Under review as a conference paper at ICLR 2026

MANIPEVALAGENT:

PROMPTABLE AND EFFICIENT

EVALUATION FRAMEWORK FOR ROBOTIC MANIPULA-
TION POLICIES

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, robotic manipulation policies have made substantial progress.
However, evaluating these policies typically requires large-scale sampling in sim-
ulation benchmarks, leading to high time costs. Moreover, existing evaluation
pipelines are usually fixed, do not account for user needs, and report only a single
scalar score, lacking interpretability. In contrast, human experts can quickly form
an intuitive impression of a policy’s capabilities from just a handful of executions.
We therefore propose ManipEvalAgent, an efficient, promptable, and dynamically
multi-round evaluation framework for robotic manipulation policies. The frame-
work conducts small-batch, multi-round evaluations and adaptively plans subse-
quent evaluation steps based on intermediate observations from each round. Via
code generation, it constructs tasks and evaluation functions within simulator. By
generating evaluation functions and leveraging vision-language models (VLMs)
for video understanding, ManipEvalAgent provides user-instruction-centric, fine-
grained analysis. Our approach offers three key advantages: (1) efficiency, no
need for massive sampling; (2) promptable, planning the evaluation process ac-
cording to user queries; and (3) interpretability, providing diagnostic text that
goes beyond a single score. Across multiple settings, our evaluation method sig-
nificantly shortens the overall time compared with traditional simulation bench-
marks, while reaching conclusions comparable to those from large-scale simula-
tion benchmarks.

1 INTRODUCTION

@ Time-Consuming

@ Efficient

ﬁxisting Simulation Benchmarkﬁ /

@ ! no user input

RoboTwin
LIFE:

Fixed Simulation Evaluation Process

Success Rate: 0.63

K ® : no other explanation / \

ManipEvalAgent (Ours)

‘ How well does the policy generalize to operated objects‘7 @

User

we can first evaluation on tasks about Position

To evaluation the generalize to operated objects,

KD
Execution 3]

1y

Based on the observations of It round evaluation results,
the model do well in Position generalization. E

Next, we can explore the Appearance generalization

KD
Execution 3 *

Summary:
Strengths: Good position generalization within ~10-12 cm; robust to color.
Weaknesses: Sensitive to high gloss and >1.2 size.

/

Figure 1: Example of ManipEvalAgent.

Widely used simulation benchmarks evaluate on fixed

task sets with fixed procedures, require large amounts of sampling, and report only success rates.
ManipEvalAgent performs multi-round, few-sample evaluations conditioned on user queries, dy-
namically generates tasks and tools, and ultimately outputs detailed analyses that are both efficient

and interpretable.

Under review as a conference paper at ICLR 2026

In recent years, robotic manipulation has advanced rapidly, driven by progress in diffusion models
((Chi et al.}|2023))) and breakthroughs in general vision—language—action (VLA) models ((Kim et al.,
2024;|Shukor et al.,[2025} Liu et al.| 2024))), as well as the availability of internet-scale demonstration
data ((O’Neill et al.,[2024)); together, these developments have pushed end-to-end capabilities from
perception to action and expanded the boundaries of practical applications.

With the progress in robotic manipulation policies, effective evaluation has become increasingly crit-
ical for identifying their limitations and directions for improvement. Existing benchmarks ((Chen
et al., 2025} [Liu et al.| [2023} James et al., 2020; [Mees et al., [2022; |Yu et al., [2020)) provide stan-
dardized environments and task suites, together with unified evaluation pipelines and data resources,
laying the groundwork for systematic model comparisons and enabling more comprehensive perfor-
mance analyses. Nevertheless, prevailing practice largely relies on fixed evaluation pipelines and
pre-defined task sets, lacks user input and customization, and is ill-suited to open-ended needs.
Meanwhile, static benchmarks typically require exhaustive execution over all predefined tasks and
all candidate policies, incurring substantial time and compute costs. More importantly, conclusions
are often compressed into single metrics such as success rate, with little diagnosis of “why” and
“under what conditions” failures occur, making it difficult to directly guide model iteration and sys-
tem deployment. Compared with static benchmarks, experienced human evaluators can often form
a reliable impression of a robotic manipulation policy’s overall competence through small-batch,
hands-on interactive trials.

To leverage the advantages of human-like evaluation, and inspired by agent-related studies ((Gu
et al.| 2024} Zhuge et al., 2024; |Qian et al.| 2023} [Zhang et al., [2024a))), we introduce ManipEvalA-
gent for robotic manipulation—a paradigm that imitates how humans assess manipulation policies.
ManipEvalAgent delivers three key properties: 1) Efficiency: it dynamically adapts the evaluation
path based on intermediate results, avoiding redundant test cases to achieve efficient evaluation . 2)
Promptable evaluation: unlike popular robotic manipulation benchmarks ((Chen et al., 2025; [Liu
et al.| 2023)), it accepts user input in natural language and performs flexible, customized evaluation
according to user needs. 3) Detailed results: it implements functions to process diverse feedback
from the simulation environment and analysis, providing interpretable and detailed insights that go
beyond a single numeric score.

ManipEvalAgent first accepts open-ended user input to specify what to evaluate and which policy to
assess, then decomposes the problem into a set of sub-aspects. Leveraging simulation-environment
APIs, it generates scene, task and produces reusable metric evaluators as Python code. It executes the
policy to run the evaluation, monitors intermediate results, and dynamically refines the subsequent
exploration. Finally, it generates a detailed natural-language report for the user.

We demonstrate the versatility of the ManipEvalAgent through experiments. The results show that it
delivers performance comparable to existing full benchmark pipelines while significantly reducing
evaluation time.

Our primary contribution is ManipEvalAgent, a human expert—like evaluation framework for robotic
manipulation policies that addresses the limitations of existing methods in capabilities and efficiency.
We introduce a scheme that enables robust generation of simulation tasks and evaluation functions.
We also collect common concerns and construct an open-ended user query dataset for evaluating
robotic manipulation policies. Finally, we validate our approach against several widely adopted
robotic manipulation benchmarks and show that it achieves evaluation accuracy comparable to stan-
dard benchmarks while substantially reducing evaluation time.

2 RELATED WORK

2.1 ROBOTIC MANIPULATION POLICY

The development of robotic manipulation policies has progressed from single-task methods to large-
scale generalist approaches. At the foundational level, Diffusion Policy ((Chi et al.| |2023)) estab-
lished the diffusion-based paradigm for action modeling. Building upon this milestone, subsequent
works such as 3D Diffusion Policy ((Ze et al., 2024)) and AdaptDiffuser ((Liang et al., 2023))
extended the approach to 3D action modeling and adaptive planning, respectively, enhancing ro-
bustness while still focusing on task-specific domains. RISE ((Wang et al., [2024a)) demonstrates

Under review as a conference paper at ICLR 2026

the potential of 3D perception to improve the stability and generalization of imitation learning,
while DensePolicy ((Su et al., [2025)) and Chain-of-Action ((Pan et al., [2024)) illustrate the pos-
sibilities of adjusting the mechanisms by which policies generate actions. The field then shifted
toward generalist and cross-environment policies: RT-1 ((Brohan et al., 2022))) pioneered a unified
transformer architecture integrating vision, language, and action for real-time kitchen manipulation,
RT-2 ((Zitkovich et al.,|2023))) further enabled the transfer of web-scale knowledge into robotic con-
trol, and RDT-1B ((Liu et al., 2024))) together with 7y ((Black et al., 2024)) expanded the frontier
through large-scale bimanual datasets and flow-based universal control. At the framework level,
OpenVLA ((Kim et al.| [2024)) introduced an open-source interface for community research, Co-
gACT ((Li et al.,|2024a)) explored the integration of cognition and action, while Octo ((Team et al.,
2024))) and OpenVLA-OFT ((Kim et al., [2025)) targeted efficient adaptation and fine-tuning under
limited compute.

2.2 DATASETS AND BENCHMARKS FOR ROBOTIC MANIPULATION

Evaluation for robotic manipulation has evolved from foundational physics-based simulators to
large-scale, cross-embodiment datasets that strengthen sim-to-real transfer. Early platforms such
as SAPIEN ((Xiang et al.| [2020)) enabled part-level modeling of thousands of articulated objects
with high-fidelity dynamics, while ManiSkill2 ((Gu et al., |2023)) unified task families, render-
ing, and millions of expert demonstrations into a standardized pipeline. Building on these foun-
dations, benchmarks emerged to test generalization across tasks and modalities: Meta-World ((Yu
et al., 2020)) established a multi-task suite, CALVIN ((Mees et al., 2022)) introduced language-
conditioned long-horizon tasks, and LIBERO ((Liu et al., [2023))) emphasized lifelong learning with
compositional knowledge transfer. As the field moved toward real-world robustness, large-scale
datasets became central: Open X-Embodiment ((O’Neill et al.| [2024)) aggregated over a million tra-
jectories across diverse robots, Bridge Data ((Ebert et al., 2021)) facilitated cross-domain transfer,
and RoboMIND ((Wu et al 2024)) standardized teleoperation data across embodiments to close
the sim-to-real gap. In the domain of bimanual and digital-twin evaluation, RoboTwin ((Mu et al.,
2024))) recreated real demonstrations in simulation to provide aligned benchmarks, while RoboTwin-
2.0 ((Chen et al.| |2025)) integrated LLM feedback and systematic domain randomization to generate
richer and more challenging corpora that enhance robustness and generalization. Unlike these static
task-set—driven evaluations, our ManipEvalAgent reframes evaluation as a promptable, interactive,
and adaptive process that combines rule-based metrics with VLM-driven understanding, dynami-
cally generates tasks and tools, and delivers diagnostics.

