

MANIPEVALAGENT: PROMPTABLE AND EFFICIENT EVALUATION FRAMEWORK FOR ROBOTIC MANIPULATION POLICIES

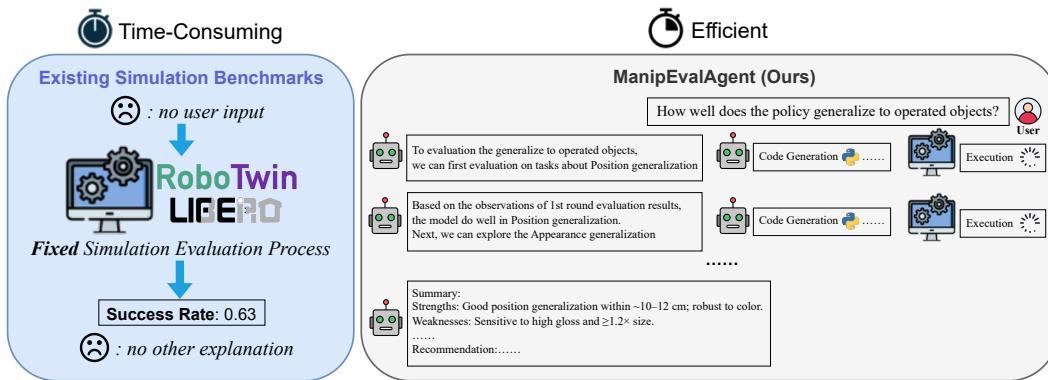
006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 In recent years, robotic manipulation policies have made substantial progress.
 014 However, evaluating these policies typically requires large-scale sampling in sim-
 015 ulation benchmarks, leading to high time costs. Moreover, existing evaluation
 016 pipelines are usually fixed, do not account for user needs, and report only a single
 017 scalar score, lacking interpretability. In contrast, human experts can quickly form
 018 an intuitive impression of a policy’s capabilities from just a handful of executions.
 019 We therefore propose ManipEvalAgent, an efficient, promptable, and dynamically
 020 multi-round evaluation framework for robotic manipulation policies. The frame-
 021 work conducts small-batch, multi-round evaluations and adaptively plans subse-
 022 quent evaluation steps based on intermediate observations from each round. Via
 023 code generation, it constructs tasks and evaluation functions within simulator. By
 024 generating evaluation functions and leveraging vision–language models (VLMs)
 025 for video understanding, ManipEvalAgent provides user-instruction-centric, fine-
 026 grained analysis. Our approach offers three key advantages: (1) efficiency, no
 027 need for massive sampling; (2) promptable, planning the evaluation process acc-
 028 cording to user queries; and (3) interpretability, providing diagnostic text that
 029 goes beyond a single score. Across multiple settings, our evaluation method sig-
 030 nificantly shortens the overall time compared with traditional simulation bench-
 031 marks, while reaching conclusions comparable to those from large-scale simula-
 032 tion benchmarks.

1 INTRODUCTION



050 Figure 1: Example of ManipEvalAgent. Widely used simulation benchmarks evaluate on fixed
 051 task sets with fixed procedures, require large amounts of sampling, and report only success rates.
 052 ManipEvalAgent performs multi-round, few-sample evaluations conditioned on user queries, dy-
 053 namically generates tasks and tools, and ultimately outputs detailed analyses that are both efficient
 and interpretable.

054 In recent years, robotic manipulation has advanced rapidly, driven by progress in diffusion models
 055 ((Chi et al., 2023)) and breakthroughs in general vision–language–action (VLA) models ((Kim et al.,
 056 2024; Shukor et al., 2025; Liu et al., 2024)), as well as the availability of internet-scale demonstration
 057 data ((O’Neill et al., 2024)); together, these developments have pushed end-to-end capabilities from
 058 perception to action and expanded the boundaries of practical applications.

059 With the progress in robotic manipulation policies, effective evaluation has become increasingly criti-
 060 cal for identifying their limitations and directions for improvement. Existing benchmarks ((Chen
 061 et al., 2025; Liu et al., 2023; James et al., 2020; Mees et al., 2022; Yu et al., 2020)) provide stan-
 062 dardized environments and task suites, together with unified evaluation pipelines and data resources,
 063 laying the groundwork for systematic model comparisons and enabling more comprehensive perfor-
 064 mance analyses. Nevertheless, prevailing practice largely relies on fixed evaluation pipelines and
 065 pre-defined task sets, lacks user input and customization, and is ill-suited to open-ended needs.
 066 Meanwhile, static benchmarks typically require exhaustive execution over all predefined tasks and
 067 all candidate policies, incurring substantial time and compute costs. More importantly, conclusions
 068 are often compressed into single metrics such as success rate, with little diagnosis of “why” and
 069 “under what conditions” failures occur, making it difficult to directly guide model iteration and sys-
 070 tem deployment. Compared with static benchmarks, experienced human evaluators can often form
 071 a reliable impression of a robotic manipulation policy’s overall competence through small-batch,
 072 hands-on interactive trials.

073 To leverage the advantages of human-like evaluation, and inspired by agent-related studies ((Gu
 074 et al., 2024; Zhuge et al., 2024; Qian et al., 2023; Zhang et al., 2024a)), we introduce ManipEvalA-
 075 gent for robotic manipulation—a paradigm that imitates how humans assess manipulation policies.
 076 ManipEvalAgent delivers three key properties: 1) Efficiency: it dynamically adapts the evaluation
 077 path based on intermediate results, avoiding redundant test cases to achieve efficient evaluation . 2)
 078 Promptable evaluation: unlike popular robotic manipulation benchmarks ((Chen et al., 2025; Liu
 079 et al., 2023)), it accepts user input in natural language and performs flexible, customized evaluation
 080 according to user needs. 3) Detailed results: it implements functions to process diverse feedback
 081 from the simulation environment and analysis, providing interpretable and detailed insights that go
 082 beyond a single numeric score.

083 ManipEvalAgent first accepts open-ended user input to specify what to evaluate and which policy to
 084 assess, then decomposes the problem into a set of sub-aspects. Leveraging simulation-environment
 085 APIs, it generates scene, task and produces reusable metric evaluators as Python code. It executes the
 086 policy to run the evaluation, monitors intermediate results, and dynamically refines the subsequent
 087 exploration. Finally, it generates a detailed natural-language report for the user.

088 We demonstrate the versatility of the ManipEvalAgent through experiments. The results show that it
 089 delivers performance comparable to existing full benchmark pipelines while significantly reducing
 090 evaluation time.

091 Our primary contribution is ManipEvalAgent, a human expert-like evaluation framework for robotic
 092 manipulation policies that addresses the limitations of existing methods in capabilities and efficiency.
 093 We introduce a scheme that enables robust generation of simulation tasks and evaluation functions.
 094 We also collect common concerns and construct an open-ended user query dataset for evaluating
 095 robotic manipulation policies. Finally, we validate our approach against several widely adopted
 096 robotic manipulation benchmarks and show that it achieves evaluation accuracy comparable to stan-
 097 dard benchmarks while substantially reducing evaluation time.

099 2 RELATED WORK

101 2.1 ROBOTIC MANIPULATION POLICY

103 The development of robotic manipulation policies has progressed from single-task methods to large-
 104 scale generalist approaches. At the foundational level, Diffusion Policy ((Chi et al., 2023)) estab-
 105 lished the diffusion-based paradigm for action modeling. Building upon this milestone, subsequent
 106 works such as 3D Diffusion Policy ((Ze et al., 2024)) and AdaptDiffuser ((Liang et al., 2023))
 107 extended the approach to 3D action modeling and adaptive planning, respectively, enhancing ro-
 bustness while still focusing on task-specific domains. RISE ((Wang et al., 2024a)) demonstrates

108 the potential of 3D perception to improve the stability and generalization of imitation learning,
 109 while DensePolicy ((Su et al., 2025)) and Chain-of-Action ((Pan et al., 2024)) illustrate the pos-
 110 sibilities of adjusting the mechanisms by which policies generate actions. The field then shifted
 111 toward generalist and cross-environment policies: RT-1 ((Brohan et al., 2022)) pioneered a unified
 112 transformer architecture integrating vision, language, and action for real-time kitchen manipulation,
 113 RT-2 ((Zitkovich et al., 2023)) further enabled the transfer of web-scale knowledge into robotic con-
 114 trol, and RDT-1B ((Liu et al., 2024)) together with π_0 ((Black et al., 2024)) expanded the frontier
 115 through large-scale bimanual datasets and flow-based universal control. At the framework level,
 116 OpenVLA ((Kim et al., 2024)) introduced an open-source interface for community research, Co-
 117 gACT ((Li et al., 2024a)) explored the integration of cognition and action, while Octo ((Team et al.,
 118 2024)) and OpenVLA-OFT ((Kim et al., 2025)) targeted efficient adaptation and fine-tuning under
 119 limited compute.

120 2.2 DATASETS AND BENCHMARKS FOR ROBOTIC MANIPULATION

122 Evaluation for robotic manipulation has evolved from foundational physics-based simulators to
 123 large-scale, cross-embodiment datasets that strengthen sim-to-real transfer. Early platforms such
 124 as SAPIEN ((Xiang et al., 2020)) enabled part-level modeling of thousands of articulated objects
 125 with high-fidelity dynamics, while ManiSkill2 ((Gu et al., 2023)) unified task families, render-
 126 ing, and millions of expert demonstrations into a standardized pipeline. Building on these foun-
 127 dations, benchmarks emerged to test generalization across tasks and modalities: Meta-World ((Yu
 128 et al., 2020)) established a multi-task suite, CALVIN ((Mees et al., 2022)) introduced language-
 129 conditioned long-horizon tasks, and LIBERO ((Liu et al., 2023)) emphasized lifelong learning with
 130 compositional knowledge transfer. As the field moved toward real-world robustness, large-scale
 131 datasets became central: Open X-Embodiment ((O’Neill et al., 2024)) aggregated over a million tra-
 132 jectories across diverse robots, Bridge Data ((Ebert et al., 2021)) facilitated cross-domain transfer,
 133 and RoboMIND ((Wu et al., 2024)) standardized teleoperation data across embodiments to close
 134 the sim-to-real gap. In the domain of bimanual and digital-twin evaluation, RoboTwin ((Mu et al.,
 135 2024)) recreated real demonstrations in simulation to provide aligned benchmarks, while RoboTwin-
 136 2.0 ((Chen et al., 2025)) integrated LLM feedback and systematic domain randomization to generate
 137 richer and more challenging corpora that enhance robustness and generalization. Unlike these static
 138 task-set-driven evaluations, our ManipEvalAgent reframes evaluation as a promptable, interactive,
 139 and adaptive process that combines rule-based metrics with VLM-driven understanding, dynamical-
 140 cally generates tasks and tools, and delivers diagnostics.

