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Abstract

Offline safe reinforcement learning (RL) aims to train a policy that satisfies con-
straints using a pre-collected dataset. Most current methods struggle with the
mismatch between imperfect demonstrations and the desired safe and rewarding
performance. In this paper, we mitigate this issue from a data-centric perspective
and introduce OASIS (cOnditionAl diStributIon Shaping), a new paradigm in
offline safe RL designed to overcome these critical limitations. OASIS utilizes a
conditional diffusion model to synthesize offline datasets, thus shaping the data dis-
tribution toward a beneficial target domain. Our approach makes compliance with
safety constraints through effective data utilization and regularization techniques to
benefit offline safe RL training. Comprehensive evaluations on public benchmarks
and varying datasets showcase OASIS’s superiority in benefiting offline safe RL
agents to achieve high-reward behavior while satisfying the safety constraints, out-
performing established baselines. Furthermore, OASIS exhibits high data efficiency
and robustness, making it suitable for real-world applications, particularly in tasks
where safety is imperative and high-quality demonstrations are scarce. More details
are available at the website https://sites.google.com/view/saferl-oasis/home.

1 Introduction
Offline Reinforcement Learning (RL), which aims to learn high-reward behaviors from a pre-collected
dataset [1, 2], has emerged as a powerful paradigm for handling sequential decision-making tasks
such as autonomous driving [3, 4, 5, 6], and robotics [7, 8, 9, 10, 11]. Although standard offline RL
has achieved remarkable success in some environments, many real-world tasks cannot be adequately
addressed by simply maximizing a scalar reward function due to the existence of various safety
constraints that limit feasible solutions. The requirement for safety, or constraint satisfaction, is
particularly crucial in RL algorithms when deployed in real-world tasks [12, 13, 14, 15, 16, 17, 18, 19].

To develop an optimal policy within a constrained manifold [20, 21], offline safe RL has been actively
studied in recent years, offering novel ways to integrate safety requirements into offline RL [22].
Existing research in this area incorporates techniques from both offline RL and safe RL, including the
use of stationary distribution correction [23, 24], regularization [25, 26], and constrained optimization
formulations [27]. Researchers have also proposed the use of sequential modeling methods, such as
the decision transformer [28, 29] and the decision diffuser [30, 31] to achieve advantageous policies
and meet safety requirements.

Although these methods show promise, it is difficult to handle state-action pairs that are absent from
the dataset, which is known notably as out-of-distribution (OOD) extrapolation issues [31, 32, 33,
34, 35, 36, 37]. To solve this, many works utilize regularization methods to push the policy toward
behavior policy to achieve pessimism [35, 36]. However, this approach worsens the situation when
the dataset is imbalanced and biased: regularization by imperfect demonstrations such as datasets
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composed predominantly of low-reward data or containing few safe trajectories collected using unsafe
behavior policies. This regularization also leads to another challenge: striking the optimal balance
between learning objectives such as task utility efficiency and safety requirements, leading to reward
degradation or aggressive behavior [28, 38, 39].
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Figure 1: An example of distribution shaping
in offline safe RL. We generate a low-cost
and high-reward dataset from the original
dataset for subsequent RL training.

To address these challenges, we introduce a data-
centric learning paradigm in offline safe RL, OASIS
(cOnditionAl diStributIon Shaping), which focuses on
improving the training dataset quality by steering the
offline data distribution to a beneficial target domain
as shown in Fig. 1. OASIS distills knowledge from
the imperfect dataset, and generates rewarding and
safe data using a conditional diffusion model accord-
ing to the safety preference to benefit offline safe RL
training. This data-centric approach is parallel to and
compatible with general model-centric offline safe RL
algorithms which emphasize improvements to the learning algorithm and model architecture. The
key contributions are summarized as follows.

1. Identification of the safe dataset mismatch (SDM) problem in offline safe RL. We identify the
mismatch between the behavior policy and the target policy and investigate the underlying reasons
for performance degradation with this condition.

2. Introduction of the OASIS method to address the SDM problem. To the best of our knowledge,
this is the first successful application of a distribution shaping paradigm within offline safe RL. Our
theoretical analysis further provides insights on performance improvement and safety guarantees.

3. A comprehensive evaluation of our method across various offline safe RL tasks. The
experiment results demonstrate that OASIS outperforms baseline methods in terms of both safety and
task efficiency for varying tasks and datasets.

2 Related Work

Offline RL. Offline RL addresses the limitations of traditional RL, which requires interaction with the
environment. The key literature on offline RL includes BCQ [35], which mitigates the extrapolation
error using a generative model, and CQL [40], which penalizes the overestimation of Q-values for
unseen actions. BEAR [41] further addresses the extrapolation error by constraining the learned policy
to stay close to the behavior policy. OptiDICE [24] directly estimates the stationary distribution
corrections of the optimal policy, and COptiDICE [23] extends the method to the constrained
RL setting. Recent advances have increasingly focused on the use of data generation to improve
policy learning. S4RL [42] shows that surprisingly simple augmentations can dramatically improve
policy performance. [43] explores leveraging unlabeled data to improve policy robustness, while [44]
proposes survival instincts to enhance agent performance in challenging environments. Counterfactual
data augmentation is another promising direction in offline RL [45, 46, 47, 48], highlighting the
potential of data generation to significantly improve efficiency and effectiveness.

Safe RL. Safe RL is formulated as a constrained optimization to maximize reward performance while
satisfying the pre-defined safety constraints [20, 49, 50, 51, 52, 53, 54, 55]. Primal-dual framework
is one common approach to solve safe RL problem [56, 57, 58, 59, 60, 61, 62, 63]. Another line of
work for safe RL is to extend to offline settings, which learn from a fixed dataset to achieve both high
reward and constraint satisfaction [64, 29]. Among them, [26, 65, 66, 67] tailor online prime-dual-
style algorithms to reduce the out-of-distribution issue in the offline setting. [28, 68] use decision
transformer [69] to avoid value estimation and exhibit consistent performances across various tasks.
In addition to these Model-centric approaches, Data-centric approaches, which emphasize improving
or optimizing the quality of the dataset used for model training [70, 71, 72, 73], have gained more
attention in recent studies. While some previous work proposed methods for learning from safe
demonstration [28, 74] or relabeling data to achieve conservativeness [28], how to systematically
curate datasets for offline safe learning remains a largely unexplored area.