2.3 LLM-BASED AGENT

In recent years, large language models (LLMs) have shown significant progress in understanding
and reasoning capabilities, demonstrating strong potential in multi-tasking and complex reasoning.
Chain-of-thought prompting can effectively guide LLMs in reasoning ((Wei et al., 2022; |Kojima
et al., [2022)). Autonomous agents ((Wang et al., |2024c|, [Zhou et al.l |2023b; Zhang et al.| [2025b;
Hong et al., 2024} |Yao et al., |2023))) based on LLMs are systems that can autonomously follow
user instructions and use available tools to perform complex tasks, gradually becoming a focus
of attention. Researchers have also explored how agent systems can achieve goals through multi-
turn interactions in various environments ((Wang et al., [2023a; Zhou et al.l [2023a; Wang et al.,
2024b)), especially showing high effectiveness in improving long-term task completion. LLM-
based agent systems have demonstrated the potential to replace human evaluation and have shown
high alignment with human evaluation results in task assessment ((Gu et al., [2024} |Zhuge et al.,
2024} [Zhang et al.| 2024a)). Despite advances in reasoning and task automation, applying these
methods to the automated evaluation of robotic manipulation policies within simulation engines
remains largely unexplored, and our proposed ManipEvalAgent fills this gap.

3 METHOD

ManipEvalAgent is driven by collaborating VLM-based agents and simulates human-expert assess-
ment through a few-shot, multi-round interactive process to achieve efficient and customizable eval-
uation of robotic manipulation policies. As shown in Figure [2] ManipEvalAgent consists of three
stages: (a) Proposal, where the Plan Agent decomposes the user query into orthogonal sub-aspects;

Under review as a conference paper at ICLR 2026

_. Code Generation f _l’ _P
— == Manipulation
User Query i Proposes TaskGen Agents Il Wi Taskn _—
— E e . S Robotic Manipulation Policy
User E;::;g[f:lﬂ/n Plan Agent ade Generation E"B EP - : Evaluation
& Tool I Tool 2 Tool n

ToolGen Agents

Evaluation Toolkit

Simulation Engine

Observations

(b) Genaration Stage

(a) Proposal Stage (c) Execution Stage

Figure 2: Overview of ManipEvalAgent framework. The system comprises three stages that form a
multi-round feedback loop

(b) Generation, where the TaskGen/ToolGen agents perform code generation against the simulation
environment interfaces to produce a set of tasks and evaluation tools; and (c) Execution, where the
robotic manipulation policy is run in the simulation environment and evaluated by the Evaluation
Toolkit. These three stages form a multi-round feedback loop, with the system continually adjusting
the evaluation based on intermediate observations.

3.1 PRELIMINARIES

Embodied Setting. A simulator S = ({2, T") provides capabilities {2 and constraints I" (e.g., avail-
able assets, interfaces). The policy 7 can be either language-conditioned, written as 7(a¢|oy, 1),
or language-unconditioned, written as m(a:|o;). A task 7 is a program that constructs an initial
scene and defines a success checker check_success(sg.r), whose return value is a bool. Here
so.r = {80, 51, ..,s7} denotes the trajectory of environment states from the initial state s to the
final state s. A rollout is

¢ = Rollout(r, T, seed) = {(s1, 04, a:)} 1y, In.r = Render((), (1)

where [j.7 are rendered frames (images or videos) for vision-based evaluation. Evaluation aspects
are denoted by a € A (e.g., appearance generalization). Unlike a large fixed test set C', our frame-
work decomposes evaluation into a small dynamic set of sub-aspects A = {a;} discovered during
evaluation.

Agentic Generation. The evaluation process is driven by agents. A planning agent Plan simulates
a human evaluator and iteratively proposes sub-aspects a; based on prompt ¥ and previous results
Y7.;. For each a;, a task is synthesized by T'askGen:

T = Task:Gen(aj, S, Kllaska Klasseta Kldoc) 3 2

where Kl is a task library storing reusable task programs, Kl is an asset library listing avail-
able objects and environments in the simulator, and Kl4,. is a documentation library indexing
simulator interfaces and usage patterns. The synthesized task includes scene construction and a
check_success function returning a bool. ToolGen Agents T'oolGen then assigns evaluation
tools e, € T, either (i) rule-based metrics r : ¢ — R?, meaning that the tool takes a trajectory ¢ as
input and outputs numerical results, or (ii) VQA-based metrics g : (Ip.1, Q) — R?, meaning that
the tool takes rendered frames I.p together with aspect-specific questions ((a;, 7;) as input and
outputs numerical results. Each sub-aspect is thus paired with the task 7; and the tool e,.

Evaluation Pipeline. In ManipEvalAgent, each sub-aspect a; is paired with the task 7; and the tool
ei. The evaluation proceeds as:

7(Cjm) rule-based tool
J,m = R ll t) B dm) j,m = I ’ ’ 3
S, oltout(w, 7, seedm), -y, {q(IOZT, Q), VQA-based tool.)
The sampled results are collected as
Y; = Aggregate{yj,m}f\f;l, Y = Aggregate{Yj};V:l , 4)

where M denotes the number of sampled trajectories for sub-aspect a;, IV is the total number of
sub-aspects discovered during evaluation, and Aggregate denotes a general aggregation operator,

Under review as a conference paper at ICLR 2026

which combines multiple evaluation results into a single summary. The final output combines nu-
merical scores with interpretability. By contrast, classical methods rely on a fixed test set C, require
large-scale sampling, and usually provide only simple scores, making them inefficient and less in-
formative.

3.2 PROPOSAL STAGE

The Plan Agent is responsible for planning, observing, and summarizing the evaluation process
based on the user’s query. It simulates human behavior during evaluation—including planning and
adjusting the evaluation direction, observing intermediate results, and summarizing final outcomes.
As a core component of the framework, the Plan Agent not only interacts with the user but also
drives the entire evaluation pipeline.

Concretely, upon receiving a user query, the Plan Agent first reads a system-level prompt (system
prompt) that specifies: the simulator’s capabilities and constraints, and meta-information about the
policy under evaluation (e.g., whether it is language-conditioned). The Plan Agent then identifies an
initial sub-aspect to evaluate and iteratively refines it based on feedback from intermediate results.
This process continues until sufficient evidence has been collected, after which the agent provides a
detailed analysis and summary.

3.3 GENERATION STAGE

3.3.1 TASK GENERATION

-
| TASK-NAME = ¢ \}
"task_name”: "beat_block_hammer,

Tusk Propose > ! i Fg Po0ql . Code Generation
_> F task_description”: "...", E

"actor_list": .. 1

Context from Proposal Stage

Task Proposal

0).xy, self.block. f(1).xy)
ck)

Task Code

Ta S kG en A oents Retrieva]T Retrieval @ Is the Tax.k Implement.at[(-)n '
S Aligned with the Description? 2

7=

1
1
1
1
README (to Agent) Tasks 1
1
1
1
\

t Simulation Engine

Human Experts <+ _]
s
Structured u
. Assets Documents . _
Databases of Simulation Engine Observation
Offline Extractor Retrieval Augmented Visual Self-Reflection

Figure 3: Our task-generation pipeline produces task code based on the outcomes of the proposal
stage. The pipeline is composed of multiple agents and consists of one main flow plus three aug-
mentation modules.

In the generation phase, TaskGen Agents generate robot-manipulation tasks runnable in the simula-
tor for each “sub-aspect” produced at the proposal stage. Concretely, the agent outputs a single-task
Python file comprising two core parts: (i) the task scene, where—by referencing the simulator’s
existing task-building interfaces and implementations—the agent generate code and populates the
scene with relevant and necessary objects (assets) to form the initial state required by the manipula-
tion task; and (ii) the success criterion, which determines during each rollout whether the manipula-
tion policy has successfully completed the task, likewise generated as a check_success method. The
entire workflow follows a reuse-first engineering principle: we first retrieve tasks in the simulator

Under review as a conference paper at ICLR 2026

that can be directly reused; if they meet the requirements, we adopt them as is, and only trigger
generation when reuse is impossible, thereby saving generation time and improving completeness.

