settings, hyperparameters, and fairness controls—please refer
to Appendix A.1.

4.1.2 RESULTS ANALYSIS

We first compare the time cost and sample count between popular simulation benchmarks and our
method. As one of our advantages, as shown in Table 1, our evaluation framework significantly
shorten the evaluation time. Second, the quantitative results in Table 2 indicate that our framework
achieves comparable prediction accuracy across most dimensions. For additional results and further
discussion, please refer to Appendix A.2.2.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: We compare the consistency of conclusions between ManipEvalAgent and existing simu-
lation benchmarks across multiple capability dimensions. Across ten trials of the ManipEvalAgent,
the percentage of results falling within the exact range (left) or within the error margin (right) is
shown.

Dimension ACT DP DP3 RDT π0

S.R. (RoboTwin) 50% / 90% 60% / 100% 50% / 80% 50% / 60% 70% / 100%
S.R. (LIBERO Avg.) 60% / 70% 50% / 70% 40% / 60% 70% / 90% 50% / 50%
Spatial (LIBERO) 70% / 100% 100% / 100% 80% / 80% 70% / 100% 60% / 80%
Obj (LIBERO) 60% / 80% 50% / 70% 60% / 60% 60% / 60% 40% / 70%
Goal (LIBERO) 30% / 70% 70% / 70% 50% / 70% 50% / 60% 50% / 50%
Long (LIBERO) 60% / 70% 60% / 80% 50% / 70% 70% / 80% 60% / 90%

4.2 QUALITATIVE EXPERIMENTS ON OPEN-ENDED USER QUERY IN ROBOTIC
MANIPULATION

Based on common user concerns in robotic manipulation tasks, we curated and constructed an open-
ended user-query dataset and, on this basis, conducted qualitative experiments with our evaluation
framework to demonstrate its flexibility and other advantages.

4.2.1 OPEN-ENDED USER QUERY DATASET IN ROBOTIC MANIPULATION

We collected common concerns from researchers in robotic manipulation and constructed an open-
ended user-query dataset. Each query is annotated with its category label. Notably, due to constraints
imposed by specific model architectures and training resources, evaluation needs in embodied ma-
nipulation span both single-task and multi-task settings; our dataset covers both. Please refer to
Appendix A.3.2 for further details and representative examples.

4.2.2 OPEN-ENDED USER QUERY EVALUATION IN ROBOTIC MANIPULATION

Unlike widely used simulation benchmarks that evaluate robot manipulation policies with fixed tasks
and metrics, ManipEvalAgent conducts dynamic, multi-turn evaluation driven by users’ open-ended
queries, with on-the-fly task and tool generation at each stage. As illustrated in Figure 5, when
the user asks, ”How well does the policy generalize over the attributes of the manipulated object?”,
ManipEvalAgent first evaluates generalization to object pose and obtains a clear result. It then
evaluates generalization to object appearance, which yields an ambiguous outcome; accordingly,
the EEA further refines the evaluation to probe appearance-related factors more precisely. Through
iterative evaluation, the agent analyzes and synthesizes the results to provide comprehensive, user-
centered feedback.

How is the generalization of this policy to the various properties of the manipulated object?

Sub-aspect: Generalization of Object Position

Code Generation…… Render…… Execution…… ...

Round 1

Code Generation…… Render…… Execution……

Round 2
Based on the observations of lst round evaluation results,
the policy do well in Position generalization.
Next, we can explore the Next Sub-aspect: Appearance generalization

Round 3
Based on the observations from the results of the 2nd round of evaluation,
I find it difficult to determine how well the policy generalizes to the appearance of objects.

...
Summary:
Has good generalization ability in the following aspects: ……
In the following aspects, generalization is not always good, as detailed below: ……

Figure 5: A Case of Open-Ended User Query Evaluation. For open-ended user queries, Ma-
nipEvalAgent begins by probing the policy’s capabilities from fundamental aspects and then pro-
gressively drills deeper

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.3 ABLATION STUDY

We conducted a concise ablation study to evaluate the effectiveness of several enhancement modules
in the code-generation stage. Human experts reviewed each generated task and tool (tasks are first
rendered for visual inspection) to judge whether they were correct, reasonable, and aligned with the
requirements specified in the proposal stage. When the retrieval augmentation module was removed,
we followed common engineering practice by supplying only a few representative task/tool code
examples as few-shot prompts.

As shown in Table 3, direct few-shot prompting alone achieves an acceptable generation success
rate, but adding any single enhancement module yields further gains. Given that this is a evaluation
system must be executed many times and thus has high stability requirements, we consider these
modules designed to improve code-generation success rates is necessary.

Plan Agent: 9.5%

TaskGen Agents: 42.8%

ToolGen Agents: 27%

Simulation Engine: 13.5%

Others: 7.2%

Figure 6: System Error Breakdown

Table 3: Ablation of Code Generation Modules
Settings S. R. (%) ↑

TaskGen (Complete) 98%
TaskGen w/o RAG 95%
TaskGen w/o Visual Self-Check 96%
TaskGen w/o README.Agent 96%
TaskGen (Base) 93%
ToolGen (Complete) 96%
ToolGen w/o RAG 92%

4.4 SYSTEM ERROR BREAKDOWN

The overall evaluation stability of the ManipEvalAgent is satisfactory. However, we must acknowl-
edge that, due to the involvement of multiple modules and layers in the system, and the current
progress in fields such as visual language models, code generation, and simulation benchmarks, ap-
proximately 5% of the evaluation process was still affected by errors to varying degrees. Figure 6
shows the error frequency for each module during the evaluation.

We observe that most errors arise in the generation stage (69.8%), with task generation being the
most prominent contributor (42.8%).

Our analysis attributes these failures to the inherent difficulty of code-generation sub-tasks in Ma-
nipEvalAgent (task generation and tool generation). These sub-tasks demand precise understanding
of simulator APIs, object semantics, and spatial/physical constraints, and they place higher require-
ments on large reasoning models for planning, constraint satisfaction, and robust code generation.