141 2.3 LLM-BASED AGENT

142 In recent years, large language models (LLMs) have shown significant progress in understanding
 143 and reasoning capabilities, demonstrating strong potential in multi-tasking and complex reasoning.
 144 Chain-of-thought prompting can effectively guide LLMs in reasoning ((Wei et al., 2022; Kojima
 145 et al., 2022)). Autonomous agents ((Wang et al., 2024c; Zhou et al., 2023b; Zhang et al., 2025b;
 146 Hong et al., 2024; Yao et al., 2023)) based on LLMs are systems that can autonomously follow
 147 user instructions and use available tools to perform complex tasks, gradually becoming a focus
 148 of attention. Researchers have also explored how agent systems can achieve goals through multi-
 149 turn interactions in various environments ((Wang et al., 2023a; Zhou et al., 2023a; Wang et al.,
 150 2024b)), especially showing high effectiveness in improving long-term task completion. LLM-
 151 based agent systems have demonstrated the potential to replace human evaluation and have shown
 152 high alignment with human evaluation results in task assessment ((Gu et al., 2024; Zhuge et al.,
 153 2024; Zhang et al., 2024a)). Despite advances in reasoning and task automation, applying these
 154 methods to the automated evaluation of robotic manipulation policies within simulation engines
 155 remains largely unexplored, and our proposed ManipEvalAgent fills this gap.

156 3 METHOD

157 ManipEvalAgent is driven by collaborating VLM-based agents and simulates human-expert assess-
 158 ment through a few-shot, multi-round interactive process to achieve efficient and customizable eval-
 159 uation of robotic manipulation policies. As shown in Figure 2, ManipEvalAgent consists of three
 160 stages: (a) Proposal, where the Plan Agent decomposes the user query into orthogonal sub-aspects;

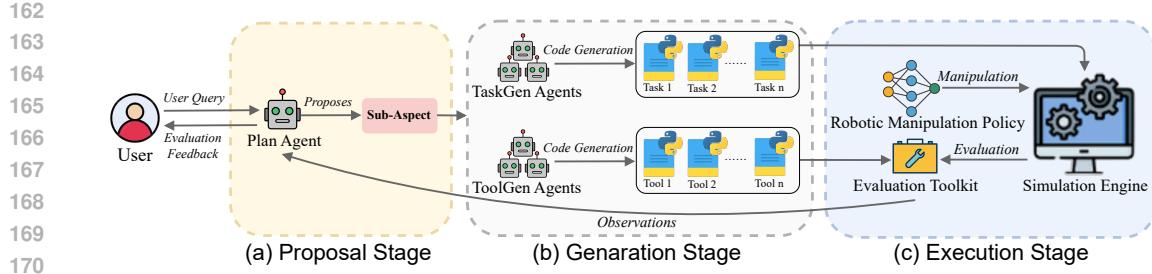


Figure 2: Overview of ManipEvalAgent framework. The system comprises three stages that form a multi-round feedback loop

(b) Generation, where the TaskGen/ToolGen agents perform code generation against the simulation environment interfaces to produce a set of tasks and evaluation tools; and (c) Execution, where the robotic manipulation policy is run in the simulation environment and evaluated by the Evaluation Toolkit. These three stages form a multi-round feedback loop, with the system continually adjusting the evaluation based on intermediate observations.

3.1 PRELIMINARIES

Embodied Setting. A simulator $\mathbb{S} = (\Omega, \Gamma)$ provides capabilities Ω and constraints Γ (e.g., available assets, interfaces). The policy π can be either language-conditioned, written as $\pi(a_t | o_t, l)$, or language-unconditioned, written as $\pi(a_t | o_t)$. A task τ is a program that constructs an initial scene and defines a success checker $\text{check_success}(s_{0:T})$, whose return value is a `bool`. Here $s_{0:T} = \{s_0, s_1, \dots, s_T\}$ denotes the trajectory of environment states from the initial state s_0 to the final state s_T . A rollout is

$$\zeta = \text{Rollout}(\pi, \tau, \text{seed}) = \{(s_t, o_t, a_t)\}_{t=0}^T, \quad I_{0:T} = \text{Render}(\zeta), \quad (1)$$

where $I_{0:T}$ are rendered frames (images or videos) for vision-based evaluation. Evaluation aspects are denoted by $a \in \mathbb{A}$ (e.g., appearance generalization). Unlike a large fixed test set C , our framework decomposes evaluation into a small dynamic set of sub-aspects $A = \{a_j\}$ discovered during evaluation.

Agentic Generation. The evaluation process is driven by agents. A planning agent *Plan* simulates a human evaluator and iteratively proposes sub-aspects a_j based on prompt Ψ and previous results $Y_{1:t}$. For each a_j , a task is synthesized by *TaskGen*:

$$\tau_j = \text{TaskGen}(a_j, \mathbb{S}, Kl_{\text{task}}, Kl_{\text{asset}}, Kl_{\text{doc}}), \quad (2)$$

where Kl_{task} is a task library storing reusable task programs, Kl_{asset} is an asset library listing available objects and environments in the simulator, and Kl_{doc} is a documentation library indexing simulator interfaces and usage patterns. The synthesized task includes scene construction and a `check_success` function returning a `bool`. ToolGen Agents *ToolGen* then assigns evaluation tools $e_k \in \mathbb{T}$, either (i) rule-based metrics $r : \zeta \mapsto \mathbb{R}^d$, meaning that the tool takes a trajectory ζ as input and outputs numerical results, or (ii) VQA-based metrics $q : (I_{0:T}, Q) \mapsto \mathbb{R}^d$, meaning that the tool takes rendered frames $I_{0:T}$ together with aspect-specific questions $Q(a_j, \tau_j)$ as input and outputs numerical results. Each sub-aspect is thus paired with the task τ_j and the tool e_k .

Evaluation Pipeline. In ManipEvalAgent, each sub-aspect a_j is paired with the task τ_j and the tool e_k . The evaluation proceeds as:

$$\zeta_{j,m} = \text{Rollout}(\pi, \tau_j, \text{seed}_m), \quad y_{j,m} = \begin{cases} r(\zeta_{j,m}), & \text{rule-based tool,} \\ q(I_{0:T}, Q), & \text{VQA-based tool.} \end{cases} \quad (3)$$

The sampled results are collected as

$$Y_j = \text{Aggregate}\{y_{j,m}\}_{m=1}^{M_j}, \quad Y = \text{Aggregate}\{Y_j\}_{j=1}^N, \quad (4)$$

where M_j denotes the number of sampled trajectories for sub-aspect a_j , N is the total number of sub-aspects discovered during evaluation, and *Aggregate* denotes a general aggregation operator,

216 which combines multiple evaluation results into a single summary. The final output combines
 217 numerical scores with interpretability. By contrast, classical methods rely on a fixed test set C , require
 218 large-scale sampling, and usually provide only simple scores, making them inefficient and less in-
 219 formative.

221 3.2 PROPOSAL STAGE 222

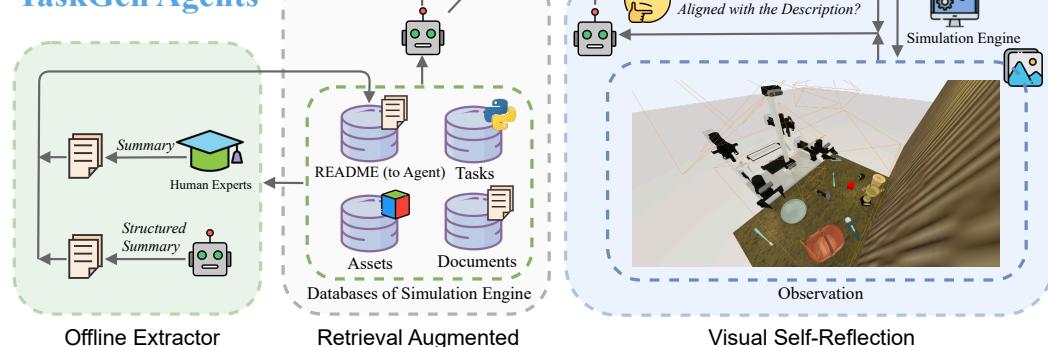
223 The Plan Agent is responsible for planning, observing, and summarizing the evaluation process
 224 based on the user’s query. It simulates human behavior during evaluation—including planning and
 225 adjusting the evaluation direction, observing intermediate results, and summarizing final outcomes.
 226 As a core component of the framework, the Plan Agent not only interacts with the user but also
 227 drives the entire evaluation pipeline.

228 Concretely, upon receiving a user query, the Plan Agent first reads a system-level prompt (system
 229 prompt) that specifies: the simulator’s capabilities and constraints, and meta-information about the
 230 policy under evaluation (e.g., whether it is language-conditioned). The Plan Agent then identifies an
 231 initial sub-aspect to evaluate and iteratively refines it based on feedback from intermediate results.
 232 This process continues until sufficient evidence has been collected, after which the agent provides a
 233 detailed analysis and summary.

235 3.3 GENERATION STAGE 236

237 3.3.1 TASK GENERATION 238

239 TaskGen Agents



259 Figure 3: Our task-generation pipeline produces task code based on the outcomes of the proposal
 260 stage. The pipeline is composed of multiple agents and consists of one main flow plus three aug-
 261 mentation modules.