Although direct few-shot prompting code generation yields a moderate but suboptimal success rate,
it exposes three practical issues: (1) the agent cannot fully understand the fine-grained details of
the simulator’s interfaces from example code alone, and the substantial existing documentation and
experiential knowledge about the simulator are not systematically exploited; (2) Because documents
like ReadMe.md is primarily written for human developers, its format is not always effectively con-
sumable by agents; and (3) there is no intuitive, low-cost mechanism that promptly makes the agent
aware of deviations and errors in the generated scenes. To address these, we introduce three targeted
enhancements into the pipeline: Retrieval-Augmented Generation (RAG), visual self-reflection, and
README.Agent.

RAG. We build several knowledge bases offline and retrieve from them at generation time: a Task
Library that stores currently available tasks in the simulator—during code generation, the agent re-
trieves several similar tasks as few-shot exemplars to guide the generation of the new task; an Asset
List that records available assets in the environment and their descriptions—retrieved during task
proposal to constrain the task from invoking non-existent assets; and simulator-related documen-
tation, which is likewise indexed as a database and retrieved. Implementation details of RAG are

provided in Appendix[A.3.1]

Visual self-reflection. We provide a lightweight feedback loop: for each task produced by TaskGen
Agents, a simple script renders the first frame of the scene in the simulator to visually compare
the generated result with the intended “vision” of the task proposal. Once unacceptable deviations
are detected, the system emits diagnostics and suggestions to revise the scene-building and success-
checking code.

README.Agent. Inspired by best practices in code generation ((Wijaya et al.,2025)), we propose
README.Agent—Agent-oriented documentation that is likewise retrievable via RAG. It is con-
structed by human experts together with an automated program that produces structured summaries
of files in database, and it distills interface notes, patterns, and caveats about the simulator. All of
this is built offline on a periodic schedule.

3.3.2 TooL GENERATION

o ‘—I Retrievel 2 P _P
M= —p))

u def safety_margin(self, actor, required_margin=0.03): I

1

1
1
Documents Tools 1 return float(nearest_gap - required_margin)
1
1

1
.
° ' -4) . def check_grasp_reachability(..) : |
Context from Proposal Stage Proposed Code Generation
o E —> E —"‘ return ee_pos - handle_pos /I

Task Code from TaskGen Agent Tool Code

Tool Proposal

Figure 4: Tool generation pipeline of ToolGen Agents.

ToolGen Agents ingests the proposal-stage context and the code from task-generation, and assigns
an evaluation tool to each task. Tools come in two flavors: rule-based metrics and VQA-based
metrics. The former are Python functions built on the simulator interface that take the simulation
environment as input and output a scalar (or a structured score). The latter target information that is
hard to obtain via the simulator interface, leveraging VQA with a vision-language model (VLM) to
provide flexible evaluation.

The system maintains a toolkit of currently available tools and is open and extensible. Human
experts prepare validated, commonly used tool functions that can be invoked directly and also serve
as few-shot exemplars for code generation. The workflow follows a retrieval-first principle: when
a new tool is needed, the system first retrieval the toolkit to reuse a suitable tool; if none is found,
it retrieves similar tools and generate a new one via few-shot prompting, then registers it into the
toolkit. After executes of the robotic manipulation policy, the module evaluates each sample with
the appropriate tools. All results are then aggregated and returned to the Plan Agent for further
recommendations or summarization.

Under review as a conference paper at ICLR 2026

Table 1: Compared with existing simulation benchmarks, ManipEvalAgent significantly reduces the

overall evaluation time across multiple robot manipulation policies.

Models RoboTwin LIBERO Ours

ACT 167 min, 56592 samples 117 min, 29546 samples 42 min, 16927 samples
DP 171 min, 55551 samples 132 min, 29059 samples 45 min, 16895 samples
DP3 159 min, 52087 samples 113 min, 28343 samples 44 min, 15638 samples
RDT 210 min, 55435 samples 132 min, 28878 samples 63 min, 16676 samples
o 164 min, 51087 samples 103 min, 26732 samples 43 min, 15336 samples

3.4 EXECUTION STAGE

In execution stage, robotic manipulation policy runs on the tasks generated by TaskGen Agents,
uses the tools specified or generated by ToolGen Agents for sampling and evaluation, and returns
the evaluation results.

The evaluation toolkit consists of Python functions implemented against the simulator interfaces.
These functions monitor the simulator while the policy is running and return a scalar value. The
module is open and extensible, and can continuously accept newly generated tools.

However, some information is difficult to obtain solely from simulator interfaces, so more flexible
evaluation tools are additionally required. As a complement, we introduce into the evaluation toolkit
a paradigm based on vision-language models (VLMs), which uses a visual question answering
(VQA) format to flexibly assess various aspects of robotic manipulation task execution.

Finally, all evaluation results are aggregated and returned to the Plan Agent for further proposals or
summarization.

4 EXPERIMENTS

In this section, we address three questions through experiments: (1) relative to existing benchmarks
and their evaluation dimensions, do we achieve comparable effectiveness; (2) under open-ended
user queries, how well does our approach perform; and (3) during the code-generation stage, how
do individual modules contribute to the overall generation results. Please refer to the Appendix[A.3)]
for detailed system implementation details.

4.1 QUANTITATIVE EXPERIMENTS ON EXISTING ROBOTIC MANIPULATION BENCHMARKS

4.1.1 EXPERIMENTAL SETUP

We evaluate our approach on three widely used simulation benchmarks: RoboTwin 2.0 ((Chen et al.|
2025)), and LIBERO ((Liu et al.} 2023))). We select five open-source models as the evaluated robot
manipulation policies: single-task policies ACT ((Zhao et al., [2023))), Diffusion Policy ((Chi et al.,
2023)), and DP3 ((Ze et al.l [2024)); and VLA models RDT-1B ((Liu et al.| |2024)) and 7 ((Black:
et al.,[2024)).

For further details—e.g., experimental settings, hyperparameters, and fairness controls—please refer
to Appendix[A.1]

4.1.2 RESULTS ANALYSIS

We first compare the time cost and sample count between popular simulation benchmarks and our
method. As one of our advantages, as shown in Table [1} our evaluation framework significantly
shorten the evaluation time. Second, the quantitative results in Table E] indicate that our framework
achieves comparable prediction accuracy across most dimensions. For additional results and further
discussion, please refer to Appendix

Under review as a conference paper at ICLR 2026

Table 2: We compare the consistency of conclusions between ManipEvalAgent and existing simu-
lation benchmarks across multiple capability dimensions. Across ten trials of the ManipEvalAgent,
the percentage of results falling within the exact range (left) or within the error margin (right) is
shown.

Dimension ACT DP DP3 RDT o

S.R. (RoboTwin) 50%/90% 60% /100% 50%/80% 50%/60% 70% / 100%
S.R. (LIBERO Avg.) 60% /70% 50%/70% 40%/60% 70%/90% 50% / 50%
Spatial (LIBERO) 70% /100% 100% / 100% 80% /80% 70% /100% 60% / 80%

Obj (LIBERO) 60% / 80% 50% /70% 60%/60% 60%/60% 40% / 70%
Goal (LIBERO) 30% / 710% 70% /70% 50%/70% 50%/60% 50% /50%
Long (LIBERO) 60% / 70% 60% /80% 50%/70% 70%/80% 60% /90%

4.2 QUALITATIVE EXPERIMENTS ON OPEN-ENDED USER QUERY IN ROBOTIC
MANIPULATION

Based on common user concerns in robotic manipulation tasks, we curated and constructed an open-
ended user-query dataset and, on this basis, conducted qualitative experiments with our evaluation
framework to demonstrate its flexibility and other advantages.

4.2.1 OPEN-ENDED USER QUERY DATASET IN ROBOTIC MANIPULATION

We collected common concerns from researchers in robotic manipulation and constructed an open-
ended user-query dataset. Each query is annotated with its category label. Notably, due to constraints
imposed by specific model architectures and training resources, evaluation needs in embodied ma-
nipulation span both single-task and multi-task settings; our dataset covers both. Please refer to
Appendix [A.3.2]for further details and representative examples.

4.2.2 OPEN-ENDED USER QUERY EVALUATION IN ROBOTIC MANIPULATION

Unlike widely used simulation benchmarks that evaluate robot manipulation policies with fixed tasks
and metrics, ManipEvalAgent conducts dynamic, multi-turn evaluation driven by users’ open-ended
queries, with on-the-fly task and tool generation at each stage. As illustrated in Figure [5] when
the user asks, "How well does the policy generalize over the attributes of the manipulated object?”,
ManipEvalAgent first evaluates generalization to object pose and obtains a clear result. It then
evaluates generalization to object appearance, which yields an ambiguous outcome; accordingly,
the EEA further refines the evaluation to probe appearance-related factors more precisely. Through
iterative evaluation, the agent analyzes and synthesizes the results to provide comprehensive, user-
centered feedback.

@ How is the generalization of this policy to the various properties of the manipulated object?