5 CONCLUSION

In this work, we present ManipEvalAgent, a promptable and efficient evaluation framework for
robotic manipulation policies, is the first framework of its kind in robotic manipulation. Unlike
widely used simulation benchmarks that rely on fixed task sets, require heavy sampling, and re-
port only success rates, ManipEvalAgent emulates human expert evaluation: it accepts open-ended
user inputs, conducts dynamic multi-round assessment, uses code generation to drive the simula-
tor, and adapts the evaluation process based on intermediate observations, yielding faster and more
interpretable judgments with far fewer samples.

Extensive experiments across multiple settings show that, compared with traditional simulation
benchmarks, ManipEvalAgent substantially reduces evaluation time while reaching conclusions
comparable to those from large-scale simulation benchmarks. We hope this framework enables
more flexible and efficient evaluation of robotic manipulation policies and meaningfully accelerates
research progress in the field.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π0: A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Tianxing Chen, Zanxin Chen, Baijun Chen, Zijian Cai, Yibin Liu, Qiwei Liang, Zixuan Li, Xi-
anliang Lin, Yiheng Ge, Zhenyu Gu, et al. Robotwin 2.0: A scalable data generator and bench-
mark with strong domain randomization for robust bimanual robotic manipulation. arXiv preprint
arXiv:2506.18088, 2025.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, pp. 02783649241273668, 2023.

Frederik Ebert, Yanlai Yang, Karl Schmeckpeper, Bernadette Bucher, Georgios Georgakis, Kostas
Daniilidis, Chelsea Finn, and Sergey Levine. Bridge data: Boosting generalization of robotic
skills with cross-domain datasets. arXiv preprint arXiv:2109.13396, 2021.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Ying-
han Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv preprint
arXiv:2411.15594, 2024.

Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang, Stone
Tao, Xinyue Wei, Yunchao Yao, et al. Maniskill2: A unified benchmark for generalizable manip-
ulation skills. arXiv preprint arXiv:2302.04659, 2023.

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast retrieval-
augmented generation. arXiv preprint arXiv:2410.05779, 2024.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for
a multi-agent collaborative framework. International Conference on Learning Representations,
ICLR, 2024.

Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, et al. π0.5: a vision-language-action
model with open-world generalization. arXiv preprint arXiv:2504.16054, 2025.

Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J Davison. Rlbench: The robot
learning benchmark & learning environment. IEEE Robotics and Automation Letters, 5(2):3019–
3026, 2020.

Pushkal Katara, Zhou Xian, and Katerina Fragkiadaki. Gen2sim: Scaling up robot learning in
simulation with generative models. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pp. 6672–6679. IEEE, 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Opti-
mizing speed and success. arXiv preprint arXiv:2502.19645, 2025.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen, Mozheng Liao, Fangyun Wei, Yu Deng,
Sicheng Xu, Yizhong Zhang, et al. Cogact: A foundational vision-language-action model for syn-
ergizing cognition and action in robotic manipulation. arXiv preprint arXiv:2411.19650, 2024a.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier Mees, Homer Rich Walke, Chuyuan Fu,
Ishikaa Lunawat, Isabel Sieh, Sean Kirmani, et al. Evaluating real-world robot manipulation
policies in simulation. arXiv preprint arXiv:2405.05941, 2024b.

Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adaptdiffuser:
Diffusion models as adaptive self-evolving planners. arXiv preprint arXiv:2302.01877, 2023.

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
Benchmarking knowledge transfer for lifelong robot learning. Advances in Neural Information
Processing Systems, 36:44776–44791, 2023.

Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang
Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. arXiv preprint
arXiv:2410.07864, 2024.

Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for
language-conditioned policy learning for long-horizon robot manipulation tasks. IEEE Robotics
and Automation Letters, 7(3):7327–7334, 2022.

Yao Mu, Tianxing Chen, Shijia Peng, Zanxin Chen, Zeyu Gao, Yude Zou, Lunkai Lin, Zhiqiang
Xie, and Ping Luo. Robotwin: Dual-arm robot benchmark with generative digital twins (early
version). In European Conference on Computer Vision, pp. 264–273. Springer, 2024.

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pp. 6892–6903. IEEE, 2024.

Zhenyu Pan, Haozheng Luo, Manling Li, and Han Liu. Chain-of-action: Faithful and multimodal
question answering through large language models. arXiv preprint arXiv:2403.17359, 2024.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
Yusheng Su, Xin Cong, et al. Chatdev: Communicative agents for software development. arXiv
preprint arXiv:2307.07924, 2023.

Mustafa Shukor, Dana Aubakirova, Francesco Capuano, Pepijn Kooijmans, Steven Palma,
Adil Zouitine, Michel Aractingi, Caroline Pascal, Martino Russi, Andres Marafioti, et al.
Smolvla: A vision-language-action model for affordable and efficient robotics. arXiv preprint
arXiv:2506.01844, 2025.

Yue Su, Xinyu Zhan, Hongjie Fang, Han Xue, Hao-Shu Fang, Yong-Lu Li, Cewu Lu, and
Lixin Yang. Dense policy: Bidirectional autoregressive learning of actions. arXiv preprint
arXiv:2503.13217, 2025.

Jiabin Tang, Lianghao Xia, Zhonghang Li, and Chao Huang. Ai-researcher: Autonomous scientific
innovation. arXiv preprint arXiv:2505.18705, 2025.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

Patara Trirat, Wonyong Jeong, and Sung Ju Hwang. Automl-agent: A multi-agent llm framework
for full-pipeline automl. arXiv preprint arXiv:2410.02958, 2024.

Chenxi Wang, Hongjie Fang, Hao-Shu Fang, and Cewu Lu. Rise: 3d perception makes real-world
robot imitation simple and effective. In 2024 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2870–2877. IEEE, 2024a.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Jitao
Sang. Mobile-agent: Autonomous multi-modal mobile device agent with visual perception. arXiv
preprint arXiv:2401.16158, 2024b.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024c.