263 In the generation phase, TaskGen Agents generate robot-manipulation tasks runnable in the simu-
 264 lator for each “sub-aspect” produced at the proposal stage. Concretely, the agent outputs a single-task
 265 Python file comprising two core parts: (i) the task scene, where—by referencing the simulator’s
 266 existing task-building interfaces and implementations—the agent generate code and populates the
 267 scene with relevant and necessary objects (assets) to form the initial state required by the manipula-
 268 tion task; and (ii) the success criterion, which determines during each rollout whether the manipula-
 269 tion policy has successfully completed the task, likewise generated as a `check_success` method. The
 entire workflow follows a reuse-first engineering principle: we first retrieve tasks in the simulator

270 that can be directly reused; if they meet the requirements, we adopt them as is, and only trigger
 271 generation when reuse is impossible, thereby saving generation time and improving completeness.
 272

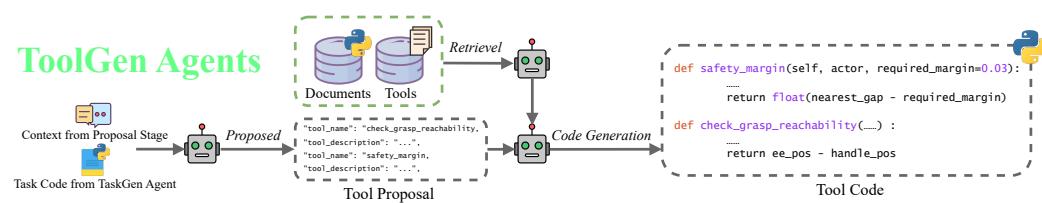
273 Although direct few-shot prompting code generation yields a moderate but suboptimal success rate,
 274 it exposes three practical issues: (1) the agent cannot fully understand the fine-grained details of
 275 the simulator’s interfaces from example code alone, and the substantial existing documentation and
 276 experiential knowledge about the simulator are not systematically exploited; (2) Because documents
 277 like ReadMe.md is primarily written for human developers, its format is not always effectively con-
 278 sumable by agents; and (3) there is no intuitive, low-cost mechanism that promptly makes the agent
 279 aware of deviations and errors in the generated scenes. To address these, we introduce three targeted
 280 enhancements into the pipeline: Retrieval-Augmented Generation (RAG), visual self-reflection, and
 281 README.Agent.

282 **RAG.** We build several knowledge bases offline and retrieve from them at generation time: a Task
 283 Library that stores currently available tasks in the simulator—during code generation, the agent re-
 284 trievals several similar tasks as few-shot exemplars to guide the generation of the new task; an Asset
 285 List that records available assets in the environment and their descriptions—retrieved during task
 286 proposal to constrain the task from invoking non-existent assets; and simulator-related documen-
 287 tation, which is likewise indexed as a database and retrieved. Implementation details of RAG are
 288 provided in Appendix A.3.1.

289 **Visual self-reflection.** We provide a lightweight feedback loop: for each task produced by TaskGen
 290 Agents, a simple script renders the first frame of the scene in the simulator to visually compare
 291 the generated result with the intended “vision” of the task proposal. Once unacceptable deviations
 292 are detected, the system emits diagnostics and suggestions to revise the scene-building and success-
 293 checking code.

294 **README.Agent.** Inspired by best practices in code generation ((Wijaya et al., 2025)), we propose
 295 README.Agent—Agent-oriented documentation that is likewise retrievable via RAG. It is con-
 296 structed by human experts together with an automated program that produces structured summaries
 297 of files in database, and it distills interface notes, patterns, and caveats about the simulator. All of
 298 this is built offline on a periodic schedule.

299 3.3.2 TOOL GENERATION



309 Figure 4: Tool generation pipeline of ToolGen Agents.

310
 311 ToolGen Agents ingests the proposal-stage context and the code from task-generation, and assigns
 312 an evaluation tool to each task. Tools come in two flavors: rule-based metrics and VQA-based
 313 metrics. The former are Python functions built on the simulator interface that take the simulation
 314 environment as input and output a scalar (or a structured score). The latter target information that is
 315 hard to obtain via the simulator interface, leveraging VQA with a vision-language model (VLM) to
 316 provide flexible evaluation.

317 The system maintains a toolkit of currently available tools and is open and extensible. Human
 318 experts prepare validated, commonly used tool functions that can be invoked directly and also serve
 319 as few-shot exemplars for code generation. The workflow follows a retrieval-first principle: when
 320 a new tool is needed, the system first retrieves the toolkit to reuse a suitable tool; if none is found,
 321 it retrieves similar tools and generates a new one via few-shot prompting, then registers it into the
 322 toolkit. After execution of the robotic manipulation policy, the module evaluates each sample with
 323 the appropriate tools. All results are then aggregated and returned to the Plan Agent for further
 324 recommendations or summarization.

324
 325 Table 1: Compared with existing simulation benchmarks, ManipEvalAgent significantly reduces the
 326 overall evaluation time across multiple robot manipulation policies.

327 Models	328 RoboTwin	329 LIBERO	330 Ours
328 ACT	167 min, 56592 samples	117 min, 29546 samples	42 min, 16927 samples
329 DP	171 min, 55551 samples	132 min, 29059 samples	45 min, 16895 samples
330 DP3	159 min, 52087 samples	113 min, 28343 samples	44 min, 15638 samples
331 RDT	210 min, 55435 samples	132 min, 28878 samples	63 min, 16676 samples
332 π_0	164 min, 51087 samples	103 min, 26732 samples	43 min, 15336 samples

333
 334
 335 **3.4 EXECUTION STAGE**
 336

337 In execution stage, robotic manipulation policy runs on the tasks generated by TaskGen Agents,
 338 uses the tools specified or generated by ToolGen Agents for sampling and evaluation, and returns
 339 the evaluation results.

340 The evaluation toolkit consists of Python functions implemented against the simulator interfaces.
 341 These functions monitor the simulator while the policy is running and return a scalar value. The
 342 module is open and extensible, and can continuously accept newly generated tools.

343 However, some information is difficult to obtain solely from simulator interfaces, so more flexible
 344 evaluation tools are additionally required. As a complement, we introduce into the evaluation toolkit
 345 a paradigm based on vision–language models (VLMs), which uses a visual question answering
 346 (VQA) format to flexibly assess various aspects of robotic manipulation task execution.

347 Finally, all evaluation results are aggregated and returned to the Plan Agent for further proposals or
 348 summarization.

350
 351 **4 EXPERIMENTS**
 352

353 In this section, we address three questions through experiments: (1) relative to existing benchmarks
 354 and their evaluation dimensions, do we achieve comparable effectiveness; (2) under open-ended
 355 user queries, how well does our approach perform; and (3) during the code-generation stage, how
 356 do individual modules contribute to the overall generation results. Please refer to the Appendix A.3
 357 for detailed system implementation details.

359
 360 **4.1 QUANTITATIVE EXPERIMENTS ON EXISTING ROBOTIC MANIPULATION BENCHMARKS**
 361

362 **4.1.1 EXPERIMENTAL SETUP**
 363

364 We evaluate our approach on three widely used simulation benchmarks: RoboTwin 2.0 ((Chen et al.,
 365 2025)), and LIBERO ((Liu et al., 2023)). We select five open-source models as the evaluated robot
 366 manipulation policies: single-task policies ACT ((Zhao et al., 2023)), Diffusion Policy ((Chi et al.,
 367 2023)), and DP3 ((Ze et al., 2024)); and VLA models RDT-1B ((Liu et al., 2024)) and π_0 ((Black
 368 et al., 2024)).

369 For further details—e.g., experimental settings, hyperparameters, and fairness controls—please refer
 370 to Appendix A.1.

371
 372 **4.1.2 RESULTS ANALYSIS**
 373

374 We first compare the time cost and sample count between popular simulation benchmarks and our
 375 method. As one of our advantages, as shown in Table 1, our evaluation framework significantly
 376 shorten the evaluation time. Second, the quantitative results in Table 2 indicate that our framework
 377 achieves comparable prediction accuracy across most dimensions. For additional results and further
 discussion, please refer to Appendix A.2.2.

378
379
380
381
382

Table 2: We compare the consistency of conclusions between ManipEvalAgent and existing simulation benchmarks across multiple capability dimensions. Across ten trials of the ManipEvalAgent, the percentage of results falling within the exact range (left) or within the error margin (right) is shown.

383
384
385
386
387
388
389
390

Dimension	ACT	DP	DP3	RDT	π_0
S.R. (RoboTwin)	50% / 90%	60% / 100%	50% / 80%	50% / 60%	70% / 100%
S.R. (LIBERO Avg.)	60% / 70%	50% / 70%	40% / 60%	70% / 90%	50% / 50%
Spatial (LIBERO)	70% / 100%	100% / 100%	80% / 80%	70% / 100%	60% / 80%
Obj (LIBERO)	60% / 80%	50% / 70%	60% / 60%	60% / 60%	40% / 70%
Goal (LIBERO)	30% / 70%	70% / 70%	50% / 70%	50% / 60%	50% / 50%
Long (LIBERO)	60% / 70%	60% / 80%	50% / 70%	70% / 80%	60% / 90%

391
392393 4.2 QUALITATIVE EXPERIMENTS ON OPEN-ENDED USER QUERY IN ROBOTIC
394 MANIPULATION

395

396 Based on common user concerns in robotic manipulation tasks, we curated and constructed an open-
397 ended user-query dataset and, on this basis, conducted qualitative experiments with our evaluation
398 framework to demonstrate its flexibility and other advantages.399
400

401 4.2.1 OPEN-ENDED USER QUERY DATASET IN ROBOTIC MANIPULATION

402
403
404
405
406

We collected common concerns from researchers in robotic manipulation and constructed an open-ended user-query dataset. Each query is annotated with its category label. Notably, due to constraints imposed by specific model architectures and training resources, evaluation needs in embodied manipulation span both single-task and multi-task settings; our dataset covers both. Please refer to Appendix A.3.2 for further details and representative examples.

407
408
409

4.2.2 OPEN-ENDED USER QUERY EVALUATION IN ROBOTIC MANIPULATION

410
411
412
413
414
415
416
417
418

Unlike widely used simulation benchmarks that evaluate robot manipulation policies with fixed tasks and metrics, ManipEvalAgent conducts dynamic, multi-turn evaluation driven by users' open-ended queries, with on-the-fly task and tool generation at each stage. As illustrated in Figure 5, when the user asks, "How well does the policy generalize over the attributes of the manipulated object?", ManipEvalAgent first evaluates generalization to object pose and obtains a clear result. It then evaluates generalization to object appearance, which yields an ambiguous outcome; accordingly, the EEA further refines the evaluation to probe appearance-related factors more precisely. Through iterative evaluation, the agent analyzes and synthesizes the results to provide comprehensive, user-centered feedback.