Round 1 N Round 2 N Round 3

Figure 5: A Case of Open-Ended User Query Evaluation. For open-ended user queries, Ma-
nipEvalAgent begins by probing the policy’s capabilities from fundamental aspects and then pro-
gressively drills deeper

Under review as a conference paper at ICLR 2026

4.3 ABLATION STUDY

We conducted a concise ablation study to evaluate the effectiveness of several enhancement modules
in the code-generation stage. Human experts reviewed each generated task and tool (tasks are first
rendered for visual inspection) to judge whether they were correct, reasonable, and aligned with the
requirements specified in the proposal stage. When the retrieval augmentation module was removed,
we followed common engineering practice by supplying only a few representative task/tool code
examples as few-shot prompts.

As shown in Table [3] direct few-shot prompting alone achieves an acceptable generation success
rate, but adding any single enhancement module yields further gains. Given that this is a evaluation
system must be executed many times and thus has high stability requirements, we consider these
modules designed to improve code-generation success rates is necessary.

Plan Agent: 9.5% Others: 7.2% Table 3: Ablation of Code Generation Modules
Simulation Engine: 13.5% Settings S.R. (%) 1
Tos R TaskGen (Complete) 98%
2 TaskGen w/o RAG 95%
ToolGen Agents: 27% TaskGen w/o Visual Self-Check 96%
TaskGen w/o README.Agent 96%
TaskGen (Base) 93%
ToolGen (Complete) 96%
ToolGen w/o RAG 92%

Figure 6: System Error Breakdown

4.4 SYSTEM ERROR BREAKDOWN

The overall evaluation stability of the ManipEvalAgent is satisfactory. However, we must acknowl-
edge that, due to the involvement of multiple modules and layers in the system, and the current
progress in fields such as visual language models, code generation, and simulation benchmarks, ap-
proximately 5% of the evaluation process was still affected by errors to varying degrees. Figure [6]
shows the error frequency for each module during the evaluation.

We observe that most errors arise in the generation stage (69.8%), with task generation being the
most prominent contributor (42.8%).

Our analysis attributes these failures to the inherent difficulty of code-generation sub-tasks in Ma-
nipEvalAgent (task generation and tool generation). These sub-tasks demand precise understanding
of simulator APIs, object semantics, and spatial/physical constraints, and they place higher require-
ments on large reasoning models for planning, constraint satisfaction, and robust code generation.

5 CONCLUSION

In this work, we present ManipEvalAgent, a promptable and efficient evaluation framework for
robotic manipulation policies, is the first framework of its kind in robotic manipulation. Unlike
widely used simulation benchmarks that rely on fixed task sets, require heavy sampling, and re-
port only success rates, ManipEvalAgent emulates human expert evaluation: it accepts open-ended
user inputs, conducts dynamic multi-round assessment, uses code generation to drive the simula-
tor, and adapts the evaluation process based on intermediate observations, yielding faster and more
interpretable judgments with far fewer samples.

Extensive experiments across multiple settings show that, compared with traditional simulation
benchmarks, ManipEvalAgent substantially reduces evaluation time while reaching conclusions
comparable to those from large-scale simulation benchmarks. We hope this framework enables
more flexible and efficient evaluation of robotic manipulation policies and meaningfully accelerates
research progress in the field.

Under review as a conference paper at ICLR 2026

REFERENCES

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. 7y: A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Tianxing Chen, Zanxin Chen, Baijun Chen, Zijian Cai, Yibin Liu, Qiwei Liang, Zixuan Li, Xi-
anliang Lin, Yiheng Ge, Zhenyu Gu, et al. Robotwin 2.0: A scalable data generator and bench-
mark with strong domain randomization for robust bimanual robotic manipulation. arXiv preprint
arXiv:2506.18088, 2025.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, pp. 02783649241273668, 2023.

Frederik Ebert, Yanlai Yang, Karl Schmeckpeper, Bernadette Bucher, Georgios Georgakis, Kostas
Daniilidis, Chelsea Finn, and Sergey Levine. Bridge data: Boosting generalization of robotic
skills with cross-domain datasets. arXiv preprint arXiv:2109.13396, 2021.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Ying-
han Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv preprint
arXiv:2411.15594, 2024.

Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqgiang Liu, Tongzhou Mu, Yihe Tang, Stone
Tao, Xinyue Wei, Yunchao Yao, et al. Maniskill2: A unified benchmark for generalizable manip-
ulation skills. arXiv preprint arXiv:2302.04659, 2023.

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast retrieval-
augmented generation. arXiv preprint arXiv:2410.05779, 2024.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for
a multi-agent collaborative framework. International Conference on Learning Representations,
ICLR, 2024.

Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, et al. my.5: a vision-language-action
model with open-world generalization. arXiv preprint arXiv:2504.16054, 2025.

Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J Davison. Rlbench: The robot
learning benchmark & learning environment. /EEE Robotics and Automation Letters, 5(2):3019—
3026, 2020.

Pushkal Katara, Zhou Xian, and Katerina Fragkiadaki. Gen2sim: Scaling up robot learning in
simulation with generative models. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pp. 6672-6679. IEEE, 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Opti-
mizing speed and success. arXiv preprint arXiv:2502.19645, 2025.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199-22213, 2022.

Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen, Mozheng Liao, Fangyun Wei, Yu Deng,
Sicheng Xu, Yizhong Zhang, et al. Cogact: A foundational vision-language-action model for syn-
ergizing cognition and action in robotic manipulation. arXiv preprint arXiv:2411.19650, 2024a.

10

Under review as a conference paper at ICLR 2026

Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier Mees, Homer Rich Walke, Chuyuan Fu,
Ishikaa Lunawat, Isabel Sieh, Sean Kirmani, et al. Evaluating real-world robot manipulation
policies in simulation. arXiv preprint arXiv:2405.05941, 2024b.

Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adaptdiffuser:
Diffusion models as adaptive self-evolving planners. arXiv preprint arXiv:2302.01877, 2023.

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
Benchmarking knowledge transfer for lifelong robot learning. Advances in Neural Information
Processing Systems, 36:44776-44791, 2023.

Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang
Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. arXiv preprint
arXiv:2410.07864, 2024.

Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for
language-conditioned policy learning for long-horizon robot manipulation tasks. IEEE Robotics
and Automation Letters, 7(3):7327-7334, 2022.

Yao Mu, Tianxing Chen, Shijia Peng, Zanxin Chen, Zeyu Gao, Yude Zou, Lunkai Lin, Zhigiang
Xie, and Ping Luo. Robotwin: Dual-arm robot benchmark with generative digital twins (early
version). In European Conference on Computer Vision, pp. 264-273. Springer, 2024.

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pp. 6892—6903. IEEE, 2024.

Zhenyu Pan, Haozheng Luo, Manling Li, and Han Liu. Chain-of-action: Faithful and multimodal
question answering through large language models. arXiv preprint arXiv:2403.17359, 2024.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
Yusheng Su, Xin Cong, et al. Chatdev: Communicative agents for software development. arXiv
preprint arXiv:2307.07924, 2023.

Mustafa Shukor, Dana Aubakirova, Francesco Capuano, Pepijn Kooijmans, Steven Palma,
Adil Zouitine, Michel Aractingi, Caroline Pascal, Martino Russi, Andres Marafioti, et al.
Smolvla: A vision-language-action model for affordable and efficient robotics. arXiv preprint
arXiv:2506.01844, 2025.

Yue Su, Xinyu Zhan, Hongjie Fang, Han Xue, Hao-Shu Fang, Yong-Lu Li, Cewu Lu, and
Lixin Yang. Dense policy: Bidirectional autoregressive learning of actions. arXiv preprint
arXiv:2503.13217, 2025.

Jiabin Tang, Lianghao Xia, Zhonghang Li, and Chao Huang. Ai-researcher: Autonomous scientific
innovation. arXiv preprint arXiv:2505.18705, 2025.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

Patara Trirat, Wonyong Jeong, and Sung Ju Hwang. Automl-agent: A multi-agent llm framework
for full-pipeline automl. arXiv preprint arXiv:2410.02958, 2024.

Chenxi Wang, Hongjie Fang, Hao-Shu Fang, and Cewu Lu. Rise: 3d perception makes real-world
robot imitation simple and effective. In 2024 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2870-2877. IEEE, 2024a.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,

and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023a.

11

Under review as a conference paper at ICLR 2026

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Jitao
Sang. Mobile-agent: Autonomous multi-modal mobile device agent with visual perception. arXiv
preprint arXiv:2401.16158, 2024b.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024c.

Lirui Wang, Yiyang Ling, Zhecheng Yuan, Mohit Shridhar, Chen Bao, Yuzhe Qin, Bailin Wang,
Huazhe Xu, and Xiaolong Wang. Gensim: Generating robotic simulation tasks via large language
models. arXiv preprint arXiv:2310.01361, 2023b.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Exe-
cutable code actions elicit better 1lm agents. In Forty-first International Conference on Machine
Learning, 2024d.