Diffusion Models for RL. Diffusion models have recently gained attention in RL for their capabilities
in planning and data generation [75, 76, 77, 78]. Specifically, Diffuser [79] uses a diffusion process
to plan the entire trajectory in complex environments. [80] extends this to the Decision Diffuser,
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which conditions the diffusion process on specific goals and rewards to improve decision-making.
SafeDiffuser [81] and FISOR [31] enhance safety by ensuring the planned trajectories satisfying
constraints. Combined with the data augmentation capability of diffusion models, AdaptDiffuser [82]
achieves state-of-the-art results on offline RL benchmarks. [83] proposes Synthetic Experience
Replay, leveraging diffusion models to create synthetic experiences for more efficient learning. [84]
demonstrates that diffusion models are effective planners and data synthesizers for multi-task RL,
showcasing their versatility and efficiency. In this work, we investigate the power of diffusion models
for safe RL, where the balance between reward and cost presents further complexities.

3 Problem Formulation
3.1 Safe RL with Constrained Markov Decision Process

We formulate Safe RL problems under the Constrained Markov Decision Process (CMDP) frame-
work [85]. A CMDPM is defined by the tuple (S,A,P, r, c, γ, µ0), where S ∈ Rm is the state space,
A ∈ Rn is the action space, P : S ×A× S −→ [0, 1] is the transition function, r : S ×A× S −→ R
is the reward function, c : S × A × S −→ R≥0 is the cost function, γ is the discount factor, and
µ0 : S −→ [0, 1] is the initial state distribution. Note that this work can also be applied to multiple-
constraint tasks, but we use a single-constraint setting for easy demonstration. A safe RL problem is
specified by a CMDP and a constraint threshold κ ∈ [0,+∞). Denote π ∈ Π : S × A → [0, 1] as
the policy and τ = {(s1, a1, r1, c1), (s2, a2, r2, c2), . . . } as the trajectory. The stationary state-action
distribution under the policy π is defined as dπ(s, a) = (1 − γ)

∑
t γ

t Pr(st = s, at = a). The
reward and cost returns are defined as R(τ) =

∑
τ r, and C(τ) =

∑
τ c. The value function is

V π
f (µ0) = Eτ∼π,s0∼µ0

[
∑∞

t=0 γ
tft], f ∈ {r, c}, which is the expectation of discounted return under

the policy π and the initial state distribution µ0. The goal of safe RL is to find the optimal policy π∗

that maximizes the expectation of reward return while constraining the expectation of cost return to
the threshold κ:

π∗ = argmax
π

Eτ∼π

[
R(τ)], s.t. Eτ∼π

[
C(τ)] ≤ κ. (1)

3.2 Regularized offline safe RL

For an offline safe RL problem, the agent can only access a pre-collected dataset D = ∪iDi, where
Di ∼ πB

i is collected by the behavior policy πB
i ∈ ΠB . To solve the problem in Eq. (1), we convert

the constraint optimization problem into an unconstrained form:
(π∗, λ∗) = argmax

λ
min
π
J (π, λ), J (π, λ) = −Eτ∼πR(τ) + λ(Eτ∼πR(τ)− κ). (2)

The primal-dual-based algorithm solves the optimal policy π∗ and the dual variable λ∗ by updating
(π, λ) iteratively [86, 23, 66]. In offline safe RL tasks, a regularization term is usually introduced to
prevent the action OOD issue [87], that is, the objective is converted to:

(π∗, λ∗) = argmax
λ

min
π
Joff(π, λ), Joff(π, λ) = J (π, λ) + wL(π, πB), (3)

where w > 0 is a constant weight, L(π, πB) is a regularization term and πB is the empirical behavior
policy and can be viewed as a mixture of {πB

i }. Practically, regularization is formulated as the MSE
regularization [88] or the evidence lower bound regularization [35, 41]. In offline safe RL, there
are two main challenges: (1) Distribution shift [25]. The agent has poor generalizability when
facing OOD state-action pairs during online evaluation; and (2) Efficiency-safety performance
balancing [28]. The agent tends to be over-conservative or aggressive when overestimating or
underestimating the safety requirements.

4 Method
In this section, we first identify the safe dataset mismatch (SDM) problem, which leads to performance
degradation when solving the regularized offline safe RL objective in Eq. (3). Then we present the
proposed OASIS (cOnditionAl diStributIon Shaping) method to solve this problem. In contrast to
the model-centric safe RL approaches that focus on optimizing policy update process and network
architecture, OASIS is a data-centric learning method that aims to improve the quality of the dataset,
thus benefiting offline safe RL training. The OASIS method utilizes the diffusion model to realize
conditional distribution shaping, solving the challenges mentioned above, thus benefiting offline safe
RL training. Following the proposed algorithm, we provide a theoretical guarantee of the safety
performance of the policy learned in this paradigm.
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4.1 Safe Dataset Mismatch Problem
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Figure 2: D1 is a conservative dataset,
and D2 is a tempting dataset. Each point
represents (C(τ), R(τ)) of a trajectory
τ in the dataset.

The regularized offline safe RL objective in Eq. (3) pushes
policy to behavior policy to prevent action OOD is-
sues [36]. When given an imperfect dataset, the state-
action distribution deviates from the optimal distribution,
and the SDM problem arises: if the behavior policy is too
conservative with low costs and low rewards, it leads to
task efficiency degradation; if the behavior policy is too
aggressive with high costs and high rewards, it leads to
safety violations. To further investigate the SDM problem
and the effect of dataset distribution on offline safe RL,
we define the tempting dataset and conservative dataset,
which are based on tempting and conservative policies:

Definition 1 (Tempting policy [51] and conservative pol-
icy). The tempting policy class is defined as the set of
policies that have a higher reward return expectation than
the optimal policy, and the conservative policy class is
defined as the set of policies that have lower reward and
cost return expectations than the optimal policy:

ΠT := {π : V π
r (µ0) > V π∗

r (µ0)}, ΠC := {π : V π
r (µ0) < V π∗

r (µ0), V
π
c (µ0) < V π∗

c (µ0)}. (4)

Intuitively, a tempting policy is a more rewarding but less safe policy than the optimal one, and a
conservative policy is with lower cost but less rewarding. According to these policies, we define two
types of datasets:

Definition 2 (Tempting and conservative dataset). For an offline dataset Di ∼ πi, if πi ∈ ΠB ∩ΠT ,
then the dataset is tempting; if πi ∈ ΠB ∩ΠC , then the dataset is conservative.