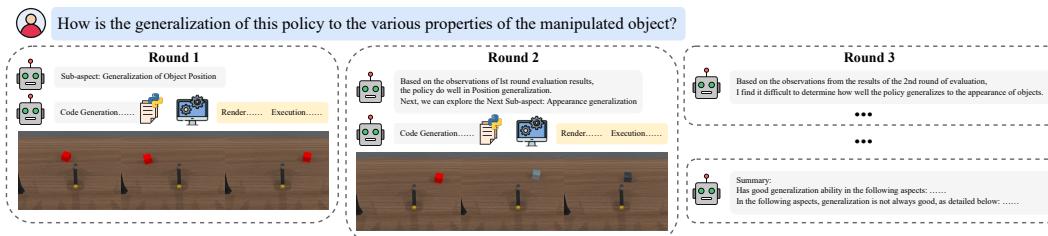
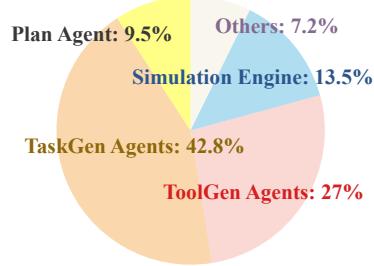
419
420
421
422
423
424
425
426
427
428429
430
431

Figure 5: A Case of Open-Ended User Query Evaluation. For open-ended user queries, ManipEvalAgent begins by probing the policy's capabilities from fundamental aspects and then progressively drills deeper

432 4.3 ABLATION STUDY
433

434 We conducted a concise ablation study to evaluate the effectiveness of several enhancement modules
435 in the code-generation stage. Human experts reviewed each generated task and tool (tasks are first
436 rendered for visual inspection) to judge whether they were correct, reasonable, and aligned with the
437 requirements specified in the proposal stage. When the retrieval augmentation module was removed,
438 we followed common engineering practice by supplying only a few representative task/tool code
439 examples as few-shot prompts.

440 As shown in Table 3, direct few-shot prompting alone achieves an acceptable generation success
441 rate, but adding any single enhancement module yields further gains. Given that this is a evaluation
442 system must be executed many times and thus has high stability requirements, we consider these
443 modules designed to improve code-generation success rates is necessary.
444



455 Figure 6: System Error Breakdown

445 Table 3: Ablation of Code Generation Modules

Settings	S. R. (%) ↑
TaskGen (Complete)	98%
TaskGen w/o RAG	95%
TaskGen w/o Visual Self-Check	96%
TaskGen w/o README.Agent	96%
TaskGen (Base)	93%
ToolGen (Complete)	96%
ToolGen w/o RAG	92%

456 457 458 4.4 SYSTEM ERROR BREAKDOWN
459

460 The overall evaluation stability of the ManipEvalAgent is satisfactory. However, we must acknowl-
461 edge that, due to the involvement of multiple modules and layers in the system, and the current
462 progress in fields such as visual language models, code generation, and simulation benchmarks, ap-
463 proximately 5% of the evaluation process was still affected by errors to varying degrees. Figure 6
464 shows the error frequency for each module during the evaluation.

465 We observe that most errors arise in the generation stage (69.8%), with task generation being the
466 most prominent contributor (42.8%).

467 Our analysis attributes these failures to the inherent difficulty of code-generation sub-tasks in Ma-
468 nicipEvalAgent (task generation and tool generation). These sub-tasks demand precise understand-
469 ing of simulator APIs, object semantics, and spatial/physical constraints, and they place higher re-
470 quirements on large reasoning models for planning, constraint satisfaction, and robust code generation.
471

472 5 CONCLUSION
473

474 In this work, we present ManipEvalAgent, a promptable and efficient evaluation framework for
475 robotic manipulation policies, is the first framework of its kind in robotic manipulation. Unlike
476 widely used simulation benchmarks that rely on fixed task sets, require heavy sampling, and re-
477 port only success rates, ManipEvalAgent emulates human expert evaluation: it accepts open-ended
478 user inputs, conducts dynamic multi-round assessment, uses code generation to drive the simula-
479 tor, and adapts the evaluation process based on intermediate observations, yielding faster and more
480 interpretable judgments with far fewer samples.
481

482 Extensive experiments across multiple settings show that, compared with traditional simulation
483 benchmarks, ManipEvalAgent substantially reduces evaluation time while reaching conclusions
484 comparable to those from large-scale simulation benchmarks. We hope this framework enables
485 more flexible and efficient evaluation of robotic manipulation policies and meaningfully accelerates
research progress in the field.

486 REFERENCES
487

488 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò
489 Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π_0 : A vision-language-action flow
490 model for general robot control. *arXiv preprint arXiv:2410.24164*, 2024.

491 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
492 Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
493 transformer for real-world control at scale. *arXiv preprint arXiv:2212.06817*, 2022.

494 Tianxing Chen, Zanxin Chen, Baijun Chen, Zijian Cai, Yibin Liu, Qiwei Liang, Zixuan Li, Xi-
495 anliang Lin, Yiheng Ge, Zhenyu Gu, et al. Robotwin 2.0: A scalable data generator and bench-
496 mark with strong domain randomization for robust bimanual robotic manipulation. *arXiv preprint
497 arXiv:2506.18088*, 2025.

498 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
499 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The Inter-
500 national Journal of Robotics Research*, pp. 02783649241273668, 2023.

501 Frederik Ebert, Yanlai Yang, Karl Schmeckpeper, Bernadette Bucher, Georgios Georgakis, Kostas
502 Daniilidis, Chelsea Finn, and Sergey Levine. Bridge data: Boosting generalization of robotic
503 skills with cross-domain datasets. *arXiv preprint arXiv:2109.13396*, 2021.

504 Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Ying-
505 han Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. *arXiv preprint
506 arXiv:2411.15594*, 2024.

507 Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang, Stone
508 Tao, Xinyue Wei, Yunchao Yao, et al. Maniskill2: A unified benchmark for generalizable manip-
509 ulation skills. *arXiv preprint arXiv:2302.04659*, 2023.

510 Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast retrieval-
511 augmented generation. *arXiv preprint arXiv:2410.05779*, 2024.

512 Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
513 Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for
514 a multi-agent collaborative framework. International Conference on Learning Representations,
515 ICLR, 2024.

516 Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
517 Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò Fusai, et al. $\pi_0.5$: a vision-language-action
518 model with open-world generalization. *arXiv preprint arXiv:2504.16054*, 2025.

519 Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J Davison. Rlbench: The robot
520 learning benchmark & learning environment. *IEEE Robotics and Automation Letters*, 5(2):3019–
521 3026, 2020.

522 Pushkal Katara, Zhou Xian, and Katerina Fragkiadaki. Gen2sim: Scaling up robot learning in
523 simulation with generative models. In *2024 IEEE International Conference on Robotics and
524 Automation (ICRA)*, pp. 6672–6679. IEEE, 2024.

525 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
526 Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
527 vision-language-action model. *arXiv preprint arXiv:2406.09246*, 2024.

528 Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Opti-
529 mizing speed and success. *arXiv preprint arXiv:2502.19645*, 2025.

530 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
531 language models are zero-shot reasoners. *Advances in neural information processing systems*,
532 35:22199–22213, 2022.

533 Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen, Mozheng Liao, Fangyun Wei, Yu Deng,
534 Sicheng Xu, Yizhong Zhang, et al. Cogact: A foundational vision-language-action model for syn-
535 ergizing cognition and action in robotic manipulation. *arXiv preprint arXiv:2411.19650*, 2024a.

540 Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier Mees, Homer Rich Walke, Chuyuan Fu,
 541 Ishikaa Lunawat, Isabel Sieh, Sean Kirmani, et al. Evaluating real-world robot manipulation
 542 policies in simulation. *arXiv preprint arXiv:2405.05941*, 2024b.

543

544 Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adaptdiffuser:
 545 Diffusion models as adaptive self-evolving planners. *arXiv preprint arXiv:2302.01877*, 2023.

546 Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
 547 Benchmarking knowledge transfer for lifelong robot learning. *Advances in Neural Information
 548 Processing Systems*, 36:44776–44791, 2023.

549

550 Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang
 551 Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. *arXiv preprint
 552 arXiv:2410.07864*, 2024.

553

554 Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for
 555 language-conditioned policy learning for long-horizon robot manipulation tasks. *IEEE Robotics
 556 and Automation Letters*, 7(3):7327–7334, 2022.

557

558 Yao Mu, Tianxing Chen, Shijia Peng, Zanxin Chen, Zeyu Gao, Yude Zou, Lunkai Lin, Zhiqiang
 559 Xie, and Ping Luo. Robotwin: Dual-arm robot benchmark with generative digital twins (early
 560 version). In *European Conference on Computer Vision*, pp. 264–273. Springer, 2024.

561

562 Abby O'Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
 563 Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
 564 Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In *2024 IEEE
 565 International Conference on Robotics and Automation (ICRA)*, pp. 6892–6903. IEEE, 2024.

566

567 Zhenyu Pan, Haozheng Luo, Manling Li, and Han Liu. Chain-of-action: Faithful and multimodal
 568 question answering through large language models. *arXiv preprint arXiv:2403.17359*, 2024.

569

570 Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
 571 Yusheng Su, Xin Cong, et al. Chatdev: Communicative agents for software development. *arXiv
 572 preprint arXiv:2307.07924*, 2023.

573

574 Mustafa Shukor, Dana Aubakirova, Francesco Capuano, Pepijn Kooijmans, Steven Palma,
 575 Adil Zouitine, Michel Aractingi, Caroline Pascal, Martino Russi, Andres Marafioti, et al.
 576 Smolvla: A vision-language-action model for affordable and efficient robotics. *arXiv preprint
 577 arXiv:2506.01844*, 2025.

