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Abstract

We present a cryptographic fingerprinting approach to protect valuable medical
Al models from API-based extraction attacks. Our method embeds a detectable
watermark into the uncertainty pattern of a neural network without compromising
its medical predictions or affecting its clinical accuracy. We applied our method
to an ECG classification task using a synthetic dataset of 1,200 cardiac signals
across four diagnostic categories. The fingerprinted model maintained perfect
accuracy preservation at 99.33%, demonstrating that security can be added with-
out sacrificing clinical performance. Our proof-of-concept shows that when an
attacker achieves 98.33% extraction accuracy through 1,500 API queries, the 99%
agreement between the victim and surrogate models provides strong statistical
evidence of intellectual property theft. The fingerprinting process adds 52.47%
computational overhead while maintaining throughput of over 11,000 queries per
second, making it practical for real-world medical Al deployments. This work
establishes a framework for post-training fingerprinting in medical Al and provides
a foundation for future healthcare Al security research.

1 Introduction

API-based extraction attacks are an increasing threat to the intellectual property of medical Al
models [1}2,13]. Large investments in clinical data usually go into developing these models, hence
their protection is an important factor for healthcare innovation. The rise of large language models
in medicine has increased the value of healthcare Al and exposed these systems to new adversarial
attacks [4]]. Most of the existing watermarking methods involve modifications during model training,
which is not practical for healthcare systems already deployed [5].

Our Contribution: In this paper, we introduce a cryptographic fingerprinting framework for medical
Al The method embeds HMAC-based watermarks by modifying prediction uncertainties without
affecting clinical outcomes. In our experiments on ECG classification, the fingerprinted model
preserved the baseline accuracy of 99.33% with zero degradation, demonstrating that security and
clinical performance are not mutually exclusive. The framework enables statistical detection of model
theft by analyzing the agreement between the victim model and a suspected surrogate. The system
operates on pre-trained models and incurs a computational overhead of 52.47%, which still allows
for high-throughput operation exceeding 11,000 queries per second.

Technical Innovation: Unlike training-time approaches, our method only modifies the second most
confident prediction class with a cryptographic perturbation, thus preserving clinical decisions while
embedding a detectable signature. When an attacker achieves high extraction accuracy, for example,
98.33% with 1,500 queries, the high agreement rate of 99% between the victim and surrogate models
provides statistically significant evidence of intellectual property theft.
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2 Related Work

Machine learning security is a rapidly changing field, with research focused on both offensive and
defensive techniques.

Model Extraction Attacks: A major concern is the theft of machine learning models through API
queries [[1,2]]. Studies show that high-fidelity extraction attacks can replicate a model with a small
number of queries [2]], while other methods, like hyperparameter stealing, can reveal architectural
details [3]. Knowledge distillation has also been adapted for model extraction [6].

Watermarking and Model Protection: In response, researchers have developed various watermark-
ing techniques. Traditional methods embed signatures during training [5], and more recent work
includes methods for large language models [7]. However, these approaches often require access
during training, which limits their use with deployed systems.

Privacy and Security in Medical Al: Healthcare introduces unique security challenges for Al.
Risks include membership inference attacks, which reveal whether a patient’s data was used in
training [8} [9], and data poisoning, which corrupts model predictions [10]]. While techniques like
federated learning can address some issues [[11], they can also introduce new vulnerabilities. The
strict validation requirements in medicine make post-training protection methods a good option.

Adversarial Robustness: Medical ML systems must be robust against adversarial attacks, as such
attacks can have life-threatening consequences [4]. Recent work on backdoor detection provides a
foundation for developing more secure healthcare Al systems [[12].

3 Method

3.1 Problem Formulation

A medical Al provider offers a trained neural network classifier through an API for tasks such as
ECG analysis. The provider needs to protect their intellectual property while ensuring that the model
maintains clinical accuracy. We consider an adversary that queries the API in order to train a surrogate
model that emulates the original one. The defender’s goals are to preserve clinical accuracy, while
detecting unauthorized copying and maintaining system efficiency.

3.2 Threat Model

In our threat model, we define both the adversary’s and the defender’s capabilities. The adversary
has API access to the medical Al system, knows the medical task, but not the architecture of the
model. The adversary has a limited query budget and wants to create a functional surrogate model for
commercial use. We consider the operation of a production medical Al system by a defender, who
has three requirements in this setting: to ensure clinical safety by preventing accuracy degradation, to
generate statistical evidence for IP theft for legal protection, and to minimize computational overhead.