Lirui Wang, Yiyang Ling, Zhecheng Yuan, Mohit Shridhar, Chen Bao, Yuzhe Qin, Bailin Wang,
Huazhe Xu, and Xiaolong Wang. Gensim: Generating robotic simulation tasks via large language
models. arXiv preprint arXiv:2310.01361, 2023b.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Exe-
cutable code actions elicit better llm agents. In Forty-first International Conference on Machine
Learning, 2024d.

Yufei Wang, Zhou Xian, Feng Chen, Tsun-Hsuan Wang, Yian Wang, Katerina Fragkiadaki, Za-
ckory Erickson, David Held, and Chuang Gan. Robogen: Towards unleashing infinite data for
automated robot learning via generative simulation. arXiv preprint arXiv:2311.01455, 2023c.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Sandya Wijaya, Jacob Bolano, Alejandro Gomez Soteres, Shriyanshu Kode, Yue Huang, and
Anant Sahai. Readme. llm: A framework to help llms understand your library. arXiv preprint
arXiv:2504.09798, 2025.

Kun Wu, Chengkai Hou, Jiaming Liu, Zhengping Che, Xiaozhu Ju, Zhuqin Yang, Meng Li, Yinuo
Zhao, Zhiyuan Xu, Guang Yang, et al. Robomind: Benchmark on multi-embodiment intelligence
normative data for robot manipulation. arXiv preprint arXiv:2412.13877, 2024.

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
Jiang, Yifu Yuan, He Wang, et al. Sapien: A simulated part-based interactive environment. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11097–
11107, 2020.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Jiabo Ye, Xi Zhang, Haiyang Xu, Haowei Liu, Junyang Wang, Zhaoqing Zhu, Ziwei Zheng, Feiyu
Gao, Junjie Cao, Zhengxi Lu, et al. Mobile-agent-v3: Fundamental agents for gui automation.
arXiv preprint arXiv:2508.15144, 2025.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion
policy: Generalizable visuomotor policy learning via simple 3d representations. arXiv preprint
arXiv:2403.03954, 2024.

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yanda Li, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and
Gang Yu. Appagent: Multimodal agents as smartphone users. In Proceedings of the 2025 CHI
Conference on Human Factors in Computing Systems, pp. 1–20, 2025a.

Fan Zhang, Shulin Tian, Ziqi Huang, Yu Qiao, and Ziwei Liu. Evaluation agent: Efficient and
promptable evaluation framework for visual generative models. arXiv preprint arXiv:2412.09645,
2024a.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation
with tool-integrated agent systems for real-world repo-level coding challenges. arXiv preprint
arXiv:2401.07339, 2024b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhuosheng Zhang, Yao Yao, Aston Zhang, Xiangru Tang, Xinbei Ma, Zhiwei He, Yiming Wang,
Mark Gerstein, Rui Wang, Gongshen Liu, et al. Igniting language intelligence: The hitchhiker’s
guide from chain-of-thought reasoning to language agents. ACM Computing Surveys, 57(8):1–39,
2025b.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for build-
ing autonomous agents. arXiv preprint arXiv:2307.13854, 2023a.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li, Jialong Wu, Tiannan Wang, Shi Qiu, Jin-
tian Zhang, Jing Chen, Ruipu Wu, Shuai Wang, et al. Agents: An open-source framework for
autonomous language agents. arXiv preprint arXiv:2309.07870, 2023b.

Zhiyuan Zhou, Pranav Atreya, You Liang Tan, Karl Pertsch, and Sergey Levine. Autoeval: Au-
tonomous evaluation of generalist robot manipulation policies in the real world. arXiv preprint
arXiv:2503.24278, 2025.

Mingchen Zhuge, Changsheng Zhao, Dylan Ashley, Wenyi Wang, Dmitrii Khizbullin, Yunyang
Xiong, Zechun Liu, Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, et al. Agent-as-
a-judge: Evaluate agents with agents. arXiv preprint arXiv:2410.10934, 2024.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
to robotic control. In Conference on Robot Learning, pp. 2165–2183. PMLR, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 EXPERIMENTAL SETUP

A.1.1 EXPERIMENTAL HYPERPARAMETERS

Environment and compute. Experiments were conducted on Ubuntu 22.04 with an Intel Core i9
(14th gen) CPU and an NVIDIA RTX A6000 GPU. In our observation, having at least 24 GB of
GPU memory is important for reliably reproducing our runs; with less memory, some models may
fail to load.

Evaluation protocol inside ManipEvalAgent. For each constructed task, ManipEvalAgent executes 5
trials by default. Agent builds the task scene and a set of targeted evaluation functions (e.g., distance
between the tool end-effector and the target object) to gather sufficient diagnostic signals; under this
design, five repetitions are typically adequate to form a stable judgment of a policy’s behavior on
that task. This setting is user-configurable to allow trading off overall evaluation fidelity against
wall-clock time.

Benchmark hyperparameters. We aim for fairness and alignment with official or widely used com-
munity implementations, then make minimal adjustments for cross-benchmark consistency. Con-
cretely, on RoboTwin ((Chen et al., 2025)) we follow the official repository and run 100 steps per
episode, with task-specific maximum-step thresholds. On LIBERO ((Liu et al., 2023)), to stay con-
sistent with our RoboTwin protocol, we also run 100 steps per episode, rather than the 50-step cap
common in some related implementations (e.g., OpenVLA ((Kim et al., 2024))). LIBERO comprises
4 task suites, each with its own native maximum-step guidance tied to the longest demonstration
length in the training data; where such guidance exists.

A.1.2 FAIRNESS SETTINGS

To ensure fair accounting of evaluation cost across policies and benchmarks, we use a unified im-
plementation to record wall-clock time and number of samples. Concretely, we embed timing in-
strumentation based on Python’s time module directly inside the evaluation scripts, and we embed
a parallel counter for sampling. We keep these implementations identical across all policies and
benchmarks to avoid introducing confounding factors.