578

579 Yue Su, Xinyu Zhan, Hongjie Fang, Han Xue, Hao-Shu Fang, Yong-Lu Li, Cewu Lu, and
 580 Lixin Yang. Dense policy: Bidirectional autoregressive learning of actions. *arXiv preprint
 581 arXiv:2503.13217*, 2025.

582

583 Jiabin Tang, Lianghao Xia, Zhonghang Li, and Chao Huang. Ai-researcher: Autonomous scientific
 584 innovation. *arXiv preprint arXiv:2505.18705*, 2025.

585

586 Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
 587 Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
 588 policy. *arXiv preprint arXiv:2405.12213*, 2024.

589

590 Patara Trirat, Wonyong Jeong, and Sung Ju Hwang. Automl-agent: A multi-agent llm framework
 591 for full-pipeline automl. *arXiv preprint arXiv:2410.02958*, 2024.

592

593 Chenxi Wang, Hongjie Fang, Hao-Shu Fang, and Cewu Lu. Rise: 3d perception makes real-world
 594 robot imitation simple and effective. In *2024 IEEE/RSJ International Conference on Intelligent
 595 Robots and Systems (IROS)*, pp. 2870–2877. IEEE, 2024a.

596

597 Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
 598 and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
 599 *arXiv preprint arXiv:2305.16291*, 2023a.

594 Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Jitao
 595 Sang. Mobile-agent: Autonomous multi-modal mobile device agent with visual perception. *arXiv*
 596 *preprint arXiv:2401.16158*, 2024b.

597

598 Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
 599 Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
 600 *Frontiers of Computer Science*, 18(6):186345, 2024c.

601 Lirui Wang, Yiyang Ling, Zhecheng Yuan, Mohit Shridhar, Chen Bao, Yuzhe Qin, Bailin Wang,
 602 Huazhe Xu, and Xiaolong Wang. Gensim: Generating robotic simulation tasks via large language
 603 models. *arXiv preprint arXiv:2310.01361*, 2023b.

604 Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Exe-
 605 cutable code actions elicit better llm agents. In *Forty-first International Conference on Machine*
 606 *Learning*, 2024d.

607

608 Yufei Wang, Zhou Xian, Feng Chen, Tsun-Hsuan Wang, Yian Wang, Katerina Fragkiadaki, Za-
 609 ckory Erickson, David Held, and Chuang Gan. Robogen: Towards unleashing infinite data for
 610 automated robot learning via generative simulation. *arXiv preprint arXiv:2311.01455*, 2023c.

611 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 612 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 613 *neural information processing systems*, 35:24824–24837, 2022.

614 Sandya Wijaya, Jacob Bolano, Alejandro Gomez Soteres, Shriyanshu Kode, Yue Huang, and
 615 Anant Sahai. Readme. llm: A framework to help llms understand your library. *arXiv preprint*
 616 *arXiv:2504.09798*, 2025.

617

618 Kun Wu, Chengkai Hou, Jiaming Liu, Zhengping Che, Xiaozhu Ju, Zhuqin Yang, Meng Li, Yinuo
 619 Zhao, Zhiyuan Xu, Guang Yang, et al. Robomind: Benchmark on multi-embodiment intelligence
 620 normative data for robot manipulation. *arXiv preprint arXiv:2412.13877*, 2024.

621 Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
 622 Jiang, Yifu Yuan, He Wang, et al. Sapien: A simulated part-based interactive environment. In
 623 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 11097–
 624 11107, 2020.

625

626 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 627 React: Synergizing reasoning and acting in language models. In *International Conference on*
 628 *Learning Representations (ICLR)*, 2023.

629

630 Jiabo Ye, Xi Zhang, Haiyang Xu, Haowei Liu, Junyang Wang, Zhaoqing Zhu, Ziwei Zheng, Feiyu
 631 Gao, Junjie Cao, Zhengxi Lu, et al. Mobile-agent-v3: Fundamental agents for gui automation.
 632 *arXiv preprint arXiv:2508.15144*, 2025.

633

634 Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
 635 Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
 636 In *Conference on robot learning*, pp. 1094–1100. PMLR, 2020.

637

638 Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion
 639 policy: Generalizable visuomotor policy learning via simple 3d representations. *arXiv preprint*
 640 *arXiv:2403.03954*, 2024.

641

642 Chi Zhang, Zhao Yang, Jiaxuan Liu, Yanda Li, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and
 643 Gang Yu. Appagent: Multimodal agents as smartphone users. In *Proceedings of the 2025 CHI*
 644 *Conference on Human Factors in Computing Systems*, pp. 1–20, 2025a.

645

646 Fan Zhang, Shulin Tian, Ziqi Huang, Yu Qiao, and Ziwei Liu. Evaluation agent: Efficient and
 647 promptable evaluation framework for visual generative models. *arXiv preprint arXiv:2412.09645*,
 648 2024a.

649

650 Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation
 651 with tool-integrated agent systems for real-world repo-level coding challenges. *arXiv preprint*
 652 *arXiv:2401.07339*, 2024b.

648 Zhuosheng Zhang, Yao Yao, Aston Zhang, Xiangru Tang, Xinbei Ma, Zhiwei He, Yiming Wang,
649 Mark Gerstein, Rui Wang, Gongshen Liu, et al. Igniting language intelligence: The hitchhiker’s
650 guide from chain-of-thought reasoning to language agents. *ACM Computing Surveys*, 57(8):1–39,
651 2025b.

652 Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
653 manipulation with low-cost hardware. *arXiv preprint arXiv:2304.13705*, 2023.

654 Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
655 Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for build-
656 ing autonomous agents. *arXiv preprint arXiv:2307.13854*, 2023a.

657 Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li, Jialong Wu, Tiannan Wang, Shi Qiu, Jin-
658 tian Zhang, Jing Chen, Ruipu Wu, Shuai Wang, et al. Agents: An open-source framework for
659 autonomous language agents. *arXiv preprint arXiv:2309.07870*, 2023b.

660 Zhiyuan Zhou, Pranav Atreya, You Liang Tan, Karl Pertsch, and Sergey Levine. Autoeval: Au-
661 tonomous evaluation of generalist robot manipulation policies in the real world. *arXiv preprint*
662 *arXiv:2503.24278*, 2025.

663 Mingchen Zhuge, Changsheng Zhao, Dylan Ashley, Wenyi Wang, Dmitrii Khizbulin, Yunyang
664 Xiong, Zechun Liu, Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, et al. Agent-as-
665 a-judge: Evaluate agents with agents. *arXiv preprint arXiv:2410.10934*, 2024.

666 Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
667 Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
668 to robotic control. In *Conference on Robot Learning*, pp. 2165–2183. PMLR, 2023.

669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **A APPENDIX**
703704 **A.1 EXPERIMENTAL SETUP**
705706 **A.1.1 EXPERIMENTAL HYPERPARAMETERS**
707

708 Environment and compute. Experiments were conducted on Ubuntu 22.04 with an Intel Core i9
 709 (14th gen) CPU and an NVIDIA RTX A6000 GPU. In our observation, having at least 24 GB of
 710 GPU memory is important for reliably reproducing our runs; with less memory, some models may
 711 fail to load.

712 Evaluation protocol inside ManipEvalAgent. For each constructed task, ManipEvalAgent executes 5
 713 trials by default. Agent builds the task scene and a set of targeted evaluation functions (e.g., distance
 714 between the tool end-effector and the target object) to gather sufficient diagnostic signals; under this
 715 design, five repetitions are typically adequate to form a stable judgment of a policy’s behavior on
 716 that task. This setting is user-configurable to allow trading off overall evaluation fidelity against
 717 wall-clock time.

718 Benchmark hyperparameters. We aim for fairness and alignment with official or widely used com-
 719 munity implementations, then make minimal adjustments for cross-benchmark consistency. Con-
 720 cretely, on RoboTwin ((Chen et al., 2025)) we follow the official repository and run 100 steps per
 721 episode, with task-specific maximum-step thresholds. On LIBERO ((Liu et al., 2023)), to stay con-
 722 sistent with our RoboTwin protocol, we also run 100 steps per episode, rather than the 50-step cap
 723 common in some related implementations (e.g., OpenVLA ((Kim et al., 2024))). LIBERO comprises
 724 4 task suites, each with its own native maximum-step guidance tied to the longest demonstration
 725 length in the training data; where such guidance exists.

726 **A.1.2 FAIRNESS SETTINGS**
727

728 To ensure fair accounting of evaluation cost across policies and benchmarks, we use a unified im-
 729 plementation to record wall-clock time and number of samples. Concretely, we embed timing in-
 730 strumentation based on Python’s `time` module directly inside the evaluation scripts, and we embed
 731 a parallel counter for sampling. We keep these implementations identical across all policies and
 732 benchmarks to avoid introducing confounding factors.

734 **A.1.3 ERROR COUNTING PROTOCOL**
735

736 We further explain how each type of error is counted. Specifically, for the Plan Agent, for each
 737 user query we first ask experienced human researchers to provide a ground-truth decomposition
 738 into sub-aspects, and then compare the set of sub-aspects produced by the Plan Agent with this
 739 reference; if there are more than half omissions or incorrect decompositions, we count it as a failure
 740 of the planning stage. For TaskGen Agents, human experts directly inspect the rendered task scenes:
 741 whenever a scene does not match the intended sub-aspect, it is labeled as a task-generation error.

742 For ToolGen Agents, we construct a set of simple but targeted unit tests: in simulation we set up
 743 scenes that contain only a few key components (e.g., only a hammer and a block), invoke each
 744 generated tool function in turn, and check whether its output is correct (e.g., when the hammer
 745 touches the block, whether the contact-checking function returns True); if the unit tests fail, the case
 746 is attributed to a tool-generation error. Finally, for the Simulation Engine part, we count explicit
 747 simulation-level anomalies, such as objects flying away. Through this procedure, we obtain the
 748 system error breakdown shown in Fig. 6.