Yufei Wang, Zhou Xian, Feng Chen, Tsun-Hsuan Wang, Yian Wang, Katerina Fragkiadaki, Za-
ckory Erickson, David Held, and Chuang Gan. Robogen: Towards unleashing infinite data for
automated robot learning via generative simulation. arXiv preprint arXiv:2311.01455, 2023c.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Sandya Wijaya, Jacob Bolano, Alejandro Gomez Soteres, Shriyanshu Kode, Yue Huang, and
Anant Sahai. Readme. llm: A framework to help 1lms understand your library. arXiv preprint
arXiv:2504.09798, 2025.

Kun Wu, Chengkai Hou, Jiaming Liu, Zhengping Che, Xiaozhu Ju, Zhuqin Yang, Meng Li, Yinuo
Zhao, Zhiyuan Xu, Guang Yang, et al. Robomind: Benchmark on multi-embodiment intelligence
normative data for robot manipulation. arXiv preprint arXiv:2412.13877, 2024.

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
Jiang, Yifu Yuan, He Wang, et al. Sapien: A simulated part-based interactive environment. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11097—
11107, 2020.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Jiabo Ye, Xi Zhang, Haiyang Xu, Haowei Liu, Junyang Wang, Zhaoqing Zhu, Ziwei Zheng, Feiyu
Gao, Junjie Cao, Zhengxi Lu, et al. Mobile-agent-v3: Fundamental agents for gui automation.
arXiv preprint arXiv:2508.15144, 2025.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094-1100. PMLR, 2020.

Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion
policy: Generalizable visuomotor policy learning via simple 3d representations. arXiv preprint
arXiv:2403.03954, 2024.

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yanda Li, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and
Gang Yu. Appagent: Multimodal agents as smartphone users. In Proceedings of the 2025 CHI
Conference on Human Factors in Computing Systems, pp. 1-20, 2025a.

Fan Zhang, Shulin Tian, Ziqi Huang, Yu Qiao, and Ziwei Liu. Evaluation agent: Efficient and
promptable evaluation framework for visual generative models. arXiv preprint arXiv:2412.09645,
2024a.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation
with tool-integrated agent systems for real-world repo-level coding challenges. arXiv preprint
arXiv:2401.07339, 2024b.

12

Under review as a conference paper at ICLR 2026

Zhuosheng Zhang, Yao Yao, Aston Zhang, Xiangru Tang, Xinbei Ma, Zhiwei He, Yiming Wang,
Mark Gerstein, Rui Wang, Gongshen Liu, et al. Igniting language intelligence: The hitchhiker’s
guide from chain-of-thought reasoning to language agents. ACM Computing Surveys, 57(8):1-39,
2025b.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for build-
ing autonomous agents. arXiv preprint arXiv:2307.13854, 2023a.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li, Jialong Wu, Tiannan Wang, Shi Qiu, Jin-
tian Zhang, Jing Chen, Ruipu Wu, Shuai Wang, et al. Agents: An open-source framework for
autonomous language agents. arXiv preprint arXiv:2309.07870, 2023b.

Zhiyuan Zhou, Pranav Atreya, You Liang Tan, Karl Pertsch, and Sergey Levine. Autoeval: Au-
tonomous evaluation of generalist robot manipulation policies in the real world. arXiv preprint
arXiv:2503.24278, 2025.

Mingchen Zhuge, Changsheng Zhao, Dylan Ashley, Wenyi Wang, Dmitrii Khizbullin, Yunyang
Xiong, Zechun Liu, Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, et al. Agent-as-
a-judge: Evaluate agents with agents. arXiv preprint arXiv:2410.10934, 2024.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
to robotic control. In Conference on Robot Learning, pp. 2165-2183. PMLR, 2023.

13

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 EXPERIMENTAL SETUP
A.1.1 EXPERIMENTAL HYPERPARAMETERS

Environment and compute. Experiments were conducted on Ubuntu 22.04 with an Intel Core i9
(14th gen) CPU and an NVIDIA RTX A6000 GPU. In our observation, having at least 24 GB of
GPU memory is important for reliably reproducing our runs; with less memory, some models may
fail to load.

Evaluation protocol inside ManipEvalAgent. For each constructed task, ManipEvalAgent executes 5
trials by default. Agent builds the task scene and a set of targeted evaluation functions (e.g., distance
between the tool end-effector and the target object) to gather sufficient diagnostic signals; under this
design, five repetitions are typically adequate to form a stable judgment of a policy’s behavior on
that task. This setting is user-configurable to allow trading off overall evaluation fidelity against
wall-clock time.

Benchmark hyperparameters. We aim for fairness and alignment with official or widely used com-
munity implementations, then make minimal adjustments for cross-benchmark consistency. Con-
cretely, on RoboTwin ((Chen et al., [2025))) we follow the official repository and run 100 steps per
episode, with task-specific maximum-step thresholds. On LIBERO ((Liu et al.,[2023)), to stay con-
sistent with our RoboTwin protocol, we also run 100 steps per episode, rather than the 50-step cap
common in some related implementations (e.g., OpenVLA ((Kim et al.,[2024)))). LIBERO comprises
4 task suites, each with its own native maximum-step guidance tied to the longest demonstration
length in the training data; where such guidance exists.

A.1.2 FAIRNESS SETTINGS

To ensure fair accounting of evaluation cost across policies and benchmarks, we use a unified im-
plementation to record wall-clock time and number of samples. Concretely, we embed timing in-
strumentation based on Python’s t ime module directly inside the evaluation scripts, and we embed
a parallel counter for sampling. We keep these implementations identical across all policies and
benchmarks to avoid introducing confounding factors.

A.1.3 ERROR COUNTING PROTOCOL

We further explain how each type of error is counted. Specifically, for the Plan Agent, for each
user query we first ask experienced human researchers to provide a ground-truth decomposition
into sub-aspects, and then compare the set of sub-aspects produced by the Plan Agent with this
reference; if there are more than half omissions or incorrect decompositions, we count it as a failure
of the planning stage. For TaskGen Agents, human experts directly inspect the rendered task scenes:
whenever a scene does not match the intended sub-aspect, it is labeled as a task-generation error.

For ToolGen Agents, we construct a set of simple but targeted unit tests: in simulation we set up
scenes that contain only a few key components (e.g., only a hammer and a block), invoke each
generated tool function in turn, and check whether its output is correct (e.g., when the hammer
touches the block, whether the contact-checking function returns True); if the unit tests fail, the case
is attributed to a tool-generation error. Finally, for the Simulation Engine part, we count explicit
simulation-level anomalies, such as objects flying away. Through this procedure, we obtain the
system error breakdown shown in Fig. [6]

A.2 DISCUSSIONS ON EXPERIMENTS IN MAIN TEXT AND ADDITIONAL EXPERIMENTS
A.2.1 MORE DETAILS ABOUT EXPERIMENTAL RESULTS IN MAIN TEXT.

On evaluation time. Several factors influence the total evaluation time of a policy on a given sim-
ulation benchmark. Hardware configuration matters first; different setups yield different runtimes.

Second, the model’s own inference efficiency plays a role; some recent work ((Kim et al.| [2025))
focuses on speeding up policy inference, which is a promising direction. Third, task success rates

14

Under review as a conference paper at ICLR 2026

Table 4: Total evaluation time and sample count of ManipEvalAgent under the multi-task setting.

Models RoboTwin LIBERO Ours

RDT 11102 min, 2763623 samples 4909 min, 1073428 samples 97 min, 27037 samples
T 7900 min, 2445809 samples 4330 min, 992816 samples 68 min, 21745 samples

Table 5: Consistency between ManipEvalAgent and existing simulation benchmarks in the multi-
task setting. Table shows the percentage of results that fall within the exact range (left) or within the
error margin (right) across ten trials.

Dimension RDT o

S.R. (RoboTwin) 60% /80% 60% / 70%
S.R. (LIBERO Avg.) 70%/80% 60% / 100%
Spatial (LIBERO) 50%/90% 50% / 80%

Obj (LIBERO) 40% /90% 60% / 80%
Goal (LIBERO) 60% /100% 60% / 70%
Long (LIBERO) 60% / 100% 70% / 90%

affect runtime: when success is low, episodes often run to the configured maximum step cap, in-
creasing time. Fourth, average episode length varies across benchmarks and across suites within a
benchmark (e.g., the four groups in LIBERO ((Liu et al., [2023))), which also shifts overall time.
Finally, the simulation engine contributes a substantial and relatively fixed overhead, producing in-
herent time differences across benchmarks.

On evaluation accuracy. Setup: on each simulation benchmark, we randomly choose one task and
measure success rate as the result. On ManipEvalAgent, we follow the standard evaluation pipeline
but additionally require a single scalar score in [0,1], repeated 10 times. We compute the mean and
standard deviation over the 10 ManipEvalAgent runs, and compare the benchmark’s success rate to
the ManipEvalAgent mean. We regard the difference as accurate if it is within 1 standard deviation,
and acceptable if it is within 3 standard deviations.