Staying within the tempting dataset distribution results in tempting (unsafe) behavior, while staying
within the conservative dataset distribution causes reward degradation. A theoretical analysis of
performance degradation due to the SDM problem is presented in Sec. 4.4. Fig. 2 illustrates examples
of both conservative and tempting datasets.

(a) Full dataset

(c) Reweighting experiment results

(b) Tempting dataset

Figure 3: (a) Reweighting in the dataset with
comprehensive coverage. (b) Reweighting in
the tempting dataset. (c) Performance evalua-
tion with different weights and datasets.

It is important to note that tempting and conservative
datasets are prevalent in offline safe RL since optimal
policies are rarely available for data collection. The
SDM problem is a distinct feature of offline safe RL,
indicating that training the policy on either tempting
or conservative datasets will violate safety constraints
or result in sub-optimality, both of which are unde-
sirable. Therefore, addressing the SDM problem is
essential for the development of regularized offline
safe RL algorithms.

4.2 Mitigating the Safe Dataset Mismatch

Inspired by recent research works on data-centric
learning [70], which emphasizes the quality of data
used for training the agent, we focus on enhancing
the data pipeline to ensure the agent learns effectively
instead of modifying the RL algorithm or model ar-
chitecture. We propose to use the distribution shaping
of the dataset to mitigate the SDM problem, that is,
generating a new dataset Dg by reshaping the orig-
inal data distribution. As shown in Fig. 1, the key
idea is to adjust the dataset distribution towards the optimal distribution under π∗, reducing the
distribution discrepancy and mitigating the SDM problem, thus both mitigating the action OOD issue
and balancing efficiency and safety in offline safe RL.
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Figure 4: OASIS: a data-centric approach for offline safe RL. Conditioned on the human preference,
OASIS first curates an offline dataset with a conditioned diffusion data generator and learned labeling
models, then trains safe RL agents with this generated dataset.

Among the data-centric algorithms, Dataset reweighting (weighted sampling) which assigns different
sampling weights to data points, is a straightforward way to shape the data distribution [39, 89]. In
the offline RL domain, researchers proposed methods to assign high weights to data that achieve high
rewards and superior performance in many RL tasks [39, 89].

To validate this idea, we deploy a Boltzmann energy function considering both the reward and the
cost for the reweighing strategy to solve the problem (see Appendix B for details). The experimental
results, shown in Fig. 3, validate the effectiveness of this distribution shaping method when the
coverage of the dataset is complete.

However, for a more general case where we can only access the low-quality dataset (e.g., tempting
datasets in Fig. 3), simply performing data reweighting does not work well due to the absence of
necessary data. Thus, we propose to use a conditional generative model for more flexible distribution
shaping, which generates new data by stitching sub-optimal trajectories for offline training.

4.3 Constraint-Conditioned Diffusion Model as Data Generator

To overcome the limitation of reweighing methods, we propose using diffusion models to generate
the dataset that fits the target cost limit to achieve distribution shaping. In the following, we introduce
the details of the generator training and dataset generation phases.

Training. In previous works [82, 79], the trajectory planning in offline RL can be viewed as the
sequential data generation: τ = [s0, s1, . . . , sL−1], where τ is a subsequence of trajectory with
length L. Denote xk(τ ) and y(τ ) as the k-step denoising output of the diffusion model and the
denoising conditions such as reward and cost returns, respectively. Then the forward diffusion process
is to add noise to xk(τ ) and gradually convert it into Gaussian noise:

q (xk(τ) | xk−1(τ)) := N
(
xk(τ);

√
1− βkxk−1(τ), βkI

)
, k = 1, ...,K (5)

where βk is a pre-defined beta schedule, K is the total denoising timestep. Then the trainable
denoising step aims at gradually converting the Gaussian noise back to a valid trajectory:

pθ (xk−1(τ) | xk(τ),y(τ )) := N (xk−1(τ) | µθ (xk(τ),y(τ), k) ,Σk) , (6)

where θ is the trainable parameter. We use a simplified surrogate loss [90] for optimization:

Ldenoise := Ex0(τ)∼q,ϵ∼N (0,I)

[
∥ϵ− ϵθ (xk(τ),y(τ), k)∥2

]
. (7)

In this work, we use the classifier-free guidance [91] for conditional data generation. The condition
y(τ) in Eq. (6) and Eq. (7) is set to y(τ) = [C(τ), R(τ)]. Thus, the denoising process depends on
the target reward and cost returns of the planned subtrajectory. During training time, the diffusion
model learns both an unconditional denoising core ϵθ (xk(τ),∅, k) and a conditional denoising
core ϵθ (xk(τ),y(τ), k). We adopt masking [80] for the training to zero out the condition of one
training trajectory and categorize it as the ∅ class with probability 0 < p < 1. Within the given
raw dataset, we also train an inverse dynamics model f̂ : S × S −→ A, and reward and cost models
r̂(s, a, s′), ĉ(s, a, s′) : S ×A× S −→ R for labeling.
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Generation. After obtaining a trained model, the next step is to generate a new dataset following the
conditions. For diffusion model inference, the denoising core ϵθ (xk(τ),y, k) is calculated by:

ϵθ (xk(τ),y(τ), k) = ϵθ (xk(τ),∅, k) + wα (ϵθ (xk(τ),yc(τ), k)− ϵθ (xk(τ),∅, k)), (8)

where wα > 0 is a constant guidance scale and yc := [Ĉ, R̂] is the generation condition, we set
Ĉ ≤ κ to align safety preference. For guided generation, we fix the initial state, which means that we
replace the initial state of each k-step noised trajectory as xk[0] = x0[0]

1.

Algorithm 1: OASIS (dataset generation)
Input: Raw dataset D, safety threshold κ
Output: Generated sub-trajectory τg

1: Sample a initial state: s ∼ D
2: Get initial noisy sub-trajectory:

xk = [s, s1, ..., sL−1], si ∼ N (0, I)
3: Determine the condition yc;
4: for k = K, ..., 1 do
5: Calculate ϵ (xk,yc, k) (8);
6: Inverse sampling sequence xk−1 (6)
7: end for
8: Get actions, rewards, and costs from x0;
9: Return: trajectory τg

After generating one subtrajectory τg = x0, we
can get the state and action sequence sg = τg[:

−1], s′g = τg[1 :], ag = f̂(sg, s
′
g), then label

the data rg = r̂(sg, ag, s
′
g), cg = ĉ(sg, ag, s

′
g).

Finally, we get a generated dataset Dg =
{sg, ag, s′g, rg, cg} with |τg| − 1 transition pairs.
With this new dataset, we can further train offline
safe RL agents.