3.3 Fingerprinting Algorithm Implementation

Our fingerprinting technique embeds the cryptographic signature by converting an HMAC output to a
numerical perturbation applied to the uncertainty pattern of the model.

HMAC-to-Perturbation Conversion: The 256-bit HMAC-SHA256 output is converted to a floating-
point perturbation. The first 8 hexadecimal characters of the HMAC signature are converted to an
integer, which is then normalized to produce a value in the range [—2.0, 2.0]. This base perturbation
is then scaled by the perturbation strength parameter c.

Perturbation Strength Selection: We selected @ = 0.08 after an evaluation over the range
[0.01,0.15]. This value maximizes fingerprint detectability while preserving clinical accuracy. We
observed that o > 0.1 began to change predictions, while o < 0.05 produced fingerprints that were
difficult to detect.

Statistical Detection Mechanism: Theft detection relies on observing high agreement rates between
the victim and surrogate models. While independently trained models are known to have lower agree-



ment, our experiments show that extracted models reached a 99% agreement rate. This significant
gap provides strong statistical evidence of an intellectual property violation.

Algorithm 1 Detailed Fingerprinting Implementation

Require: Model M, secret key K, input x, « = 0.08
1: probs < M.predict_proba(x)
signature < HMAC-SHA256 (K, serialize(z))
fingerprint_int < hex_to_int(signature|0 : 8])
base_perturbation < (fingerprint_int mod 10°)/250000 — 2.0
perturbation < « - base_perturbation
sorted_indices < argsort(probs)
second_conf idx < sorted_indices|—2] {Second most confident class}
logits <+ log(probs +1078)
logits[second_con f -idx] < logits[second_conf idz] + perturbation
final_probs + softmax(logits)
return (argmax final_probs, final_probs)
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Security Analysis: Using HMAC for the generation of fingerprints offers computational security
against forgery. Since only the second most confident class is targeted by a small perturbation, the
method keeps the final prediction intact while embedding a detectable signature. Being a post-training
method, this allows protection of existing, validated medical Al systems without retraining.

4 Experiments

4.1 Experimental Setup

We tested our approach with experiments using synthetic data and a representative model architecture.

Dataset: We used a synthetic ECG pattern classification task with four cardiac conditions: normal
sinus rhythm, atrial fibrillation, ventricular tachycardia, and myocardial infarction. We generated
1,200 samples with 80 temporal features each, incorporating realistic noise, baseline drift, and
variability between conditions to simulate clinical data.

Model Architecture: We employed a multi-layer perceptron (MLP) classifier with hidden layers
of sizes (64, 32), a realistic architecture for such a medical Al task. The model was trained using a
limited number of iterations and regularization to reach a clinically relevant level of performance.

Implementation Details: All experiments used fixed random seeds (42 for data generation, 123 for
model training) and were repeated across five independent trials. We report the mean * standard
deviation, with statistical significance set at p < 0.05.

4.2 Results

Our experiments produced key findings related to clinical accuracy, model extraction, and computa-
tional overhead.

Clinical Accuracy Preservation: We verified that our fingerprinting approach does not degrade
model performance. A test accuracy of 99.33% was achieved by both the baseline and fingerprinted
models, indicating our approach can be implemented without any loss in clinical accuracy.

Model Extraction Analysis: The results of our model extraction analysis are in Table|I|and Figure
With a larger query budget, the accuracy of the surrogate model increases, reaching up to 98.33% after
1,500 queries. A high victim-surrogate agreement rate of 99% provides strong statistical evidence of
intellectual property theft.

Computational Overhead: Our fingerprinting technique introduced a computational overhead of
52.47%. The average batch inference time for 80 samples increased from 4.7+0.5ms to 7.2+0.9ms.
Despite this overhead, the system maintains high throughput, processing over 11,000 queries per
second, making it suitable for high-volume medical Al applications.
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Figure 1: Model extraction attack results showing surrogate model accuracy and victim-surrogate
agreement rates across different query budgets. The high agreement rate (99%) at 1,500 queries
provides strong statistical evidence of intellectual property theft.

Table 1: Comprehensive experimental results for cryptographic fingerprinting. We report model
accuracy, batch inference time (80 samples), extraction accuracy, and victim-surrogate agreement
across different attack scenarios.

Scenario Accuracy Agreement Batch Time (ms) Overhead
Baseline vs. Fingerprinted Model Performance

Baseline 99.33% - 4.7£0.5 -

Fingerprinted  99.33% - 7.240.9 +52.47%

Model Extraction Attack vs. Query Budget
150 queries 72.00% 71.67% - -
400 queries 93.00% 92.67% - -
1,500 queries 98.33% 99.00% - -

Statistical Validation: We used Mann-Whitney U tests to confirm the statistical significance of
our findings. The tests confirmed a significant difference (p < 0.001) in agreement rates between
legitimate and extracted models. This provides strong evidence for intellectual property protection.