A.1.3 ERROR COUNTING PROTOCOL

We further explain how each type of error is counted. Specifically, for the Plan Agent, for each
user query we first ask experienced human researchers to provide a ground-truth decomposition
into sub-aspects, and then compare the set of sub-aspects produced by the Plan Agent with this
reference; if there are more than half omissions or incorrect decompositions, we count it as a failure
of the planning stage. For TaskGen Agents, human experts directly inspect the rendered task scenes:
whenever a scene does not match the intended sub-aspect, it is labeled as a task-generation error.

For ToolGen Agents, we construct a set of simple but targeted unit tests: in simulation we set up
scenes that contain only a few key components (e.g., only a hammer and a block), invoke each
generated tool function in turn, and check whether its output is correct (e.g., when the hammer
touches the block, whether the contact-checking function returns True); if the unit tests fail, the case
is attributed to a tool-generation error. Finally, for the Simulation Engine part, we count explicit
simulation-level anomalies, such as objects flying away. Through this procedure, we obtain the
system error breakdown shown in Fig. 6.

A.2 DISCUSSIONS ON EXPERIMENTS IN MAIN TEXT AND ADDITIONAL EXPERIMENTS

A.2.1 MORE DETAILS ABOUT EXPERIMENTAL RESULTS IN MAIN TEXT.

On evaluation time. Several factors influence the total evaluation time of a policy on a given sim-
ulation benchmark. Hardware configuration matters first; different setups yield different runtimes.
Second, the model’s own inference efficiency plays a role; some recent work ((Kim et al., 2025))
focuses on speeding up policy inference, which is a promising direction. Third, task success rates

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 4: Total evaluation time and sample count of ManipEvalAgent under the multi-task setting.

Models RoboTwin LIBERO Ours

RDT 11102 min, 2763623 samples 4909 min, 1073428 samples 97 min, 27037 samples
π0 7900 min, 2445809 samples 4330 min, 992816 samples 68 min, 21745 samples

Table 5: Consistency between ManipEvalAgent and existing simulation benchmarks in the multi-
task setting. Table shows the percentage of results that fall within the exact range (left) or within the
error margin (right) across ten trials.

Dimension RDT π0

S.R. (RoboTwin) 60% / 80% 60% / 70%
S.R. (LIBERO Avg.) 70% / 80% 60% / 100%
Spatial (LIBERO) 50% / 90% 50% / 80%
Obj (LIBERO) 40% / 90% 60% / 80%
Goal (LIBERO) 60% / 100% 60% / 70%
Long (LIBERO) 60% / 100% 70% / 90%

affect runtime: when success is low, episodes often run to the configured maximum step cap, in-
creasing time. Fourth, average episode length varies across benchmarks and across suites within a
benchmark (e.g., the four groups in LIBERO ((Liu et al., 2023))), which also shifts overall time.
Finally, the simulation engine contributes a substantial and relatively fixed overhead, producing in-
herent time differences across benchmarks.

On evaluation accuracy. Setup: on each simulation benchmark, we randomly choose one task and
measure success rate as the result. On ManipEvalAgent, we follow the standard evaluation pipeline
but additionally require a single scalar score in [0,1], repeated 10 times. We compute the mean and
standard deviation over the 10 ManipEvalAgent runs, and compare the benchmark’s success rate to
the ManipEvalAgent mean. We regard the difference as accurate if it is within 1 standard deviation,
and acceptable if it is within 3 standard deviations.

A.2.2 EVALUATION ON MULTI-TASK SETTINGS

Single-task and multi-task are exposed as user-selectable settings. When the policy type is a VLA
(Vision-Language-Action) model, the user may opt for multi-task evaluation. This is because, given
training-resource constraints, many users still evaluate VLA models only in single-task settings.
The benchmark’s task suites are visible to ManipEvalAgent. Given current VLA capabilities, Ma-
nipEvalAgent strives to generate tasks that are as close as possible to the training task suites, echoing
recent discussions on VLA generalization ((Intelligence et al., 2025)).

Under multi-task evaluation, a simulation benchmark executes its standard protocol across all tasks.
In contrast, ManipEvalAgent, by virtue of its small-sample, multi-round, dynamic evaluation, needs
to probe only a few groups of tasks to reach reliable conclusions; as a result, the time cost is not
orders of magnitude higher than in the single-task setting. In our Table 4 and Table 5, we observe
that in the multi-task setting our framework likewise significantly shortens evaluation time while
achieving generally strong predictive accuracy across most dimensions.

We acknowledge that conducting broader studies over more benchmarks and policies in the multi-
task setting entails substantial effort and remains valuable future work.

A.2.3 HUMAN–AGENT AGREEMENT ON SUB-ASPECT PLANNING

To quantitatively measure the consistency between Plan Agent and researchers on sub-aspect de-
composition, we sample a set of user queries from the Open User Query dataset. Experienced
researchers annotate a set of sub-aspects for each query as the ground truth (with the final labels

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: Human–Agent Agreement on Aspect Decomposition (sub-aspect level)

Model Precision
GPT-4o 0.943
Gemini 1.5 Pro 0.927
GPT-4o mini 0.924

Table 7: VQA accuracy under different perturbations on RoboTwin 2.0.

Model Clean Scene Clutter Background Textures Lighting
GPT-4o 0.997 0.989 0.992 0.994
Gemini 1.5 Pro 0.998 0.980 0.987 0.988
GPT-4o mini 0.984 0.984 0.996 0.985

obtained by majority vote across multiple annotators). We then use different models (GPT-4o, Gem-
ini 1.5 Pro, GPT-4o mini) to drive Plan Agent, generate sub-aspect sets for the same queries, and
compute agreement with the human annotations at the sub-aspect level.

The results are shown in Table 6. These results indicate that the Plan Agent used in our system
is sufficiently aligned with human researchers at the sub-aspect level, and can therefore provide
reliable inputs for subsequent task generation and tool generation. It is worth noting that the Plan
Agent’s prompt is written by human experts, which injects domain knowledge into agent; thus, part
of the high agreement can be attributed to the prompt design.