In this work, we consider BCQ-Lag [35, 86] as the
base offline safe RL algorithm. The process of
generating one subtrajectory τg is summarized in
Algorithm 1. More details of the implementation
are available in Appendix C.

4.4 Theoretical analysis

We first investigate how the distribution mismatch degrades the policy performance on constraint
satisfaction. Suppose that the maximum one-step cost is Cmax = maxs,a c(s, a). Based on Lemma 6
in [92] and Lemma 2 in [93], the performance gap between the policy π learned with the dataset D
and the optimal policy is bounded by

|V π
c (µ0)− V ∗

c (µ0)| ≤
2Cmax

1− γ
DTV(d

D(s)∥d∗(s)) + 2Cmax

1− γ
Ed∗(s)[DTV(π(a|s)∥π∗(a|s))], (9)

where dD(s), d∗(s) denote the stationary state distribution of the dataset and optimal policy. The
proof is given in Appendix A.1. Therefore, a significant mismatch between the dataset and the
optimal policy results in both a substantial state distribution TV distance and a large policy shift from
the optimal one, which can cause notable performance degradation, especially when the offline RL
algorithm enforces the learned policy to closely resemble the behavior policy of the offline data.

Then we provide a theoretical analysis of how our method mitigates this mismatch issue by shrinking
the distribution gap, which provides a guarantee of the safety performance of the regularized offline
safe RL policy. Let dg(s|y) denote the state marginal of the generated data with condition y. We
first make the following assumptions.
Assumption 1 (Score estimation error of the state marginal). There exists a condition y∗ such that
the score function error of the state marginal is bounded by

Ed∗(s)∥∇s log dg(s|y∗)−∇s log d
∗(s)∥ ≤ ε2score, (10)

where d∗(s) is the stationary state distribution induced by the optimal policy π∗.

This assumption is also adopted in previous work [94, 95]. For simplicity, we omit the condition
y∗ in the following analysis and use dg(s), dg(s, a) to denote the generated state or the state-action
distribution with condition y∗. As we use inverse dynamics f(a|s, s′) to calculate actions based on
the generated state sequence, the quality of the dataset is also determined by the inverse dynamics.
Therefore, we further make the following assumption.
Assumption 2 (Error of inverse policy). The error of action distribution generated by the inverse
dynamics is bounded by

Ed∗(s) [DKL(π̂inv(·|s)∥π∗(·|s))] ≤ εinv, (11)

1This training/generation formula fixing initial state in the sequence is adopted from Decision Diffuser [80].
However, we also found that fixing the initial state is unnecessary for our dataset curation and conditional
distribution shaping task. Keeping this condition or not does not significantly impact the generation quality.
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where π̂inv(a|s) = Es′ [f̂(a|s, s′)] denotes the empirical inverse policy, which is a marginal of inverse
dynamics over s′.

Then the distance of generated data distribution to the optimal one is bounded as:
Theorem 1 (Distribution shaping error bound). Suppose that the optimal stationary state distribution
satisfies that 1) its score function∇s log d

∗(s) is L-Lipschitz and 2) its second momentum is bounded.
Under Assumption 1 and 2, the gap of generated state-action distribution to the optimal stationary
state-action distribution is bounded by

DTV (dg(s, a)∥d∗(s, a)) ≤ Õ
(
εscore

√
K
)
+
√
εinv/2 + C(d∗(s), L,K), (12)

where C(d∗(s), L,K) represents a constant determined by d∗(s), L and K.

The proof is given in Appendix A.2. Theorem 1 indicates that using the proposed OASIS method, we
can shape the dataset distribution towards a bounded neighborhood of the optimal distribution.

Given the generated data, we will then train a regularized offline safe RL policy by Eq. (3). Notice
that the regularization term in the objective function in Eq. (3) is equivalent to an explicit policy
constraint, and the coefficient w is the corresponding dual variable. Therefore, we make the following
assumption on the distance between the learned policy πϕ and the behavior policy.
Assumption 3. Denote the generated dataset as Dg and the corresponding behavior policy as πg,
given a fixed coefficient w, for the policy πϕ optimized by Eq. (3), there exists a εreg such that

Edg(s) [DKL (πϕ(·|s)∥πg(·|s))] ≤ εreg. (13)

Based on the above assumptions, we can derive the bound of constraint violation of the policy learned
on the offline data generated by OASIS. The proof is given in Appendix A.3.
Theorem 2 (Constraint violation bound). For policy πϕ optimized by regularized-based offline safe
RL on generated dataset Dg, under Assumption 1 , 2 and 3, the constraint violation of the trained
policy is bounded as:

V
πϕ
c (µ0)− κ ≤ 2Cmax

1− γ

(
Õ
(
εscore

√
K
)
+ C(d∗(s), L,K) +

√
εinv/2 +

√
εreg/2

)
, (14)

where C(d∗(s), L,K) represents a constant determined by d∗(s), L and K.

The theoretical analysis sheds insights by answering two questions: (1) Why do we use the diffusion
model for conditional distribution shaping, and (2) How does conditional distribution shaping benefit
offline safe RL training? Theorem 1 shows that by using the conditional diffusion model as a
data generator, the TV distance between optimal and generated state-action distribution is bounded;
Theorem 2 shows that the safety performance of agent trained on the generated dataset is guaranteed
with OASIS.

5 Experiment

In the experiments, we answer these questions: (1) How does the distribution of the dataset influence
the performance of regularized offline safe RL? (2) How does our proposed distribution shaping
method perform in offline safe RL tasks? (3) How well does the conditional data generator shape the
dataset distribution? To address these questions, we set up the following experiment tasks.

Environments. We adopt the continuous robot locomotion control tasks in the public benchmark
Bullet-Safety-Gym [96] for evaluation, which is commonly used in previous works [68, 28, 60].
We consider two tasks, Run and Circle, and three types of robots, Ball, Car, and Drone. We name
the environment as Agent-Task. A detailed description is available in the Appendix B.

Datasets. Our experiment tasks are mainly built upon the offline safe RL dataset OSRL [74]. To better
evaluate the tested algorithms with the challenging SDM problem, we create four different training
dataset types, full, tempting, conservative, and hybrid. The tempting dataset contains sparse
safe demonstrations, the conservative dataset lacks rewarding data points, and the hybrid dataset
has scarcity in the medium-reward, medium-cost trajectories. We set different cost thresholds for
different datasets. A detailed description and visualization of the datasets are available in Appendix B.
For the main experiments presented in Table 1, we train on tempting dataset, with threshold κ = 20.
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Figure 5: Performance with different datasets and varying constraint thresholds. The visualization of
these datasets is available in Appendix B.