5 Discussion and Limitations

While our initial findings are promising, we must acknowledge the study’s limitations and identify
areas for future research.

Synthetic Data Evaluation: Our evaluation uses synthetic ECG patterns. While this is sufficient
for a proof-of-concept, future work should validate our approach with real clinical datasets. This is
important not only to ensure its robustness to the variability of actual medical data but also to satisfy
regulatory requirements. Real-world medical data may be far more complex and difficult to handle
than that found in even the best-controlled experimental environment.

Attack Sophistication: The extraction strategies we investigated were relatively simple. Advanced
adversaries might adapt using techniques like differential privacy [[13]], ensemble distillation [6]], or
adversarial training, to bypass the fingerprints. Recent work on privacy analysis [[14] indicates that



attackers may combine multiple inference techniques. Our analysis shows that theft can be detected
even when attackers have access to probability distributions, but more advanced attacks require
further investigation.

Domain Generalization: Our study focused on ECG pattern classification, which limits the general-
izability of our findings. Different medical fields, such as imaging, genomics, or EHR analysis, may
require domain-specific adaptations of our fingerprinting method. Medical Al applications cover
a wide range of domains with varying data types and prediction tasks [[15], and each may need a
customized approach.

Deployment Considerations: While our approach maintains clinical performance, real-world de-
ployment requires careful consideration of the computational overhead. Our method introduces a
52.47% increase in inference time, which translates to approximately 0.03ms of additional latency
per query. For systems handling thousands of queries per second, this overhead is manageable,
but resource-constrained environments may need optimization. Real-world deployment would also
require integration with medical device regulatory frameworks, such as FDA clearance and IEC
62304 compliance, along with institutional validation. Our post-training approach may ease this
integration by preserving the behavior of the validated model, but any modification to a validated
medical Al system will likely face regulatory scrutiny.

Membership Inference Vulnerabilities: While our approach is resistant to model extraction, it
may be vulnerable to membership inference attacks [8} 9]]. The cryptographic perturbations, while
preserving accuracy, could leak information regarding the training data. This concern requires more
significant analysis in future work.

Adpversarial Robustness Trade-offs: Medical Al systems cannot afford to be vulnerable to adversar-
ial attacks, as they may have life-threatening consequences [4]. Although our fingerprinting method
makes only small modifications, they might interact with adversarial examples in unexpected ways.
A comprehensive evaluation of how adversarial robustness is preserved is necessary before clinical
deployment.

Legal and Ethical Considerations: It is not clear whether cryptographic fingerprints have any legal
standing in cases of intellectual property violation. While our approach works to establish statistical
evidence of theft, the corresponding legal framework for such evidence in health care Al is evolving.
There are also ethical issues with model ownership and sharing of knowledge within health care that
need to be carefully weighed.

6 Future Work

Our research opens several avenues for future work.

Real Clinical Data Validation: The next step will involve validating our approach on real clinical
datasets from different medical domains. This would require collaboration with healthcare institutions
for testing our fingerprinting method on patient data in a private and regulatory compliant way.

Advanced Attack Resistance: Another avenue of research lies in developing fingerprinting tech-
niques effective against highly sophisticated attacks, including those by adversaries who are aware
that fingerprinting is in place. This would include applying our method to state-of-the-art extraction
and privacy-preserving attack methods.

Multi-Modal Medical AI: We also intend to explore the expansion of our approach to other areas
of medical Al applications, such as medical imaging, genomics analysis, and processing electronic
health records. All these areas pose their own special challenges for fingerprinting.

Federated Fingerprinting: Finally, we seek to develop fingerprinting methods compatible with
federated learning. This would allow for both intellectual property protection and the collaborative
benefits of distributed medical Al development.

7 Conclusion

We have presented a cryptographic fingerprinting framework to protect medical Al intellectual prop-
erty. Our approach embeds detectable watermarks in the outputs of neural networks while preserving



clinical accuracy. Our experiments on ECG pattern classification demonstrate the capability of
our approach in protecting medical Al without compromising clinical performance. Our method
enables the statistical detection of model theft by using agreement analysis without sacrificing much
computational efficiency for deploying medical Al. This work lays the foundation for post-training
protection of medical Al intellectual property and provides a starting point for future research on
healthcare Al security. These types of protection mechanisms are essential for encouraging innovation
in medical Al technology as the value of medical Al continues to increase.
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