A.2.4 VQA ACCURACY, HUMAN AGREEMENT, AND ROBUSTNESS TO PERTURBATIONS

In this subsection, we conduct a analysis of the VQA used in our system, examining their agree-
ment with human researcher annotations and their robustness under distribution shifts. We construct
perturbation conditions along three typical domain randomization axes in RoboTwin 2.0: beyond
the Clean setting, we inject task-irrelevant distractor objects on the table (Scene Clutter), with dis-
tractors sampled from RoboTwin-OD; randomize background and tabletop textures (Background
Textures) by sampling from a texture library that is loaded at run time in simulation; and randomly
vary lighting, including color temperature, type, number, position, and intensity. For each model, we
repeat the same VQA evaluation protocol under the four settings: Clean, Scene Clutter, Background
Textures, and Lighting.

We collect a set of evaluation clips in the RoboTwin 2.0 environment and have human researchers
annotate, in a binary manner, the key question for each clip (e.g., whether the tool gradually drifts),
which we treat as VQA ground truth. We then run three VLMs (GPT-4o, Gemini 1.5 Pro, and
GPT-4o mini) on the same clips and queries, and record their VQA outputs, including both natural-
language descriptions and scalar scores. Based on these scores and human annotates, we compute
VQA classification accuracy at a fixed threshold and AUROC over all possible thresholds. As shown
in Tab. 7 and 8, VQA performance is overall strong, which we attribute to the fact that VQA tasks
in our system are intentionally simple and consistent, and to the iteratively refined prompt engineer-
ing performed by human experts during system development. The added perturbations only cause
slight degradation in VQA metrics, indicating that current VLMs already exhibit fairly robust visual
capabilities in these settings.

A.2.5 FURTHER CONSISTENCY STUDY: MANIPEVALAGENT VS. STANDARD SIMULATION
BENCHMARKS

We further examine how consistent ManipEvalAgent is with standard simulation benchmarks in
terms of policy ranking. For each benchmark and task cluster (RoboTwin short/medium/long hori-
zons; LIBERO-Object/Spatial/Goal/Long), we evaluate the same five policies (ACT, Diffusion Pol-
icy, DP3, π0, and RDT-1B), aggregate the default success-rate metric over all tasks in the cluster, and
derive a ranking of the five policies. We then compute Spearman’s rank correlation coefficient ρ be-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 8: VQA AUROC under different perturbations on RoboTwin 2.0.

Model Clean Scene Clutter Background Textures Lighting
GPT-4o 0.982 0.976 0.980 0.980
Gemini 1.5 Pro 0.987 0.966 0.976 0.981
GPT-4o mini 0.972 0.975 0.983 0.972

Table 9: Policy ranking consistency between standard Simulation benchmarks and ManipEvalAgent.
We report Spearman’s rank correlation ρ with bootstrap confidence intervals (90% CI for 10 rollouts;
95% CI for 20 and 50 rollouts).

Setting 10 rollouts 20 rollouts 50 rollouts
ρ (90% CI) ρ (95% CI) ρ (95% CI)

RoboTwin (short, 0–500) 0.83 [0.75, 0.90] 0.79 [0.65, 0.90] 0.81 [0.70, 0.90]
RoboTwin (medium, 600–1000) 0.86 [0.70, 0.90] 0.81 [0.60, 0.90] 0.83 [0.75, 0.90]
RoboTwin (long, 1100+) 0.83 [0.65, 0.90] 0.77 [0.70, 0.90] 0.80 [0.65, 1.00]
LIBERO-Object 0.80 [0.70, 1.00] 0.91 [0.70, 1.00] 0.82 [0.70, 0.90]
LIBERO-Spatial 0.76 [0.65, 0.85] 0.81 [0.65, 0.90] 0.82 [0.60, 0.90]
LIBERO-Goal 0.81 [0.70, 0.90] 0.73 [0.60, 0.85] 0.79 [0.70, 0.90]
LIBERO-Long 0.85 [0.70, 0.90] 0.87 [0.75, 1.00] 0.85 [0.80, 0.90]

tween this ranking vector and the one induced by ManipEvalAgent, which focuses on the agreement
in relative ordering rather than the absolute scale of scores.

To quantify uncertainty, we report bootstrap confidence intervals (CI) on ρ. For settings with 10
rollouts per task we use 90% CIs, while for 20 and 50 rollouts we report 95% CIs. Across all
clusters, we follow each benchmark’s standard evaluation configuration and fix the environment
seed to 0. As shown in Table 9, the resulting rank correlations are consistently high and stable across
different rollout budgets, indicating strong agreement between ManipEvalAgent and conventional
simulation-based evaluations.

A.3 SYSTEM IMPLEMENTATION

A.3.1 SOME DETAILS ABOUT CODE GENERATION

RAG setup. We adopt a well-known approach in the area, LightRAG ((Guo et al., 2024)), as our
simulator document retrieval pipeline. For simulator documentation, we follow LightRAG’s process
to perform chunking and embedding, retrieve relevant chunks at query time, and have an agent
aggregate the results. Because index building and retrieval involve multiple LLM calls, we host
Qwen2.5-7B-Instruct locally as retriever, which avoids substantial OpenAI API costs.

Other sources. For items like task code and tool code, we use document-level retrieval rather than
chunk-level retrieval.

A.3.2 DISCUSSIONS ABOUT SIMULATION ENGINES AND SIMULATION BENCHMARKS.

ManipEvalAgent is currently implemented on RoboTwin ((Chen et al., 2025)). We follow the default
configurations of the simulation environments to collect data and train the models we use, tuning
performance to an acceptable level.

On LIBERO ((Liu et al., 2023)), implementing ManipEvalAgent mainly requires adapting the task
generation (TaskGen) and tool generation (ToolGen) components. In LIBERO, tasks and scenes are
defined separately: on the one hand, BDDL files describe the task logic, including the object set,
layout constraints, initial states, and goal predicates, and serve as LIBERO’s standardized task spec-
ification; on the other hand, the Python-side Problem class is responsible for concrete scene con-
struction and execution logic, including loading assets, defining the workspace and camera views,
and implementing check success and other success-checking functions. Therefore, to realize
ManipEvalAgent’s task generation on LIBERO, we need to automatically synthesize both parts: we

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

must modify the corresponding BDDL task files, and also modify the Problem class. This process
involves substantial prompt engineering and engineering details to ensure a high success rate for
automatic task generation.