Baselines and OASIS. For baselines, we compared our method with both model-centric and data-
centric baseline methods. Model-cenrtic: (1) Q-learning-based algorithms: BCQ-Lag [35, 86],
BEAR-Lag [41, 86], and CPQ [26]; (2) Imitation learning: Behavior Cloning (BC) [26]; (3) Distribution
correction estimation: COptiDICE [23], and (4) Sequential modeling algorithms: CDT [28] and
FISOR [31]; Data-cenrtic: (5) Data augmentation: CVAE-BCQL: we train BCQ-Lag agents on the
datasets generated by Conditional Variational Autoencoder (CVAE) [97]. The CVAE training set and
the dataset generation conditions are set as the same with our OASIS. For OASIS implementation,
we set three cost conditions Ĉ ≤ κ to align safety preference and guarantee data coverage. Code is
available on our Github repository, checkpoints and curated datasets are available on our HuggingFace
repository.

Metrics. We use the normalized cost return and the normalized reward return as the evaluation metric
for comparison in Table 1 and 2. The normalized cost is defined as Cnormalized = Cπ/κ, where Cπ is
the cost return and κ is the cost threshold. The agent is safe if Cnormalized ≤ 1. The normalized reward
is computed by Rnormalized = Rπ/rmax(M), where rmax(M) is the maximum empirical reward return
for taskM within the given dataset. We report the averaged results and standard deviations over 3
seeds for all the quantity evaluations.

Table 1: Evaluation results of the normalized reward and cost. The cost threshold is 1. ↑: the higher
the reward, the better. ↓: the lower the cost (up to threshold 1), the better. Bold: Safe agents whose
normalized cost is smaller than 1. Gray: Unsafe agents. Blue: Safe agent with the highest reward.

Algorithm Stats
Tasks

BallRun CarRun DroneRun BallCircle CarCircle DroneCircle

BC
reward ↑ 0.55 ± 0.23 0.94 ± 0.02 0.62 ± 0.11 0.73 ± 0.05 0.59 ± 0.11 0.82 ± 0.01

cost ↓ 2.04 ± 1.32 1.50 ± 1.11 3.48 ± 0.68 2.53 ± 0.15 3.39 ± 0.85 3.29 ± 0.18

CPQ reward ↑ 0.25 ± 0.11 0.63 ± 0.51 0.13 ± 0.30 0.39 ± 0.34 0.64 ± 0.02 0.01 ± 0.02
cost ↓ 1.34 ± 1.32 1.43 ± 1.82 2.29 ± 1.98 0.73 ± 0.66 0.12 ± 0.19 3.16 ± 3.85

COptiDICE reward ↑ 0.63 ± 0.04 0.90 ± 0.03 0.71 ± 0.01 0.73 ± 0.02 0.52 ± 0.01 0.35 ± 0.02
cost ↓ 3.13 ± 0.17 0.28 ± 0.24 3.87 ± 0.08 2.83 ± 0.23 3.56 ± 0.16 0.12 ± 0.10

BEAR-Lag reward ↑ 0.65± 0.08 0.55 ± 0.62 0.10 ± 0.33 0.89 ± 0.02 0.80 ± 0.08 0.89 ± 0.04
cost ↓ 4.38 ± 0.28 8.44 ± 0.62 3.72 ± 3.22 2.84 ± 0.28 2.89 ± 0.84 4.03 ± 0.51

BCQ-Lag reward ↑ 0.51 ± 0.19 0.96 ± 0.06 0.76 ± 0.07 0.76 ± 0.04 0.79 ± 0.02 0.88 ± 0.04
cost ↓ 1.96 ± 0.88 2.31 ± 3.22 5.19 ± 1.08 2.62 ± 0.29 3.25 ± 0.28 3.90 ± 0.55

CDT reward ↑ 0.35 ± 0.01 0.96 ± 0.01 0.84 ± 0.12 0.73 ± 0.01 0.71 ± 0.01 0.17 ± 0.08
cost ↓ 1.56 ± 1.10 0.67 ± 0.03 7.56 ± 0.33 1.36 ± 0.03 2.39 ± 0.15 1.08 ± 0.62

FISOR reward ↑ 0.17 ± 0.03 0.85 ± 0.02 0.44 ± 0.14 0.28 ± 0.03 0.24 ± 0.05 0.49 ± 0.05
cost ↓ 0.04 ± 0.06 0.15 ± 0.20 2.52 ± 0.61 0.00 ± 0.00 0.15 ± 0.27 0.02 ± 0.03

CVAE-BCQL reward ↑ 0.25 ± 0.02 0.88 ± 0.00 0.21 ± 52.07 0.49 ± 0.03 0.60 ± 0.05 0.01 ± 0.02
cost ↓ 1.40 ± 0.35 0.00 ± 0.00 2.80 ± 0.63 1.39 ± 0.27 1.77 ± 0.47 3.31 ± 1.66

OASIS (ours)
reward ↑ 0.28 ± 0.01 0.85 ± 0.04 0.13 ± 0.08 0.70 ± 0.01 0.76 ± 0.03 0.60 ± 0.01

cost ↓ 0.79 ± 0.37 0.02 ± 0.03 0.79 ± 0.54 0.45 ± 0.14 0.89 ± 0.59 0.25 ± 0.10
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5.1 How can conditional data generation benefit offline safe RL?

Performance degradation with SDM problems. The comparison results on the tempting dataset
are presented in Table 1 with the cost threshold κ = 20 before normalization. Results of BC show the
mismatch between the behavior policy and the safe policy, as the cost returns significantly violate
the safety constraints. The results of BCQ-Lag and BEAR-Lag show this mismatch further influences
the regularized-based algorithms, leading to constraint violations. This is because the regularization
term pushes the policy towards the unsafe behavior policy. The conservative Q function estimation
method CPQ, exhibits a significant reward degradation in all tasks, which arises from the drawback
of the pessimistic estimation methods that learn over-conservative behaviors. COptiDICE also fails
to learn safe and rewarding policies, showing that even using distribution correction estimation is
not enough to solve the SDM problem. For sequential modeling algorithms, CDT shows poor safety
performance and FISOR tends to be over-conservative with poor reward performance. This is because
both methods require a large amount of high-quality data while the trajectories with low cost and
high reward are sparse in this task. The unsatisfactory performance of these model-centric algorithms
further motivates the effective data-centric learning algorithm for offline safe RL.
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Figure 6: Data efficiency on the Ball-Circle
task with a tempting dataset.