749 **A.2 DISCUSSIONS ON EXPERIMENTS IN MAIN TEXT AND ADDITIONAL EXPERIMENTS**
750751 **A.2.1 MORE DETAILS ABOUT EXPERIMENTAL RESULTS IN MAIN TEXT.**
752

753 On evaluation time. Several factors influence the total evaluation time of a policy on a given sim-
 754 ulation benchmark. Hardware configuration matters first; different setups yield different runtimes.
 755 Second, the model’s own inference efficiency plays a role; some recent work ((Kim et al., 2025))
 focuses on speeding up policy inference, which is a promising direction. Third, task success rates

756

757 Table 4: Total evaluation time and sample count of ManipEvalAgent under the multi-task setting.
758

759

Models	RoboTwin	LIBERO	Ours
RTD	11102 min, 2763623 samples	4909 min, 1073428 samples	97 min, 27037 samples
π_0	7900 min, 2445809 samples	4330 min, 992816 samples	68 min, 21745 samples

760

761

762

763

764

765 Table 5: Consistency between ManipEvalAgent and existing simulation benchmarks in the multi-

766 task setting. Table shows the percentage of results that fall within the exact range (left) or within the
767 error margin (right) across ten trials.

768

769

770

771

772

773

774

775

Dimension	RTD	π_0
S.R. (RoboTwin)	60% / 80%	60% / 70%
S.R. (LIBERO Avg.)	70% / 80%	60% / 100%
Spatial (LIBERO)	50% / 90%	50% / 80%
Obj (LIBERO)	40% / 90%	60% / 80%
Goal (LIBERO)	60% / 100%	60% / 70%
Long (LIBERO)	60% / 100%	70% / 90%

776

777

778 affect runtime: when success is low, episodes often run to the configured maximum step cap, in-
779 creasing time. Fourth, average episode length varies across benchmarks and across suites within a
780 benchmark (e.g., the four groups in LIBERO ((Liu et al., 2023))), which also shifts overall time.
781 Finally, the simulation engine contributes a substantial and relatively fixed overhead, producing in-
782 herent time differences across benchmarks.783 On evaluation accuracy. Setup: on each simulation benchmark, we randomly choose one task and
784 measure success rate as the result. On ManipEvalAgent, we follow the standard evaluation pipeline
785 but additionally require a single scalar score in [0,1], repeated 10 times. We compute the mean and
786 standard deviation over the 10 ManipEvalAgent runs, and compare the benchmark’s success rate to
787 the ManipEvalAgent mean. We regard the difference as accurate if it is within 1 standard deviation,
788 and acceptable if it is within 3 standard deviations.

789

790

A.2.2 EVALUATION ON MULTI-TASK SETTINGS

791

792

793

794

795

796

797 Single-task and multi-task are exposed as user-selectable settings. When the policy type is a VLA
798 (Vision-Language-Action) model, the user may opt for multi-task evaluation. This is because, given
799 training-resource constraints, many users still evaluate VLA models only in single-task settings.
800 The benchmark’s task suites are visible to ManipEvalAgent. Given current VLA capabilities, Ma-
801 nipEvalAgent strives to generate tasks that are as close as possible to the training task suites, echoing
802 recent discussions on VLA generalization ((Intelligence et al., 2025)).

803

804

805

806 Under multi-task evaluation, a simulation benchmark executes its standard protocol across all tasks.
807 In contrast, ManipEvalAgent, by virtue of its small-sample, multi-round, dynamic evaluation, needs
808 to probe only a few groups of tasks to reach reliable conclusions; as a result, the time cost is not
809 orders of magnitude higher than in the single-task setting. In our Table 4 and Table 5, we observe
810 that in the multi-task setting our framework likewise significantly shortens evaluation time while
811 achieving generally strong predictive accuracy across most dimensions.

812

813

814

815 We acknowledge that conducting broader studies over more benchmarks and policies in the multi-
816 task setting entails substantial effort and remains valuable future work.

817

818

A.2.3 HUMAN-AGENT AGREEMENT ON SUB-ASPECT PLANNING

819

820

821

822 To quantitatively measure the consistency between Plan Agent and researchers on sub-aspect de-
823 composition, we sample a set of user queries from the Open User Query dataset. Experienced
824 researchers annotate a set of sub-aspects for each query as the ground truth (with the final labels

810

811 Table 6: Human–Agent Agreement on Aspect Decomposition (sub-aspect level)

Model	Precision
GPT-4o	0.943
Gemini 1.5 Pro	0.927
GPT-4o mini	0.924

812

813

814

815

816

817

818

819

Table 7: VQA accuracy under different perturbations on RoboTwin 2.0.

Model	Clean	Scene Clutter	Background Textures	Lighting
GPT-4o	0.997	0.989	0.992	0.994
Gemini 1.5 Pro	0.998	0.980	0.987	0.988
GPT-4o mini	0.984	0.984	0.996	0.985

820

821

822

823

824 obtained by majority vote across multiple annotators). We then use different models (GPT-4o, Gemini 1.5 Pro, GPT-4o mini) to drive Plan Agent, generate sub-aspect sets for the same queries, and compute agreement with the human annotations at the sub-aspect level.

825

826 The results are shown in Table 6. These results indicate that the Plan Agent used in our system
 827 is sufficiently aligned with human researchers at the sub-aspect level, and can therefore provide
 828 reliable inputs for subsequent task generation and tool generation. It is worth noting that the Plan
 829 Agent’s prompt is written by human experts, which injects domain knowledge into agent; thus, part
 830 of the high agreement can be attributed to the prompt design.

831

832

833

834 A.2.4 VQA ACCURACY, HUMAN AGREEMENT, AND ROBUSTNESS TO PERTURBATIONS

835

836 In this subsection, we conduct a analysis of the VQA used in our system, examining their agree-
 837 ment with human researcher annotations and their robustness under distribution shifts. We construct
 838 perturbation conditions along three typical domain randomization axes in RoboTwin 2.0: beyond
 839 the Clean setting, we inject task-irrelevant distractor objects on the table (Scene Clutter), with dis-
 840 tractors sampled from RoboTwin-OD; randomize background and tabletop textures (Background
 841 Textures) by sampling from a texture library that is loaded at run time in simulation; and randomly
 842 vary lighting, including color temperature, type, number, position, and intensity. For each model, we
 843 repeat the same VQA evaluation protocol under the four settings: Clean, Scene Clutter, Background
 844 Textures, and Lighting.

845

846 We collect a set of evaluation clips in the RoboTwin 2.0 environment and have human researchers
 847 annotate, in a binary manner, the key question for each clip (e.g., whether the tool gradually drifts),
 848 which we treat as VQA ground truth. We then run three VLMs (GPT-4o, Gemini 1.5 Pro, and
 849 GPT-4o mini) on the same clips and queries, and record their VQA outputs, including both natural-
 850 language descriptions and scalar scores. Based on these scores and human annotations, we compute
 851 VQA classification accuracy at a fixed threshold and AUROC over all possible thresholds. As shown
 852 in Tab. 7 and 8, VQA performance is overall strong, which we attribute to the fact that VQA tasks
 853 in our system are intentionally simple and consistent, and to the iteratively refined prompt engineer-
 854 ing performed by human experts during system development. The added perturbations only cause
 855 slight degradation in VQA metrics, indicating that current VLMs already exhibit fairly robust visual
 856 capabilities in these settings.

857

858 A.2.5 FURTHER CONSISTENCY STUDY: MANIPEVALAGENT VS. STANDARD SIMULATION 859 BENCHMARKS

860

861

862

863

864 We further examine how consistent ManipEvalAgent is with standard simulation benchmarks in
 865 terms of policy ranking. For each benchmark and task cluster (RoboTwin short/medium/long hori-
 866 zons; LIBERO-Object/Spatial/Goal/Long), we evaluate the same five policies (ACT, Diffusion Pol-
 867 icy, DP3, π_0 , and RDT-1B), aggregate the default success-rate metric over all tasks in the cluster, and
 868 derive a ranking of the five policies. We then compute Spearman’s rank correlation coefficient ρ be-

864

865

Table 8: VQA AUROC under different perturbations on RoboTwin 2.0.

866

867

Model	Clean	Scene Clutter	Background Textures	Lighting
GPT-4o	0.982	0.976	0.980	0.980
Gemini 1.5 Pro	0.987	0.966	0.976	0.981
GPT-4o mini	0.972	0.975	0.983	0.972

868

869

Table 9: Policy ranking consistency between standard Simulation benchmarks and ManipEvalAgent. We report Spearman’s rank correlation ρ with bootstrap confidence intervals (90% CI for 10 rollouts; 95% CI for 20 and 50 rollouts).

870

871

Setting	10 rollouts ρ (90% CI)	20 rollouts ρ (95% CI)	50 rollouts ρ (95% CI)
RoboTwin (short, 0–500)	0.83 [0.75, 0.90]	0.79 [0.65, 0.90]	0.81 [0.70, 0.90]
RoboTwin (medium, 600–1000)	0.86 [0.70, 0.90]	0.81 [0.60, 0.90]	0.83 [0.75, 0.90]
RoboTwin (long, 1100+)	0.83 [0.65, 0.90]	0.77 [0.70, 0.90]	0.80 [0.65, 1.00]
LIBERO-Object	0.80 [0.70, 1.00]	0.91 [0.70, 1.00]	0.82 [0.70, 0.90]
LIBERO-Spatial	0.76 [0.65, 0.85]	0.81 [0.65, 0.90]	0.82 [0.60, 0.90]
LIBERO-Goal	0.81 [0.70, 0.90]	0.73 [0.60, 0.85]	0.79 [0.70, 0.90]
LIBERO-Long	0.85 [0.70, 0.90]	0.87 [0.75, 1.00]	0.85 [0.80, 0.90]

872

873

874 between this ranking vector and the one induced by ManipEvalAgent, which focuses on the agreement
 875 in relative ordering rather than the absolute scale of scores.

876

877

878 To quantify uncertainty, we report bootstrap confidence intervals (CI) on ρ . For settings with 10
 879 rollouts per task we use 90% CIs, while for 20 and 50 rollouts we report 95% CIs. Across all
 880 clusters, we follow each benchmark’s standard evaluation configuration and fix the environment
 881 seed to 0. As shown in Table 9, the resulting rank correlations are consistently high and stable across
 882 different rollout budgets, indicating strong agreement between ManipEvalAgent and conventional
 883 simulation-based evaluations.