For tool generation, LIBERO provides a set of interfaces for probing states. BDDLBaseDomain
creates state detector objects for each object and stores them centrally; at the same time, LIBERO’s
built-in predicate system, eval predicate fn, performs logical judgments based on these state
objects. Building on this predicate-and-state interface, ManipEvalAgent’s ToolGen can automati-
cally synthesize various rule-based tool functions to check object relations, contact states, and so
on.

Overall, we have completed the basic adaptation of ManipEvalAgent on LIBERO, but we have not
yet reproduced experiments on LIBERO at the same scale and level of completeness as on RoboTwin
2.0, mainly because this experimental workload would be large and repetitive. By comparison,
RoboTwin 2.0’s interface design and framework structure are noticeably clearer and more friendly,
making it significantly easier to implement the various modules of ManipEvalAgent on RoboTwin
2.0 than on LIBERO.

A.3.3 CONSISTENCY ACROSS QUERIES AND POLICIES

To maintain stability and cross-query consistency across different evaluation instances, we adopt a
few simple design choices. First, in proposal stage, we maintain a historical evaluation database
that stores, for each past evaluation, the corresponding planning information, including the origi-
nal user query and its sub-aspects. When a new user query arrives, system retrieves similar past
queries from this repository and injects their planning results into Plan Agent’s context, allowing
Plan Agent to reuse existing decompositions for similar problems. This simple yet effective mecha-
nism significantly improves the stability and behavioral consistency of cross-query and cross-policy
evaluations.

Second, as described in Sec.3.3, generation stage, both for task generation and tool generation, relies
on retrieval-augmented generation (RAG): agents retrieve code snippets and other relevant artifacts
from dedicated task and tool repositories that best match the current query and its sub-aspects, and
then condition on these retrieved materials during generation. Since similar queries tend to trigger
similar retrieval results, this mechanism further preserves consistency across repeated evaluations,
causing the system to preferentially reuse a nearly identical family of task and tool definitions when
evaluating different policies, thereby yielding more stable and comparable evaluation behavior.

A.3.4 FAILURE MODES AND RECOVERY MECHANISMS

As described in Sec. 4.4, ManipEvalAgent inevitably encounters various types of failures. To pre-
vent these failures from disrupting the overall evaluation process, we design dedicated handling
mechanisms for each stage. First, in the planning stage, if the set of sub-aspects produced by the
Plan Agent disagrees with the human-annotated ground truth from the open-ended query dataset on
more than half of the elements, we classify it as a planning failure: the current planning attempt is
terminated, the case is logged as a failure in database, and a new planning attempt is started.

Second, in task generation, we employ a visual self-check to inspect the rendered scenes. If the
scene is detected to be inconsistent with the intended sub-aspects or exhibits clearly abnormal object
configurations, it is treated as a task-generation failure, and TaskGen Agents is required to regenerate
the scene.

For tool generation, we use a unit test suite to validate the generated tool functions: if the unit tests
fail, it trigger regeneration; if unexpected exceptions occur during execution, it terminate current
evaluation round, record the failure, and restart that evaluation round.

As for issues originating from the simulation engine itself, such failures also occur in traditional
simulation benchmarks; we likewise treat them uniformly as policy execution failures. These mech-
anisms ensure that the system maintains overall robustness and usability even in the presence of
localized failures.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.3.5 EVALUATION SIGNAL FLOW: TOOL FUNCTIONS, VQAS, AND PLANNING

In ManipEvalAgent, VQA based on vision-language models (VLMs) and Python tool functions
built on simulator interface jointly provide information about policy execution. First, Python tool
functions directly obtain state information (e.g., whether the hammer is in contact with the block)
and return corresponding scalar results. For informations that are better judged from video, ToolGen
agents formulates natural-language queries and feeds them, together with informations returned by
tool functions and a set of key frames from the execution video (the first and last frames plus a
few intermediate frames), into VLM to perform all VQA. Finally, all signals, including the scalar
outputs from tool functions and answers returned by VQA, are aggregated and passed to Plan Agent,
which consolidates and interprets them to update the evaluation of the current sub-aspect and to drive
subsequent rounds of the multi-step evaluation process.

A.4 OPEN USER QUERY DATASETS

We construct an open-ended user query dataset of a few hundred entries, which is used both to drive
ManipEvalAgent and to evaluate the Plan Agent. Each data point consists of two parts: (i) a user
query, and (ii) a sub-aspect set (Sub-aspect Ground Truth) annotated by human researchers.

A.4.1 EXAMPLES OF OPEN USER QUERY DATASETS

The dataset is curated around common user concerns in robotic manipulation and spans multiple
categories. The open-ended user query dataset includes both single-task and multi-task settings.
Below we present a subset of the dataset to illustrate its structure and contents.

Generalization:
How well does the policy generalize within the task overall?
How robust is the pipeline to natural scene variation?
How sensitive is success to object/scene parameter shifts?
How robust is it to minor physics/modeling mismatches?
How brittle is behavior at workspace limits?
When the task instruction is paraphrased or shortened, does
execution remain consistent?
With minimal or differently worded prompts, does the policy still
achieve the intended goal?

Generalization-Object:
How broadly does the policy generalize across pose and instance
variations?
Is performance tied to a canonical pose or truly pose-invariant?
Is success stable when the visual mesh changes but the collision
shape is fixed (and vice versa)?
Does the policy overfit to specific model IDs or object textures?
Is target identification robust when color/texture shifts but shape
is constant?
Do glossy or reflective appearances impact control or only
perception?
Are failure modes under size/appearance changes predictable and
repeatable?
Are generalization limits similar across pose, size, and appearance
axes?
How robust is the policy when the object starts at varied positions
and orientations on the workspace?
As the object’s initial pose deviates further from nominal, does
success degrade smoothly or show thresholds?
Can the policy recover when the object’s yaw/roll is unfavorable
for the default grasp?
How well does the policy transfer to different instances of the
same class (style/shape variants) without retuning?