Performance improvement using OASIS.
From Table 1, we find that only our method
OASIS can learn safe and rewarding policies by
mitigating the SDM problem. In addition to the
results on the tempting dataset, we also pro-
vide evaluation results within different types of
datasets and constraint thresholds in Fig. 5a and
Fig. 5b. We can observe that most baselines still
fail to learn a safe policy within different task
conditions due to the SDM issue. In contrast,
our proposed OASIS method achieves the high-
est reward among all safe agents, which shows
strength in more general cases.

High data efficiency of OASIS. In this experiment, we vary the amount of data for offline RL agent
training to evaluate data efficiency. The evaluation results are shown in Fig. 6. The x-axis α represents
the size of the RL agent training dataset. For OASIS, it denotes the size of the generated data. A
subsequent BCQ-Lag agent is trained on this generated dataset to obtain the safe RL policy. For the
baseline methods, we randomly sample trajectories from the original dataset to construct the training
dataset.

The comparison results indicate that we can still learn a good policy using a small amount of
high-quality data (α < 2%) generated by OASIS. In contrast, baseline methods show significant
performance degradation when the data are sparse as the noisy data is of low quality.

Table 2: Ablation study on denoising step K

K 10 20 40

Ball- reward 0.71 ± 0.02 0.70 ± 0.01 0.71± 0.01
Circle cost 0.72 ± 0.10 0.45 ± 0.14 0.99 ± 0.13
Ball- reward 0.29 ± 0.04 0.28 ± 0.01 0.29 ± 0.01
Run cost 0.16 ± 0.14 0.79 ± 0.37 0.00 ± 0.00

This observation demonstrates that the agent
can learn a good policy with high data effi-
ciency given high-quality data with minimal safe
dataset mismatch (SDM) issues. As OASIS of-
fers a solution to shape the dataset distribution,
it also reduces the required training dataset size
while maintaining good performance, further
reaffirming the effectiveness of data-centric approaches in offline safe learning and highlighting that
prioritizing quality is essential [70].

5.2 How can OASIS shape the dataset distribution?

Successful distribution shaping. To show the distribution shaping capability of the proposed OASIS
and baseline CVAE, we generate the dataset under different conditions and visualize them in Fig. 7.
When using different conditions, the expectations of reward and cost of the generated dataset change
accordingly. This shows the strong capability of our method in distribution shaping. We also visualize
the density of the generated data. In the Car-circle task, the robot receives high rewards when
moving along the circle boundary and receives costs when it exceeds the boundaries on both sides,
as shown in Fig. 7(c). The original dataset contains trajectories with various safety performances.
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Figure 7: (a)(b) Reward and cost performance of the generated data: E [r(s, a)] ,E [c(s, a)] , (s, a) ∼
dg . The x-axis and y-axis mean the reward and cost conditions and the values of both conditions and
expectations are normalized with the same scale. (c) Visualization of the data density. 1: Car-circle
task; 2: The density of the (x, y) position of the raw dataset; 3, 4: The density of the position (x, y)
of the data generated by OASIS under conditions [0.1, 0.5] and [0.75, 0.75]; 5, 6: the density of the
position (x, y) of the data generated by CVAE under conditions [0.1, 0.5] and [0.75, 0.75]

When using a low-cost condition, the generated data are clustered within the safety boundary to
satisfy the constraints. When using a high-reward condition, the generated data points are closer to
the circle boundary and receive higher rewards. In contrast, the baseline CVAE cannot successfully
incorporate the conditions in data generation, resulting in almost similar datasets with different
conditions as shown in Fig. 7(c). More experiment results including the visualization of generated
dataset comparison and corresponding analysis are available in Appendix B.2.

5.3 Robust performance against denoising steps

We conduct an ablation study on the key hyperparameter of the proposed OASIS method. The
experiment related to the denoising steps K is presented in Table 2. Performance does not change
much with different values, which shows the robustness of the proposed OASIS method.

6 Conclusion

In this paper, we study the challenging problem in offline safe RL: the safe data mismatch between the
imperfect demonstration and the target performance requirements. To address this issue, we proposed
the OASIS method to employ a conditional diffusion model to shape the dataset distribution and
benefit offline safe RL training. In addition to the theoretical guarantee of performance improvement,
we also conduct extensive experiments to show the superior performance of OASIS in learning a safe
and rewarding policy on many challenging offline safe RL tasks. More importantly, our method shows
good data efficiency and robustness to hyperparameters, which makes it preferable for applications in
many real-world tasks.

There are two limitations of OASIS: (1) Offline training takes longer: our method involves prepro-
cessing the offline dataset to enhance quality, which requires more time and computing resources;
(2) Achieving zero-constraint violations remains challenging with imperfect demonstrations. One
potential negative social impact is that misuse of our method may cause harmful consequences and
safety issues. Nevertheless, we believe that our proposed method can inspire further data-centric
research in the safe learning community and help to adapt offline RL algorithms to real-world tasks
with safety requirements.
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A Proofs

A.1 Proof of Eq.(9)

By definition of the stationary state-action distribution,
|V π

c (µ0)− V ∗
c (µ0)| (15)

=
1

1− γ

∣∣E(s,a)∼dπ [c(s, a)]− E(s,a)∼d∗ [c(s, a)]
∣∣ (16)

≤ Cmax

1− γ

∑
s,a

|dπ(s, a)− d∗(s, a)| (17)

=
2Cmax

1− γ
DTV(d

π(s, a)∥d∗(s, a)) (18)

≤2Cmax

1− γ
(DTV(d

π(s, a)∥d∗(s)π(a|s)) +DTV(d
∗(s)π(a|s)∥d∗(s, a))) (19)

=
2Cmax

1− γ
DTV(d

π(s)∥d∗(s)) + 2Cmax

1− γ
Ed∗(s)[DTV(π(a|s)∥π∗(a|s))] (20)

The second inequality holds by triangle inequality for total variation distance.