884

885

886 A.3 SYSTEM IMPLEMENTATION

887

888 A.3.1 SOME DETAILS ABOUT CODE GENERATION

889

890 RAG setup. We adopt a well-known approach in the area, LightRAG ((Guo et al., 2024)), as our
 891 simulator document retrieval pipeline. For simulator documentation, we follow LightRAG’s process
 892 to perform chunking and embedding, retrieve relevant chunks at query time, and have an agent
 893 aggregate the results. Because index building and retrieval involve multiple LLM calls, we host
 894 Qwen2.5-7B-Instruct locally as retriever, which avoids substantial OpenAI API costs.

895

896

897 Other sources. For items like task code and tool code, we use document-level retrieval rather than
 898 chunk-level retrieval.

899

900 A.3.2 DISCUSSIONS ABOUT SIMULATION ENGINES AND SIMULATION BENCHMARKS.

901

902 ManipEvalAgent is currently implemented on RoboTwin ((Chen et al., 2025)). We follow the default
 903 configurations of the simulation environments to collect data and train the models we use, tuning
 904 performance to an acceptable level.

905

906 On LIBERO ((Liu et al., 2023)), implementing ManipEvalAgent mainly requires adapting the task
 907 generation (TaskGen) and tool generation (ToolGen) components. In LIBERO, tasks and scenes are
 908 defined separately: on the one hand, BDDL files describe the task logic, including the object set,
 909 layout constraints, initial states, and goal predicates, and serve as LIBERO’s standardized task spec-
 910 ification; on the other hand, the Python-side Problem class is responsible for concrete scene con-
 911 struction and execution logic, including loading assets, defining the workspace and camera views,
 912 and implementing `_check_success` and other success-checking functions. Therefore, to realize
 913 ManipEvalAgent’s task generation on LIBERO, we need to automatically synthesize both parts: we

918 must modify the corresponding BDDL task files, and also modify the `Problem` class. This process
 919 involves substantial prompt engineering and engineering details to ensure a high success rate for
 920 automatic task generation.

921 For tool generation, LIBERO provides a set of interfaces for probing states. `BDDLBaseDomain`
 922 creates state detector objects for each object and stores them centrally; at the same time, LIBERO’s
 923 built-in predicate system, `eval_predicate_fn`, performs logical judgments based on these state
 924 objects. Building on this predicate-and-state interface, `ManipEvalAgent`’s `ToolGen` can automatically
 925 synthesize various rule-based tool functions to check object relations, contact states, and so
 926 on.

927 Overall, we have completed the basic adaptation of `ManipEvalAgent` on LIBERO, but we have not
 928 yet reproduced experiments on LIBERO at the same scale and level of completeness as on RoboTwin
 929 2.0, mainly because this experimental workload would be large and repetitive. By comparison,
 930 RoboTwin 2.0’s interface design and framework structure are noticeably clearer and more friendly,
 931 making it significantly easier to implement the various modules of `ManipEvalAgent` on RoboTwin
 932 2.0 than on LIBERO.

933

934

935 A.3.3 CONSISTENCY ACROSS QUERIES AND POLICIES

936

937 To maintain stability and cross-query consistency across different evaluation instances, we adopt a
 938 few simple design choices. First, in proposal stage, we maintain a historical evaluation database
 939 that stores, for each past evaluation, the corresponding planning information, including the origi-
 940 nal user query and its sub-aspects. When a new user query arrives, system retrieves similar past
 941 queries from this repository and injects their planning results into Plan Agent’s context, allowing
 942 Plan Agent to reuse existing decompositions for similar problems. This simple yet effective mech-
 943 anism significantly improves the stability and behavioral consistency of cross-query and cross-policy
 944 evaluations.

945 Second, as described in Sec.3.3, generation stage, both for task generation and tool generation, relies
 946 on retrieval-augmented generation (RAG): agents retrieve code snippets and other relevant artifacts
 947 from dedicated task and tool repositories that best match the current query and its sub-aspects, and
 948 then condition on these retrieved materials during generation. Since similar queries tend to trigger
 949 similar retrieval results, this mechanism further preserves consistency across repeated evaluations,
 950 causing the system to preferentially reuse a nearly identical family of task and tool definitions when
 951 evaluating different policies, thereby yielding more stable and comparable evaluation behavior.

952

953

954 A.3.4 FAILURE MODES AND RECOVERY MECHANISMS

955 As described in Sec. 4.4, `ManipEvalAgent` inevitably encounters various types of failures. To pre-
 956 vent these failures from disrupting the overall evaluation process, we design dedicated handling
 957 mechanisms for each stage. First, in the planning stage, if the set of sub-aspects produced by the
 958 Plan Agent disagrees with the human-annotated ground truth from the open-ended query dataset on
 959 more than half of the elements, we classify it as a planning failure: the current planning attempt is
 960 terminated, the case is logged as a failure in database, and a new planning attempt is started.

961 Second, in task generation, we employ a visual self-check to inspect the rendered scenes. If the
 962 scene is detected to be inconsistent with the intended sub-aspects or exhibits clearly abnormal object
 963 configurations, it is treated as a task-generation failure, and `TaskGen Agents` is required to regenerate
 964 the scene.

965 For tool generation, we use a unit test suite to validate the generated tool functions: if the unit tests
 966 fail, it trigger regeneration; if unexpected exceptions occur during execution, it terminate current
 967 evaluation round, record the failure, and restart that evaluation round.

968 As for issues originating from the simulation engine itself, such failures also occur in traditional
 969 simulation benchmarks; we likewise treat them uniformly as policy execution failures. These mech-
 970 anisms ensure that the system maintains overall robustness and usability even in the presence of
 971 localized failures.

972 A.3.5 EVALUATION SIGNAL FLOW: TOOL FUNCTIONS, VQAS, AND PLANNING
973974 In ManipEvalAgent, VQA based on vision-language models (VLMs) and Python tool functions
975 built on simulator interface jointly provide information about policy execution. First, Python tool
976 functions directly obtain state information (e.g., whether the hammer is in contact with the block)
977 and return corresponding scalar results. For informations that are better judged from video, ToolGen
978 agents formulates natural-language queries and feeds them, together with informations returned by
979 tool functions and a set of key frames from the execution video (the first and last frames plus a
980 few intermediate frames), into VLM to perform all VQA. Finally, all signals, including the scalar
981 outputs from tool functions and answers returned by VQA, are aggregated and passed to Plan Agent,
982 which consolidates and interprets them to update the evaluation of the current sub-aspect and to drive
983 subsequent rounds of the multi-step evaluation process.
984985 A.4 OPEN USER QUERY DATASETS
986987 We construct an open-ended user query dataset of a few hundred entries, which is used both to drive
988 ManipEvalAgent and to evaluate the Plan Agent. Each data point consists of two parts: (i) a user
989 query, and (ii) a sub-aspect set (Sub-aspect Ground Truth) annotated by human researchers.
990991 A.4.1 EXAMPLES OF OPEN USER QUERY DATASETS
992993 The dataset is curated around common user concerns in robotic manipulation and spans multiple
994 categories. The open-ended user query dataset includes both single-task and multi-task settings.
995 Below we present a subset of the dataset to illustrate its structure and contents.
996997 **Generalization:**
998999 How well does the policy generalize within the task overall?
1000 How robust is the pipeline to natural scene variation?
1001 How sensitive is success to object/scene parameter shifts?
1002 How robust is it to minor physics/modeling mismatches?
1003 How brittle is behavior at workspace limits?
1004 When the task instruction is paraphrased or shortened, does
1005 execution remain consistent?
1006 With minimal or differently worded prompts, does the policy still
1007 achieve the intended goal?
10081009 **Generalization-Object:**
10101011 How broadly does the policy generalize across pose and instance
1012 variations?
1013 Is performance tied to a canonical pose or truly pose-invariant?
1014 Is success stable when the visual mesh changes but the collision
1015 shape is fixed (and vice versa)?
1016 Does the policy overfit to specific model IDs or object textures?
1017 Is target identification robust when color/texture shifts but shape
1018 is constant?
1019 Do glossy or reflective appearances impact control or only
1020 perception?
1021 Are failure modes under size/appearance changes predictable and
1022 repeatable?
1023 Are generalization limits similar across pose, size, and appearance
1024 axes?
1025 How robust is the policy when the object starts at varied positions
and orientations on the workspace?
As the object's initial pose deviates further from nominal, does
success degrade smoothly or show thresholds?
Can the policy recover when the object's yaw/roll is unfavorable
for the default grasp?
How well does the policy transfer to different instances of the
same class (style/shape variants) without retuning?
1026

1026
 1027 With look-alike object variants, does the policy maintain
 1028 consistent success and timing?
 1029 If the object is slightly smaller or larger than trained, does the
 1030 task still complete?
 1031 How sensitive is grasp selection to modest scale changes of the
 1032 object?
 1033 Does the policy remain reliable when object color and surface
 1034 texture change?
 1035 Under matte vs. glossy finishes, how stable are perception and
 1036 downstream manipulation?
 1037 How does success change when object mass varies across
 1038 light/nominal/heavy?
 1039 With convex vs. non-convex collision modeling of the object, do
 1040 contact stability or failure modes differ?

1041
Generalization-Scene:
 1042 Do illumination shifts (bright \leftrightarrow dim) change outcomes?
 1043 Do color-temperature changes affect perception?
 1044 Do specular highlights trigger misdetections?
 1045 Do workspace size or table height changes alter success?
 1046 Are edge or corner placements handled reliably?
 1047 Do unseen backgrounds change recognition confidence?
 1048 Do textured walls or props induce false positives?
 1049 Across ambient brightness changes and different
 1050 directional/point-light colors/intensities, does performance hold
 1051 up?
 1052 Under time-varying lighting (flicker/jitter), does detection
 1053 confidence drop or behavior become erratic?
 1054 When table height or reach margins change, can the policy still
 1055 execute the task reliably?
 1056 Do different tabletop textures (e.g., low- vs. high-frequency
 1057 patterns) affect perception or placement accuracy?
 1058 With unseen background textures, does the policy maintain
 1059 recognition and control quality?
 1060 How sensitive is the pipeline to cluttered vs. clean backgrounds?
 1061 If the camera viewpoint shifts slightly (distance/height/tilt),
 1062 does the policy remain accurate?
 1063 Under small pose errors or mild jitter, can the system still
 1064 localize and act robustly?
 1065 How dependent is success on viewpoint choice?