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

With look-alike object variants, does the policy maintain
consistent success and timing?
If the object is slightly smaller or larger than trained, does the
task still complete?
How sensitive is grasp selection to modest scale changes of the
object?
Does the policy remain reliable when object color and surface
texture change?
Under matte vs. glossy finishes, how stable are perception and
downstream manipulation?
How does success change when object mass varies across
light/nominal/heavy?
With convex vs. non-convex collision modeling of the object, do
contact stability or failure modes differ?

Generalization-Scene:
Do illumination shifts (bright ↔ dim) change outcomes?
Do color-temperature changes affect perception?
Do specular highlights trigger misdetections?
Do workspace size or table height changes alter success?
Are edge or corner placements handled reliably?
Do unseen backgrounds change recognition confidence?
Do textured walls or props induce false positives?
Across ambient brightness changes and different
directional/point-light colors/intensities, does performance hold
up?
Under time-varying lighting (flicker/jitter), does detection
confidence drop or behavior become erratic?
When table height or reach margins change, can the policy still
execute the task reliably?
Do different tabletop textures (e.g., low- vs. high-frequency
patterns) affect perception or placement accuracy?
With unseen background textures, does the policy maintain
recognition and control quality?
How sensitive is the pipeline to cluttered vs. clean backgrounds?
If the camera viewpoint shifts slightly (distance/height/tilt),
does the policy remain accurate?
Under small pose errors or mild jitter, can the system still
localize and act robustly?
How dependent is success on viewpoint choice?

Performance:
Does completion time stay stable (low variance) across seeds and
perturbations?
Are grasp retries rare, and are recovery attempts short?
Does planning or inference latency remain bounded as scene
complexity increases?
During transport, does the object remain stable (no sway or
micro-slips)?
Do path-length ratios (actual/shortest) stay near 1 under
perturbations?
Does performance degrade gracefully as difficulty increases?
Across different feasible contact faces or approaches, how stable
are grasps (slip, drop, post-grasp drift)?
Are the planned or executed paths near-minimal, or do detours
emerge under perturbations?
How does path length change with harder placements (edges or
corners)?
Are end-effector motions smooth?

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Do jerk or acceleration spikes appear near contact or tight
clearances?
Does the policy exhibit unnecessary back-and-forth motions, and how
much time do they add?
When conditions shift, does redundancy increase, indicating
uncertainty or replanning?

Safety:
Does the policy consistently respect safety zones and boundaries?
With safety zones and physical boundaries (table edge, wall, camera
mast), are there any incursions or unintended contacts?
Near constrained areas, does the policy proactively reroute without
grazing obstacles?
In dense clutter, does the policy avoid near-misses with walls,
edges, or masts while still completing the task?
Are there transient impacts or speed bursts that exceed safety
thresholds during contact or near obstacles?
Does the policy maintain a consistent minimum clearance from
obstacles throughout the motion?
Are contacts limited to intended objects only (no incidental bumps
with scene geometry)?
Are grasp or open events gated to safe zones (no releases over
edges or above non-targets)?
Are speed reductions near boundaries smooth (no oscillatory slowing
or speeding)?
Do lighting or background changes increase risky behavior (e.g.,
grazing obstacles)?
When both arms move, do inter-arm clearances stay within safe
bounds?

Robustness to Distractors:
How robust is target selection under clutter?
Do look-alikes systematically derail selection?
Is planning still collision-free amid nearby objects?
How viewpoint-sensitive is performance with clutter present?
Do purely visual (non-physical) distractors cause errors?
Are failures concentrated in specific layouts or counts?
With additional task-irrelevant objects of varying types and
counts, does the policy avoid misgrasp and confusion?
As distractors move closer to the object, can the system still
select and manipulate the correct target consistently?
When distractors share key affordances (e.g., handles), does the
policy still pick the intended target?
Do look-alike objects (color/shape/size) cause target selection
errors?
Is there a tipping point in distractor count where behavior
degrades sharply?
As distractors touch or overlap the target, can the system still
localize and act reliably?
When key target features are partially occluded, does performance
remain stable?
With multiple plausible objects present, does the policy follow the
instruction’s intent (the \right" target)?

Multi-Task:
Can the policy correctly understand the affordances of the
manipulated object?
Can the policy use substitute tools to accomplish similar tasks?

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Under partial occlusion, does execution across different tasks
remain successful?
What is the policy’s success rate across grasp-and-place tasks?
Given different task goals for the same object, can the policy
adapt its manipulation accordingly?
In a multi-task setting, is the policy’s behavior consistent under
variations in language phrasing (synonyms or simplifications)?
Across the task set, can the policy maintain a consistent
understanding of object categories and their basic affordances?
Is the understanding and execution of basic spatial relations
consistent across tasks?

A.4.2 TAXONOMY

To systematically organize the queries, we derive a hierarchical taxonomy based on common con-
cerns in robotic manipulation research. At the top level, we define five coarse categories: gener-
alization, performance, safety, robustness, and multi-task. The multi-task category is reserved for
queries that specifically target the evaluation of multi-task policies (most of which are VLAs). We
further refine the taxonomy into multiple levels. For example, under “generalization” we distinguish
between object generalization and scene generalization, and so on; object generalization is further
split into positional generalization and appearance generalization, and so on.

A.4.3 ANNOTATION PROTOCOL AND INTER-ANNOTATOR AGREEMENT.

For the annotation process, four graduate students or PhD students specializing in robotics partic-
ipate as annotators. For each user query, annotators are asked to provide a set of sub-aspects. We
then apply a majority-vote scheme to decide which sub-aspects are included in the final dataset. In
cases where there is a tie, we prioritize the opinion of the annotator with more domain experience
(higher seniority) as the arbiter.