In general, the stationary distribution of learned policy is in between of the empirical distribution of
offline data dD and optimal d∗. Therefore, we can obtain

|V π
c (µ0)− V ∗

c (µ0)| ≤
2Cmax

1− γ
DTV(d

∗(s)∥dD(s)) + 2Cmax

1− γ
Ed∗(s)[DTV(π(a|s)∥π∗(a|s))]. (21)

A.2 Proof of Theorem 1

Proof. By triangle inequality, we first decompose the TV distance between state-action distributions
into a state distribution distance and a policy distance,

DTV (dg(s, a)∥d∗(s, a)) (22)
=DTV (dg(s)πg(a|s)∥d∗(s)π∗(a|s)) (23)
≤DTV (dg(s)πg(a|s)∥d∗(s)πg(a|s)) +DTV (d∗(s)πg(a|s)∥d∗(s)π∗(a|s)) (24)
=DTV (dg(s)∥d∗(s)) + Ed∗(s)[DTV(πg(a|s)∥π∗(a|s))] (25)
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We then consider two parts separately.

For the stationary state distribution distance, we suppose that the optimal distribution d∗(s) has a
L-Lipschitz smooth score function and a bounded second momentum. Meanwhile, note that the score
function in Assumption 1 is closely related to the denoising model ϵθ [98, 99]:

∇s log dg(s|y) = −
1√

1− ᾱt
ϵθ(s|y), (26)

where ϵθ(s|y) is the state marginal of the practical denoising model in Eq. (8). Therefore, by theorem
2 in [95], under Assumption 1, we have

DTV(dg(s)∥d∗(s)) ≲
√
DKL(d∗(s)∥N (0, I|S|)) exp(−K)+L(

√
|S|+m2)

√
K+εscore

√
K (27)

where K is the number of denoising timestep, |S| is the dimension of the state space, and m2 is the
second momentum of d∗(s). Therefore, aggregating the first two terms in RHS, we have

DTV (dg(s)∥d∗(s)) ≤ Õ
(
εscore
√
K
)
+ C(d∗(s), L,K), (28)

where C(. . . ) is a constant w.r.t d∗, L,K.

Regarding the policy distance. By Pinsker’s inequality,

DTV(πg(a|s)∥π∗(a|s)) ≤
√

1

2
DKL(πg(a|s)∥π∗(a|s)) (29)

Meanwhile, since the action is generated by the inverse policy, i.e., πg = π̂inv, by Assumption 2, we
have

Ed∗(s) [DTV(πg(a|s)∥π∗(a|s))] ≤ Ed∗(s)

[√
1

2
DKL(πg(a|s)∥π∗(a|s))

]
(30)

≤
√

1

2
Ed∗(s) [DKL(πg(a|s)∥π∗(a|s))] (31)

=
√

εinv/2 (32)
where the second inequality holds by Jensen’s inequality.

Combining the Eq. (28)) and (32), we finish the proof of Theorem 1.

A.3 Proof of Theorem 2

We start from the Eq. (9). The policy distance can be further decomposed into
DTV(π(a|s)∥π∗(a|s)) ≤ DTV(π(a|s)∥πD(a|s)) +DTV(π

D(a|s)∥π∗(a|s)). (33)
By Assumption 2 and 3 and Jensen’s inequality, we have

Ed∗(s)[DTV(π(a|s)∥π∗(a|s))] (34)

≤Ed∗(s)[DTV(π(a|s)∥πD(a|s))] + Ed∗(s)[DTV(π
D(a|s)∥π∗(a|s))] (35)

≤Ed∗(s)

[√
DKL(π(a|s)∥πD(a|s))/2

]
+ Ed∗(s)

[√
DKL(πD(a|s)∥π∗(a|s))/2

]
(36)

≤
√
Ed∗(s) [DKL(π(a|s)∥πD(a|s))] /2 +

√
Ed∗(s) [DKL(πD(a|s)∥π∗(a|s))] /2 (37)

≤
√
εreg/2 +

√
εinv/2 (38)

Plug-in Eq. (28) and (38) into Eq. (21), we have

|V π
c (µ0)− V ∗

c (µ0)| ≤
2Cmax

1− γ

(
Õ
(
εscore
√
K
)
+ C(d∗(s), L,K) +

√
εinv/2 +

√
εreg/2

)
. (39)

Meanwhile, notice that the optimal policy is constraint satisfactory, i.e.,
V ∗
c (µ0) ≤ κ. (40)

Therefore, we have

V π
c (µ0)− κ ≤ 2Cmax

1− γ

(
Õ
(
εscore
√
K
)
+ C(d∗(s), L,K) +

√
εinv/2 +

√
εreg/2

)
, (41)

which finishes the proof of Theorem 2.
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B Supplementary experiments

B.1 Trajectory reweighting for distribution shaping

In this section, we provide details about the trajectory reweighting experiment presented in Sec. 4.1.
Following previous work [39, 89] in offline RL, we adopted datapoint reweighting in policy optimiza-
tion, which can be formulated via importance sampling as:

J w
off(π, λ) ≈ E(s,a)∼Dw

[Joff(π, λ)] = E(s,a)∼D[w(s, a)Joff(π, λ)], (42)

whereJ w
off(π, λ) is the objective function after reweighting. In this experiment, we utilize a Boltzmann

energy function as adopted in [39] for offline RL tasks:
w(τ) ∝ exp

(
α1R(τ)2 + α2(C(τ)− κ)2

)
(43)

Here w(τ) means that all the state-action pairs in one trajectory share the same weight, which is
related to the cost and reward returns C(τ), R(τ). We adopt α1 = α2 = 1 in the experiments shown
in Fig. 3.

B.2 Supplementary data generation comparison results

Due to the page limit, we omit the visualization of reward and cost distribution using the CVAE
method for data generation. Here we provide the results in Fig. 8. From the reward performance
and the cost performance, we can observe that CVAE can hardly encode conditions into the data
reconstruction, leading to similar results when setting different conditions. From the trajectory
reconstruction results shown in Fig. 8(c), we can observe that the generated trajectories are almost
the same as the original one. This feature is not desirable for our distribution shaping purpose. In
contrast, our method OASIS can successfully shape the distribution as shown in Fig. 7, with the
strong capability of the diffusion model in the condition-guided denoising process.

(c) Trajectory visualization(a) Reward distribution (b) Cost distribution

Figure 8: CVAE reconstruction. (a) Reward performance of the generated data: E [r(s, a)] , (s, a) ∼
dg , (b) Cost performance of the generated data: E [c(s, a)] , (s, a) ∼ dg . In (a) and (b), the x-axis and
y-axis mean the reward and cost conditions, and the value of both conditions and expectations are
normalized to the same scale: [0, 1]; (c) The data reconstruction results using the condition [0.1, 0.5]
of 10 sampled trajectories in the dataset.