A.2.2 EVALUATION ON MULTI-TASK SETTINGS

Single-task and multi-task are exposed as user-selectable settings. When the policy type is a VLA
(Vision-Language-Action) model, the user may opt for multi-task evaluation. This is because, given
training-resource constraints, many users still evaluate VLA models only in single-task settings.
The benchmark’s task suites are visible to ManipEvalAgent. Given current VLA capabilities, Ma-
nipEvalAgent strives to generate tasks that are as close as possible to the training task suites, echoing
recent discussions on VLA generalization ((Intelligence et al., 2025)).

Under multi-task evaluation, a simulation benchmark executes its standard protocol across all tasks.
In contrast, ManipEvalAgent, by virtue of its small-sample, multi-round, dynamic evaluation, needs
to probe only a few groups of tasks to reach reliable conclusions; as a result, the time cost is not
orders of magnitude higher than in the single-task setting. In our Table 4 and Table [5] we observe
that in the multi-task setting our framework likewise significantly shortens evaluation time while
achieving generally strong predictive accuracy across most dimensions.

We acknowledge that conducting broader studies over more benchmarks and policies in the multi-
task setting entails substantial effort and remains valuable future work.

A.2.3 HUMAN—AGENT AGREEMENT ON SUB-ASPECT PLANNING

To quantitatively measure the consistency between Plan Agent and researchers on sub-aspect de-
composition, we sample a set of user queries from the Open User Query dataset. Experienced
researchers annotate a set of sub-aspects for each query as the ground truth (with the final labels

15

Under review as a conference paper at ICLR 2026

Table 6: Human—Agent Agreement on Aspect Decomposition (sub-aspect level)

Model Precision
GPT-40 0.943
Gemini 1.5 Pro 0.927
GPT-40 mini 0.924

Table 7: VQA accuracy under different perturbations on RoboTwin 2.0.

Model Clean Scene Clutter Background Textures Lighting
GPT-40 0.997 0.989 0.992 0.994
Gemini 1.5 Pro 0.998 0.980 0.987 0.988
GPT-40 mini 0.984 0.984 0.996 0.985

obtained by majority vote across multiple annotators). We then use different models (GPT-40, Gem-
ini 1.5 Pro, GPT-40 mini) to drive Plan Agent, generate sub-aspect sets for the same queries, and
compute agreement with the human annotations at the sub-aspect level.

The results are shown in Table [These results indicate that the Plan Agent used in our system
is sufficiently aligned with human researchers at the sub-aspect level, and can therefore provide
reliable inputs for subsequent task generation and tool generation. It is worth noting that the Plan
Agent’s prompt is written by human experts, which injects domain knowledge into agent; thus, part
of the high agreement can be attributed to the prompt design.

A.2.4 VQA ACCURACY, HUMAN AGREEMENT, AND ROBUSTNESS TO PERTURBATIONS

In this subsection, we conduct a analysis of the VQA used in our system, examining their agree-
ment with human researcher annotations and their robustness under distribution shifts. We construct
perturbation conditions along three typical domain randomization axes in RoboTwin 2.0: beyond
the Clean setting, we inject task-irrelevant distractor objects on the table (Scene Clutter), with dis-
tractors sampled from RoboTwin-OD; randomize background and tabletop textures (Background
Textures) by sampling from a texture library that is loaded at run time in simulation; and randomly
vary lighting, including color temperature, type, number, position, and intensity. For each model, we
repeat the same VQA evaluation protocol under the four settings: Clean, Scene Clutter, Background
Textures, and Lighting.

We collect a set of evaluation clips in the RoboTwin 2.0 environment and have human researchers
annotate, in a binary manner, the key question for each clip (e.g., whether the tool gradually drifts),
which we treat as VQA ground truth. We then run three VLMs (GPT-40, Gemini 1.5 Pro, and
GPT-40 mini) on the same clips and queries, and record their VQA outputs, including both natural-
language descriptions and scalar scores. Based on these scores and human annotates, we compute
VQA classification accuracy at a fixed threshold and AUROC over all possible thresholds. As shown
in Tab.[7]and [§] VQA performance is overall strong, which we attribute to the fact that VQA tasks
in our system are intentionally simple and consistent, and to the iteratively refined prompt engineer-
ing performed by human experts during system development. The added perturbations only cause
slight degradation in VQA metrics, indicating that current VLMs already exhibit fairly robust visual
capabilities in these settings.

A.2.5 FURTHER CONSISTENCY STUDY: MANIPEVALAGENT VS. STANDARD SIMULATION
BENCHMARKS

We further examine how consistent ManipEvalAgent is with standard simulation benchmarks in
terms of policy ranking. For each benchmark and task cluster (RoboTwin short/medium/long hori-
zons; LIBERO-Object/Spatial/Goal/Long), we evaluate the same five policies (ACT, Diffusion Pol-
icy, DP3, 70, and RDT-1B), aggregate the default success-rate metric over all tasks in the cluster, and
derive a ranking of the five policies. We then compute Spearman’s rank correlation coefficient p be-

16

Under review as a conference paper at ICLR 2026

Table 8: VQA AUROC under different perturbations on RoboTwin 2.0.

Model Clean Scene Clutter Background Textures Lighting
GPT-40 0.982 0.976 0.980 0.980
Gemini 1.5 Pro 0.987 0.966 0.976 0.981
GPT-40 mini 0.972 0.975 0.983 0.972

Table 9: Policy ranking consistency between standard Simulation benchmarks and ManipEvalAgent.
We report Spearman’s rank correlation p with bootstrap confidence intervals (90% CI for 10 rollouts;
95% CI for 20 and 50 rollouts).

Setting 10 rollouts

20 rollouts 50 rollouts

p (90% CI)

p (95% CI)

p (95% CI)

RoboTwin (short, 0-500)
RoboTwin (medium, 600-1000)
RoboTwin (long, 1100+)

LIBERO-Object
LIBERO-Spatial
LIBERO-Goal
LIBERO-Long

0.83[0.75, 0.90]
0.86 [0.70, 0.90]
0.83[0.65, 0.90]
0.80[0.70, 1.00]
0.76 [0.65, 0.85]
0.81 [0.70, 0.90]
0.85[0.70, 0.90]

0.79 [0.65, 0.90]
0.81 [0.60, 0.90]
0.77 [0.70, 0.90]
0.91 [0.70, 1.00]
0.81 [0.65, 0.90]
0.73 [0.60, 0.85]
0.87[0.75, 1.00]

0.81[0.70, 0.90]
0.83[0.75, 0.90]
0.80[0.65, 1.00]
0.82[0.70, 0.90]
0.82 [0.60, 0.90]
0.79 [0.70, 0.90]
0.85[0.80, 0.90]

tween this ranking vector and the one induced by ManipEvalAgent, which focuses on the agreement
in relative ordering rather than the absolute scale of scores.

To quantify uncertainty, we report bootstrap confidence intervals (CI) on p. For settings with 10
rollouts per task we use 90% ClIs, while for 20 and 50 rollouts we report 95% ClIs. Across all
clusters, we follow each benchmark’s standard evaluation configuration and fix the environment
seed to 0. As shown in Table[9] the resulting rank correlations are consistently high and stable across
different rollout budgets, indicating strong agreement between ManipEvalAgent and conventional
simulation-based evaluations.

A.3 SYSTEM IMPLEMENTATION
A.3.1 SOME DETAILS ABOUT CODE GENERATION

RAG setup. We adopt a well-known approach in the area, LightRAG ((Guo et al., 2024)), as our
simulator document retrieval pipeline. For simulator documentation, we follow LightRAG’s process
to perform chunking and embedding, retrieve relevant chunks at query time, and have an agent
aggregate the results. Because index building and retrieval involve multiple LLM calls, we host
Qwen2.5-7B-Instruct locally as retriever, which avoids substantial OpenAlI API costs.

Other sources. For items like task code and tool code, we use document-level retrieval rather than
chunk-level retrieval.

A.3.2 DISCUSSIONS ABOUT SIMULATION ENGINES AND SIMULATION BENCHMARKS.

ManipEvalAgent is currently implemented on RoboTwin ((Chen et al.|[2025))). We follow the default
configurations of the simulation environments to collect data and train the models we use, tuning
performance to an acceptable level.

On LIBERO ((Liu et al.,[2023)), implementing ManipEvalAgent mainly requires adapting the task
generation (TaskGen) and tool generation (ToolGen) components. In LIBERO, tasks and scenes are
defined separately: on the one hand, BDDL files describe the task logic, including the object set,
layout constraints, initial states, and goal predicates, and serve as LIBERO’s standardized task spec-
ification; on the other hand, the Python-side Problem class is responsible for concrete scene con-
struction and execution logic, including loading assets, defining the workspace and camera views,
and implementing _check_success and other success-checking functions. Therefore, to realize
ManipEvalAgent’s task generation on LIBERO, we need to automatically synthesize both parts: we

17

Under review as a conference paper at ICLR 2026

must modify the corresponding BDDL task files, and also modify the Problem class. This process
involves substantial prompt engineering and engineering details to ensure a high success rate for
automatic task generation.