A.5 DETAILED COMPARISON BETWEEN SIMULATION BENCHMARKS AND
MANIPEVALAGENT

Tab. 10 summarizes the differences between existing static simulation benchmarks and Ma-
nipEvalAgent in certain evaluation characteristics. Traditional benchmarks rely on pre-defined tasks
and evaluation processes, ensuring Absolute Correctness, but they cannot adjust the evaluation con-
tent based on user queries, and their outputs are mostly limited to a single scalar success-rate score.
Additionally, they lack Dynamic Generation & Evaluation and the ability to Open Tool-Use. In
contrast, ManipEvalAgent drives evaluation through natural language, generates tasks and tools as
needed, and supports the integration of rule-based metrics with external tools such as VLM/VQA.
This enables a more flexible, analytical evaluation process while maintaining reasonable reliability.

Overall, Tab. 10 demonstrates the complementarity between ManipEvalAgent and traditional simu-
lation benchmarks in evaluation capabilities. Both have their strengths and can play important roles
in addressing different research needs. ManipEvalAgent is a complementary evaluator to traditional
benchmarks, rather than a new benchmark.

A.6 DISCUSSION ON SOME RELATED WORK AND FUTURE WORK

A.6.1 TASK AND ASSET GENERATION WITHIN SIMULATION

Recently, several researchers have begun investigating generation tasks within simulation environ-
ments.

Some works study task scene generation in simulators ((Wang et al., 2023b;c)). ManipEvalAgent
draws on several sound engineering practices from these works and builds a more complete frame-
work that couples proposal, generation, and execution into an evaluation loop.

Other works go further to explore 3D asset generation within simulation ((Katara et al., 2024)) for
creating manipulable objects. At present, ManipEvalAgent can only retrieve and use existing assets

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 10: Comparison of Evaluation Characteristics

Property Existing Simulation benchmarks ManipEvalAgent
User-Query Driven Evaluation × ✓
Interpretability Output × ✓
Dynamic Generation & Evaluation × ✓
Open Tool-Use × ✓
Absolute Correctness ✓ ×

available in the simulator. We consider integrating an asset-generation pipeline into ManipEvalA-
gent to be a valuable direction for future work.

A.6.2 AUTOMATING MORE STAGES OF ROBOTIC MANIPULATION RESEARCH

ManipEvalAgent can be viewed as a simulation of how an experienced human researcher evaluates
manipulation policies, aiming to automate this process. In robotic manipulation research, many ad-
ditional stages could be automated by multi-agent systems, including (but not limited to) analyzing
user requirements, designing and implementing manipulation policies, collecting data, training poli-
cies, and iteratively refining them based on evaluation results, thereby forming a relatively closed-
loop automated research workflow. Recent work ((Trirat et al., 2024; Tang et al., 2025)) has begun
to explore automated research, providing useful references for us.

A.6.3 SYSTEM USABILITY: PORTABILITY, STABILITY, AND REAL-WORLD DEPLOYMENT

Although ManipEvalAgent only needs to interact with a small set of well-defined interfaces to be
deployed on different simulation engines, migrating across simulators still requires a certain amount
of manual adaptation by human researchers. An interesting direction is to build a simulator-agnostic
automatic evaluation system, where the evaluation process primarily operates at the GUI level, hid-
ing the details of the underlying simulator interfaces. The rapid progress of GUI agents and coding
agents supports the feasibility of this idea ((Ye et al., 2025; Zhang et al., 2025a; Wang et al., 2024d;
Zhang et al., 2024b)).

From a longer-term perspective, a evaluation system that supports natural-language input/output
and achieves behavior that is close to 100% stable could in principle subsume both current sim-
ulation benchmarks and our system in terms of evaluation capability. Thus, a valuable research
direction is how to construct a unified framework that combines the stability and reproducibility of
existing simulation benchmarks with the natural-language-driven, flexible evaluation capabilities of
ManipEvalAgent.

The current version of ManipEvalAgent is built purely on simulation engines and relies on them to
construct scenes. Some recent work ((Zhou et al., 2025; Li et al., 2024b)) has started to investigate
how to automate evaluation of robotic manipulation policies in the real world, and these attempts
provide inspiration for eventually deploying ManipEvalAgent in real world environments.

A.7 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models to assist with language polishing and minor editorial improvements
to this manuscript, including grammar, phrasing, and clarity.

23

	Introduction
	Related Work
	Robotic Manipulation Policy
	Datasets and Benchmarks for Robotic Manipulation
	LLM-based Agent

	Method
	Preliminaries
	Proposal Stage
	Generation Stage
	Task Generation
	Tool Generation

	Execution Stage

	Experiments
	Quantitative Experiments on Existing Robotic Manipulation Benchmarks
	Experimental Setup
	Results Analysis

	Qualitative Experiments on Open-Ended User Query in Robotic Manipulation
	Open-Ended User Query Dataset in Robotic Manipulation
	Open-Ended User Query Evaluation in Robotic Manipulation

	Ablation Study
	System Error Breakdown

	Conclusion
	Appendix
	Experimental Setup
	Experimental Hyperparameters
	Fairness Settings
	Error Counting Protocol

	Discussions on Experiments in Main Text and Additional Experiments
	More Details about Experimental Results in Main Text.
	Evaluation on Multi-task Settings
	Human–Agent Agreement on Sub-Aspect Planning
	VQA Accuracy, Human Agreement, and Robustness to Perturbations
	Further Consistency Study: ManipEvalAgent vs. Standard Simulation Benchmarks

	System implementation
	Some details about code generation
	Discussions about simulation engines and simulation benchmarks.
	Consistency Across Queries and Policies
	Failure Modes and Recovery Mechanisms
	Evaluation Signal Flow: Tool Functions, VQAs, and Planning

	Open user query datasets
	Examples of Open user query datasets
	Taxonomy
	Annotation protocol and inter-annotator agreement.

	Detailed Comparison Between Simulation Benchmarks and ManipEvalAgent
	Discussion on some related work and future work
	Task and Asset Generation within Simulation
	Automating More Stages of Robotic Manipulation Research
	System Usability: Portability, Stability, and Real-World Deployment

	The Use of Large Language Models (LLMs)