1064
Performance:
 1065 Does completion time stay stable (low variance) across seeds and
 1066 perturbations?
 1067 Are grasp retries rare, and are recovery attempts short?
 1068 Does planning or inference latency remain bounded as scene
 1069 complexity increases?
 1070 During transport, does the object remain stable (no sway or
 1071 micro-slips)?
 1072 Do path-length ratios (actual/shortest) stay near 1 under
 1073 perturbations?
 1074 Does performance degrade gracefully as difficulty increases?
 1075 Across different feasible contact faces or approaches, how stable
 1076 are grasps (slip, drop, post-grasp drift)?
 1077 Are the planned or executed paths near-minimal, or do detours
 1078 emerge under perturbations?
 1079 How does path length change with harder placements (edges or
 1080 corners)?
 1081 Are end-effector motions smooth?

1080
 1081 Do jerk or acceleration spikes appear near contact or tight
 1082 clearances?
 1083 Does the policy exhibit unnecessary back-and-forth motions, and how
 1084 much time do they add?
 1085 When conditions shift, does redundancy increase, indicating
 1086 uncertainty or replanning?
 1087

1088 **Safety:**
 1089 Does the policy consistently respect safety zones and boundaries?
 1090 With safety zones and physical boundaries (table edge, wall, camera
 1091 mast), are there any incursions or unintended contacts?
 1092 Near constrained areas, does the policy proactively reroute without
 1093 grazing obstacles?
 1094 In dense clutter, does the policy avoid near-misses with walls,
 1095 edges, or masts while still completing the task?
 1096 Are there transient impacts or speed bursts that exceed safety
 1097 thresholds during contact or near obstacles?
 1098 Does the policy maintain a consistent minimum clearance from
 1099 obstacles throughout the motion?
 1100 Are contacts limited to intended objects only (no incidental bumps
 1101 with scene geometry)?
 1102 Are grasp or open events gated to safe zones (no releases over
 1103 edges or above non-targets)?
 1104 Are speed reductions near boundaries smooth (no oscillatory slowing
 1105 or speeding)?
 1106 Do lighting or background changes increase risky behavior (e.g.,
 1107 grazing obstacles)?
 1108 When both arms move, do inter-arm clearances stay within safe
 1109 bounds?
 1110

1108 **Robustness to Distractors:**
 1109 How robust is target selection under clutter?
 1110 Do look-alikes systematically derail selection?
 1111 Is planning still collision-free amid nearby objects?
 1112 How viewpoint-sensitive is performance with clutter present?
 1113 Do purely visual (non-physical) distractors cause errors?
 1114 Are failures concentrated in specific layouts or counts?
 1115 With additional task-irrelevant objects of varying types and
 1116 counts, does the policy avoid misgrasp and confusion?
 1117 As distractors move closer to the object, can the system still
 1118 select and manipulate the correct target consistently?
 1119 When distractors share key affordances (e.g., handles), does the
 1120 policy still pick the intended target?
 1121 Do look-alike objects (color/shape/size) cause target selection
 1122 errors?
 1123 Is there a tipping point in distractor count where behavior
 1124 degrades sharply?
 1125 As distractors touch or overlap the target, can the system still
 1126 localize and act reliably?
 1127 When key target features are partially occluded, does performance
 1128 remain stable?
 1129 With multiple plausible objects present, does the policy follow the
 1130 instruction's intent (the "right" target)?
 1131

1130 **Multi-Task:**
 1131 Can the policy correctly understand the affordances of the
 1132 manipulated object?
 1133 Can the policy use substitute tools to accomplish similar tasks?
 1134

1134
 1135 Under partial occlusion, does execution across different tasks
 1136 remain successful?
 1137 What is the policy’s success rate across grasp-and-place tasks?
 1138 Given different task goals for the same object, can the policy
 1139 adapt its manipulation accordingly?
 1140 In a multi-task setting, is the policy’s behavior consistent under
 1141 variations in language phrasing (synonyms or simplifications)?
 1142 Across the task set, can the policy maintain a consistent
 1143 understanding of object categories and their basic affordances?
 1144 Is the understanding and execution of basic spatial relations
 1145 consistent across tasks?
 1146

1147 A.4.2 TAXONOMY

1148 To systematically organize the queries, we derive a hierarchical taxonomy based on common con-
 1149 cerns in robotic manipulation research. At the top level, we define five coarse categories: general-
 1150 ization, performance, safety, robustness, and multi-task. The multi-task category is reserved for
 1151 queries that specifically target the evaluation of multi-task policies (most of which are VLAs). We
 1152 further refine the taxonomy into multiple levels. For example, under “generalization” we distinguish
 1153 between object generalization and scene generalization, and so on; object generalization is further
 1154 split into positional generalization and appearance generalization, and so on.

1155 A.4.3 ANNOTATION PROTOCOL AND INTER-ANNOTATOR AGREEMENT.

1156 For the annotation process, four graduate students or PhD students specializing in robotics partic-
 1157 ipate as annotators. For each user query, annotators are asked to provide a set of sub-aspects. We
 1158 then apply a majority-vote scheme to decide which sub-aspects are included in the final dataset. In
 1159 cases where there is a tie, we prioritize the opinion of the annotator with more domain experience
 1160 (higher seniority) as the arbiter.

1162 A.5 DETAILED COMPARISON BETWEEN SIMULATION BENCHMARKS AND 1163 MANIPEVALAGENT

1165 Tab. 10 summarizes the differences between existing static simulation benchmarks and Ma-
 1166 nipEvalAgent in certain evaluation characteristics. Traditional benchmarks rely on pre-defined tasks
 1167 and evaluation processes, ensuring Absolute Correctness, but they cannot adjust the evaluation con-
 1168 tent based on user queries, and their outputs are mostly limited to a single scalar success-rate score.
 1169 Additionally, they lack Dynamic Generation & Evaluation and the ability to Open Tool-Use. In
 1170 contrast, ManipEvalAgent drives evaluation through natural language, generates tasks and tools as
 1171 needed, and supports the integration of rule-based metrics with external tools such as VLM/VQA.
 1172 This enables a more flexible, analytical evaluation process while maintaining reasonable reliability.

1173 Overall, Tab. 10 demonstrates the complementarity between ManipEvalAgent and traditional simu-
 1174 lation benchmarks in evaluation capabilities. Both have their strengths and can play important roles
 1175 in addressing different research needs. ManipEvalAgent is a complementary evaluator to traditional
 1176 benchmarks, rather than a new benchmark.

1178 A.6 DISCUSSION ON SOME RELATED WORK AND FUTURE WORK

1179 A.6.1 TASK AND ASSET GENERATION WITHIN SIMULATION

1181 Recently, several researchers have begun investigating generation tasks within simulation environ-
 1182 ments.

1183 Some works study task scene generation in simulators ((Wang et al., 2023b;c)). ManipEvalAgent
 1184 draws on several sound engineering practices from these works and builds a more complete frame-
 1185 work that couples proposal, generation, and execution into an evaluation loop.

1186 Other works go further to explore 3D asset generation within simulation ((Katara et al., 2024)) for
 1187 creating manipulable objects. At present, ManipEvalAgent can only retrieve and use existing assets

1188

1189

Table 10: Comparison of Evaluation Characteristics

1190

1191

Property	Existing Simulation benchmarks	ManipEvalAgent
User-Query Driven Evaluation	✗	✓
Interpretability Output	✗	✓
Dynamic Generation & Evaluation	✗	✓
Open Tool-Use	✗	✓
Absolute Correctness	✓	✗

1192

1193

1194 available in the simulator. We consider integrating an asset-generation pipeline into ManipEvalA-
 1195 gent to be a valuable direction for future work.

1196

1197

A.6.2 AUTOMATING MORE STAGES OF ROBOTIC MANIPULATION RESEARCH

1200

1201

1202 ManipEvalAgent can be viewed as a simulation of how an experienced human researcher evaluates
 1203 manipulation policies, aiming to automate this process. In robotic manipulation research, many ad-
 1204 ditional stages could be automated by multi-agent systems, including (but not limited to) analyzing
 1205 user requirements, designing and implementing manipulation policies, collecting data, training poli-
 1206 cies, and iteratively refining them based on evaluation results, thereby forming a relatively closed-
 1207 loop automated research workflow. Recent work ((Trirat et al., 2024; Tang et al., 2025)) has begun
 1208 to explore automated research, providing useful references for us.

1209

1210

A.6.3 SYSTEM USABILITY: PORTABILITY, STABILITY, AND REAL-WORLD DEPLOYMENT

1211

1212

1213 Although ManipEvalAgent only needs to interact with a small set of well-defined interfaces to be
 1214 deployed on different simulation engines, migrating across simulators still requires a certain amount
 1215 of manual adaptation by human researchers. An interesting direction is to build a simulator-agnostic
 1216 automatic evaluation system, where the evaluation process primarily operates at the GUI level, hid-
 1217 ing the details of the underlying simulator interfaces. The rapid progress of GUI agents and coding
 1218 agents supports the feasibility of this idea ((Ye et al., 2025; Zhang et al., 2025a; Wang et al., 2024d;
 1219 Zhang et al., 2024b)).

1220

1221

1222 From a longer-term perspective, a evaluation system that supports natural-language input/output
 1223 and achieves behavior that is close to 100% stable could in principle subsume both current sim-
 1224 ulation benchmarks and our system in terms of evaluation capability. Thus, a valuable research
 1225 direction is how to construct a unified framework that combines the stability and reproducibility of
 1226 existing simulation benchmarks with the natural-language-driven, flexible evaluation capabilities of
 1227 ManipEvalAgent.

1228

1229

1230 The current version of ManipEvalAgent is built purely on simulation engines and relies on them to
 1231 construct scenes. Some recent work ((Zhou et al., 2025; Li et al., 2024b)) has started to investigate
 1232 how to automate evaluation of robotic manipulation policies in the real world, and these attempts
 1233 provide inspiration for eventually deploying ManipEvalAgent in real world environments.

1234

1235

A.7 THE USE OF LARGE LANGUAGE MODELS (LLMs)

1236

1237

1238 We used large language models to assist with language polishing and minor editorial improvements
 1239 to this manuscript, including grammar, phrasing, and clarity.

1240

1241