The comparison results of generated trajectories using OASIS and CVAE in the Drone-Circle task
are presented in Fig. 9. This figure illustrates the generation results of OASIS and CVAE under
two conditions: low-cost-medium-reward, and medium-cost-high-reward. Although CVAE can
reconstruct the trajectories, it fails to integrate conditions into the generation process. In contrast,
OASIS successfully controls the generated trajectories, avoiding the restricted area when conditioned
on low-cost-medium-reward.

C Implementation details

C.1 Environment details

Due to the page limit, we omit some descriptions of experiments in the main context. Here we give
more details about our experiment tasks. Both the Circle task and the Run task are from a publicly
available benchmark [96].
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OASIS OASISCVAE CVAE

Low-cost, medium reward: (𝑐 = 0.2, 𝑟 = 0.75) Medium-cost, high reward: (𝑐 = 0.5, 𝑟 = 0.85)

Original datapoint OASIS generated CVAE generated

Figure 9: Visualization of generated trajectories in the Drone-Circle task.

Circle tasks. The agents are rewarded for running along a circle boundary. The reward function is
defined as:

r(s, a, s′) =
−yvx + xvy

1 + |
√

x2 + y2 − radius|
+ rrobot(s) (44)

where x, y are the positions of the agent with state s′, vx, and vy are velocities of the agent with state
s′. radius is the radius of the circle area, and rrobot(st) is the specific reward for different robot.

The agent gets cost when exceeding the boundaries. The cost function is defined as:

Boundary: c(st) = 1(|x| > xlim) (45)

where xlim is the boundary position.

Run tasks. Agents are rewarded for running fast along one fixed direction and are given costs if they
run across the boundaries or exceed a velocity limit. The reward function is defined as:

r(s, a, s′) = ||xt−1 − g||2 − ||xt − g||2 + rrobot(st) (46)

The cost function is defined as:

c(s, a, s′) = max(1,1(|y| > ylim) + 1(||vt||2 > vlim)) (47)

where vlim is the speed limit, and ylim is the y position of the boundary, vt = [vx, vy] is the velocity
of the agent with state s′, g = [gx, gy] is the position of a virtual target, xt = [xt, yt] is the position
of the agent at timestamp t, xt−1 is the Cartesian coordinates of the agent with state s, xt is the
Cartesian coordinates of the agent with state s′, and rrobot(st) is the specific reward for the robot.

Agents. We use three different robot agents in our experiments: Ball, Car, and Drone. The action
space dimension, observation space dimension, and the timesteps for these six tasks are shown in
Table 3.

Table 3: Environment description
Max Action Observation

timestep space dimension space dimension

BallRun 100 2 7
CarRun 200 2 7

DroneRun 200 4 17
BallCircle 200 2 8
CarCircle 300 2 8

DroneCircle 300 4 18
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C.2 Dataset details

We provide details about the dataset types we presented in the experiment part. The Full, Tempting,
Conservative, and Hybrid datasets for Ball-Circle and Car-Circle tasks are shown in Fig. 10,
11, respectively. All the Tempting datasets associated with results in Table 1 are shown in Fig. 12.

Full dataset Tempting Conservative Hybrid

Figure 10: BallCircle Dataset types. Each point represents (C(τ), R(τ)) of a trajectory τ in the
dataset.

Full dataset Tempting Conservative Hybrid

Figure 11: CarCircle Dataset types. Each point represents (C(τ), R(τ)) of a trajectory τ in the
dataset.

Ball-Run Car-Run Drone-Run

Ball-Circle Car-Circle Drone-Circle

Figure 12: All tempting datasets. Each point represents (C(τ), R(τ)) of a trajectory τ in the dataset.
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C.3 Algorithm details

OASIS algorithm training diagram In this work, we use the cosine β schedule [100] to calculate
βt, t = 1, ...,K. Then we let αt = 1− βt, and ᾱt =

∏t
i=1 αi and denote the state dimension as m.

With these notations, we show the training process of the OASIS data generator for one epoch in
Algorithm 2.

Algorithm 2: OASIS (training)
1: Input: Original Dataset D, predefined βt and ᾱt, diffusion core ϵθ (xk,y, k), learning rate lr,

loss function L(·, ·).
2: for each sub-trajectory τi ∈ D do
3: Extract the states from τi: {(s0, s1, . . . , sT )} # [T,m];
4: Get the return conditions y = [C,R] associated with these sub-trajectories;
5: With probability p = 0.25 to mask the condition information as: y ← ∅
6: Get Gaussian Noise noise = N (0, I) # [T,m];
7: Randomly sample time t ∈ [0, ...,K − 1];
8: Calculate the forward sampling state xnoise = ᾱt ∗ τi + (1− ᾱt) ∗ noise;
9: Apply initial state condition xnoise[0]← s0;

10: Reconstruct noisy sub trajectory xrecon = ϵθ (xnoise,y, k);
11: Minimize the reconstruction loss θ ← θ − lr ∗ ∇θL(xnoise,xrecon);
12: end for
13: Output: Updated diffusion core ϵθ (xk,y, k);

Network and hyperparameter details. For the dynamics model p̂, we utilize a MLP. For the
denoising core, we utilize a U-net, which has also been used in previous works [82, 80]. The U-net
is visualized in Fig. 13. The hyperparameters for our method are summarized in Table 4. More details
are available in the code.
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Figure 13: U-Net structure.

Baseline details. For the baseline methods BC, BCQ-Lag, BEAR-Lag, COptiDICE, CPQ, and CDT,
we adopt the code base provided in the benchmark [74]. For the FISOR method, we use the code
provided by the authors [31].

Computing resources. The experiments are run on a server with 2×AMD EPYC 7542 32-Core
Processor CPU, 2×NVIDIA RTX A6000 graphics, and 252 GB memory. For one single experiment,
OASIS takes about 4 hours with 200, 000 steps to train the data generator. It takes about 1.5 hours to
train a BCQ-Lag agent on this generated dataset for 200, 000 steps.

Table 4: Hyperparameters
Hyperparameters Value

L (length of subsequence) 32
K (denoising timestep) 20

Batch size 256
Learning rate 3.0e-5

wα 2.0
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: They are provided in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: They are provided in the conclusion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
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• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to
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example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computer resources are provided in Appendix C. More details about exper-
iment results such as reweighting for distribution shaping are also provided in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Provided in the openreview form.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: They are provided in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not contain pre-trained language models, image generators, or
scraped datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The codebase we utilize for baseline comparison is under Apache License 2.0.
Related materials are cited in our code (See the README file in the code).

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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