For tool generation, LIBERO provides a set of interfaces for probing states. BDDLBaseDomain
creates state detector objects for each object and stores them centrally; at the same time, LIBERO’s
built-in predicate system, eval_predicate_fn, performs logical judgments based on these state
objects. Building on this predicate-and-state interface, ManipEvalAgent’s ToolGen can automati-
cally synthesize various rule-based tool functions to check object relations, contact states, and so
on.

Overall, we have completed the basic adaptation of ManipEvalAgent on LIBERO, but we have not
yet reproduced experiments on LIBERO at the same scale and level of completeness as on RoboTwin
2.0, mainly because this experimental workload would be large and repetitive. By comparison,
RoboTwin 2.0’s interface design and framework structure are noticeably clearer and more friendly,
making it significantly easier to implement the various modules of ManipEvalAgent on RoboTwin
2.0 than on LIBERO.

A.3.3 CONSISTENCY ACROSS QUERIES AND POLICIES

To maintain stability and cross-query consistency across different evaluation instances, we adopt a
few simple design choices. First, in proposal stage, we maintain a historical evaluation database
that stores, for each past evaluation, the corresponding planning information, including the origi-
nal user query and its sub-aspects. When a new user query arrives, system retrieves similar past
queries from this repository and injects their planning results into Plan Agent’s context, allowing
Plan Agent to reuse existing decompositions for similar problems. This simple yet effective mecha-
nism significantly improves the stability and behavioral consistency of cross-query and cross-policy
evaluations.

Second, as described in Sec[3.3] generation stage, both for task generation and tool generation, relies
on retrieval-augmented generation (RAG): agents retrieve code snippets and other relevant artifacts
from dedicated task and tool repositories that best match the current query and its sub-aspects, and
then condition on these retrieved materials during generation. Since similar queries tend to trigger
similar retrieval results, this mechanism further preserves consistency across repeated evaluations,
causing the system to preferentially reuse a nearly identical family of task and tool definitions when
evaluating different policies, thereby yielding more stable and comparable evaluation behavior.

A.3.4 FAILURE MODES AND RECOVERY MECHANISMS

As described in Sec. .4l ManipEvalAgent inevitably encounters various types of failures. To pre-
vent these failures from disrupting the overall evaluation process, we design dedicated handling
mechanisms for each stage. First, in the planning stage, if the set of sub-aspects produced by the
Plan Agent disagrees with the human-annotated ground truth from the open-ended query dataset on
more than half of the elements, we classify it as a planning failure: the current planning attempt is
terminated, the case is logged as a failure in database, and a new planning attempt is started.

Second, in task generation, we employ a visual self-check to inspect the rendered scenes. If the
scene is detected to be inconsistent with the intended sub-aspects or exhibits clearly abnormal object
configurations, it is treated as a task-generation failure, and TaskGen Agents is required to regenerate
the scene.

For tool generation, we use a unit test suite to validate the generated tool functions: if the unit tests
fail, it trigger regeneration; if unexpected exceptions occur during execution, it terminate current
evaluation round, record the failure, and restart that evaluation round.

As for issues originating from the simulation engine itself, such failures also occur in traditional
simulation benchmarks; we likewise treat them uniformly as policy execution failures. These mech-
anisms ensure that the system maintains overall robustness and usability even in the presence of
localized failures.

18

Under review as a conference paper at ICLR 2026

A.3.5 EVALUATION SIGNAL FLOW: TOOL FUNCTIONS, VQAS, AND PLANNING

In ManipEvalAgent, VQA based on vision-language models (VLMs) and Python tool functions
built on simulator interface jointly provide information about policy execution. First, Python tool
functions directly obtain state information (e.g., whether the hammer is in contact with the block)
and return corresponding scalar results. For informations that are better judged from video, ToolGen
agents formulates natural-language queries and feeds them, together with informations returned by
tool functions and a set of key frames from the execution video (the first and last frames plus a
few intermediate frames), into VLM to perform all VQA. Finally, all signals, including the scalar
outputs from tool functions and answers returned by VQA, are aggregated and passed to Plan Agent,
which consolidates and interprets them to update the evaluation of the current sub-aspect and to drive
subsequent rounds of the multi-step evaluation process.

A.4 OPEN USER QUERY DATASETS

We construct an open-ended user query dataset of a few hundred entries, which is used both to drive
ManipEvalAgent and to evaluate the Plan Agent. Each data point consists of two parts: (i) a user
query, and (ii) a sub-aspect set (Sub-aspect Ground Truth) annotated by human researchers.

A.4.1 EXAMPLES OF OPEN USER QUERY DATASETS

The dataset is curated around common user concerns in robotic manipulation and spans multiple
categories. The open-ended user query dataset includes both single-task and multi-task settings.
Below we present a subset of the dataset to illustrate its structure and contents.

Generalization:

How well does the policy generalize within the task overall?

How robust is the pipeline to natural scene variation?

How sensitive is success to object/scene parameter shifts?

How robust is it to minor physics/modeling mismatches?

How brittle is behavior at workspace limits?

When the task instruction is paraphrased or shortened, does
execution remain consistent?

With minimal or differently worded prompts, does the policy still
achieve the intended goal?

Generalization-Object:

How broadly does the policy generalize across pose and instance
variations?

Is performance tied to a canonical pose or truly pose-invariant?

Is success stable when the visual mesh changes but the collision
shape is fixed (and vice versa)?

Does the policy overfit to specific model IDs or object textures?
Is target identification robust when color/texture shifts but shape
is constant?

Do glossy or reflective appearances impact control or only

perception?

Are failure modes under size/appearance changes predictable and
repeatable?

Are generalization limits similar across pose, size, and appearance
axes?

How robust is the policy when the object starts at varied positions
and orientations on the workspace?

As the object’s initial pose deviates further from nominal, does
success degrade smoothly or show thresholds?

Can the policy recover when the object’s yaw/roll is unfavorable
for the default grasp?

How well does the policy transfer to different instances of the
same class (style/shape variants) without retuning?

19

Under review as a conference paper at ICLR 2026

With look-alike object variants, does the policy maintain
consistent success and timing?

If the object is slightly smaller or larger than trained, does the
task still complete?

How sensitive is grasp selection to modest scale changes of the
object?

Does the policy remain reliable when object color and surface
texture change?

Under matte vs. glossy finishes, how stable are perception and
downstream manipulation?

How does success change when object mass varies across
light/nominal/heavy?

With convex vs. non-convex collision modeling of the object, do
contact stability or failure modes differ?

Generalization—Scene:

Do illumination shifts (bright <+ dim) change outcomes?

Do color-temperature changes affect perception?

Do specular highlights trigger misdetections?

Do workspace size or table height changes alter success?

Are edge or corner placements handled reliably?

Do unseen backgrounds change recognition confidence?

Do textured walls or props induce false positives?

Across ambient brightness changes and different
directional/point-1light colors/intensities, does performance hold
up?

Under time-varying lighting (flicker/jitter), does detection
confidence drop or behavior become erratic?

When table height or reach margins change, can the policy still
execute the task reliably?

Do different tabletop textures (e.g., low- vs. high-frequency
patterns) affect perception or placement accuracy?

With unseen background textures, does the policy maintain
recognition and control quality?

How sensitive is the pipeline to cluttered vs. clean backgrounds?
If the camera viewpoint shifts slightly (distance/height/tilt),
does the policy remain accurate?

Under small pose errors or mild jitter, can the system still
localize and act robustly?

How dependent is success on viewpoint choice?

Performance:

Does completion time stay stable (low variance) across seeds and
perturbations?

Are grasp retries rare, and are recovery attempts short?

Does planning or inference latency remain bounded as scene
complexity increases?

During transport, does the object remain stable (no sway or
micro-slips)?

Do path-length ratios (actual/shortest) stay near 1 under
perturbations?

Does performance degrade gracefully as difficulty increases?
Across different feasible contact faces or approaches, how stable
are grasps (slip, drop, post—-grasp drift)?

Are the planned or executed paths near-minimal, or do detours
emerge under perturbations?

How does path length change with harder placements (edges or
corners) ?

Are end-effector motions smooth?

20

Under review as a conference paper at ICLR 2026

Do jerk or acceleration spikes appear near contact or tight
clearances?

Does the policy exhibit unnecessary back-and-forth motions, and how
much time do they add?

When conditions shift, does redundancy increase, indicating
uncertainty or replanning?

Safety:

Does the policy consistently respect safety zones and boundaries?
With safety zones and physical boundaries (table edge, wall, camera
mast), are there any incursions or unintended contacts?

Near constrained areas, does the policy proactively reroute without
grazing obstacles?

In dense clutter, does the policy avoid near-misses with walls,
edges, or masts while still completing the task?

Are there transient impacts or speed bursts that exceed safety
thresholds during contact or near obstacles?

Does the policy maintain a consistent minimum clearance from
obstacles throughout the motion?

Are contacts limited to intended objects only (no incidental bumps
with scene geometry)?

Are grasp or open events gated to safe zones (no releases over
edges or above non-targets)?

Are speed reductions near boundaries smooth (no oscillatory slowing
or speeding)?

Do lighting or background changes increase risky behavior (e.g.,
grazing obstacles)?

When both arms move, do inter-arm clearances stay within safe
bounds?

Robustness to Distractors:

How robust is target selection under clutter?

Do look-alikes systematically derail selection?

Is planning still collision—-free amid nearby objects?

How viewpoint-sensitive is performance with clutter present?

Do purely visual (non-physical) distractors cause errors?

Are failures concentrated in specific layouts or counts?

With additional task-irrelevant objects of varying types and
counts, does the policy avoid misgrasp and confusion?

As distractors move closer to the object, can the system still
select and manipulate the correct target consistently?

When distractors share key affordances (e.g., handles), does the
policy still pick the intended target?

Do look-alike objects (color/shape/size) cause target selection
errors?

Is there a tipping point in distractor count where behavior
degrades sharply?

As distractors touch or overlap the target, can the system still
localize and act reliably?

When key target features are partially occluded, does performance
remain stable?

With multiple plausible objects present, does the policy follow the
instruction’s intent (the \right" target)?

Multi-Task:

Can the policy correctly understand the affordances of the
manipulated object?

Can the policy use substitute tools to accomplish similar tasks?

21

Under review as a conference paper at ICLR 2026

Under partial occlusion, does execution across different tasks
remain successful?

What is the policy’s success rate across grasp-and-place tasks?
Given different task goals for the same object, can the policy
adapt its manipulation accordingly?

In a multi-task setting, is the policy’s behavior consistent under
variations in language phrasing (synonyms or simplifications)?
Across the task set, can the policy maintain a consistent
understanding of object categories and their basic affordances?
Is the understanding and execution of basic spatial relations
consistent across tasks?

A.4.2 TAXONOMY

To systematically organize the queries, we derive a hierarchical taxonomy based on common con-
cerns in robotic manipulation research. At the top level, we define five coarse categories: gener-
alization, performance, safety, robustness, and multi-task. The multi-task category is reserved for
queries that specifically target the evaluation of multi-task policies (most of which are VLAs). We
further refine the taxonomy into multiple levels. For example, under “generalization” we distinguish
between object generalization and scene generalization, and so on; object generalization is further
split into positional generalization and appearance generalization, and so on.

A.4.3 ANNOTATION PROTOCOL AND INTER-ANNOTATOR AGREEMENT.

For the annotation process, four graduate students or PhD students specializing in robotics partic-
ipate as annotators. For each user query, annotators are asked to provide a set of sub-aspects. We
then apply a majority-vote scheme to decide which sub-aspects are included in the final dataset. In
cases where there is a tie, we prioritize the opinion of the annotator with more domain experience
(higher seniority) as the arbiter.

A.5 DETAILED COMPARISON BETWEEN SIMULATION BENCHMARKS AND
MANIPEVALAGENT

Tab. summarizes the differences between existing static simulation benchmarks and Ma-
nipEvalAgent in certain evaluation characteristics. Traditional benchmarks rely on pre-defined tasks
and evaluation processes, ensuring Absolute Correctness, but they cannot adjust the evaluation con-
tent based on user queries, and their outputs are mostly limited to a single scalar success-rate score.
Additionally, they lack Dynamic Generation & Evaluation and the ability to Open Tool-Use. In
contrast, ManipEvalAgent drives evaluation through natural language, generates tasks and tools as
needed, and supports the integration of rule-based metrics with external tools such as VLM/VQA.
This enables a more flexible, analytical evaluation process while maintaining reasonable reliability.

Overall, Tab. [10|demonstrates the complementarity between ManipEvalAgent and traditional simu-
lation benchmarks in evaluation capabilities. Both have their strengths and can play important roles
in addressing different research needs. ManipEvalAgent is a complementary evaluator to traditional
benchmarks, rather than a new benchmark.

A.6 DISCUSSION ON SOME RELATED WORK AND FUTURE WORK

A.6.1 TASK AND ASSET GENERATION WITHIN SIMULATION

Recently, several researchers have begun investigating generation tasks within simulation environ-
ments.

Some works study task scene generation in simulators ((Wang et al.|, 2023b;c)). ManipEvalAgent
draws on several sound engineering practices from these works and builds a more complete frame-
work that couples proposal, generation, and execution into an evaluation loop.

Other works go further to explore 3D asset generation within simulation ((Katara et al.| [2024)) for
creating manipulable objects. At present, ManipEvalAgent can only retrieve and use existing assets

22

Under review as a conference paper at ICLR 2026

Table 10: Comparison of Evaluation Characteristics

Property Existing Simulation benchmarks ManipEvalAgent
User-Query Driven Evaluation
Interpretability Output
Dynamic Generation & Evaluation
Open Tool-Use
Absolute Correctness

A X X X X
SSENENEN

available in the simulator. We consider integrating an asset-generation pipeline into ManipEvalA-
gent to be a valuable direction for future work.

A.6.2 AUTOMATING MORE STAGES OF ROBOTIC MANIPULATION RESEARCH

ManipEvalAgent can be viewed as a simulation of how an experienced human researcher evaluates
manipulation policies, aiming to automate this process. In robotic manipulation research, many ad-
ditional stages could be automated by multi-agent systems, including (but not limited to) analyzing
user requirements, designing and implementing manipulation policies, collecting data, training poli-
cies, and iteratively refining them based on evaluation results, thereby forming a relatively closed-
loop automated research workflow. Recent work ((Trirat et al., 2024; Tang et al. 2025))) has begun
to explore automated research, providing useful references for us.

A.6.3 SYSTEM USABILITY: PORTABILITY, STABILITY, AND REAL-WORLD DEPLOYMENT

Although ManipEvalAgent only needs to interact with a small set of well-defined interfaces to be
deployed on different simulation engines, migrating across simulators still requires a certain amount
of manual adaptation by human researchers. An interesting direction is to build a simulator-agnostic
automatic evaluation system, where the evaluation process primarily operates at the GUI level, hid-
ing the details of the underlying simulator interfaces. The rapid progress of GUI agents and coding
agents supports the feasibility of this idea ((Ye et al., 2025} Zhang et al.,2025a; Wang et al., 2024d;
Zhang et al.|2024b)).

From a longer-term perspective, a evaluation system that supports natural-language input/output
and achieves behavior that is close to 100% stable could in principle subsume both current sim-
ulation benchmarks and our system in terms of evaluation capability. Thus, a valuable research
direction is how to construct a unified framework that combines the stability and reproducibility of
existing simulation benchmarks with the natural-language-driven, flexible evaluation capabilities of
ManipEvalAgent.

The current version of ManipEvalAgent is built purely on simulation engines and relies on them to
construct scenes. Some recent work ((Zhou et al., 20255 [Li et al., 2024b)) has started to investigate
how to automate evaluation of robotic manipulation policies in the real world, and these attempts
provide inspiration for eventually deploying ManipEvalAgent in real world environments.

A.7 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models to assist with language polishing and minor editorial improvements
to this manuscript, including grammar, phrasing, and clarity.

23

	Introduction
	Related Work
	Robotic Manipulation Policy
	Datasets and Benchmarks for Robotic Manipulation
	LLM-based Agent

	Method
	Preliminaries
	Proposal Stage
	Generation Stage
	Task Generation
	Tool Generation

	Execution Stage

	Experiments
	Quantitative Experiments on Existing Robotic Manipulation Benchmarks
	Experimental Setup
	Results Analysis

	Qualitative Experiments on Open-Ended User Query in Robotic Manipulation
	Open-Ended User Query Dataset in Robotic Manipulation
	Open-Ended User Query Evaluation in Robotic Manipulation

	Ablation Study
	System Error Breakdown

	Conclusion
	Appendix
	Experimental Setup
	Experimental Hyperparameters
	Fairness Settings
	Error Counting Protocol

	Discussions on Experiments in Main Text and Additional Experiments
	More Details about Experimental Results in Main Text.
	Evaluation on Multi-task Settings
	Human–Agent Agreement on Sub-Aspect Planning
	VQA Accuracy, Human Agreement, and Robustness to Perturbations
	Further Consistency Study: ManipEvalAgent vs. Standard Simulation Benchmarks

	System implementation
	Some details about code generation
	Discussions about simulation engines and simulation benchmarks.
	Consistency Across Queries and Policies
	Failure Modes and Recovery Mechanisms
	Evaluation Signal Flow: Tool Functions, VQAs, and Planning

	Open user query datasets
	Examples of Open user query datasets
	Taxonomy
	Annotation protocol and inter-annotator agreement.

	Detailed Comparison Between Simulation Benchmarks and ManipEvalAgent
	Discussion on some related work and future work
	Task and Asset Generation within Simulation
	Automating More Stages of Robotic Manipulation Research
	System Usability: Portability, Stability, and Real-World Deployment

	The Use of Large Language Models (LLMs)

